p-books.com
Zoonomia, Vol. I - Or, the Laws of Organic Life
by Erasmus Darwin
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13     Next Part
Home - Random Browse

Our perception of beauty consists in our recognition by the sense of vision of those objects, first, which have before inspired our love by the pleasure, which they have afforded to many of our senses: as to our sense of warmth, of touch, of smell, of taste, hunger and thirst; and, secondly, which bear any analogy of form to such objects.

When the babe, soon after it is born into this cold world, is applied to its mother's bosom; its sense of perceiving warmth is first agreeably affected; next its sense of smell is delighted with the odour of her milk; then its taste is gratified by the flavour of it: afterwards the appetites of hunger and of thirst afford pleasure by the possession of their objects, and by the subsequent digestion of the aliment; and, lastly, the sense of touch is delighted by the softness and smoothness of the milky fountain, the source of such variety of happiness.

All these various kinds of pleasure at length become associated with the form of the mother's breast; which the infant embraces with its hands, presses with its lips, and watches with its eyes; and thus acquires more accurate ideas of the form of its mother's bosom, than of the odour and flavour or warmth, which it perceives by its other senses. And hence at our maturer years, when any object of vision is presented to us, which by its waving or spiral lines bears any similitude to the form of the female bosom, whether it be found in a landscape with soft gradations of rising and descending surface, or in the forms of some antique vases, or in other works of the pencil or the chissel, we feel a general glow of delight, which seems to influence all our senses; and, if the object be not too large, we experience an attraction to embrace it with our arms, and to salute it with our lips, as we did in our early infancy the bosom of our mother. And thus we find, according to the ingenious idea of Hogarth, that the waving lines of beauty were originally taken from the temple of Venus.

This animal attraction is love; which is a sensation, when the object is present; and a desire, when it is absent. Which constitutes the purest source of human felicity, the cordial drop in the otherwise vapid cup of life, and which overpays mankind for the care and labour, which are attached to the pre-eminence of his situation above other animals.

It should have been observed, that colour as well as form sometimes enters into our idea of a beautiful object, as a good complexion for instance, because a fine or fair colour is in general a sign of health, and conveys to us an idea of the warmth of the object; and a pale countenance on the contrary gives an idea of its being cold to the touch.

It was before remarked, that young animals use their lips to distinguish the forms of things, as well as their fingers, and hence we learn the origin of our inclination to salute beautiful objects with our lips. For a definition of Grace, see Class III. 1. 2. 4.

VII. There are two ways by which we become acquainted with the passions of others: first, by having observed the effects of them, as of fear or anger, on our own bodies, we know at sight when others are under the influence of these affections. So when two cocks are preparing to fight, each feels the feathers rise round his own neck, and knows from the same sign the disposition of his adversary: and children long before they can speak, or understand the language of their parents, may be frightened by an angry countenance, or soothed by smiles and blandishments.

Secondly, when we put ourselves into the attitude that any passion naturally occasions, we soon in some degree acquire that passion; hence when those that scold indulge themselves in loud oaths, and violent actions of the arms, they increase their anger by the mode of expressing themselves: and on the contrary the counterfeited smile of pleasure in disagreeable company soon brings along with it a portion of the reality, as is well illustrated by Mr. Burke. (Essay on the Sublime and Beautiful.)

This latter method of entering into the passions of others is rendered of very extensive use by the pleasure we take in imitation, which is every day presented before our eyes, in the actions of children, and indeed in all the customs and fashions of the world. From this our aptitude to imitation, arises what is generally understood by the word sympathy so well explained by Dr. Smith of Glasgow. Thus the appearance of a cheerful countenance gives us pleasure, and of a melancholy one makes us sorrowful. Yawning and sometimes vomiting are thus propagated by sympathy, and some people of delicate fibres, at the presence of a spectacle of misery, have felt pain in the same parts of their own bodies, that were diseased or mangled in the other. Amongst the writers of antiquity Aristotle thought this aptitude to imitation an essential property of the human species, and calls man an imitative animal. [Greek: To zoon mimomenon].

These then are the natural signs by which we understand each other, and on this slender basis is built all human language. For without some natural signs, no artificial ones could have been invented or understood, as is very ingeniously observed by Dr. Reid. (Inquiry into the Human Mind.)

VIII. The origin of this universal language is a subject of the highest curiosity, the knowledge of which has always been thought utterly inaccessible. A part of which we shall however here attempt.

Light, sound, and odours, are unknown to the foetus in the womb, which, except the few sensations and motions already mentioned, sleeps away its time insensible of the busy world. But the moment he arrives into day, he begins to experience many vivid pains and pleasures; these are at the same time attended with certain muscular motions, and from this their early, and individual association, they acquire habits of occurring together, that are afterwards indissoluble.

1. Of Fear.

As soon as the young animal is born, the first important sensations, that occur to him, are occasioned by the oppression about his precordia for want of respiration, and by his sudden transition from ninety-eight degrees of heat into so cold a climate.—He trembles, that is, he exerts alternately all the muscles of his body, to enfranchise himself from the oppression about his bosom, and begins to breathe with frequent and short respirations; at the same time the cold contracts his red skin, gradually turning it pale; the contents of the bladder and of the bowels are evacuated: and from the experience of these first disagreeable sensations the passion of fear is excited, which is no other than the expectation of disagreeable sensations. This early association of motions and sensations persists throughout life; the passion of fear produces a cold and pale skin, with tremblings, quick respiration, and an evacuation of the bladder and bowels, and thus constitutes the natural or universal language of this passion.

On observing a Canary bird this morning, January 28, 1772, at the house of Mr. Harvey, near Tutbury, in Derbyshire, I was told it always fainted away, when its cage was cleaned, and desired to see the experiment. The cage being taken from the ceiling, and its bottom drawn out, the bird began to tremble, and turned quite white about the root of his bill: he then opened his mouth as if for breath, and respired quick, stood straighter up on his perch, hung his wings, spread his tail, closed his eyes, and appeared quite stiff and cataleptic for near half an hour, and at length with much trembling and deep respirations came gradually to himself.

2. Of Grief.

That the internal membrane of the nostrils may be kept always moist, for the better perception of odours, there are two canals, that conduct the tears after they have done their office in moistening and cleaning the ball of the eye into a sack, which is called the lacrymal sack; and from which there is a duct, that opens into the nostrils: the aperture of this duct is formed of exquisite sensibility, and when it is stimulated by odorous particles, or by the dryness or coldness of the air, the sack contracts itself, and pours more of its contained moisture on the organ of smell. By this contrivance the organ is rendered more fit for perceiving such odours, and is preserved from being injured by those that are more strong or corrosive. Many other receptacles of peculiar fluids disgorge their contents, when the ends of their ducts are stimulated; as the gall bladder, when the contents of the duodenum stimulate the extremity of the common bile duct: and the salivary glands, when the termination of their ducts in the mouth are excited by the stimulus of the food we masticate. Atque vesiculae seminales suum exprimunt fluidum glande penis fricata.

The coldness and dryness of the atmosphere, compared with the warmth and moisture, which the new-born infant had just before experienced, disagreeably affects the aperture of this lacrymal sack: the tears, that are contained in this sack, are poured into the nostrils, and a further supply is secreted by the lacrymal glands, and diffused upon the eye-balls; as is very visible in the eyes and nostrils of children soon after their nativity. The same happens to us at our maturer age, for in severe frosty weather, snivelling and tears are produced by the coldness and dryness of the air.

But the lacrymal glands, which separate the tears from the blood, are situated on the upper external part of the globes of each eye; and, when a greater quantity of tears are wanted, we contract the forehead, and bring down the eye-brows, and use many other distortions of the face, to compress these glands.

Now as the suffocating sensation, that produces respiration, is removed almost as soon as perceived, and does not recur again: this disagreeable irritation of the lacrymal ducts, as it must frequently recur, till the tender organ becomes used to variety of odours, is one of the first pains that is repeatedly attended to: and hence throughout our infancy, and in many people throughout their lives, all disagreeable sensations are attended with snivelling at the nose, a profusion of tears, and some peculiar distortions of countenance: according to the laws of early association before mentioned, which constitutes the natural or universal language of grief.

You may assure yourself of the truth of this observation, if you will attend to what passes, when you read a distressful tale alone; before the tears overflow your eyes, you will invariably feel a titillation at that extremity of the lacrymal duct, which terminates in the nostril, then the compression of the eyes succeeds, and the profusion of tears.

Linnaeus asserts, that the female bear sheds tears in grief; the same has been said of the hind, and some other animals.

3. Of Tender Pleasure.

The first most lively impression of pleasure, that the infant enjoys after its nativity, is excited by the odour of its mother's milk. The organ of smell is irritated by this perfume, and the lacrymal sack empties itself into the nostrils, as before explained, and an increase of tears is poured into the eyes. Any one may observe this, when very young infants are about to suck; for at those early periods of life, the sensation affects the organ of smell, much more powerfully, than after the repeated habits of smelling has inured it to odours of common strength: and in our adult years, the stronger smells, though they are at the same time agreeable to us, as of volatile spirits, continue to produce an increased secretion of tears.

This pleasing sensation of smell is followed by the early affection of the infant to the mother that suckles it, and hence the tender feelings of gratitude and love, as well as of hopeless grief, are ever after joined with the titillation of the extremity of the lacrymal ducts, and a profusion of tears.

Nor is it singular, that the lacrymal sack should be influenced by pleasing ideas, as the sight of agreeable food produces the same effect on the salivary glands. Ac dum vidimus insomniis lascivae puellae simulacrum tenditur penis.

Lambs shake or wriggle their tails, at the time when they first suck, to get free of the hard excrement, which had been long lodged in their bowels. Hence this becomes afterwards a mark of pleasure in them, and in dogs, and other tailed animals. But cats gently extend and contract their paws when they are pleased, and purr by drawing in their breath, both which resemble their manner of sucking, and thus become their language of pleasure, for these animals having collar-bones use their paws like hands when they suck, which dogs and sheep do not.

4. Of Serene Pleasure.

In the action of sucking, the lips of the infant are closed around the nipple of its mother, till he has filled his stomach, and the pleasure occasioned by the stimulus of this grateful food succeeds. Then the sphincter of the mouth, fatigued by the continued action of sucking, is relaxed; and the antagonist muscles of the face gently acting, produce the smile of pleasure: as cannot but be seen by all who are conversant with children.

Hence this smile during our lives is associated with gentle pleasure; it is visible in kittens, and puppies, when they are played with, and tickled; but more particularly marks the human features. For in children this expression of pleasure is much encouraged, by their imitation of their parents, or friends; who generally address them with a smiling countenance: and hence some nations are more remarkable for the gaiety, and others for the gravity of their looks.

5. Of Anger.

The actions that constitute the mode of fighting, are the immediate language of anger in all animals; and a preparation for these actions is the natural language of threatening. Hence the human creature clenches his fist, and sternly surveys his adversary, as if meditating where to make the attack; the ram, and the bull, draws himself some steps backwards, and levels his horns; and the horse, as he most frequently fights by striking with his hinder feet, turns his heels to his foe, and bends back his ears, to listen out the place of his adversary, that the threatened blow may not be ineffectual.

6. Of Attention.

The eye takes in at once but half our horizon, and that only in the day, and our smell informs us of no very distant objects, hence we confide principally in the organ of hearing to apprize us of danger: when we hear any the smallest sound, that we cannot immediately account for, our fears are alarmed, we suspend our steps, hold every muscle still, open our mouths a little, erect our ears, and listen to gain further information: and this by habit becomes the general language of attention to objects of sight, as well as of hearing; and even to the successive trains of our ideas.

The natural language of violent pain, which is expressed by writhing the body, grinning, and screaming; and that of tumultuous pleasure, expressed in loud laughter; belong to Section XXXIV. on Diseases from Volition.

IX. It must have already appeared to the reader, that all other animals, as well as man, are possessed of this natural language of the passions, expressed in signs or tones; and we shall endeavour to evince, that those animals, which have preserved themselves from being enslaved by mankind, and are associated in flocks, are also possessed of some artificial language, and of some traditional knowledge.

The mother-turkey, when she eyes a kite hovering high in air, has either seen her own parents thrown into fear at his presence, or has by observation been acquainted with his dangerous designs upon her young. She becomes agitated with fear, and uses the natural language of that passion, her young ones catch the fear by imitation, and in an instant conceal themselves in the grass.

At the same time that she shews her fears by her gesture and deportment, she uses a certain exclamation, Koe-ut, Koe-ut, and the young ones afterwards know, when they hear this note, though they do not see their dam, that the presence of their adversary is denounced, and hide themselves as before.

The wild tribes of birds have very frequent opportunities of knowing their enemies, by observing the destruction they make among their progeny, of which every year but a small part escapes to maturity: but to our domestic birds these opportunities so rarely occur, that their knowledge of their distant enemies must frequently be delivered by tradition in the manner above explained, through many generations.

This note of danger, as well as the other notes of the mother-turkey, when she calls her flock to their food, or to sleep under her wings, appears to be an artificial language, both as expressed by the mother, and as understood by the progeny. For a hen teaches this language with equal ease to the ducklings, she has hatched from suppositious eggs, and educates as her own offspring: and the wagtails, or hedge-sparrows, learn it from the young cuckoo their softer nursling, and supply him with food long after he can fly about, whenever they hear his cuckooing, which Linnaeus tells us, is his call of hunger, (Syst. Nat.) And all our domestic animals are readily taught to come to us for food, when we use one tone of voice, and to fly from our anger, when we use another.

Rabbits, as they cannot easily articulate sounds, and are formed into societies, that live under ground, have a very different method of giving alarm. When danger is threatened, they thump on the ground with one of their hinder feet, and produce a sound, that can be heard a great way by animals near the surface of the earth, which would seem to be an artificial sign both from its singularity and its aptness to the situation of the animal.

The rabbits on the island of Sor, near Senegal, have white flesh, and are well tasted, but do not burrow in the earth, so that we may suspect their digging themselves houses in this cold climate is an acquired art, as well as their note of alarm, (Adanson's Voyage to Senegal).

The barking of dogs is another curious note of alarm, and would seem to be an acquired language, rather than a natural sign: for "in the island of Juan Fernandes, the dogs did not attempt to bark, till some European dogs were put among them, and then they gradually begun to imitate them, but in a strange manner at first, as if they were learning a thing that was not natural to them," (Voyage to South America by Don G. Juan, and Don Ant. de Ulloa. B. 2. c. 4).

Linnaeus also observes, that the dogs of South America do not bark at strangers, (Syst. Nat.) And the European dogs, that have been carried to Guinea, are said in three or four generations to cease to bark, and only howl, like the dogs that are natives of that coast, (World Displayed, Vol. XVII. p. 26.)

A circumstance not dissimilar to this, and equally curious, is mentioned by Kircherus, de Musurgia, in his Chapter de Lusciniis, "That the young nightingales, that are hatched under other birds, never sing till they are instructed by the company of other nightingales." And Jonston affirms, that the nightingales that visit Scotland, have not the same harmony as those of Italy, (Pennant's Zoology, octavo, p. 255); which would lead us to suspect that the singing of birds, like human music, is an artificial language rather than a natural expression of passion.

X. Our music like our language, is perhaps entirely constituted of artificial tones, which by habit suggest certain agreeable passions. For the same combination of notes and tones do not excite devotion, love, or poetic melancholy in a native of Indostan and of Europe. And "the Highlander has the same warlike ideas annexed to the sound of a bagpipe (an instrument which an Englishman derides), as the Englishman has to that of a trumpet or fife," (Dr. Brown's Union of Poetry and Music, p. 58.) So "the music of the Turks is very different from the Italian, and the people of Fez and Morocco have again a different kind, which to us appears very rough and horrid, but is highly pleasing to them," (L'Arte Armoniaca a Giorgio Antoniotto). Hence we see why the Italian opera does not delight an untutored Englishman; and why those, who are unaccustomed to music, are more pleased with a tune, the second or third time they hear it, than the first. For then the same melodious train of sounds excites the melancholy, they had learned from the song; or the same vivid combination of them recalls all the mirthful ideas of the dance and company.

Even the sounds, that were once disagreeable to us, may by habit be associated with other ideas, so as to become agreeable. Father Lasitau, in his account of the Iroquois, says "the music and dance of those Americans, have something in them extremely barbarous, which at first disgusts. We grow reconciled to them by degrees, and in the end partake of them with pleasure, the savages themselves are fond of them to distraction," (Moeurs des Savages, Tom. ii.)

There are indeed a few sounds, that we very generally associate with agreeable ideas, as the whistling of birds, or purring of animals, that are delighted; and some others, that we as generally associate with disagreeable ideas, as the cries of animals in pain, the hiss of some of them in anger, and the midnight howl of beasts of prey. Yet we receive no terrible or sublime ideas from the lowing of a cow, or the braying of an ass. Which evinces, that these emotions are owing to previous associations. So if the rumbling of a carriage in the street be for a moment mistaken for thunder, we receive a sublime sensation, which ceases as soon as we know it is the noise of a coach and six.

There are other disagreeable sounds, that are said to set the teeth on edge; which, as they have always been thought a necessary effect of certain discordant notes, become a proper subject of our enquiry. Every one in his childhood has repeatedly bit a part of the glass or earthen vessel, in which his food has been given him, and has thence had a very disagreeable sensation in the teeth, which sensation was designed by nature to prevent us from exerting them on objects harder than themselves. The jarring sound produced between the cup and the teeth is always attendant on this disagreeable sensation: and ever after when such a sound is accidentally produced by the conflict of two hard bodies, we feel by association of ideas the concomitant disagreeable sensation in our teeth.

Others have in their infancy frequently held the corner of a silk handkerchief in their mouth, or the end of the velvet cape of their coat, whilst their companions in play have plucked it from them, and have given another disagreeable sensation to their teeth, which has afterwards recurred on touching those materials. And the sight of a knife drawn along a china plate, though no sound is excited by it, and even the imagination of such a knife and plate so scraped together, I know by repeated experience will produce the same disagreeable sensation of the teeth.

These circumstances indisputably prove, that this sensation of the tooth-edge is owing to associated ideas; as it is equally excitable by sight, touch, hearing, or imagination.

In respect to the artificial proportions of sound excited by musical instruments, those, who have early in life associated them with agreeable ideas, and have nicely attended to distinguish them from each other, are said to have a good ear, in that country where such proportions are in fashion: and not from any superior perfection in the organ of hearing, or any intuitive sympathy between certain sounds and passions.

I have observed a child to be exquisitely delighted with music, and who could with great facility learn to sing any tune that he heard distinctly, and yet whole organ of hearing was so imperfect, that it was necessary to speak louder to him in common conversation than to others.

Our music, like our architecture, seems to have no foundation in nature, they are both arts purely of human creation, as they imitate nothing. And the professors of them have only classed those circumstances, that are most agreeable to the accidental taste of their age, or country; and have called it Proportion. But this proportion must always fluctuate, as it rests on the caprices, that are introduced into our minds by our various modes of education. And these fluctuations of taste must become more frequent in the present age, where mankind have enfranchised themselves from the blind obedience to the rules of antiquity in perhaps every science, but that of architecture. See Sect. XII. 7. 3.

XI. There are many articles of knowledge, which the animals in cultivated countries seem to learn very early in their lives, either from each other, or from experience, or observation: one of the most general of these is to avoid mankind. There is so great a resemblance in the natural language of the passions of all animals, that we generally know, when they are in a pacific, or in a malevolent humour, they have the same knowledge of us; and hence we can scold them from us by some tones and gestures, and could possibly attract them to us by others, if they were not already apprized of our general malevolence towards them. Mr. Gmelin, Professor at Petersburg, assures us, that in his journey into Siberia, undertaken by order of the Empress of Russia, he saw foxes, that expressed no fear of himself or companions, but permitted him to come quite near them, having never seen the human creature before. And Mr. Bongainville relates, that at his arrival at the Malouine, or Falkland's Islands, which were not inhabited by men, all the animals came about himself and his people; the fowls settling upon their heads and shoulders, and the quadrupeds running about their feet. From the difficulty of acquiring the confidence of old animals, and the ease of taming young ones, it appears that the fear, they all conceive at the sight of mankind, is an acquired article of knowledge.

This knowledge is more nicely understood by rooks, who are formed into societies, and build, as it were, cities over our heads; they evidently distinguish, that the danger is greater when a man is armed with a gun. Every one has seen this, who in the spring of the year has walked under a rookery with a gun in his hand: the inhabitants of the trees rise on their wings, and scream to the unfledged young to shrink into their nests from the sight of the enemy. The vulgar observing this circumstance so uniformly to occur, assert that rooks can smell gun-powder.

The fieldfares, (turdus pilarus) which breed in Norway, and come hither in the cold season for our winter berries; as they are associated in flocks, and are in a foreign country, have evident marks of keeping a kind of watch, to remark and announce the appearance of danger. On approaching a tree, that is covered with them, they continue fearless till one at the extremity of the bush rising on his wings gives a loud and peculiar note of alarm, when they all immediately fly, except one other, who continues till you approach still nearer, to certify as it were the reality of the danger, and then he also flies off repeating the note of alarm.

And in the woods about Senegal there is a bird called uett-uett by the negroes, and squallers by the French, which, as soon as they see a man, set up a loud scream, and keep flying round him, as if their intent was to warn other birds, which upon hearing the cry immediately take wing. These birds are the bane of sportsmen, and frequently put me into a passion, and obliged me to shoot them, (Adanson's Voyage to Senegal, 78). For the same intent the lesser birds of our climate seem to fly after a hawk, cuckoo, or owl, and scream to prevent their companions from being surprised by the general enemies of themselves, or of their eggs and progeny.

But the lapwing, (charadrius pluvialis Lin.) when her unfledged offspring run about the marshes, where they were hatched, not only gives the note of alarm at the approach of men or dogs, that her young may conceal themselves; but flying and screaming near the adversary, she appears more felicitous and impatient, as he recedes from her family, and thus endeavours to mislead him, and frequently succeeds in her design. These last instances are so apposite to the situation, rather than to the natures of the creatures, that use them; and are so similar to the actions of men in the same circumstances, that we cannot but believe, that they proceed from a similar principle.

Miss M.E. Jacson acquainted me, that she witnessed this autumn an agreeable instance of sagacity in a little bird, which seemed to use the means to obtain an end; the bird repeatedly hopped upon a poppy-stem, and shook the head with its bill, till many seeds were scattered, then it settled on the ground, and eat the seeds, and again repeated the same management. Sept. 1, 1794.

On the northern coast of Ireland a friend of mine saw above a hundred crows at once preying upon muscles; each crow took a muscle up into the air twenty or forty yards high, and let it fall on the stones, and thus by breaking the shell, got possession of the animal.—A certain philosopher (I think it was Anaxagoras) walking along the sea-shore to gather shells, one of these unlucky birds mistaking his bald head for a stone, dropped a shell-fish upon it, and killed at once a philosopher and an oyster.

Our domestic animals, that have some liberty, are also possessed of some peculiar traditional knowledge: dogs and cats have been forced into each other's society, though naturally animals of a very different kind, and have hence learned from each other to eat dog's grass (agrostis canina) when they are sick, to promote vomiting. I have seen a cat mistake the blade of barley for this grass, which evinces it is an acquired knowledge. They have also learnt of each other to cover their excrement and urine;—about a spoonful of water was spilt upon my hearth from the tea-kettle, and I observed a kitten cover it with ashes. Hence this must also be an acquired art, as the creature mistook the application of it.

To preserve their fur clean, and especially their whiskers, cats wash their faces, and generally quite behind their ears, every time they eat. As they cannot lick those places with their tongues, they first wet the inside of the leg with saliva, and then repeatedly wash their faces with it, which must originally be an effect of reasoning, because a means is used to produce an effect; and seems afterwards to be taught or acquired by imitation, like the greatest part of human arts.

These animals seem to possess something like an additional sense by means of their whiskers; which have perhaps some analogy to the antennae of moths and butterflies. The whiskers of cats consist not only of the long hairs on their upper lips, but they have also four or five long hairs standing up from each eyebrow, and also two or three on each cheek; all which, when the animal erects them, make with their points so many parts of the periphery of a circle, of an extent at least equal to the circumference of any part of their own bodies. With this instrument, I conceive, by a little experience, they can at once determine, whether any aperture amongst hedges or shrubs, in which animals of this genus live in their wild state, is large enough to admit their bodies; which to them is a matter of the greatest consequence, whether pursuing or pursued. They have likewise a power of erecting and bringing forward the whiskers on their lips; which probably is for the purpose of feeling, whether a dark hole be further permeable.

The antennae, or horns, of butterflies and moths, who have awkward wings, the minute feathers of which are very liable to injury, serve, I suppose, a similar purpose of measuring, as they fly or creep amongst the leaves of plants and trees, whither their wings can pass without touching them.

Mr. Leonard, a very intelligent friend of mine, saw a cat catch a trout by darting upon it in a deep clear water at the mill at Weaford, near Lichfield. The cat belonged to Mr. Stanley, who had often seen her catch fish in the same manner in summer, when the mill-pool was drawn so low, that the fish could be seen. I have heard of other cats taking fish in shallow water, as they stood on the bank. This seems a natural art of taking their prey in cats, which their acquired delicacy by domestication has in general prevented them from using, though their desire of eating fish continues in its original strength.

Mr. White, in his ingenious History of Selbourn, was witness to a cat's suckling a young hare, which followed her about the garden, and came jumping to her call of affection. At Elford, near Lichfield, the Rev. Mr. Sawley had taken the young ones out of a hare, which was shot; they were alive, and the cat, who had just lost her own kittens, carried them away, as it was supposed, to eat them; but it presently appeared, that it was affection not hunger which incited her, as she suckled them, and brought them up as their mother.

Other instances of the mistaken application of what has been termed instinct may be observed in flies in the night, who mistaking a candle for day-light, approach and perish in the flame. So the putrid smell of the stapelia, or carrion-flower, allures the large flesh-fly to deposit its young worms on its beautiful petals, which perish there for want of nourishment. This therefore cannot be a necessary instinct, because the creature mistakes the application of it.

Though in this country horses shew little vestiges of policy, yet in the deserts of Tartary, and Siberia, when hunted by the Tartars they are seen to form a kind of community, set watches to prevent their being surprised, and have commanders, who direct, and hasten their flight, Origin of Language, Vol. I. p. 212. In this country, where four or five horses travel in a line, the first always points his ears forward, and the last points his backward, while the intermediate ones seem quite careless in this respect; which seems a part of policy to prevent surprise. As all animals depend most on the ear to apprize them of the approach of danger, the eye taking in only half the horizon at once, and horses possess a great nicety of this sense; as appears from their mode of fighting mentioned No. 8. 5. of this Section, as well as by common observation.

There are some parts of a horse, which he cannot conveniently rub, when they itch, as about the shoulder, which he can neither bite with his teeth, nor scratch with his hind foot; when this part itches, he goes to another horse, and gently bites him in the part which he wishes to be bitten, which is immediately done by his intelligent friend. I once observed a young foal thus bite its large mother, who did not choose to drop the grass she had in her mouth, and rubbed her nose against the foal's neck instead of biting it; which evinces that she knew the design of her progeny, and was not governed by a necessary instinct to bite where she was bitten.

Many of our shrubs, which would otherwise afford an agreeable food to horses, are armed with thorns or prickles, which secure them from those animals; as the holly, hawthorn, gooseberry, gorse. In the extensive moorlands of Staffordshire, the horses have learnt to stamp upon a gorse-bush with one of their fore-feet for a minute together, and when the points are broken, they eat it without injury. The horses in the new forest in Hampshire are affirmed to do the same by Mr. Gilpin. Forest Scenery, II. 251, and 112. Which is an art other horses in the fertile parts of the country do not possess, and prick their mouths till they bleed, if they are induced by hunger or caprice to attempt eating gorse.

Swine have a sense of touch as well as of smell at the end of their nose, which they use as a hand, both to root up the soil, and to turn over and examine objects of food, somewhat like the proboscis of an elephant. As they require shelter from the cold in this climate, they have learnt to collect straw in their mouths to make their nest, when the wind blows cold; and to call their companions by repeated cries to assist in the work, and add to their warmth by their numerous bedfellows. Hence these animals, which are esteemed so unclean, have also learned never to befoul their dens, where they have liberty, with their own excrement; an art, which cows and horses, which have open hovels to run into, have never acquired. I have observed great sagacity in swine; but the short lives we allow them, and their general confinement, prevents their improvement, which might probably be otherwise greater than that of dogs.

Instances of the sagacity and knowledge of animals are very numerous to every observer, and their docility in learning various arts from mankind, evinces that they may learn similar arts from their own species, and thus be possessed of much acquired and traditional knowledge.

A dog whose natural prey is sheep, is taught by mankind, not only to leave them unmolested, but to guard them; and to hunt, to set, or to destroy other kinds of animals, as birds, or vermin; and in some countries to catch fish, in others to find truffles, and to practise a great variety of tricks; is it more surprising that the crows should teach each other, that the hawk can catch less birds, by the superior swiftness of his wing, and if two of them follow him, till he succeeds in his design, that they can by force share a part of the capture? This I have formerly observed with attention and astonishment.

There is one kind of pelican mentioned by Mr. Osbeck, one of Linnaeus's travelling pupils (the pelicanus aquilus), whose food is fish; and which it takes from other birds, because it is not formed to catch them itself; hence it is called by the English a Man-of-war-bird, Voyage to China, p. 88. There are many other interesting anecdotes of the pelican and cormorant, collected from authors of the best authority, in a well-managed Natural History for Children, published by Mr. Galton. Johnson. London.

And the following narration from the very accurate Mons. Adanson, in his Voyage to Senegal, may gain credit with the reader: as his employment in this country was solely to make observations in natural history. On the river Niger, in his road to the island Griel, he saw a great number of pelicans, or wide throats. "They moved with great state like swans upon the water, and are the largest bird next to the ostrich; the bill of the one I killed was upwards of a foot and half long, and the bag fastened underneath it held two and twenty pints of water. They swim in flocks, and form a large circle, which they contract afterwards, driving the fish before them with their legs: when they see the fish in sufficient number confined in this space, they plunge their bill wide open into the water, and shut it again with great quickness. They thus get fish into their throat-bag, which they eat afterwards on shore at their leisure." P. 247.

XII. The knowledge and language of those birds, that frequently change their climate with the seasons, is still more extensive: as they perform these migrations in large societies, and are less subject to the power of man, than the resident tribes of birds. They are said to follow a leader during the day, who is occasionally changed, and to keep a continual cry during the night to keep themselves together. It is probable that these emigrations were at first undertaken as accident directed, by the more adventurous of their species, and learned from one another like the discoveries of mankind in navigation. The following circumstances strongly support this opinion.

1. Nature has provided these animals, in the climates where they are produced, with another resource: when the season becomes too cold for their constitutions, or the food they were supported with ceases to be supplied, I mean that of sleeping. Dormice, snakes, and bats, have not the means of changing their country; the two former from the want of wings, and the latter from his being not able to bear the light of the day. Hence these animals are obliged to make use of this resource, and sleep during the winter. And those swallows that have been hatched too late in the year to acquire their full strength of pinion, or that have been maimed by accident or disease, have been frequently found in the hollows of rocks on the sea coasts, and even under water in this torpid state, from which they have been revived by the warmth of a fire. This torpid state of swallows is testified by innumerable evidences both of antient and modern names. Aristotle speaking of the swallows says, "They pass into warmer climates in winter, if such places are at no great distance; if they are, they bury themselves in the climates where they dwell," (8. Hist. c. 16. See also Derham's Phys. Theol. v. ii. p. 177.)

Hence their emigrations cannot depend on a necessary instinct, as the emigrations themselves are not necessary.

2. When the weather becomes cold, the swallows in the neighbourhood assemble in large flocks; that is, the unexperienced attend those that have before experienced the journey they are about to undertake: they are then seen some time to hover on the coast, till there is calm whether, or a wind, that suits the direction of their flight. Other birds of passage have been drowned by thousands in the sea, or have settled on ships quite exhausted with fatigue. And others, either by mistaking their course, or by distress of weather, have arrived in countries where they were never seen before: and thus are evidently subject to the same hazards that the human species undergo, in the execution of their artificial purposes.

3. The same birds are emigrant from some countries and not so from others: the swallows were seen at Goree in January by an ingenious philosopher of my acquaintance, and he was told that they continued there all the year; as the warmth of the climate was at all seasons sufficient for their own constitutions, and for the production of the flies that supply them with nourishment. Herodotus says, that in Libya, about the springs of the Nile, the swallows continue all the year. (L. 2.)

Quails (tetrao corturnix, Lin.) are birds of passage from the coast of Barbary to Italy, and have frequently settled in large shoals on ships fatigued with their flight. (Ray, Wisdom of God, p. 129. Derham. Physic. Theol. v. ii. p. 178,) Dr. Ruffel, in his History of Aleppo, observes that the swallows visit that country about the end of February, and having hatched their young disappear about the end of July; and returning again about the beginning of October, continue about a fortnight, and then again disappear. (P. 70.)

When my late friend Dr. Chambres, of Derby, was on the island of Caprea in the bay of Naples, he was informed that great flights of quails annually settle on that island about the beginning of May, in their passage from Africa to Europe. And that they always come when the south-east wind blows, are fatigued when they rest on this island, and are taken in such amazing quantities and sold to the Continent, that the inhabitants pay the bishop his stipend out of the profits arising from the sale of them.

The flights of these birds across the Mediterranean are recorded near three thousand years ago. "There went forth a wind from the Lord and brought quails from the sea, and let them fall upon the camp, a day's journey round about it, and they were two cubits above the earth," (Numbers, chap. ii. ver. 31.)

In our country, Mr. Pennant informs us, that some quails migrate, and others only remove from the internal parts of the island to the coasts, (Zoology, octavo, 210.) Some of the ringdoves and stares breed here, others migrate, (ibid. 510, ii.) And the slender billed small birds do not all quit these kingdoms in the winter, though the difficulty of procuring the worms and insects, that they feed on, supplies the same reason for migration to them all, (ibid. 511.)

Linnaeus has observed, that in Sweden the female chaffinches quit that country in September, migrating into Holland, and leave their mates behind till their return in spring. Hence he has called them Fringilla caelebs, (Amaen. Acad. ii. 42. iv. 595.) Now in our climate both sexes of them are perennial birds. And Mr. Pennant observes that the hoopoe, chatterer, hawfinch, and crossbill, migrate into England so rarely, and at such uncertain times, as not to deserve to be ranked among our birds of passage, (ibid. 511.)

The water fowl, as geese and ducks, are better adapted for long migrations, than the other tribes of birds, as, when the weather is calm, they can not only rest themselves, or sleep upon the ocean, but possibly procure some kind of food from it.

Hence in Siberia, as soon as the lakes are frozen, the water fowl, which are very numerous, all disappear, and are supposed to fly to warmer climates, except the rail, which, from its inability for long flights, probably sleeps, like our bat, in their winter. The following account from the Journey of Professor Gmelin, may entertain the reader. "In the neighbourhood of Krasnoiark, amongst many other emigrant water fowls, we observed a great number of rails, which when pursued never took flight, but endeavoured to escape by running. We enquired how these birds, that could not fly, could retire into other countries in the winter, and were told, both by the Tartars and Assanians, that they well knew those birds could not alone pass into other countries: but when the cranes (les grues) retire in autumn, each one takes a rail (un rale) upon his back, and carries him to a warmer climate."

Recapitulation.

1. All birds of passage can exist in the climates, where they are produced.

2. They are subject in their migrations to the same accidents and difficulties, that mankind are subject to in navigation.

3. The same species of birds migrate from some countries, and are resident in others.

From all these circumstances it appears that the migrations of birds are not produced by a necessary instinct, but are accidental improvements, like the arts among mankind, taught by their cotemporaries, or delivered by tradition from one generation of them to another.

XIII. In that season of the year which supplies the nourishment proper for the expected brood, the birds enter into a contract of marriage, and with joint labour construct a bed for the reception of their offspring. Their choice of the proper season, their contracts of marriage, and the regularity with which they construct their nests, have in all ages excited the admiration of naturalists; and have always been attributed to the power of instinct, which, like the occult qualities of the antient philosophers, prevented all further enquiry. We shall consider them in their order.

Their Choice of the Season.

Our domestic birds, that are plentifully supplied throughout the year with their adapted food, and are covered with houses from the inclemency of the weather, lay their eggs at any season: which evinces that the spring of the year is not pointed out to them by a necessary instinct.

Whilst the wild tribes of birds choose this time of the year from their acquired knowledge, that the mild temperature of the air is more convenient for hatching their eggs, and is soon likely to supply that kind of nourishment, that is wanted for their young.

If the genial warmth of the spring produced the passion of love, as it expands the foliage of trees, all other animals should feel its influence as well as birds: but, the viviparous creatures, as they suckle their young, that is, as they previously digest the natural food, that it may better suit the tender stomachs of their offspring, experience the influence of this passion at all seasons of the year, as cats and bitches. The graminivorous animals indeed generally produce their young about the time when grass is supplied in the greatest plenty, but this is without any degree of exactness, as appears from our cows, sheep, and hares, and may be a part of the traditional knowledge, which they learn from the example of their parents.

Their Contracts of Marriage.

Their mutual passion, and the acquired knowledge, that their joint labour is necessary to procure sustenance for their numerous family, induces the wild birds to enter into a contract of marriage, which does not however take place among the ducks, geese, and fowls, that are provided with their daily food from our barns.

An ingenious philosopher has lately denied, that animals can enter into contracts, and thinks this an essential difference between them and the human creature:—but does not daily observation convince us, that they form contracts of friendship with each other, and with mankind? When puppies and kittens play together, is there not a tacit contract, that they will not hurt each other? And does not your favorite dog expect you should give him his daily food, for his services and attention to you? And thus barters his love for your protection? In the same manner that all contracts are made amongst men, that do not understand each others arbitrary language.

Construction of their Nests.

1. They seem to be instructed how to build their nests from their observation of that, in which they were educated, and from their knowledge of those things, that are most agreeable to their touch in respect: to warmth, cleanliness, and stability. They choose their situations from their ideas of safety from their enemies, and of shelter from the weather. Nor is the colour of their nests a circumstance unthought of; the finches, that build in green hedges, cover their habitations with green moss; the swallow or martin, that builds against rocks and houses, covers her's with clay, whilst the lark chooses vegetable straw nearly of the colour of the ground she inhabits: by this contrivance, they are all less liable to be discovered by their adversaries.

2. Nor are the nests of the same species of birds constructed always of the same materials, nor in the same form; which is another circumstance that ascertains, that they are led by observation.

In the trees before Mr. Levet's house in Lichfield, there are annually nests built by sparrows, a bird which usually builds under the tiles of houses, or the thatch of barns. Not finding such convenient situations for their nests, they build a covered nest bigger than a man's head, with an opening like a mouth at the side, resembling that of a magpie, except that it is built with straw and hay, and lined with feathers, and so nicely managed as to be a defence against both wind and rain.

The following extract from a Letter of the Rev. Mr. J. Darwin, of Carleton Scroop in Lincolnshire, authenticates a curious fact of this kind. "When I mentioned to you the circumstance of crows or rooks building in the spire of Welbourn church, you expressed a desire of being well informed of the certainty of the fact. Welbourn is situated in the road from Grantham to Lincoln on the Cliff row; I yesterday took a ride thither, and enquired of the rector, Mr. Ridgehill, whether the report was true, that rooks built in the spire of his church. He assured me it was true, and that they had done so time immemorial, as his parishioners affirmed. There was a common tradition, he said, that formerly a rookery in some high trees adjoined the church yard, which being cut down (probably in the spring, the building season), the rooks removed to the church, and built their nests on the outside of the spire on the tops of windows, which by their projection a little from the spire made them convenient room, but that they built also on the inside. I saw two nests made with sticks on the outside, and in the spires, and Mr. Ridgehill said there were always a great many.

"I spent the day with Mr. Wright, a clergyman, at Fulbeck, near Welbourn, and in the afternoon Dr. Ellis of Headenham, about two miles from Welbourn, drank tea at Mr. Wright's, who said he remembered, when Mr. Welby lived at Welbourn, that he received a letter from an acquaintance in the west of England, desiring an answer, whether the report of rooks building in Welbourn church was true, as a wager was depending on that subject; to which he returned an answer ascertaining the fact, and decided the wager." Aug. 30, 1794.

So the jackdaw (corvus monedula) generally builds in church-steeples, or under the roofs of high houses; but at Selbourn, in Southamptonshire, where towers and steeples are not sufficiently numerous, these birds build in forsaken rabbit burrows. See a curious account of these subterranean nests in White's History of Selbourn, p. 59. Can the skilful change of architecture in these birds and the sparrows above mentioned be governed by instinct? Then they must have two instincts, one for common, and the other for extraordinary occasions.

I have seen green worsted in a nest, which no where exists in nature: and the down of thistles in those nests, that were by some accident constructed later in the summer, which material could not be procured for the earlier nests: in many different climates they cannot procure the same materials, that they use in ours. And it is well known, that the canary birds, that are propagated in this country, and the finches, that are kept tame, will build their nests of any flexile materials, that are given them. Plutarch, in his Book on Rivers, speaking of the Nile, says, "that the swallows collect a material, when the waters recede, with which they form nests, that are impervious to water." And in India there is a swallow that collects a glutinous substance for this purpose, whose nest is esculent, and esteemed a principal rarity amongst epicures, (Lin. Syst. Nat.) Both these must be constructed of very different materials from those used by the swallows of our country.

In India the birds exert more artifice in building their nests on account of the monkeys and snakes: some form their pensile nests in the shape of a purse, deep and open at top; others with a hole in the side; and others, still more cautious, with an entrance at the very bottom, forming their lodge near the summit. But the taylor-bird will not ever trust its nest to the extremity of a tender twig, but makes one more advance to safety by fixing it to the leaf itself. It picks up a dead leaf, and sews it to the side of a living one, its slender bill being its needle, and its thread some fine fibres; the lining consists of feathers, gossamer, and down; its eggs are white, the colour of the bird light yellow, its length three inches, its weight three sixteenths of an ounce; so that the materials of the nest, and the weight of the bird, are not likely to draw down an habitation so slightly suspended. A nest of this bird is preserved in the British Museum, (Pennant's Indian Zoology). This calls to one's mind the Mosaic account of the origin of mankind, the first dawning of art there ascribed to them, is that of sewing leaves together. For many other curious kinds of nests see Natural History for Children, by Mr. Galton. Johnson. London. Part I. p. 47. Gen. Oriolus.

3. Those birds that are brought up by our care, and have had little communication with others of their own species, are very defective in this acquired knowledge; they are not only very awkward in the construction of their nests, but generally scatter their eggs in various parts of the room or cage, where they are confined, and seldom produce young ones, till, by failing in their first attempt, they have learnt something from their own observation.

4. During the time of incubation birds are said in general to turn their eggs every day; some cover them, when they leave the nest, as ducks and geese; in some the male is said to bring food to the female, that she may have less occasion of absence, in others he is said to take her place, when she goes in quest of food; and all of them are said to leave their eggs a shorter time in cold weather than in warm. In Senegal the ostrich sits on her eggs only during the night, leaving them in the day to the heat of the sun; but at the Cape of Good Hope, where the heat is less, she sits on them day and night.

If it should be asked, what induces a bird to sit weeks on its first eggs unconscious that a brood of young ones will be the product? The answer must be, that it is the same passion that induces the human mother to hold her offspring whole nights and days in her fond arms, and press it to her bosom, unconscious of its future growth to sense and manhood, till observation or tradition have informed her.

5. And as many ladies are too refined to nurse their own children, and deliver them to the care and provision of others; so is there one instance of this vice in the feathered world. The cuckoo in some parts of England, as I am well informed by a very distinct and ingenious gentleman, hatches and educates her own young; whilst in other parts she builds no nest, but uses that of some lesser bird, generally either of the wagtail, or hedge sparrow, and depositing one egg in it, takes no further care of her progeny.

As the Rev. Mr. Stafford was walking in Glosop Dale, in the Peak of Derbyshire, he saw a cuckoo rise from its nest. The nest was on the stump of a tree, that had been some time felled, among some chips that were in part turned grey, so as much to resemble the colour of the bird, in this nest were two young cuckoos: tying a string about the leg of one of them, he pegged the other end of it to the ground, and very frequently for many days beheld the old cuckoo feed these her young, as he stood very near them.

The following extract of a Letter from the Rev. Mr. Wilmot, of Morley, near Derby, strengthens the truth of the fact above mentioned, of the cuckoo sometimes making a nest, and hatching her own young.

"In the beginning of July 1792, I was attending some labourers on my farm, when one of them said to me, "There is a bird's nest upon one of the Coal-slack Hills; the bird is now sitting, and is exactly like a cuckoo. They say that cuckoo's never hatch their own eggs, otherwise I should have sworn it was one." He took me to the spot, it was in an open fallow ground; the bird was upon the nest, I stood and observed her some time, and was perfectly satisfied it was a cuckoo; I then put my hand towards her, and she almost let me touch her before she rose from the nest, which she appeared to quit with great uneasiness, skimming over the ground in the manner that a hen partridge does when disturbed from a new hatched brood, and went only to a thicket about forty or fifty yards from the nest; and continued there as long as I staid to observe her, which was not many minutes. In the nest, which was barely a hole scratched out of the coal-slack in the manner of a plover's nest, I observed three eggs, but did not touch them. As I had labourers constantly at work in that field, I went thither every day, and always looked to see if the bird was there, but did not disturb her for seven or eight days, when I was tempted to drive her from the nest, and found two young ones, that appeared to have been hatched some days, but there was no appearance of the third egg. I then mentioned this extraordinary circumstance (for such I thought it) to Mr. and Mrs. Holyoak of Bidford Grange, Warwickshire, and to Miss M. Willes, who were on a visit at my house, and who all went to see it. Very lately I reminded Mr. Holyoak of it, who told me he had a perfect recollection of the whole, and that, considering it a curiosity, he walked to look at it several times, was perfectly satisfied as to its being a cuckoo, and thought her more attentive to her young, than any other bird he ever observed, having always found her brooding her young. In about a week after I first saw the young ones, one of them was missing, and I rather suspected my plough-boys having taken it; though it might possibly have been taken by a hawk, some time when the old one was seeking food. I never found her off her nest but once, and that was the last time I saw the remaining young one, when it was almost full feathered. I then went from home for two or three days, and, when I returned, the young one was gone, which I take for granted had flown. Though during this time I frequently saw cuckoos in the thicket I mention, I never observed any one, that I supposed to be the cock-bird, paired with this hen."

Nor is this a new observation, though it is entirely overlooked by the modern naturalists, for Aristotle speaking of the cuckoo, asserts that she sometimes builds her nest among broken rocks, and on high mountains, (L. 6. H. c. 1.) but adds in another place that she generally possesses the nest of another bird, (L. 6. H. c. 7.) And Niphus says that cuckoos rarely build for themselves, most frequently laying their eggs in the nests of other birds, (Gesner, L. 3. de Cuculo.)

The Philosopher who is acquainted with these facts concerning the cuckoo, would seem to have very little reason himself, if he could imagine this neglect of her young to be a necessary instinct!

XIV. The deep recesses of the ocean are inaccessible to mankind, which prevents us from having much knowledge of the arts and government of its inhabitants.

1. One of the baits used by the fisherman is an animal called an Old Soldier, his size and form are somewhat like the craw-fish, with this difference, that his tail is covered with a tough membrane instead of a shell; and to obviate this defect, he seeks out the uninhabited shell of some dead fish, that is large enough to receive his tail, and carries it about with him as part of his clothing or armour.

2. On the coasts about Scarborough, where the haddocks, cods, and dog-fish, are in great abundance, the fishermen universally believe that the dog-fish make a line, or semicircle, to encompass a shoal of haddocks and cod, confining them within certain limits near the shore, and eating them as occasion requires. For the haddocks and cod are always found near the shore without any dog-fish among them, and the dog-fish further off without any haddocks or cod; and yet the former are known to prey upon the latter, and in some years devour such immense quantities as to render this fishery more expensive than profitable.

3. The remora, when he wishes to remove his situation, as he is a very slow swimmer, is content to take an outside place on whatever conveyance is going his way; nor can the cunning animal be tempted to quit his hold of a ship when she is sailing, not even for the lucre of a piece of pork, lest it should endanger the loss of his passage: at other times he is easily caught with the hook.

4. The crab-fish, like many other testaceous animals, annually changes its shell; it is then in a soft state, covered only with a mucous membrane, and conceals itself in holes in the sand or under weeds; at this place a hard shelled crab always stands centinel, to prevent the sea insects from injuring the other in its defenceless state; and the fishermen from his appearance know where to find the soft ones, which they use for baits in catching other fish.

And though the hard shelled crab, when he is on this duty, advances boldly to meet the foe, and will with difficulty quit the field; yet at other times he shews great timidity, and has a wonderful speed in attempting his escape; and, if often interrupted, will pretend death like the spider, and watch an opportunity to sink himself into the sand, keeping only his eyes above. My ingenious friend Mr. Burdett, who favoured me with these accounts at the time he was surveying the coasts, thinks the commerce between the sexes takes place at this time, and inspires the courage of the creature.

5. The shoals of herrings, cods, haddocks, and other fish, which approach our shores at certain seasons, and quit them at other seasons without leaving one behind; and the salmon, that periodically frequent our rivers, evince, that there are vagrant tribes of fish, that perform as regular migrations as the birds of passage already mentioned.

6. There is a cataract on the river Liffey in Ireland about nineteen feet high: here in the salmon season many of the inhabitants amuse themselves in observing these fish leap up the torrent. They dart themselves quite out of the water as they ascend, and frequently fall back many times before they surmount it, and baskets made of twigs are placed near the edge of the stream to catch them in their fall.

I have observed, as I have sat by a spout of water, which descends from a stone trough about two feet into a stream below, at particular seasons of the year, a great number of little fish called minums, or pinks, throw themselves about twenty times their own length out of the water, expecting to get into the trough above.

This evinces that the storgee, or attention of the dam to provide for the offspring, is strongly exerted amongst the nations of fish, where it would seem to be the most neglected; as these salmon cannot be supposed to attempt so difficult and dangerous a task without being conscious of the purpose or end of their endeavours.

It is further remarkable, that most of the old salmon return to the sea before it is proper for the young shoals to attend them, yet that a few old ones continue in the rivers so late, that they become perfectly emaciated by the inconvenience of their situation, and this apparently to guide or to protect the unexperienced brood.

Of the smaller water animals we have still less knowledge, who nevertheless probably possess many superior arts; some of these are mentioned in Botanic Garden, P. I. Add. Note XXVII. and XXVIII. The nympha of the water-moths of our rivers, which cover themselves with cases of straw, gravel, and shell, contrive to make their habitations, nearly in equilibrium with the water; when too heavy, they add a bit of wood or straw; when too light, a bit of gravel. Edinb. Trans.

All these circumstances bear a near resemblance to the deliberate actions of human reason.

XV. We have a very imperfect acquaintance with the various tribes of insects: their occupations, manner of life, and even the number of their senses, differ from our own, and from each other; but there is reason to imagine, that those which possess the sense of touch in the most exquisite degree, and whole occupations require the most constant exertion of their powers, are induced with a greater proportion or knowledge and ingenuity.

The spiders of this country manufacture nets of various forms, adapted to various situations, to arrest the flies that are their food; and some of them have a house or lodging-place in the middle of the net, well contrived for warmth, security, or concealment. There is a large spider in South America, who constructs nets of so strong a texture as to entangle small birds, particularly the humming bird. And in Jamaica there is another spider, who digs a hole in the earth obliquely downwards, about three inches in length, and one inch in diameter, this cavity she lines with a tough thick web, which when taken out resembles a leathern purse: but what is most curious, this house has a door with hinges, like the operculum of some sea shells; and herself and family, who tenant this nest, open and shut the door, whenever they pass or repass. This history was told me, and the nest with its operculum shewn me by the late Dr. Butt of Bath, who was some years physician in Jamaica.

The production of these nets is indeed a part of the nature or conformation of the animal, and their natural use is to supply the place of wings, when she wishes to remove to another situation. But when she employs them to entangle her prey, there are marks of evident design, for she adapts the form of each net to its situation, and strengthens those lines, that require it, by joining others to the middle of them, and attaching those others to distant objects, with the same individual art, that is used by mankind in supporting the masts and extending the sails of ships. This work is executed with more mathematical exactness and ingenuity by the field spiders, than by those in our houses, as their constructions are more subjected to the injuries of dews and tempests.

Besides the ingenuity shewn by these little creatures in taking their prey, the circumstance of their counterfeiting death, when they are put into terror, is truly wonderful; and as soon as the object of terror is removed, they recover and run away. Some beetles are also said to possess this piece of hypocrisy.

The curious webs, or chords, constructed by some young caterpillars to defend themselves from cold, or from insects of prey; and by silk-worms and some other caterpillars, when they transmigrate into aureliae or larvae, have deservedly excited the admiration of the inquisitive. But our ignorance of their manner of life, and even of the number of their senses, totally precludes us from understanding the means by which they acquire this knowledge.

The care of the salmon in choosing a proper situation for her spawn, the structure of the nests of birds, their patient incubation, and the art of the cuckoo in depositing her egg in her neighbour's nursery, are instances of great sagacity in those creatures: and yet they are much inferior to the arts exerted by many of the insect tribes on similar occasions. The hairy excrescences on briars, the oak apples, the blasted leaves of trees, and the lumps on the backs of cows, are situations that are rather produced than chosen by the mother insect for the convenience of her offspring. The cells of bees, wasps, spiders, and of the various coralline insects, equally astonish us, whether we attend to the materials or to the architecture.

But the conduct of the ant, and of some species of the ichneumon fly in the incubation of their eggs, is equal to any exertion of human science. The ants many times in a day move their eggs nearer the surface of their habitation, or deeper below it, as the heat of the weather varies; and in colder days lie upon them in heaps for the purpose of incubation: if their mansion is too dry, they carry them to places where there is moisture, and you may distinctly see the little worms move and suck up the water. When too much moisture approaches their nest, they convey their eggs deeper in the earth, or to some other place of safety. (Swammerd. Epil. ad Hist. Insects, p. 153. Phil. Trans. No. 23. Lowthrop. V. 2. p. 7.)

There is one species of ichneumon-fly, that digs a hole in the earth, and carrying into it two or three living caterpillars, deposits her eggs, and nicely closing up the nest leaves them there; partly doubtless to assist the incubation, and partly to supply food to her future young, (Derham. B. 4, c. 13. Aristotle Hist. Animal, L. 5. c. 20.)

A friend of mine put about fifty large caterpillars collected from cabbages on some bran and a few leaves into a box, and covered it with gauze to prevent their escape. After a few days we saw, from more than three fourths of them, about eight or ten little caterpillars of the ichneumon-fly come out of their backs, and spin each a small cocoon of silk, and in a few days the large caterpillars died. This small fly it seems lays its egg in the back of the cabbage caterpillar, which when hatched preys upon the material, which is produced there for the purpose of making silk for the future nest of the cabbage caterpillar; of which being deprived, the creature wanders about till it dies, and thus our gardens are preserved by the ingenuity of this cruel fly. This curious property of producing a silk thread, which is common to some sea animals, see Botanic Garden, Part I. Note XXVII. and is designed for the purpose of their transformation as in the silk-worm, is used for conveying themselves from higher branches to lower ones of trees by some caterpillars, and to make themselves temporary nests or tents, and by the spider for entangling his prey. Nor is it strange that so much knowledge should be acquired by such small animals; since there is reason to imagine, that these insects have the sense of touch, either in their proboscis, or their antennae, to a great degree of perfection; and thence may possess, as far as their sphere extends, as accurate knowledge, and as subtle invention, as the discoverers of human arts.

XVI. 1. If we were better acquainted with the histories of those insects that are formed into societies, as the bees, wasps, and ants, I make no doubt but we should find, that their arts and improvements are not so similar and uniform as they now appear to us, but that they arose in the same manner from experience and tradition, as the arts of our own species; though their reasoning is from fewer ideas, is busied about fewer objects, and is exerted with less energy.

There are some kinds of insects that migrate like the birds before mentioned. The locust of warmer climates has sometimes come over to England; it is shaped like a grasshopper, with very large wings, and a body above an inch in length. It is mentioned as coming into Egypt with an east wind, "The lord brought an east wind upon the land all that day and night, and in the morning the east wind brought the locusts, and covered the face of the earth, so that the land was dark," Exod. x. 13. The migrations of these insects are mentioned in another part of the scripture, "The locusts have no king, yet go they forth all of them in bands," Prov. xxx. 27.

The accurate Mr. Adanson, near the river Gambia in Africa, was witness to the migration of these insects. "About eight in the morning, in the month of February, there suddenly arose over our heads a thick cloud, which darkened the air, and deprived us of the rays of the sun. We found it was a cloud of locusts raised about twenty or thirty fathoms from the ground, and covering an extent of several leagues; at length a shower of these insects descended, and after devouring every green herb, while they rested, again resumed their flight. This cloud was brought by a strong east-wind, and was all the morning in passing over the adjacent country." (Voyage to Senegal, 158.)

In this country the gnats are sometimes seen to migrate in clouds, like the musketoes of warmer climates, and our swarms of bees frequently travel many miles, and are said in North America always to fly towards the south. The prophet Isaiah has a beautiful allusion to these migrations, "The Lord shall call the fly from the rivers of Egypt, and shall hiss for the bee that is in the land of Assyria," Isa. vii. 18. which has been lately explained by Mr. Bruce, in his travels to discover the source of the Nile.

2. I am well informed that the bees that were carried into Barbadoes, and other western islands, ceased to lay up any honey after the first year, as they found it not useful to them: and are now become very troublesome to the inhabitants of those islands by infesting their sugar houses; but those in Jamaica continue to make honey, as the cold north winds, or rainy seasons of that island, confine them at home for several weeks together. And the bees of Senegal, which differ from those of Europe only in size, make their honey not only superior to ours in delicacy of flavour, but it has this singularity, that it never concretes, but remains liquid as syrup, (Adanson). From some observations of Mr. Wildman, and of other people of veracity, it appears, that during the severe part of the winter season for weeks together the bees are quite benumbed and torpid from the cold, and do not consume any of their provision. This state of sleep, like that of swallows and bats, seems to be the natural resource of those creatures in cold climates, and the making of honey to be an artificial improvement.

As the death of our hives of bees appears to be owning to their being kept so warm, as to require food when their stock is exhausted; a very observing gentleman at my request put two hives for many weeks into a dry cellar, and observed, during all that time, they did not consume any of their provision, for their weight did not decrease as it had done when they were kept in the open air. The same observation is made in the Annual Register for 1768, p. 113. And the Rev. Mr. White, in his Method of preserving Bees, adds, that those on the north side of his house consumed less honey in the winter than those on the south side.

There is another observation on bees well ascertained, that they at various times, when the season begins to be cold, by a general motion of their legs as they hang in clusters produce a degree of warmth, which is easily perceptible by the hand. Hence by this ingenious exertion, they for a long time prevent the torpid state they would naturally fall into.

According to the late observations of Mr. Hunter, it appears that the bee's-wax is not made from the dust of the anthers of flowers, which they bring home on their thighs, but that this makes what is termed bee-bread, and is used for the purpose of feeding the bee-maggots; in the same manner butterflies live on honey, but the previous caterpillar lives on vegetable leaves, while the maggots of large flies require flesh for their food, and those of the ichneumon fly require insects for their food. What induces the bee who lives on honey to lay up vegetable powder for its young? What induces the butterfly to lay its eggs on leaves, when itself feeds on honey? What induces the other flies to seek a food for their progeny different from what they consume themselves? If these are not deductions from their own previous experience or observation, all the actions of mankind must be resolved into instinct.

3. The dormouse consumes but little of its food during the rigour of the season, for they roll themselves up, or sleep, or lie torpid the greatest part of the time; but on warm sunny days experience a short revival, and take a little food, and then relapse into their former state." (Pennant Zoolog. p. 67.) Other animals, that sleep in winter without laying up any provender, are observed to go into their winter beds fat and strong, but return to day-light in the spring season very lean and feeble. The common flies sleep during the winter without any provision for their nourishment, and are daily revived by the warmth of the sun, or of our fires. These whenever they see light endeavour to approach it, having observed, that by its greater vicinity they get free from the degree of torpor, that the cold produces; and are hence induced perpetually to burn themselves in our candles: deceived, like mankind, by the misapplication of their knowledge. Whilst many of the subterraneous insects, as the common worms, seem to retreat so deep into the earth as not to be enlivened or awakened by the difference of our winter days; and stop up their holes with leaves or straws, to prevent the frosts from injuring them, or the centipes from devouring them. The habits of peace, or the stratagems of war, of these subterranean nations are covered from our view; but a friend of mine prevailed on a distressed worm to enter the hole of another worm on a bowling-green, and he presently returned much wounded about his head. And I once saw a worm rise hastily out of the earth into the sunshine, and observed a centipes hanging at its tail: the centipes nimbly quitted the tail, and seizing the worm about its middle cut it in half with its forceps, and preyed upon one part, while the other escaped. Which evinces they have design in stopping the mouths of their habitations.

4. The wasp of this country fixes his habitation under ground, that he may not be affected with the various changes of our climate; but in Jamaica he hangs it on the bough of a tree, where the seasons are less severe. He weaves a very curious paper of vegetable fibres to cover his nest, which is constructed on the same principle with that of the bee, but with a different material; but as his prey consists of flesh, fruits, and insects, which are perishable commodities, he can lay up no provender for the winter.

M. de la Loubiere, in his relation of Siam, says, "That in a part of that kingdom, which lies open to great inundations, all the ants make their settlements upon trees; no ants' nests are to be seen any where else." Whereas in our country the ground is their only situation. From the scriptual account of these insects, one might be led to suspect, that in some climates they lay up a provision for the winter. Origen affirms the same, (Cont. Cels. L. 4.) But it is generally believed that in this country they do not, (Prov. vi. 6. xxx. 25.) The white ants of the coast of Africa make themselves pyramids eight or ten feet high, on a base of about the same width, with a smooth surface of rich clay, excessively hard and well built, which appear at a distance like an assemblage of the huts of the negroes, (Adanson). The history of these has been lately well described in the Philosoph. Transactions, under the name of termes, or termites. These differ very much from the nest of our large ant; but the real history of this creature, as well as of the wasp, is yet very imperfectly known.

Wasps are said to catch large spiders, and to cut off their legs, and carry their mutilated bodies to their young, Dict. Raison. Tom. I. p. 152.

One circumstance I shall relate which fell under my own eye, and shewed the power or reason in a wasp, as it is exercised among men. A wasp, on a gravel walk, had caught a fly nearly as large as himself; kneeling on the ground I observed him separate the tail and the head from the body part, to which the wings were attached. He then took the body part in his paws, and rose about two feet from the ground with it; but a gentle breeze wafting the wings of the fly turned him round in the air, and he settled again with his prey upon the gravel. I then distinctly observed him cut off with his mouth, first one of the wings, and then the other, after which he flew away with it unmolested by the wind.

Go, thou sluggard, learn arts and industry from the bee, and from the ant!

Go, proud reasoner, and call the worm thy sister!

XVII. Conclusion.

It was before observed how much the superior accuracy of our sense of touch contributes to increase our knowledge; but it is the greater energy and activity of the power of volition (as explained in the former Sections of this work) that marks mankind, and has given him the empire of the world.

There is a criterion by which we may distinguish our voluntary acts or thoughts from those that are excited by our sensations: "The former are always employed about the means to acquire pleasureable objects, or to avoid painful ones: while the latter are employed about the possession of those that are already in our power."

If we turn our eyes upon the fabric of our fellow animals, we find they are supported with bones, covered with skins, moved by muscles; that they possess the same senses, acknowledge the same appetites, and are nourished by the same aliment with ourselves; and we should hence conclude from the strongest analogy, that their internal faculties were also in some measure similar to our own.

Mr. Locke indeed published an opinion, that other animals possessed no abstract or general ideas, and thought this circumstance was the barrier between the brute and the human world. But these abstracted ideas have been since demonstrated by Bishop Berkley, and allowed by Mr. Hume, to have no existence in nature, not even in the mind of their inventor, and we are hence necessitated to look for some other mark of distinction.

The ideas and actions of brutes, like those of children, are almost perpetually produced by their present pleasures, or their present pains; and, except in the few instances that have been mentioned in this Section, they seldom busy themselves about the means of procuring future bliss, or of avoiding future misery.

Whilst the acquiring of languages, the making of tools, and the labouring for money; which are all only the means of procuring pleasure; and the praying to the Deity, as another means to procure happiness, are characteristic of human nature.

* * * * *

SECT. XVII.

THE CATENATION OF MOTIONS.

I. 1. Catenations of animal motion. 2. Are produced by irritations, by sensations, by volitions. 3. They continue some time after they have been excited. Cause of catenation. 4. We can then exert our attention on other objects. 5. Many catenations of motions go on together. 6. Some links of the catenations of motions may be left out without disuniting the chain. 7. Interrupted circles of motion continue confusedly till they come to the part of the circle, where they were disturbed. 8. Weaker catenations are dissevered by stronger. 9. Then new catenations take place. 10. Much effort prevents their reuniting. Impediment of speech. 11. Trains more easily dissevered than circles. 12. Sleep destroys volition and external stimulus. II. Instances of various catenations in a young lady playing on the harpsichord. III. 1. What catenations are the strongest. 2. Irritations joined with associations from strongest connexions. Vital motions. 3. New links with increased force, cold fits of fever produced. 4. New links with decreased force. Cold bath. 5. Irritation joined with sensation. Inflammatory fever. Why children cannot tickle themselves. 6. Volition joined with sensation. Irritative ideas of sound become sensible. 7. Ideas of imagination, dissevered by irritations, by volition, production of surprise.

I. 1. To investigate with precision the catenations of animal motions, it would be well to attend to the manner of their production; but we cannot begin this disquisition early enough for this purpose, as the catenations of motion seem to begin with life, and are only extinguishable with it; We have spoken of the power of irritation, of sensation, of volition, and of association, as preceding the fibrous motions; we now step forwards, and consider, that conversely they are in their turn preceded by those motions; and that all the successive trains or circles of our actions are composed of this twofold concatenation. Those we shall call trains of action, which continue to proceed without any stated repetitions; and those circles of action, when the parts of them return at certain periods, though the trains, of which they consist, are not exactly similar. The reading an epic poem is a train of actions; the reading a song with a chorus at equal distances in the measure constitutes so many circles of action.

2. Some catenations of animal motion are produced by reiterated successive irritations, as when we learn to repeat the alphabet in its order by frequently reading the letters of it. Thus the vermicular motions of the bowels were originally produced by the successive irritations of the passing aliment; and the succession of actions of the auricles and ventricles of the heart was originally formed by successive stimulus of the blood, these afterwards become part of the diurnal circles of animal actions, as appears by the periodical returns of hunger, and the quickened pulse of weak people in the evening.

Other catenations of animal motion are gradually acquired by successive agreeable sensations, as in learning a favourite song or dance; others by disagreeable sensations, as in coughing or nictitation; these become associated by frequent repetition, and afterwards compose parts of greater circles of action like those above mentioned.

Other catenations of motions are gradually acquired by frequent voluntary repetitions; as when we deliberately learn to march, read, fence, or any mechanic art, the motions of many of our muscles become gradually linked together in trains, tribes, or circles of action. Thus when any one at first begins to use the tools in turning wood or metals in a lathe, he wills the motions of his hand or fingers, till at length these actions become so connected with the effect, that he seems only to will the point of the chisel. These are caused by volition, connected by association like those above described, and afterwards become parts of our diurnal trains or circles of action.

3. All these catenations of animal motions, are liable to proceed some time after they are excited, unless they are disturbed or impeded by other irritations, sensations, or volitions; and in many instances in spite of our endeavours to stop them; and this property of animal motions is probably the cause of their catenation. Thus when a child revolves some minute on one foot, the spectra of the ambient objects appear to circulate round him some time after he falls upon the ground. Thus the palpitation of the heart continues some time after the object of fear, which occasioned it, is removed. The blush of shame, which is an excess of sensation, and the glow of anger, which is an excess of volition, continue some time, though the affected person finds, that those emotions were caused by mistaken facts, and endeavours to extinguish their appearance. See Sect. XII. 1. 5.

4. When a circle of motions becomes connected, by frequent repetitions as above, we can exert our attention strongly on other objects, and the concatenated circle of motions will nevertheless proceed in due order; as whilst you are thinking on this subject, you use variety of muscles in walking about your parlour, or in sitting at your writing-table.

5. Innumerable catenations of motions may proceed at the same time, without incommoding each other. Of these are the motions of the heart and arteries; those of digestion and glandular secretion; of the ideas, or sensual motions; those of progression, and of speaking; the great annual circle of actions so apparent in birds in their times of breeding and moulting; the monthly circles of many female animals; and the diurnal circles of sleeping and waking, of fulness and inanition.

6. Some links of successive trains or of synchronous tribes of action may be left out without disjoining the whole. Such are our usual trains of recollection; after having travelled through an entertaining country, and viewed many delightful lawns, rolling rivers, and echoing rocks; in the recollection of our journey we leave out the many districts, that we crossed, which were marked with no peculiar pleasure. Such also are our complex ideas, they are catenated tribes of ideas, which do not perfectly resemble their correspondent perceptions, because some of the parts are omitted.

7. If an interrupted circle of actions is not entirely dissevered, it will continue to proceed confusedly, till it comes to the part of the circle, where it was interrupted.

The vital motions in a fever from drunkenness, and in other periodical diseases, are instances of this circumstance. The accidental inebriate does not recover himself perfectly till about the same hour on the succeeding day. The accustomed drunkard is disordered, if he has not his usual potation of fermented liquor. So if a considerable part of a connected tribe of action be disturbed, that whole tribe goes on with confusion, till the part of the tribe affected regains its accustomed catenations. So vertigo produces vomiting, and a great secretion of bile, as in sea-sickness, all these being parts of the tribe of irritative catenations.

8. Weaker catenated trains may be dissevered by the sudden exertion of the stronger. When a child first attempts to walk across a room, call to him, and he instantly falls upon the ground. So while I am thinking over the virtues of my friends, if the tea-kettle spurt out some hot water on my stocking; the sudden pain breaks the weaker chain of ideas, and introduces a new group of figures of its own. This circumstance is extended to some unnatural trains of action, which have not been confirmed by long habit; as the hiccough, or an ague-fit, which are frequently curable by surprise. A young lady about eleven years old had for five days had a contraction of one muscle in her fore arm, and another in her arm, which occurred four or five times every minute; the muscles were seen to leap, but without bending the arm. To counteract this new morbid habit, an issue was placed over the convulsed muscle of her arm, and an adhesive plaster wrapped tight like a bandage over the whole fore arm, by which the new motions were immediately destroyed, but the means were continued some weeks to prevent a return.

9. If any circle of actions is dissevered, either by omission of some of the links, as in sleep, or by insertion of other links, as in surprise, new catenations take place in a greater or less degree. The last link of the broken chain of actions becomes connected with the new motion which has broken it, or with that which was nearest the link omitted; and these new catenations proceed instead of the old ones. Hence the periodic returns of ague-fits, and the chimeras of our dreams.

10. If a train of actions is dissevered, much effort of volition or sensation will prevent its being restored. Thus in the common impediment of speech, when the association of the motions of the muscles of enunciation with the idea of the word to be spoken is disordered, the great voluntary efforts, which distort the countenance, prevent the rejoining of the broken associations. See No. II. 10. of this Section. It is thus likewise observable in some inflammations of the bowels, the too strong efforts made by the muscles to carry forwards the offending material fixes it more firmly in its place, and prevents the cure. So in endeavouring to recal to our memory some particular word of a sentence, if we exert ourselves too strongly about it, we are less likely to regain it.

11. Catenated trains or tribes of action are easier dissevered than catenated circles of action. Hence in epileptic fits the synchronous connected tribes of action, which keep the body erect, are dissevered, but the circle of vital motions continues undisturbed.

12. Sleep destroys the power of volition, and precludes the stimuli of external objects, and thence dissevers the trains, of which these are a part; which confirms the other catenations, as those of the vital motions, secretions, and absorptions; and produces the new trains of ideas, which constitute our dreams.

II. 1. All the preceding circumstances of the catenations of animal motions will be more clearly understood by the following example of a person learning music; and when we recollect the variety of mechanic arts, which are performed by associated trains of muscular actions catenated with the effects they produce, as in knitting, netting, weaving; and the greater variety of associated trains of ideas caused or catenated by volitions or sensations, as in our hourly modes of reasoning, or imagining, or recollecting, we shall gain some idea of the innumerable catenated trains and circles of action, which form the tenor of our lives, and which began, and will only cease entirely with them.

2. When a young lady begins to learn music, she voluntarily applies herself to the characters of her music-book, and by many repetitions endeavours to catenate them with the proportions of sound, of which they are symbols. The ideas excited by the musical characters are slowly connected with the keys of the harpsichord, and much effort is necessary to produce every note with the proper finger, and in its due place and time; till at length a train of voluntary exertions becomes catenated with certain irritations. As the various notes by frequent repetitions become connected in the order, in which they are produced, a new catenation of sensitive exertions becomes mixed with the voluntary ones above described; and not only the musical symbols of crotchets and quavers, but the auditory notes and tones at the same time, become so many successive or synchronous links in this circle of catenated actions.

At length the motions of her fingers become catenated with the musical characters; and these no sooner strike the eye, than the finger presses down the key without any voluntary attention between them; the activity of the hand being connected with the irritation of the figure or place of the musical symbol on the retina; till at length by frequent repetitions of the same tune the movements of her fingers in playing, and the muscles of the larynx in singing, become associated with each other, and form part of those intricate trains and circles of catenated motions, according with the second article of the preceding propositions in No. 1. of this Section.

3. Besides the facility, which by habit attends the execution of this musical performance, a curious circumstance occurs, which is, that when our young musician has began a tune, she finds herself inclined to continue it; and that even when she is carelessly singing alone without attending to her own song; according with the third preceding article.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13     Next Part
Home - Random Browse