|
"Emphasis" italics have a * mark. [#] footnotes moved to EOParagraphs but not renumbered. German spelling of words need to checked particularly!
Scanned by Charles Keller with OmniPage Professional OCR software
THE RIDDLE OF THE RHINE CHEMICAL STRATEGY IN PEACE AND WAR
An account of the critical struggle for power and for the decisive war initiative. The campaign fostered by the great Rhine factories, and the pressing problems which they represent. A matter of pre-eminent public interest concerning the sincerity of disarmament, the future of warfare, and the stability of peace.
BY
VICTOR LEFEBURE Officer of the Order of the British Empire (Mil.) Chevalier de la Legion d'Honneur, Officer of the Crown of Italy Fellow of the Chemical Society, etc.
WITH A PREFACE BY MARSHAL FOCH
AND AN INTRODUCTION BY FIELD-MARSHAL SIR HENRY WILSON, BART. Chief of the Imperial General Staff
THE CHEMICAL FOUNDATION, INC. 81 FULTON STREET NEW YORK CITY
Published, 1923, By THE CHEMICAL FOUNDATION, INC. —— All Rights Reserved
Printed in the United States of America
PREFACE
My motives in writing this book are sufficiently explained in the first chapter. The silence surrounding the true facts of the chemical campaign, the tardy realisation of the real forces behind it in Germany, and our failure to grasp the significance of the matter in the Treaty, all pointed to the need for an early statement. More recently, this need has been emphasised by inaccurate public utterances on the matter, and by its vital importance for the full and fair treatment of certain legislative measures before Allied countries.
A unique experience of chemical warfare in all its aspects, first with a combatant gas unit on the British front in France, then as Liaison Officer with France and other Allies on all Chemical Warfare and allied questions, has afforded me an exceptionally complete survey of the subject. Later post-armistice experience in Paris, and the occupied territories, assisting Lord Moulton on various chemical questions in connection with the Treaty, and surveying the great chemical munition factories of the Rhine, has provided a central view of the whole matter which can have been the privilege and opportunity of very few.
Further, my association with the dye industry, since commencing this book, leaves me with a deep conviction of the critical importance for disarmament, of a world redistribution of organic chemical production. It is inevitable that such a step should benefit the growing organic chemical industries of countries other than Germany, but this issue need not be shirked. The importance of the matter is so vital that it eclipses all reproach that the disarmament argument for the maintenance of the dye industry is used on selfish grounds. Such reproach cannot, in fairness, be heard unless it destroys the case which we have established. We are faced with the following alternatives. Safety demands strong organic chemical industries or cumbersome and burdensome chemical warfare establishments. The stability of future peace depends upon the former, and the extent to which we must establish, or can abandon, the latter depends entirely on the activity and success of those whose special duty it is to organise against war.
A recent visit to America revealed the considerable publicity and public interest surrounding chemical warfare, strengthening my conviction that the facts, now noised abroad, should be presented in their proper setting. They are supremely significant at the present time and for the future, hence the chapters which follow. V. LEFEBURE. HAMPSTEAD, October 12, 1920.
PREFACE BY FIELD MARSHAL FOCH
In 1918, chemical warfare had developed considerably in our army. Before 1914 Germany possessed chemical factories which permitted her to manufacture in great quantities chemicals used at the front, and to develop on a large scale this new form of fighting.
The Allies, to retaliate, had to experiment and organise important centres for production. Only in this way, though starting late, were they able to put themselves in a position to supply the growing necessities of their armies.
To-day, the ability for aviation to carry increasing weight furnishes a new method for abundantly spreading poison gases with the aid of stronger and stronger bombs, and to reach armies, the centres of population in the rear, or to render regions uninhabitable.
Chemical warfare is therefore in a condition to produce more formidable results over more extended areas.
It is incontestable on the other hand that this growth will find an easy realisation in one country, Germany, addicted in times of peace, to wholesale manufacture of chemical products, which a simple modification in reactions can transform into war products.
This country, deprived, partially at least, of its former methods of fighting, and its numerous forces of specially trained soldiers, regularly organised and strongly armed, will be more drawn toward the new systems of attack— that of chemical warfare.
Chemical warfare must therefore enter into our future provisions and preparations, if we do not wish to experience some terrible surprises.
The work of Major Lefebure gives an exact idea of the possibilities he finds to-day in Germany, and through them the dangers with which she threatens us. In this form it constitutes a warning; and information of the highest order, for the minds who remain anxious for the fate of their country confronted by the inefficience of the old fighting methods which the progress of industry out of date renders daily.
By sounding the alarm in both our countries, I find myself in company with my faithful friend Field Marshal Sir Henry Wilson. This is an old habit, contracted by both of us, many years ago, which we still maintain at the present time to insure for ourselves once again, peace in the future.
Together, we say, read this work of Major Lefebure. F. FOCH.
CONTENTS PAGE CHAPTER I-EXPLANATORY The Riddle of the Rhine-A Critical Point in Disarmament-Need for a Balanced View of Chemical Warfare-Some Preliminary Explanation—"Poison Gas" a Misleading Term-The French Physiological Classification-Asphyxiating Substances-Toxic Substances-Lachrymators-Vesicant or Blistering Compounds-Sneezing or Sternutatory Substances-The Tactical Classification-Persistent Substances-Non-persistent Substances-Penetrants-Special Gas Weapons and Appliances-Gas Shell. 17
CHAPTER II-THE GERMAN SURPRISE The First Cloud Gas Attack-The Element of Surprise -Lord Kitchener's Protest-German Preparations— Research-Production-Field Preparations-German Opinion of Results-Germany Prompted by Production Monopoly-Standard Uses for Gas-Gas Shell-Further German Cloud Attacks-Hill 60-Origin of German Gas Shell-Early German Gas Shell-A Successful Experiment-Lachrymators at Loos, 1915-The Flammenwerfer-German Phosgene Clouds-Gas and the Eastern Theatre-Conclusion. 31
CHAPTER III-THE ALLIED REACTION The Need of Retaliation-First Signs-The Loos Attack, September, 1915-The Somme Battle, 1916—Reasons for British Cloud Gas Success-Our Casualties-Exhausting Preparations for Cloud Attack-The Livens Projector-British Gas Shell-German Gas Shell Development, 1916-Main Features of the Period. 48
CHAPTER IV-INTENSIVE CHEMICAL WARFARE The Mustard Gas Surprise-Blue Cross-German Emphasis on Gas Shell-The German Projector-German Projector Improvements-Dyes in Gas Shell—German Flame Projectors-Their Origin-Further Flame Development-The 1918 Offensive-Ludendorff's Testimony-Preparations for Assault-Gas Defensive Flank at Armentieres-Fixed Gas Barrage at Kemmel-Percentage of Chemical Shell-Gas Re-Contents
PAGE treat Tactics-General Hartley's Analysis-Percentage of German Gas Shell in Enemy Dumps-Forced Exhaustion of Stocks-Yperite, French Mustard Gas-Effect on German Gas Discipline-Allied Gas Statistics-Critical Importance of Rapid German Production. 66
CHAPTER V-CHEMICAL WARFARE ORGANISATIONS German Research-Leverkusen-Hochst-Ludwigshaven-Early Formulation of Policy-Movements of Personnel-German Simplicity of Organisation-German Organisation at the Front-The Gas Regiment—Early German Gas School-New Gas Regiments-Gas Shell Experts-Inspection of Protective Masks and Method-British Field Organisation— "Breach" Organisations-Central Laboratory-New Type of Casualty~Directorate of Gas Services-British Home Organisations-The Royal Society-Royal Society Chemical Sub-Committee-The Trench Warfare Department-Scientific Advisory Committee -Commercial Advisory Committee-Split Between Research and Supply-Munitions Inventions Department-Imperial College of Science-The Chemical Warfare Department-The Anti-Gas Department -Designs Committee French Organisation-Italian Developments-Supply Organisations-British Supply Organisation-Allied Handicaps-The German Solution—Departmental Difficulties— Allied Success Against Odds-Allied Lack of Vision in Production-British Lag in Organisation-French and American Characteristics-Inter-Allied Chemical Warfare Liaison-Inter-Allied Supply-Nature of Chemical Warfare Research-Discovery of New Substances-Technical Method of Preparation-Filling Problem-Protection-Half Scale Investigation-Two Classes of Research-Conclusion-The "Outer and Inner Lines." 85
CHAPTER VI-THE STRUGGLE FOR THE INITIATIVE Meaning of the Chemical Initiative-Controlling Factors—Rapid Manufacture Rapid Identification Essential-Propaganda and Morale-Peculiar Peace-time Danger-War Fluctuations of Initiative-The Tense Protective Struggle-The German Mask-Enforced German Modifications-Shortage of Rubber-Gas Discipline-Summary-New German Attempts-Yellow and Blue Cross-Yellow Cross-Blue Cross-"Particulate" Clouds-Potential Production and Peace. lit
Contents PAGE CHAPTER VII-REVIEW OF PRODUCTION Critical Importance of Production-Significance of the German Dye Industry—The Interessen Gemeinschaft-War Production by the I.G.-Allied Difficulties-Conclusion. 143
CHAPTER VIII-AMERICAN DEVELOPMENTS Special Attention justified-Special Value of American Opinion-Early American Activities-Field Activities -Special Difficulties-Edgewood Arsenal-Research—Production-Post-Armistice Developments-Views of General Fries-The Gas Cloud Inescapable-Importance of Smoke-Casualty Percent ages-Short Range Projectors-Vast Expansion in Personnel. 173
CHAPTER IX-GERMAN CHEMICAL POLICY Origin of German Chemical Monopolies-German Chemical Commercial Policy-Evidence of the U. S. A. Alien Property Custodian-Pre-war American Situation—German Price Cutting—Salicylic Acid— Full Line Forcing—Bribery and Corruption—German Patent Policy—Propaganda and Information—Espionage-Activities of the Dye Agencies-Manoeuvring Raw Materials-Chemical Exchange Association -Doctor Albert's Letter-Dye Agency Information System-Dr. Albert on Chemical Warfare-The Moral Aspect-Report of the New York World-German Policy Regarding Dye Supplies to the U. S. A.—Professor Stieglitz's Evidence Ehrlich's Discovery—Drugs and Medicinal Products-The German Monopoly-National Health Insurance Commission-The Royal Society—Novocain—Beta-Eucaine—Photographic Chemicals-War Activities of the I.G.-The Rhine Factories and the Armistice-War Mentality of the I.G.-German Attitude towards Inspection-The Rhine and Chaulny Contrast-German Revolution and the Industrial Leaders-The German Peace Delegation -Recent Signs of Government Interest-Nitrogen Fixation-The German Nitrogen Syndicate-Haber Process Prominent-The New German Dye Combine -Aggressive Nationalist Policy. 186
CHAPTER X-LINES OF FUTURE DEVELOPMENT The Element of Speculation-Chemical Tactics and Strategy-New War Chemicals—"Camouflage" Chemicals-Functions Hitherto Immune-Chemical Constitution and Physiological Action-Unsolved Prob-
Contents PAGE lems of Mustard Gas-A New Type of Obstacle— The "Persistent Lethal" Substance-The Critical Range-The New No-Man's-Land-The "Alert Gas Zone"—Gas and Aircraft-Protective Development -Individual Protection-Collective Protection-Conclusion. 215
CHAPTER XI-HUMANE OR INHUMANE? Nature of Gas Casualties-Sargent's Picture-Need for Safeguards. 238
CHAPTER XII-CHEMICAL WARFARE AND DISARMAMENT The Treaty of Versailles-German Information-Limitation of Armament-Report of the Hartley Mission -New Conceptions in Chemical Disarmament-Limitation Mechanical and Chemical-Tank Disarmament -Chemical Limitation-Research-Production-Mechanical and Chemical Preparations for War-Recent Disarmament Proposals-The Covenant of the League Need for Guarantees-Viscount Grey, "Germany must disarm first'~— Suggested Methods—"Vested Interests"—"Handing Over" Inventions-Neglect of Chemical Disarmament in the Treaty. 242
CONCLUSION-THE TREATY OF THE FUTURE. 264
ILLUSTRATIONS
THE LIVENS PROJECTOR-I. Frontispiece
A completed battery of projectors in the foreground, with a battery on the left rear, half dug in. Suitably camouflaged with brush, the batteries are not observable by aircraft, and, being in "No-Man's-Land," neither party can detect them by day.
FACING PAGE TYPICAL GAS SHELL BURSTING. 30
THE LIVENS PROJECTOR-II 61
A working party fitting electric leads and adjusting bombs prior to discharge. This work occurs at night.
THE LIVENS PROJECTOR-III. 133 Explosion of Livens bombs on the objective.
SMOKE BARRAGE. 181
Note the sharp curtain which is formed, behind which the infantry advance.
INTRODUCTION
No one who has the welfare of the country at heart can fail to share Major Lefebure's anxiety that a clear, accurate, and unbiased account of chemical warfare should be presented to the public, so that the many erroneous ideas now prevalent in regard to poison gas and its uses may be dispelled.
The whole subject of chemical warfare is at present sub judice, and there is great danger that the future safety of this country may be jeopardised by the almost universal ignorance of the peculiarities and potentialities of this class of warfare. Recent publications in the Press have shown a tendency to deal with the subject on purely sentimental grounds, and attempts have been made to declare this form of warfare illegitimate without full and careful consideration of all the facts and their significance for the future.
Major Lefebure has therefore attempted in his book to make it quite clear that no convention, guarantee, or disarmament safeguard will prevent an unscrupulous enemy from employing poison gas, especially if that enemy has discovered some new powerful agent, or possesses, as Germany does in her well-organised and strong chemical industry, a ready means for producing such chemicals in bulk at practically a moment's notice; further, that the safety of this country makes it imperative that the study and investigation of the subject should be continued and that our chemical and dye industry should be developed, so that when an emergency arises we may have the necessary facilities for supply ready to hand.
It is not for me to express any opinion here either as to the desirability of using gas as a weapon or as to the possibility of preventing an enemy from using it. But I am convinced that a decision come to without full knowledge of the facts may involve grave danger and heavy preventable loss of life. I am further convinced that Major Lefebure, by his special knowledge and long experience as chemical liaison officer during the war, is well qualified to speak, and that his opinion is entitled to full consideration. For these reasons I think that his book will do a much needed public service. I wish it every success, and the greatest possible number of readers. HENRY WILSON, F.M.
CHAPTER 1
EXPLANATORY
The Riddle of the Rhine.—The Great War challenged our very existence. But with the tension released, and the Allies victorious, the check to the German menace appears crushing and complete. Few realise that one formidable challenge has not been answered. Silently menacing, the chemical threat remains unrecognised. How, asks the reader, can this be? Are we not aware of the poison gas campaign? Indeed, we have not yet grasped the simple technical facts of the case, and these are merely the outward signs of a deep-rooted menace whose nature, activities, and potentialities are doubly important because so utterly unsuspected by those whom they most threaten.
How many of us, for example, realise that the Germans relied mainly on gas for success in the great March assault of 1918, which threatened to influence the destinies of the world. Yet Ludendorff goes out of his way to tell us how much he counted upon it. How many understand that the 1918 hostilities were no longer a war of explosives. German guns were firing more than fifty per cent. of gas and war chemical. But a deep study of such war facts reveals a much more significant matter.
All are aware of the enormous national enterprises built to fulfil our explosives programme. With mushroom-like growth chemical establishments of a magnitude hitherto unknown in England arose to meet our crying needs. What was the German equivalent, and where were the huge reservoirs of gas and war chemical which filled those countless shells? Krupp, of Essen, loomed large in the mind of every Allied citizen and soldier. There lay the sinews of war in the making. But the guns were useless without their message. Who provided it? A satisfactory answer to this question demands an examination of the great German I.G., the Interessen Gemeinschaft, the world power in organic chemical enterprise, whose monopoly existence threatened to turn the tide of war against us. This organisation emerges from the war with renewed and greater strength. Our splendid but improvised factories drained the vital forces of the nation, and now lie idle, while German war chemical production fed new life blood and grafted new tissue to the great pre-war factories of the I.G., which, if she will, she can use against us in the future. I do not claim that this German combine has at present any direct economic or military policy against world peace. In any case, the facts must speak for themselves. But the following pages will prove that the mere existence of the complete German monopoly, represented by the forces of the I.G., however free from suspicion might be the mentality and morals of those directing its activities, constitutes, in itself, a serious menace. It is, if you will, a monster camouflaged floating mine in the troubled sea of world peace, which the forces of reconstruction have left unswept. The existence of this giant monopoly raises vital military and economic questions, which are, indeed, "The Riddle of the Rhine."
Impersonal Examination of Fact.—In a sound examination of the subject it becomes necessary to examine the activities of our former enemies very closely. Even adopting a mild view of the case, their reputation has not been unattacked, and is not left untarnished. We, however, have no desire to renew such attacks, but we wish our statement to be coldly reliable. National and international issues are at stake which require a background unprejudiced by war emotion.
Placed in a similar predicament, in reporting to his Government of the methods of German economic aggression in the United States of America, Mr. Mitchell Palmer, the Alien Property Custodian, expressed himself as follows:
"I do not advocate any trade boycott out of spirit of revenge or in retaliation for injuries done to the United States. I do not want to continue the war after the war. I am for peace. I believe that the great overshadowing result which has come from this war is the assurance of peace almost everlasting amongst the peoples of the earth. I would help to make that an absolute certainty by refusing to permit Germany to prosecute a war after the war. The military arm of her war machine has been palsied by the tremendous hammering of the allied powers. But her territory was not invaded, and if she can get out of the war with her home territory intact, rebuild a stable government, and still have her foreign markets subject to her exploitation, by means no less foul and unfair than those which she has employed on the field of battle, we shall not be safe from future onslaughts different in methods, but with the same purpose that moved her on that fateful day in July when she set out to conquer the world."
Ours is a fair standpoint. Let us know the facts of the chemical war into which Germany impelled us. Let us examine its mainsprings, in conception and action, see how far they can be explained in terms of pre-war Germany, and how far they remain ready to function in the much desired peace which they threaten. If the result be unpleasant, let us not hide our heads in the sand, but exercise a wise vigilance, choose what precautions are available and consistent with our plans for world peace.
A Critical Point in Disarmament.—Probably never before in the history of man has Disarmament figured as such a vitally urgent national and international measure. Discussions and official utterances reveal a very disquieting tendency.
When compared with the methods, armament and materials of the war in 1914, those of 1918 reveal basic changes which a hundred years of former peace could not have brought about. These developments are not merely of fact, but they represent the opening of new fields, visions of possibilities previously undreamed of by the practical soldier. By the concentrated application of electricity, chemistry, and other sciences to war two dominating factors have emerged, whose importance to war, and danger for world peace, can only gain momentum with time. The scientific or technical initiative, the invention of a deadly new chemical, wireless-directed aeroplane, or other war appliance and their incidence on war through large scale production in the convertible industries of peace constitute a challenge which, if unanswered by practical schemes for world disarmament, will render the latter worse than useless, by aggravating the danger of sudden decisive attack in an otherwise disarmed world.
There is a tendency to ignore this aspect of disarmament. We appear to be thinking in terms of a world still organised for war on 1914 lines. The disbanding of the German army and semi-military organisations, and the reduction of her artillery and small arms seem to occupy all our attention. Such, it might be urged, is the immediate need; we can leave the future to find answers to the other problems. This answer is dangerous, for it ignores the disarmament aspect of what is perhaps the most important development in the modern offensive campaign. We refer to poison gas or chemical warfare. This, the crux of all disarmament, is dealt with at some length in the chapters which follow.
A curiously illogical attitude of mind has arisen in certain quarters. There is a tendency among strong adherents to the ideal of world peace to regard themselves as its sole possessors. Every thinking civilian and soldier must adhere to such an ideal; the only point at issue is the method of approaching it. The mere fact that a League of Nations is called into being to attain world peace implies recognition of the fact that a definite mechanism and definite measures are required for the purpose; this is self-evident. There are those who, having established their League of Nations, feel that they can attain chemical peace by merely prohibiting chemical war, in other words, they expect their mechanism to achieve its object without functioning, to attain peace by its mere existence. Just as special measures are required to control disarmament in the older branches of warfare, in the same way special measures, but not the same measures, are required to control the chemical peace. Chemical peace guaranteed by a mere signature is no peace at all.
In a recent Press utterance we find an appeal to prohibit chemical warfare and to "trust the general sentiment of the civilised world to say that the lesson has been learnt in that sense." "There is the League of Nations to furnish that sentiment with a mouthpiece and a sanction." We agree, but to stop there is dangerous, the most important thing which it must furnish is a mechanism of control, a check, or guarantee. This question is one of the most important which confronts us for world peace. It merits the most careful consideration.
Even responsible and relevant officials who admit that their League must do more than issue edicts, that their mechanism must function, are ignoring the specific technical aspect of the war methods whose use we wish to limit. This matter will receive later attention.
The following pages, therefore, are an attempt to represent the salient points in the development of chemical warfare, its causes, results, and future. Such an attempt cannot limit itself to merely British developments, and this is not a final detailed memoir of British chemical warfare. Further, in considering the future, we examine another aspect of chemical warfare. Facts lead us to believe that it was purely the most open and obvious activity in a whole campaign of chemical aggression which had effective unity of conception and direction long before the war started.
Need for a Balanced View of Chemical Warfare.—The facts of chemical warfare have probably been less ventilated than those of any other important war development. Yet no subject has aroused more general and intense feeling. Tanks, aircraft, the different campaigns, enemy memoirs, and a variety of war subjects, have received a considerable measure of publicity, some more than full measure. Grave questions are pending in which the chemical aspect of national defence is a prominent factor. However willing the individual concerned, he cannot make a sound judgment on the brief technical or popular garbled versions which have appeared. One searches in vain for balanced and detailed statements on the question. This may be due in no way to lack of intention, but to lack of opportunity. Therefore, no excuse is needed for this contribution, but rather an apology for the obscurity which has so far surrounded the subject. What is the cause of this emotional or almost hysterical background from which a clear definition of the matter is only now beginning to emerge? Circumstances are to blame; the first open act of chemical warfare decided the matter.
This event, the first German cloud gas attack at Ypres, arriving at the peak of allied indignation against a series of German abuses, in particular with regard to the treatment of prisoners, left the world aghast at the new atrocity. Further, its use against entirely unprotected troops was particularly revolting. The fact that such a cloud of chlorine would have passed the 1918 armies untouched behind their modern respirators, could not be known to, nor appreciated by the relatives of the 1915 casualties. But the emotion and indignation called forth by the first use of gas has survived a period of years, at the end of which the technical facts would no longer, of themselves, justify such feeling. We would hesitate to do anything which might dispel this emotional momentum were we not convinced that, unaccompanied by knowledge, it becomes a very grave danger. If we felt that the announcement of an edict was sufficient to suppress chemical warfare we would gladly stimulate any public emotion to create such an edict. But therein lies the danger. Owing to certain technical peculiarities, which can be clearly revealed by examination of the facts, it is impossible to suppress chemical warfare in this way. As well try to suppress disease by forbidding its recurrence. But we can take precaution against disease, and the following examination will show clearly that we can take similar precautions against the otherwise permanent menace of chemical war. Further, backed by such precautions, a powerful international edict has value.
It is, therefore, our intention to present a reasoned account of the development of poison gas, or chemical warfare, during the recent war. But to leave the matter there would be misleading and culpable, for, however interesting the simple facts of the chemical campaign, they owed their being to a combination of forces, whose nature and significance for the future are infinitely more important. The chief cause of the chemical war was an unsound and dangerous world distribution of industrial organic chemical forces. Unless some readjustment occurs, this will remain the "point faible" in world disarmament. We, therefore, propose to examine the relationships between chemical industry, war, and disarmament.
Some Preliminary Explanation.—The chemistry of war, developed under the stress of the poison gas campaign, is of absorbing chemical and technical interest, but it has none the less a general appeal. When its apparently disconnected and formidable facts are revealed as an essential part of a tense struggle in which move and counter-move followed swiftly one upon the other, its appeal becomes much wider. Therefore, in order not to confuse the main issue in the following chapters by entering upon tiresome definitions, it is proposed to conclude the present chapter by explaining, simply, a number of chemical warfare conceptions with which the expert is probably well acquainted.
"Poison Gas" a Misleading Term—Poison gas is a misleading term, and. our subject is much better described as "chemical, warfare." Let us substantiate this by examining briefly the types of chemicals which were used. In the first place they were not all gases; the tendency during the war was towards the use of liquids and solids. Even the chemicals which appeared as gases on the field of battle were transported and projected as liquids, produced by compression. As the poison war developed, a large number of different chemicals became available for use by the opposing armies. These can he classified, either according to their tactical use, or according to their physiological effects on man.
The British, French, American, and German armies all tended to the final adoption of a tactical classification, but the French emphasised the physiological side. Let us use their classification as a basis for a review of the chief chemicals concerned.
The French Physiological Classification;—Asphyxiating Substances;— Toxic Substances;—Chemicals or poison gases were either asphyxiating, toxic, lachrymatory, vesicant, or sternutatory. It is perfectly true that the asphyxiating and toxic substances, used during the war, produced a higher percentage of deaths than the other three classes, but the latter were responsible for many more casualties. The so-called asphyxiating gases produced their effect by producing lesions and congestion in the pulmonary system, causing death by suffocation. The best known substances of this type was chlorine, employed in the liquid state in cylinders on the occasion of the first German gas attack, but the most formidable were phosgene (an important substance required in the manufacture of dyes), diphosgene, chlor-picrin, made from bleaching powder and picric acid, brom-acetone, which was also a powerful lachrymator, and diphenylchlorarsine, known as sneezing gas, the first sternutatory or sneezing compound to appear on the front in large quantities. The toxic compounds were so called because of their specific effect upon particular parts of the organism such as, for example, the nervous system. The chief example, with regard to the military value of which there has been much dispute, was prussic, or hydrocyanic, acid. The French had definite evidence of the mortal effect of this compound upon German gunners, but it was doubted by other Allies whether French gas shell produced a sufficient concentration of gas to be of military value. It was a kill or cure compound, for recovery was rapid from any concentration which did not produce death.
A prominent Cambridge physiologist, in the heat of the controversy on this matter, made a very brave and self-sacrificing experiment. He entered a chamber of prussic acid which was sufficiently concentrated to cause the death of other animals which were present. They were removed in time, and he escaped because the concentration was not a mortal one for man. This was, in a sense, an experimentum crucis and, although it did not disprove the extreme danger of prussic acid, if employed in high concentrations, it showed, on the other hand, that it was difficult to gauge the military value by field experiments; battle results were necessary. The Germans' disappointment with the use of arsenic compounds confirms this need for battle evidence.
Lachrymators.—There is hardly need to dwell on the next class, the lachrymator. These compounds were employed on a large scale to produce temporary blindness by lachrymation, or weeping. We give later some interesting examples of their use on the front. It is an arresting thought that even as early as 1887 Professor Baeyer, the renowned organic chemist of Munich, in his lectures to advanced students, included a reference to the military value of these compounds.
Vesicant or Blistering Compounds.—It was the introduction of the fourth, the vesicant class, which revealed, more than any other enemy move, the great possibilities inherent in chemical warfare. These compounds, the chief of which was mustard gas, produced vesicant, or skin burning, effects, which, although rarely mortal, were sufficient to put a man out of action for a number of months. Mustard gas resulted from pure scientific investigation as early as 1860. Victor Meyer, the famous German chemist, described the substance in 1884, indicating its skin-blistering effects. There is evidence of further investigation in German laboratories a year before the outbreak of war, and whatever the motive for this work, we know that mustard gas must have received the early attention of the German War Office, for it was approved and in production early in 1917. Although the Medecin aide-major Chevalier of the French services drew attention to its importance in 1916, the French had no serious thought of using mustard gas, and did not realise its possibilities until the German battle experiment of July, 1917. It is not generally known, however, that other vesicant compounds were employed, notably some of the arsenic compounds, and the Germans were researching on substances of this nature which gave great promise of success. Mustard gas provides a striking example of the organic way in which chemical warfare is bound up with the dye industry. The compounds required for its manufacture were those which had been made on a large scale by the I.G. for the production of indigo. World indigo monopoly meant possession of a potential mustard gas surprise on the outbreak of war.
Sneezing or Sternutatory Substances.—The last class, the sternutatory substances, produced the familiar sneezing effect which was accompanied by intense pain and irritation of the nose, throat, and respiratory channels. They were mostly arsenic compounds and were not only sternutatory but also toxic, producing the after effects of arsenic poisoning.
The Tactical Classification.—From the point of view of our account of chemical warfare, however, the physiological classification of these substances is not so important as the tactical and, indeed, once this grouping of the substances is understood, a profound knowledge of their chemical nature is not necessary.
Persistent Substances.—Two main classes exist from the tactical Point of view. There are those "persistent" substances which remain for a long time on the soil or on the object on which they are sprayed by shell, while retaining their dangerous effect. Mustard gas was the chief example, but some of the lachrymators were just as persistent. By their use it is possible to render ground uninhabitable or ineffective for military movement. The combination of the vesicant and persistent properties of mustard gas rendered it a powerful military factor.
Non-Persistent Substances.—On the other hand, there are the relatively volatile substances, such as phosgene, which can be used immediately before an attack. The chief sternutatory compound, diphenylchlorarsine, although not volatile, could also be used in this way, for, being a solid and in a very finely pulverised state, its presence on the ground was not a distinct danger, and it invited chemical decomposition.
Penetrants.—The Germans introduced an additional tactical group. This comprised pulverised substances able to penetrate the mask on account of their existence as minute particles. The Germans expressed these tactical conceptions by their shell markings. The familiar Green Cross represented the slightly persistent, volatile, lethal compounds, such as phosgene and diphosgene. The German gunner had no need to know the content of his gas shell so long as he could identify the cross. Yellow Cross, representing mustard gas, was the most highly persistent type. It is interesting to speculate whether a new persistent compound, whose military value was due to some other property than the blistering, would have been grouped under Yellow Cross. Logically, this should have been done. Blue Cross covered the arsenic group of compounds, which were non-persistent and were expected to penetrate the mask. So strong was this tactical conception that the Allies were on the verge of adopting a uniform shell marking based on this principle throughout their armies.
Special Gas Weapons and Appliances.—It is a popular misconception that gas was only discharged from cylinders in huge clouds, or used as artillery shell. A number of special weapons developed, which were particularly adapted for gas. Thus, the Livens projector, which was a great Allied advance, produced a gas cloud a long distance from the point of discharge, while the Stokes and other short range guns were used for rapid fire of large numbers of gas shell.
The primary conceptions with regard to protection have been brought home to so many, through the fact that the mask was a part of the equipment of every soldier, that we need not dwell on them here. It is not generally realised, however, that every modification introduced by either side was a vital and direct counter to some enemy move planned to render the protection of the opponent ineffective.
Gas Shell.—A word is necessary to define the use of gas shell. The point which must be realised is that gas, and in particular gas shell, fulfilled a special purpose in warfare, from which it was much more suitable than explosives. The use for neutralising batteries, cross roads, and rendering whole areas uninhabitable, is developed fully in our reference to the great German attacks in 1918.
With this brief sketch to clear the ground, we can embark more freely upon the account of chemical warfare which follows. CHAPTER II
THE GERMAN SURPRISE
Ypres, April, 1915, to the Somme, August, 1916.
The First Cloud Gas Attack.—The critical factor of surprise in war was never nearer decisive success than on April 22nd, 1915. Of this, the occasion of the first German gas attack at Ypres, Field-Marshal Sir J. D. P. French Stated:
"Following a heavy bombardment, the enemy attacked the French Division at about 5 p.m., using asphyxiating gases for the first time. Aircraft reported that at about 5 p.m. thick yellow smoke had been seen issuing from the German trenches between Langemarck and Bixschoote. What follows almost defies description. The effect of these poisonous gases was so virulent as to render the whole of the line held by the French Division mentioned above practically incapable of any action at all. It was at first impossible for any one to realise what had actually happened. The smoke and fumes hid everything from sight, and hundreds of men were thrown into a comatose or dying condition, and within an hour the whole position had to be abandoned, together with about fifty guns. I wish particularly to repudiate any idea of attaching the least blame to the French Division for this unfortunate incident."
The Element of Surprise.—The enemy just missed colossal success rendered possible by the use of an entirely new war method; one contrary to engagements entered into by them at the Hague Convention.
There were elements in this first gas attack which were absent even from the situation created by our first use of tanks. Unfamiliarity amongst the troops, or the staff, for that matter, created an atmosphere of unparalleled confusion. Men attempted to protect themselves by burying their mouths and nostrils in the loose earth. Those chemists, on the spot, not immediately struck down, made frantic efforts to bring up supplies of any suitable and available chemical or material which might assist resistance and movement in the affected zone. Paying every homage to the heroic sacrifices and brave actions which characterised the Allied resistance, we cannot ignore the fact that morale must have been very severely shaken locally, and that a general disquiet and uneasiness must have permeated the whole front until measures were known to be effectively in progress, not only for protection, but for retaliation. The enemy had but to exploit the attack fully to break through to the channel ports, but failed to do so. The master mind behind this new and deadly attack was not, let us remember, that of a soldier. It was very strongly rumoured that this monstrous conception and its execution were due to one or, at the most, two renowned German Professors. The first hammer blow in the enemy chemical campaign was a two-party conspiracy, led by world-famous scientists and the powerful I.G. with the German army unconvinced but expectant, little more than a willing dupe.
Lord Kitchener's Protest.—In his spirited protest in the House of Lords, Lord Kitchener stated: "The Germans have, in the last week, introduced a method of placing their opponents hors de combat by the use of asphyxiating and deleterious gases, and they employ these poisonous methods to prevail when their attack, according to the rules of war, might have otherwise failed. On this subject I would remind your Lordships that Germany was a signatory to the following article in the Hague Convention:
" 'The Contracting Powers agree to abstain from the use of projectiles the object of which is the diffusion of asphyxiating or deleterious gases.' "
This protest circulated amongst neutrals prompted numerous attempts at vindication in the German Press. In several cases we find important newspapers arguing that the German attack was not contrary to the Hague Convention, while others admitted the breach, but claimed that the Germans merely followed Allied example. The main technical excuse was that the effect of the German gas was merely stupefying (Colniche Zeitung, June, 1915). It is incredible that the German nation was, or could allow itself to be, so hoodwinked. Scientific Germany was certainly aware of the true nature of the gases used. Even scientific neutrals in Berlin at the outbreak of war, and during the ensuing winter, were aware of the German poison gas work, which commenced, in an organised way, almost as soon as war broke out. The Germans have argued that they only entertained the idea of gas after Allied use. The facts revealed below are a sufficient answer. Whatever legal arguments may be involved, there is no doubt as to German intention.
We do not wish to enter into a comprehensive examination of the legal aspect of the first use of cloud and shell gas by Germany. Whatever complicated arguments may turn upon the strict reading of a phrase in the records of the Hague Convention, we have no doubt whatever as to the desires and intentions of the Assembly, and we regard Germany (and the Allies) as morally engaged not to venture upon the series of chemical enterprises which she openly commenced with the Ypres cloud attack. The Versailles Treaty also renders fruitless any such discussion. Article 171, accepted by Germany, is deliberately based on her breach of International Convention.
German Preparations.—A significant phrase occurs in the Field-Marshal's despatch. "The brain power and thought which has evidently been at work before this unworthy method of making war reached the pitch of efficiency which has been demonstrated in its practice shows that the Germans must have harboured these designs for a long time." This is a most important point. It was argued by many generous and fairminded people in April, 1915, that the German use of gas was the result of a sudden decision, only arrived at in a desperate effort to terminate the war. This point of view would give us maximum hope for the future. But the actual truth? What do we know about German preparations, and how far back do they date? Any preparations which occurred must have covered research on the compounds to be employed and on the protection required for the German troops, their training for the cloud attack, and the design and production of the special appliances to be used. Finally, the production of the chemicals themselves had to be faced.
Research.—We have obtained an insight into the German research preparations, which leaves no doubt as to their intention. There is evidence that the Kaiser Wilhelm Institute and the physico-chemical institute near by were employed for this purpose as early as August, 1914. Reliable authority exists for the statement that soon after this date they were working with cacodyl oxide and phosgene, both well known before the war for their very poisonous nature, for use, it was believed, in hand grenades. Our quotations are from a statement by a neutral then working at the Institute. "We could hear the tests that Professor Haber was carrying out at the back of the Institute, with the military authorities, who in their steel-grey cars came to Haber's Institute every morning." "The work was pushed day and night, and many times I saw activity in the building at eleven o'clock in the evening. It was common knowledge that Haber was pushing these men as hard as he could." Sachur was Professor Haber's assistant. "One morning there was a violent explosion in the room in which most of this war work was carried out. The room was instantly filled with dense clouds of arsenic oxide." "The janitors began to clear the room by a hose and discovered Professor Sachur." He was very badly hurt and died soon after. "After that accident I believe the work on cacodyl oxide and phosgene was suspended and I believe that work was carried out on chlorine or chlorine compounds." "There were seven or eight men working in the Institute on these problems, but we heard nothing more until Haber went to the Battle of Ypres." Rumours to this effect circulated in 1915.
Production.—Preparations, for production can easily be imagined. The Germans first used chlorine for cloud gas, and certain lachrymators for shell. The chlorine was readily available. At about this time British liquid chlorine capacity had a maximum daily output of about one ton, while along the Rhine alone the production was more than forty times greater. The question of German chlorine production was, therefore, already solved. The lachrymators were mainly raw materials and intermediates of the dye industry submitted to a process, the technique of which the German dye factories readily mastered. Here, again, production presented no real difficulties. Cylinders were also probably available from the industry.
Field Preparations.—There remains the last question of gas attack technique and personnel. Those of us who remember the difficulties involved in creating our own organisation in the summer of 1915 have no illusions on the question of German preparation. Giving the Germans every credit for their technical and military efficiency, some months must have been occupied in establishing and training the special companies required, and in arriving at a satisfactory design for the discharge appliances. Schwarte's book, Die Technik Im Weltkriege,[1] tells us "specially organised and trained troops" were required for the purpose. Prisoners taken later revealed the German methods. Gas officers and N.C.O.'s, after making a careful survey of the front line trench, organised the digging of deep narrow trenches at suitable places below the surface of the main trench, just underneath the parapet. The heavy gas cylinders, weighing as much as ninety pounds, were carried to the front line by the unfortunate infantry. The discharge valves were carefully protected by domes which screwed on to the cylinder. The latter were introduced into the holes, tops flush with the trench bottom, and covered by a board on which reposed the "Salzdecke," a kind of long bag stuffed with some such material as peat moss and soaked in potash solution to absorb any slight gas leakages. Three layers of sandbags were built above the salzdecke to protect the cylinder from shell fragments and to form a firestep for the infantry. This concealed the cylinders so efficiently that, in our own trenches, I have often found the new occupants of a sector ignorant of the presence of gas cylinders under their own firesteps. On the favourable night the dome was removed and a lead pipe was connected to the cylinder and directed over the parapet into No Man's Land, with the nozzle weighed down by a sandbag. The pioneers stood by the batteries of twenty cylinders each and let off the gas a fixed few minutes after a rocket signal, at which the infantry retired to leave the front line free for the pioneers, who not only ran the risk of gassing from defective appliances but were subjected to almost immediate violent bombardment from the opposing artillery. When surprise was complete artillery retaliation was very late in developing. This gives a faint idea of the elaborate preparations required. They must have been doubly arduous and lengthy on the very first occasion of cloud gas attack.
[1] Die Technik Im Weltkriegre. Publisher: Mittler, Berlin, 1920.
German Opinion of Results.—We can now regard the chlorine attack of April 22, 1915, as the first and successful result of a huge German experiment on a new method of war, the pioneer work of which actually began at (if not before) the outbreak of war. Quoting again from Schwarte: "G.H.Q. considered the attack near Ypres to he a successful experiment. The impression created was colossal and the result not inconsiderable, although it was not fully utilised from the tactical point of view. It was obvious that we had gained a great advantage; the enemy was not sufficiently prepared with defensive measures against gas." Indeed, we were absolutely unprepared, so much so, that after the German attack nearly every household in England contributed to our first inefficient and improvised mask. Is not this suggestion of our preparation a deliberate attempt to deceive the German public? They seem to have been as easily hoodwinked on gas questions as on many others.
Germany Prompted by Production Monopoly.—An important point arises. The Germans failed to exploit their initial success. This is not very surprising. Whatever the opinion of the chemists behind the movement, the German General Staff must have retained the elements of precaution in its opinion. It could not have taken for granted the formidable success which the chemists proved justified in prophesying. This being so, we can fairly assume that had there been very serious difficulties in carrying out this huge war experiment it might never have materialised. Such difficulties might have been found in production. But as we have seen, the question of production was the most easily forged link in the chain of events which led to the use of poison gas by Germany. In other words, this monopoly in ease of production was an inducement to the Germans to proceed with their experiment.
The earliest German cloud gas attacks established beyond a doubt the enormous value of gas against unprotected troops, in other words, its value as a complete surprise. These conditions were again approached in the first German use of mustard gas. The most telling examples will probably be found in the future, unless the correct precautions are taken. The whole history of chemical warfare during the war was a struggle for this initiative, a struggle between gas protection and aggression.
Standard Uses for Gas;—Gas Shell.—But gas found an important use besides that of strategic surprise. It became a standard weapon for certain clear and definite tactical purposes. (For some of these, indeed, the factor of local surprise was important.) We refer to the specific use of gas shell for the neutralisation of batteries, roads, and areas, and to the use of cloud gas, prior to offensives for the production of casualties, and wearing down of reserves. The Ypres attack had not by any means established the use of gas for such purposes. There is no doubt that, from this point of view, the experimental period carried on for many months. Naturally, in some respects, there was always an experimental element in the use of gas.
Further German Cloud Attacks.—Two days after the first cloud gas attack the Germans launched a second against the Canadians, with similar results. Quoting from official despatches: "On the early morning of the 24th a violent outburst of gas against nearly the whole front was varied by heavy shell fire, and a most determined attack was delivered against our position east of Ypres. The real attack commenced at 2.45 a.m. A large proportion of the men were asleep, and the attack was too sudden to give them time to put on their respirators." These latter were hurriedly improvised after the first Ypres attack.
Hill 60.—Four more attacks occurred in May, notably in the region of Hill 60. "On May 1st another attempt to recapture Hill 60 was supported by great volumes of asphyxiating gas which caused nearly all the men along a front of about 400 yards to be immediately struck down by its fumes." "A second and more severe gas attack under much more favourable weather conditions enabled the enemy to recapture this position on May 5th. The enemy owes his success in this last attack entirely to the use of asphyxiating gas." "It was only a few days later that the means which have since proved so effective of counteracting these methods of making war were put into practice." (Official despatches, 1915.) The despatch further described how violent bombardments, the confusion and demoralisation from the first great gas surprise, and subsequent almost daily gas attacks, prevented the proper reorganisation of the line in question.
Origin of German Gas Shell.—After May a long period elapsed during which the Germans confined their war chemical activities on the front to the use of gas shell. Schwarte's book describes their origin as follows:—"The main idea which influenced the FIRST construction of a German projectile containing chemicals (October, 1914) was that of adding to the charge an irritant substance, which would be pulverised by the explosion of the projectile, and would overwhelm the enemy with a cloud of dust. This cloud would hover in the air and have such an effect upon the mucous membranes that, for the time being, the enemy would be unable to fight in such an atmosphere. By altering the construction of the 10.5 c.m. universal shell for light field howitzers, the 'N.i' projectile was created in the form of 10.5 c.m. shrapnel, the bullets of which were embedded in a sternutatory powder (double salts of dianisidine) well stamped down, instead of an explosive. By means of the propelling charge and the grinding effect of the bullets, this powder was pulverised on explosion. The irritation caused was not very intense, lasted only a short, time and affected only a limited area and therefore it was of no importance in the field, but the initial step had been taken. Liquid irritants soon came to the front—xylyl bromide and xylylene dibromide—a mixture used later under the name of T. stuff, bromo-acetone and brominated methyl ethyl ketone, later introduced under the name of B. stuff and Bn. stuff."
During experiments they gave such improved results in intensity, in power of lasting and of affecting an increased area, that practical results in the field were ensured. The use of these liquids in projectiles, however, was contrary to the accepted idea with regard to artillery, according to which liquid materials should not be used for ballistic reasons. Specially arranged shoots were required to prove that the projectiles in use in the German Army could also be used from the ballistic point of view when filled with liquids.
In this way the first effective German gas projectile, the T. shell for heavy field howitzers, was evolved (January, 1915).
Early German Gas Shell.—The first important use of German gas in shell was that of brominated and chlorinated organic compounds, T. and K. stuffs. Schwarte's book tells us "the use of these projectiles was continually hampered by lack of understanding on the part of the troops which it was difficult to overcome. In the summer of 1915 it was practically in the Argonne alone that any considerable results were attained by the new projectiles." And he describes how the first elements of the new gas tactics were developed there.
A Successful Experiment.—The development of the gas shell, the use of which, generally speaking, is independent of, but co-ordinated with, wind direction, may have received stimulus from the fact that the prevailing wind, so important for cloud gas, favoured the Allies. It is clear that this period was an experimental one, but we know that by August, 1915, German military opinion had crystallised out to the extent of formulating certain rules, issued as Falkenhayn's orders for the employment of gas shell. These early orders defined two types of shell, one persistent, for harassing purposes, and the other non-persistent, to be used immediately before an attack. They specified the number of shell to be used for a given task. But in this they were unsound and it is clear that the Germans had an exaggerated opinion of what could be achieved with a small number of shell. They adhered too closely to high explosive practice. Various documents reveal the fact that the Germans were much more satisfied with their gas tactics than they would have been had they possessed information with regard to our losses from their shell. They attached insufficient importance to the value of surprise and highly concentrated shoots, and had a mistaken idea of the actual specific aggressive value of their early types.
Lachrymators at Loos, 1915.—Germany commenced the manufacture of lachrymators, crude brominated xylene or brominated ketones, early in, or perhaps before 1915. These substances caused great inconvenience through temporary blindness by lachrymation, but were not highly toxic. In June, 1915, however, they began to produce lethal gas for shell. Falkenhayn's orders for the use of gas shell, mentioned above, although they represent by no means the best final practice, were definite evidence that gas had come to stay with the Germans. The writer has vivid recollections of their use of lachrymators in the Loos Battle. Batteries in the open, under the crest near the Lens road, were in position so that the wind direction practically enfiladed them, sweeping along from the direction of Le Rutoire farm. Gas from German shell, borne on the wind, was continually enveloping the line of batteries, but they remained in action. It was on this occasion while watching the bursting gas shells from the outskirts of the mining village of Philosophe that Major-General Wing was killed outright by a high explosive shell. These gas shells certainly did not achieve the results which the Germans expected, although they were not without effect. Demolished villages, the only shelter for troops in a desolate area, have been rendered uninhabitable for days by a concentrated lachrymator enemy shoot of less than one hour. Again, walking into gas "pockets" up a trench one has been stopped as by a fierce blow across the eyes, the lachrymatory effect was so piercing and sudden. The great inconvenience which was occasioned to parties engaged in the routine of trench warfare, on ration or engineering duties, and the effect on movement in the rear after an assault, taken cumulatively, represented a big military factor.
The Flammenwerfer.—There can be no doubt that this period marks increasing German willingness to live up to their "blood and iron" theories of war, and, in July, 1915, another device with a considerable surprise value was used against us: the flame projector, or the German flammenwerfer. Field-Marshal Sir John French signalled the entry of this new weapon as follows: "Since my last despatch a new device has been adopted by the enemy for driving burning liquid into our trenches with a strong jet. Thus supported, an attack was made on the trenches of the Second Army at Hooge, on the Menin Road, early on 30th July. Most of the infantry occupying these trenches were driven back, but their retirement was due far more to the surprise and temporary confusion caused by the burning liquid than to the actual damage inflicted. Gallant endeavours were made by repeated counter-attacks to recapture the lost section of trenches. These, however, proving unsuccessful and costly, a new line of trenches was consolidated a short distance farther back."
Although this weapon continued to be used right through the campaign, it did not exert that influence which first acquaintance with it might have led one to conclude. At the same time, there exists a mistaken notion that the flame projector was a negligible quantity. This may be fairly true of the huge non-portable types, but it is certainly not true of the very efficient portable flame projector which was the form officially adopted by the German, and later by the French, armies. On a number of occasions Germany gained local successes purely owing to the momentary surprise effect of the flame projector, and the French made some use of it for clearing out captured trench systems over which successful waves of assault had passed. Further, the idea of flame projection is not without certain possibilities for war.
German Phosgene Clouds.—Germany had by no means abandoned cloud gas, however. She had merely been planning to regain what the Ypres attacks had lost for her, the cloud gas initiative. We have seen how phosgene had occupied the attention of the German research organisation in the first months of the war. Once alive to its great importance, they must have strained all efforts to obtain an efficient method of using it at the front. Phosgene was remarkable for its peculiar "delayed" effect. Relatively small quantities, inhaled and followed by vigorous or even normal exercise, led to sudden collapse and fatal effects sometimes more than twenty-four hours after the attack. The case of a German prisoner in a First Army raid after a British gas attack was often quoted on the front. He passed through the various Intelligence headquarters as far as the Army, explaining the feeble effect of the British gas and his own complete recovery. But he died from delayed action within twenty-four hours of his last interrogation. This effect imposed strict conditions of discipline, and men merely suspected of exposure to phosgene were compelled to report as serious casualties and carried as such even from the front line.
The successful development of the phosgene cloud probably arrived too late for the Ypres attacks, and a variety of reasons must have led to the postponement of its use until such time as it might once again give Germany the real initiative. Accordingly, on December 19, 1915, a formidable cloud gas attack was made on the north-east of the Ypres salient, using a mixture of phosgene and chlorine in a very high concentration. Fortunately, by this time we had established an anti-gas organisation, which had forestalled the production of cloud phosgene by special modifications in the British respirator. The conditions were similar to those of April 22nd, 1915. Instead of the first use of cloud gas, we had the first use of the new gas in highly concentrated cloud. In both cases the Germans reckoned on our lack of protection, correctly in the first case, but incorrectly in the second. In both cases they were sure that great difficulties in production would meet our attempts at retaliation. In general this proved true, but in this case and increasingly throughout the war, they reckoned without Allied adaptability. The French development of phosgene manufacture was indeed remarkable.
Very interesting light is thrown on this attack by Major Barley, D.S.O., Chemical Adviser to the British Second Army. It appears that in November, 1915, the French captured a prisoner who had attended a gas school in one of the factories of the I.G. Here lecturers explained that a new gas was to be used against the British forces, many thousands of casualties were expected, and an attack would follow, which, correcting the errors of the effort at Ypres, would lead to the capture of the Channel ports. Efforts were at once made to obtain information on gas preparation by the Germans in front of the British sectors. In this way a sergeant-major was captured on the morning of December 16th, and he revealed the date and front on which the cylinders were installed. About 35,000 British troops were found to be in the direct line of the gas, but owing to the timely warning and to the protection which had recently been adopted, we experienced very few casualties. The Germans had prepared a huge infantry attack, and used a new type of gas shell on this occasion. German troops massing must have received huge casualties owing to our preparation and the failure of their gas attack.
The last German cloud attack on the British front occurred on August 8, 1916. There were later attacks against the French, but the Germans were replacing the cloud method by other methods which they considered more suitable. These will be discussed later on, when considering our own reaction against the chemical offensive.
Gas and the Eastern Theatre.—The German surprise was not limited to activities on the Western front. In fact, apart from the first Ypres attack, cloud gas probably reaped more casualties in the East against Russia. We learn from Schwarte's book: "From reliable descriptions we know that our gas troops caused an unusual amount of damage to the enemy—especially in the East— with very little expenditure of effort. The special battalion formed by Austria-Hungary was, unfortunately, of no special importance for various reasons."
Had the nature of the Russian campaign been different, with a smaller front, and nearer critical objectives to the front of attack, we have no doubt that gas would have assumed enormous importance in the East. Russia, even more feebly organised for production than ourselves, would have been at a tremendous disadvantage, both from the point of view of protection and of the retention of satisfactory morale by retaliation.
Conclusion.—This, then, was the period of the German surprise, during which the first big shock occurred, and which promised most success for further attempts owing to the lack of comprehensive protection by the Allies. Looking at the matter in a very broad way, ignoring the moral and legal aspects of the case, we can describe this period as an example of brilliant chemical opportunism. According to plan or otherwise, conditions for this experiment were ripe in Germany as in no other country. Overcoming whatever prejudices may have existed, the German authorities realised this, seized the opportunity, and very nearly succeeded.
CHAPTER III
THE ALLIED REACTION
Loos, September, 1915, to Ypres, July, 1917.
The Need of Retaliation.—The conclusive sign of the Allied reaction to the German poison gas attack appeared at the battle of Loos. "Owing to the repeated use by the enemy of asphyxiating gas in their attacks on our positions," says Field-Marshal French in his despatch of October 15, 1915, "I have been compelled to resort to similar methods, and a detachment was organised for this purpose, which took part in the operations commencing on the 25th September for the first time." Five months thus elapsed before retaliation. From a military point of view their can be no doubt as to the wisdom, in fact the absolute necessity, of using gas in order to reply to the many German attacks of this nature. The question of morale was bound up in this retaliation. Had the Germans continued their chemical attacks in variety and extent as they did, and had it been realised that for some reason or other we were not able to retaliate in kind, none but the gravest consequences could have resulted with regard to morale. It must be remembered that the earlier use of cloud and shell gas by the Germans was of local incidence, when compared with its tremendous use along the whole of the front in the later stages of the war.
First Signs.—Our preparatory period was one of feverish, if somewhat unco-ordinated, activity. The production of a protective appliance, the gas mask, was vital. This development will be considered later. Allied chemical warfare organisations arose, to become an important factor in the later stages of the war. The history of Allied gas organisation is one of the gradual recognition that chemical warfare represented a new weapon with new possibilities, new specific uses, and new requirements from the rear. Its beginnings are seen in the English and French Scientific Advisory Committees appointed to examine the new German method. One could always trace an element of reluctance, however, in Allied development, signs that each move was forced upon us by some new German surprise. We find the other extreme, the logical outcome of war experience, in the completely independent Chemical Warfare Service now actually adopted in the United States of America. This is dealt with in a separate chapter.
The decision to retaliate once made, our difficulties commenced. We required gas, weapons, and methods for its use, trained personnel, and the association of certain scientific with military standards without losing the field efficiency of the latter. The German staff found this in their co-operation with eminent scientists, notably Professor Haber. Without drawing invidious distinctions between pre-war military and public appreciation of chemical science in England and Germany, it would be merely untrue to state that the Germans were not in a position of advantage in this respect. However, chemical mobilisation and co-operation proceeded sufficiently rapidly to provide us with personnel and material for the Loos attack.
The assembly and organisation of personnel occurred in three directions. In the first place the Royal Society had already begun to mobilise prominent scientists for other war purposes. In the second place, different formations in the field, realising the need for specialist treatment of the gas question, after the first German attack, created staff appointments for certain chemists chosen from infantry regiments and other formations on the front. Thirdly, men were collected at a depot in France to form the nucleus of the offensive gas troops. For this purpose chemists were specially enrolled and chosen men from infantry and other front line units were added. Early gas attacks and gas organisation did not appear to justify the immobilisation of so much chemical talent in the offensive gas troops, when chemists were needed all over England for munition production so vital to war. But later events justified the mobilisation and military training of these specialists. The expansion of the advisory and offensive organisations at the front necessitated a large number of officers, whose chemical training was of great value. It is difficult to see where they would have been found had they not been mobilised with the Special Companies. Moreover, their offensive and battle experience gained with the latter was of great value. Six or seven weeks' training witnessed the conversion of a few hundred men of the above type into one or two so called Special Companies. The spirit and work of these men in the Loos attack cannot be spoken of too highly.
The Loos Attack, September, 1915.—The Field-Marshal bears testimony to its success as follows: "Although the enemy was known to have been prepared for such reprisals, our gas attack met with marked success, and produced a demoralising effect in some of the opposing units, of which ample evidence was forthcoming in the captured trenches. The men who undertook this work carried out their unfamiliar duties during a heavy bombardment with conspicuous gallantry and coolness; and I feel confident in their ability to more than hold their own should the enemy again resort to this method of warfare."
There is evidence, however, that this early attack, inefficient as it appeared to be to participants, met with considerable success. Schwarte's book tells us: "The English succeeded in releasing gas clouds on a large scale. Their success on this occasion was due to the fact that they took us by surprise. Our troops refused to believe in the danger and were not sufficiently adept in the use of defensive measures as prescribed by G.H.Q."
On the occasion of a cloud attack a few weeks later, at the storming of the Hohenzollern redoubt, Sergeant-Major Dawson, in charge of a sector of gas emplacements in the front line trench, won the Victoria Cross. The German reply to our bombardment was very severe and under stress of it a battery of our cylinders, either through a direct hit or faulty connections, began to pour gas into our own trenches. In order to prevent panic and casualties among our own troops at this critical time, a few minutes before zero, the moment of assault, Sergeant-Major Dawson climbed on to the parapet under a hail of shell, rifle, and machine-gun fire, and, hauling up the cylinders in question, carried them to a safe distance into the poisoned atmosphere of No Man's Land and ensured their complete discharge by boring them with a rifle bullet. In addition to the Hohenzollern attack cloud gas was used in December, 1915, in the region of Givenchy.
The Somme Battle, 1916.—My impression as an eyewitness and participator, however, was that the real British gas offensive began after, and as a result of, the Loos experience. Material, organisation, and numbers of personnel, both at the front and at home, co-operation with staffs and tactical conceptions all improved vastly in time to contribute largely to the efficiency of preparations for the Somme offensive in July, 1916. During the early months of 1916, a Special Brigade was created by expanding the four Special Companies, and the 4-inch Stokes mortar was adopted, training being vigorously pursued. As many as 110 cloud gas discharges, mainly of a phosgene mixture, occurred during the Somme battle, and evidence of their success is seen in German reports. These successes were due not only to the magnitude of our operations, but to the carefully developed cloud attack tactics which aimed at obtaining maximum results from the gas employed. The factor of surprise governed all other considerations. Attacks occurred at night and depended for success upon the concentration of the maximum amount of gas in the given sector for a short, sharp discharge under the best wind conditions. There is abundant evidence of our success in these attacks. Probably the most marked feature of the captured documents or of prisoners' statements during the later stages of the Somme battle was the continual reference to the deadly effect of British cloud gas. The captured letter of a German soldier writing home stated: "Since the beginning of July an unparalleled slaughter has been going on. Not a day passes but the English let off their gas waves at one place or another. I will give you only one instance of this gas; men 7 and 8 kilometres behind the front line became unconscious from the tail of the gas cloud, and its effects are felt 12 kilometres behind the front. It is deadly stuff."
The accuracy of this reference to the long range effect of our gas clouds is borne out in a number of other statements. For example, we learnt from a prisoner examined by the French: "The men were thrown into disorder and raised their masks because they were suffocated. Many fell in running to the rear; a number did not become ill until the next day. Vegetation was burnt up to a depth of 8 kilometres." Again, prisoners taken at Maurepas stated that one of the English gas attacks was effective 10 kilometres back.
There are also marked references to the surprise nature of our gas attacks, which are an unconscious tribute to the successful tactical developments which have already been referred to, and also numerous other references to the "delayed" action of phosgene. The prisoner mentioned above, taken at Maurepas, gave testimony that some were only taken ill after several days, and one died suddenly two days after, whilst writing a letter. One prisoner, pointing to Les Ayettes on the map, stated that about the beginning of September when gas came over suddenly in the late evening, they thought it was from artillery fire because it was so sudden. No one was expecting gas and very few were carrying their masks. Another one stated: "The attack was a surprise and the cloud came over and passed fairly quickly. The whole thing did not occupy more than ten minutes." More than thirty per cent. of the battalion was put out of action.
Finally, to show what a serious imposition this constant cloud gas attack was upon the German Army, we will quote from the Special Correspondent of the Vossiches Zeitung. He said: "I devote a special chapter to this plague of our Somme warriors. It is not only when systematic gas attacks are made that they have to struggle with this devilish and intangible foe." He refers to the use of gas shell, and says: "This invisible and perilous spectre of the air threatens and lies in wait on all roads leading to the front."
In a despatch dated December 23rd, 1916, from Field-Marshal Sir Douglas Haig, G.C.B., the situation is ably summarised: "The employment by the enemy of gas and of liquid flame as weapons of offence compelled us not only to discover ways to protect our troops from their effects but also to devise means to make use of the same instruments of destruction. Great fertility of invention has been shown, and very great credit is due to the special personnel employed for the rapidity and success with which these new arms have been developed and perfected, and for the very great devotion to duty they have displayed in a difficult and dangerous service. The army owes its thanks to the chemists, physiologists, and physicists of the highest rank who devoted their energies to enable us to surpass the enemy in the use of a means of warfare which took the civilised world by surprise. Our own experience of the numerous experiments and trials necessary before gas and flame could be used, of the preparations which had to be made for their manufacture, and of the special training required for the personnel employed, shows that the employment of such methods by the Germans was not the result of a desperate decision, but had been prepared for deliberately.
"Since we have been compelled, in self-defence, to use similar methods, it is satisfactory to be able to record, on the evidence of prisoners, of documents captured, and of our own observation, that the enemy has suffered heavy casualties from our gas attacks, while the means of protection adopted by us have proved thoroughly effective."
One of the causes which leads to a lack of understanding of the chemical weapon is the fact that the results of chemical attack are not, like those of a huge assault, obvious to the mere visual observer. A period of months often elapsed during the war before the immediate effect of a gas attack was known. It was inspiring to witness the assault of the 18th Division near Montauban on July 1st, 1916. But few realised the part played by the preparatory gas attacks in that and other sectors of the line, in weakening the numerical strength and battle morale of effective reserves. It is, therefore, of great interest to follow up a particular case and to obtain a connected idea of the series of events associated with some particular attack.
The early stages of the Somme battle were characterised by a number of cloud gas attacks which served the double purpose of a feint, and reducing the strength of available reserves. These attacks occurred chiefly along the part of the line north of the Somme battle zone, and they extended as far as the sea. One of them occurred on the 30th August, 1916, at Monchy, between Arras and Bapaume. About one thousand cylinders were discharged during the night. The usual careful organisation preceded the attack and it is quite likely that it shared the advantage of surprise common to a large number of these attacks. Three German regiments were holding the line directly in front of the British sector concerned. Before December, 1916, the following reliable information was collected from prisoners and confirmed by cross-examination. One Company of the 23rd regiment, was in training and had no gas masks with it. The gas came along quickly and about half the Company were killed. After that there were more stringent rules about carrying masks. They had no recollection of a gas alarm being sounded. Another man said that in his Company no special drill or training was being done, and a large number of men were put out of action through not being able to adjust their respirators in time. There was no warning, although after this gas alarms were given by ringing church bells. Other prisoners, from the 63rd, regiment, had such vivid recollections of the attack that they said: "The effects of the English gas are said to be appalling." Collecting information from prisoners belonging to this or that Company, and carefully checking by cross-examination, it is clear that this attack must have been responsible for many hundreds of casualties.
Reasons for British Cloud Gas Success.—The fact that the British persisted with cloud gas attack and attained so much more success than the Germans, after the first surprise, was due to a curious combination of causes, quite apart from the prevailing favourable wind.
Our Casualties.—In the first place, we knew from bitter experience the deadly effect of a successfully operated cloud gas attack. We knew, for example, that in the first attack at Ypres there were more than 5000 dead with many more times that number of casualties. On the other hand, the Germans, left to speculate on our casualties, retained the conviction, from apparent non-success, that cloud gas was not a suitable form of preparation behind which to develop big infantry attacks. Quoting from Schwarte: "Large gains of ground could hardly be attained by means of an attack which followed the use of gas clouds, therefore such clouds were soon merely employed as a means of injuring the enemy, and were not followed up by an attack." This represented German policy, and it lacked vision. They did not realise that their difficulty was the method of forming the cloud, and that if a more mobile and long range method of cloud formation materialised, with correspondingly less dependence on wind direction, the object which they once sought and failed to attain would again be within their reach.
Exhausting Preparations for Cloud Attack.—The second reason accounting for the relatively early cessation of German cloud attacks is one constantly referred to in the German war memoirs. It was the enormous mechanical and muscular effort required in preparing for such an attack. Few people realise what hours of agonised effort were involved in preparing and executing a cloud gas attack. The cylinders had to be in position in specially chosen emplacements in the front line within certain time limits. The "carrying in" could not be spread over an indefinite period and usually took from two to six nights, according to the magnitude of the attack and the local difficulties. Naturally, all the work occurred in the dark. Picture the amount of organisation and labour required to install 2000 cylinders on, say, a two mile front. These cylinders would have to be assembled at a number of points in the rear of the given line where the roads met the communication trenches. No horse or lorry transport could assemble at such points before dark, nor be left standing there after dawn. To carry this number of cylinders more than fifty lorries would be required or, say, perhaps, go G.S. wagons. All the points of assembly would be under possible enemy shell fire. These points would be normally in use for the unloading of rations and trench engineering materials, etc., with which cylinder transport would have to be co-ordinated. Once arrived at the unloading points, parties had to be provided for unloading the lorries and for conveying the cylinders up to the front line trench. In a normally difficult trench system, for a carry of a mile to a mile and a half of communication trench, at least four men per cylinder are required to give the necessary margin for casualties and reliefs, etc. This implies the organisation of more than 8000 officers and men for the installation, with a fundamental condition that only small groups of these men be assembled at any one point at any given time. The installation of gas for an attack on this scale would have been a matter of vast and complicated organisation if there were no other activities in the trench system, and no enemy to harass the work. But to co-ordinate such an enterprise with the busy night life of the trench system and to leave the enemy unaware of your activities was a task which tried the patience, not only of the Special Companies, who organised, guided, and controlled these operations, but much more so of the Infantry Brigades and Divisions whose dispositions were interfered with, and who had to provide the men for the work.
Add to this even more acute difficulties. The front line trench is nothing but a series of traverses, thus to avoid the enfilade effect of shell and machine-gun fire. A straight trench is a death-trap. But to carry hundreds of pole-slung cylinders, already weighing as lead, round traverses on a dark night, is a feat requiring superhuman endurance. Therefore many "carries" finished with a hundred yards "over the top" through the parados wire, to the near locality of the appropriate emplacement in the front line. This last carry was critical; a false step, the clatter of falling metal, meant drawing the fire of some curious and alert German machine gunner. The sudden turning of darkness into day by enemy Very lights imposed instantaneous immobility. Yet all the time tired men were straining at their heavy burden and any moment a cylinder might be pierced by intentional or unaimed rifle fire.
But the spirit of the infantry in this work, as in all they undertook, is to their everlasting credit. These tasks were an enemy challenge and they accepted it successfully, albeit with much cursing. The work was indeed beyond description and the country, colonial, and London troops expressed their opinion equally emphatically in their own peculiar way. Think again of the need of systematic wind observation along the whole front of attack, the disorganisation and "gas alert" conditions imposed on the favourable night, the possibility of postponement, and we can only draw one conclusion. There must have been some imperative need or justification of cloud gas attack for the army to have encouraged or even tolerated its continuance. There is no difficulty in understanding why gas attack was so exceedingly unpopular among the staffs in the early stages of the war. Later, however, when they realised the enemy casualties that were being created by the gas, and what a large part it was taking in the war of attrition, the opposition and lack of appreciation vanished. Further, when the projector arrived to produce similar effects with less demand upon infantry personnel, and less dependence on the wind, the whole tone of the army towards gas was changed, and it became almost popular.
The peculiarity of cloud gas attack was the concentration of all this effort of preparation within a few days. In terms of military efficiency, the amount of energy expended was fully justified by the casualties produced. We know that some of our cloud attacks were responsible on one night for many thousands of casualties, and the amount of artillery effort to give such a result would probably have been considerably larger. But under normal conditions of warfare, such artillery effort would have been expended over a much longer period of time.
The Livens Projector.—The Somme offensive witnessed the use of a new British gas weapon which became of the utmost importance. This was the mortar known as the Livens Projector. Its origin dates back many months, however, and is of considerable interest. A British engineer, Lt. Livens (afterwards Major, D.S.O., M.C.) of the Signal Corps, was inspired to constructive and aggressive thought on the gas question by a double motive. He quickly realised the tactical weakness of the German method at Ypres, once shorn of its vast initial possibilities of surprise. He saw the advantage of being able to command the point or locality of incidence of the cloud, instead of being limited to the actual trench front. Prompted by a direct personal interest in the huge loss sustained by the Lusitania outrage, he determined to find a practical outlet for his feelings by developing his views on the future of gas clouds. In a few months the general principles of the projector were defined and a crude specimen resulted. Caught up, however, in the gas organisation, preparations for the cloud attack at Loos absorbed all his attention and energies and the consequent reorganisation found him developing a flammenwerfer and training a company for its use. It was really the Somme battle which gave him the first opportunity to carry his idea into offensive practice. This arose in front of High Wood, which was a veritable nest of German machine gunners in such a critical tactical position as to hold up our advance in that region. The huge stationary flammenwerfer had recently been used by Major Livens and his company against a strong point in front of Carnoy in the assault of July 1st. Here again the effect of flame was limited even more than that of cloud gas by dependence on a fixed emplacement. It was quickly grasped that the solution was to be found in the application of the projector principle to the use of oil for flame and a crude projector was devised for the emergency, using oil cans as mortars, burying them in the earth for two-thirds of their length and employing water cans as bombs. |
|