|
[7] Quoted by Phillips, loc. cit., p. 45.
[8] Vesuvius, p. 72 et seq.
[9] Johnston-Lavis, "On the Geology of Monti Somma and Vesuvius," Quart. Jour. Geol. Soc., vol. 40 (1884).
[10] Palmieri, Eruption of Vesuvius in 1872, with notes, etc., by Robert Mallet, F.R.S. London, 1873.
[11] Those who lost their lives were medical students, and an Assistant Professor in the University, Antonio Giannone by name.
[12] Involving, as Mr. Mallet calculates, an initial velocity of projection of above 600 feet per second.
[13] Such as that given by Professor Phillips in his Vesuvius.
CHAPTER II.
ETNA.
(a.) Structure of the Mountain.—Etna, unlike Vesuvius, has ever been a burning mountain; hence it was well known as such to classic writers before the Christian era. The structure and features of this magnificent mountain have been abundantly illustrated by Elie de Beaumont,[1] Daubeny,[2] Baron von Waltershausen,[3] and Lyell,[4] of whose writings I shall freely avail myself in the following account, not having had the advantage of a personal examination of this region.
Structure of Etna.—So large is Etna that it would enclose within its ample skirts several cones of the size of Vesuvius. It rises to a height of nearly 11,000 feet above the waters of the Mediterranean,[5] and is planted on a floor consisting of stratified marine volcanic matter, with clays, sands, and limestones of newer Pliocene age. Its base is nearly circular, and has a circumference of 87 English miles. In ascending its flanks we pass successively over three well-defined physical zones: the lowest, or fertile zone, comprising the tract around the skirts of the mountain up to a level of about 2500 feet, being well cultivated and covered by dwellings surrounded by olive groves, fields, vineyards, and fruit-trees; the second, or forest zone, extending to a level of about 6270 feet, clothed with chestnut, oak, beech, and cork trees, giving place to pines; and the third, extending to the summit and called "the desert region," a waste of black lava and scoriae with mighty crags and precipices, terminating in a snow-clad tableland, from which rises the central cone, 1100 feet high, emitting continually steam and sulphurous vapours, and in the course of almost every century sending forth streams of molten lava.
The forest zone is remarkable for the great number of minor craters which rise up from the midst of the foliage, and are themselves clothed with trees. Sartorius von Waltershausen has laid down on his map of Etna about 200 of these cones and craters, some of which, like those of Auvergne, have been broken down on one side. Many of these volcanoes of second or third magnitude lie outside the forest zone, both above and below it; such as the double hill of Monti Rossi, near Nicolosi, formed in 1659, which is 450 feet in height, and two miles in circumference at its base. Sir C. Lyell observes that these minor crater-cones present us with one of the most delightful and characteristic scenes in Europe. They occur of every variety of height and size, and are arranged in picturesque groups. However uniform they may appear when seen from the sea or the plains below, nothing can be more diversified than their shape when we look from above into their ruptured craters. The cones situated in the higher parts of the forest zone are chiefly clothed with lofty pines; while those at a lower elevation are adorned with chestnuts, oaks, and beech trees. These cones have from time to time been buried amidst fresh lava-streams descending from the great crater, and thus often become obliterated.
(b.) Val del Bove.—The most wonderful feature of Mount Etna is the celebrated Val del Bove (Valle del Bue), of which S. von Waltershausen has furnished a very beautiful plate[6]—a vast amphitheatre hewn out of the eastern flank of the mountain, just below the snow-mantled platform. It is a physical feature somewhat after the fashion of Monte Somma in Vesuvius, but exceeds it in magnitude as Etna exceeds Vesuvius. The Val del Bove is about five miles in diameter, bounded throughout three-fourths of its circumference by precipitous walls of ashes, scoriae, and lava, traversed by innumerable dykes, and rising inwards to a height of between 3000 and 4000 feet. Towards the east the cliffs gradually fall to a height of about 500 feet, and at this side the vast chasm opens out upon the slope of the mountain. At the head of the Val del Bove rises the platform, surmounted by the great cone and crater. It will thus be seen that by means of this hollow we have access almost to the very heart of the mountain.
What is very remarkable about the structure of this valley is that the beds exhibit "the qua-qua versal dip"—in other words, they dip away on all sides from the centre—which has led to the conclusion that in the centre is a focus of eruption which had become closed up antecedently to the formation of the valley itself. Lyell has explained this point very clearly by showing that this focus had ceased to eject matter at some distant period, and that the existing crater at the summit of the mountain had poured out its lavas over those of the extinct orifice. This was prior to the formation of the Val del Bove itself; and the question remains for consideration how this vast natural amphitheatre came to be hollowed out; for its structure shows unquestionably that it owes its form to some process of excavation.
In the first place, it is certainly not the work of running water, as in the case of the canyons of Colorado; the porous matter of which the mountain is formed is quite incapable of originating and supporting a stream of sufficient volume to excavate and carry away such enormous masses of matter within the period required for the purpose. We must therefore have recourse to some other agency. Numerous illustrations are to be found of the explosive action of volcanoes in blowing off either the summits of mountains, or portions of their sides. For example, there is reason for believing that the first result of the renewed energy of Vesuvius was to blow into the air the upper surface of the mountain. Again, so late as 1822, during a violent earthquake in Java, a country which has been repeatedly devastated by earthquakes and volcanic eruptions, the mountain of Galongoon, which was covered by a dense forest, and situated in a fertile and thickly-peopled region, and had never within the period of tradition been in activity, was thus ruptured by internal forces. In the month of July 1822, after a terrible earthquake, an explosion was heard, and immense columns of boiling water, mixed with mud and stones, were projected from the mountain like a water-spout, and in falling filled up the valleys, and covered the country with a thick deposit for many miles, burying villages and their inhabitants. During a subsequent eruption great blocks of basalt were thrown to a distance of seven miles; the result of all being that an enormous semicircular gulf was formed between the summit and the plain, bounded by steep cliffs, and bearing considerable resemblance to the Val del Bove. Other examples of the power of volcanic explosions might be cited; but the above are sufficient to show that great hollows may thus be formed either on the summits or flanks of volcanic mountains. Chasms may also be formed by the falling in of the solidified crust, owing to the extrusion of molten matter from some neighbouring vent of eruption; and it is conceivable that by one or other of these processes the vast chasm of the Val del Bove on the flanks of Etna may have been produced.
(c.) The Physical History of Etna.—The physical history of Etna seems to be somewhat as follows:—
First Stage.—Somewhere towards the close of the Tertiary period—perhaps early Pliocene or late Miocene—a vent of eruption opened on the floor of the Mediterranean Sea, from which sheets of lava were poured forth, and ashes mingled with clays and sands, brought down from the neighbouring lands, were strewn over the sea-bed. During a pause in volcanic activity, beds of limestone with marine shells were deposited.
Second Stage.—This sea-bed was gradually upraised into the air, while fresh sheets of lava and other ejecta were accumulated round the vents of eruption, of which there were two principal ones—the older under the present Val del Bove, the newer under the summit of the principal cone. Thus was the mountain gradually piled up.
Third Stage.—The vent under the Val del Bove ceased to extrude more matter, and became extinct. Meanwhile the second vent continued active, and, piling up more and more matter round the central crater, surmounted the former vent, and covered its ejecta with newer sheets of lava, ashes, and lapilli, while numerous smaller vents, scattered all over the sides of the mountain, gave rise to smaller cones and craters.
Fourth Stage.—This stage is signalised by the formation of the Val del Bove through some grand explosion, or series of explosions, by which this vast chasm was opened in the side of the mountain, as already explained.
Fifth Stage.—This represents the present condition of the mountain, whose height above the sea is due, not only to accumulation of volcanic materials round the central cone, but to elevation of the whole island, as evinced by numerous raised beaches of gravel and sand, containing shells and other forms of marine species now living in the waters of the Mediterranean.[7] Since then the condition and form of the mountain has remained very much the same, varied only by the results of occasional eruptions.
(d.) Dissimilarity in the Constitution of the Lavas of Etna and Vesuvius.—Before leaving the subject we have been considering, it is necessary that I should mention one remarkable fact connected with the origin of the lavas of Etna and Vesuvius respectively; I refer to their essential differences in mineral composition. It might at first sight have been supposed that the lavas of these two volcanic mountains—situated at such a short distance from each other, and evidently along the same line of fracture in the crust—would be of the same general composition; but such is not the case. In the lava of Vesuvius leucite is an essential, and perhaps the most abundant mineral. It is called by Zirkel Sanidin-Leucitgestein. (See Plate IV.) But in that of Etna this mineral is (as far as I am aware) altogether absent. We have fortunately abundant means of comparison, as the lavas of these two mountains have been submitted to close examination by petrologists. In the case of the Vesuvian lavas, an elaborate series of chemical analyses and microscopical observations have been made by the Rev. Professor Haughton, of Dublin University, and the author,[8] from specimens collected by Professor Guiscardi from the lava-flows extending from 1631 to 1868, in every one of which leucite occurs, generally as the most abundant mineral, always as an essential constituent. On the other hand, the composition of the lavas of Etna, determined by Professor A. von Lasaulx, from specimens taken from the oldest (voraetnaeischen) sheets of lava down to those of the present day, indicates a rock of remarkable uniformity of composition, in which the components are plagioclase felspar, augite, olivine, magnetite, and sometimes apatite; but of leucite we have no trace.[9] In fact, the lavas of Etna are very much the same in composition as the ordinary basalts of the British Isles, while those of Vesuvius are of a different type. This seems to suggest an origin of the two sets of lavas from a different deep-seated magma; the presence of leucite in such large quantity requiring a magma in which soda is in excess, as compared with that from which the lavas of Etna have been derived.[10]
[1] Memoires pour Servir, etc., vol. ii.
[2] Daubeny, Volcanoes, p. 270.
[3] Von Waltershausen, Der Aetna, edited by A. von Lasaulx.
[4] Lyell, Principles of Geology, vol. ii., edition 1872.
[5] Its height, as determined by Captain Smyth in 1875 trigonometrically, was 10,874 feet, and afterwards by Sir J. Herschel barometrically, 10,872 feet.
[6] Atlas des Aetna (Weimar, 1858), in which the different lava-streams of 1688, 1802, 1809, 1811, 1819, 1824, and 1838 are delineated.
[7] Sir William Hamilton observes that history is silent regarding the first eruptions of Etna. It was in activity before the Trojan War, and even before the arrival of the "Sizilien" settlers. Diodorus and Thucydides notice the earliest recorded eruptions, those from 772 to 388 B.C., during which time the mountain was thrice in eruption. Later eruptions took place in the year 140, 135, 125, 122 B.C. In the year 44 B.C., in the reign of Julius Caesar, there was a very violent outburst of volcanic activity.—Neuere Beobachtungen ueber die Vulkane Italiens und am Rhein, p. 173, Frankfurt (1784).
[8] "Report on the Chemical and Mineralogical Characters of the Lavas of Vesuvius from 1631 to 1868," Transactions of the Royal Irish Academy, vol. xxvi. (1876). In the lava of 1848 leucite was found to reach 44.9 per cent. of the whole mass. In that of Granatello, 1631, it reaches its lowest proportion—viz., 3.37 per cent.
[9] A. von Lasaulx, in Von Waltershausen's Der Aetna, Book II., x. 423.
[10] The view of Professor Judd, that leucite easily changes into felspar, and that some ancient igneous rocks which now contain felspar were originally leucitic, does not seem to be borne out by the above facts. In such cases the felspar crystals ought to retain the forms of leucite. See Volcanoes, 4th edition, p. 268.
CHAPTER III.
THE LIPARI ISLANDS, STROMBOLI.
(a.) A brief account of this remarkable group of volcanic islands must here be given, inasmuch as they seem to be representatives of a stage of volcanic action in which the igneous forces are gradually losing their energy. According to Daubeny, the volcanic action in these islands seems to be developed along two lines, nearly at right angles to each other, one parallel to that of the Apennines, beginning with Stromboli, intersecting Panaria, Lipari, and Vulcano; the other extending from Panaria to Salina, Alicudi, and Felicudi, and again visible in the volcanic products which make their appearance at Ustica. (See Map, Fig. 11.) The islands lie between the north coast of Sicily and that of Italy, and from their position seem to connect Etna with Vesuvius; but this is very problematical, as would appear from the difference of their lavas. The principal islands are those of Stromboli, Panaria, Lipari, Vulcano, Salina, Felicudi, and Alicudi. These three last are extinct or dormant, but Salina contains a crater, rising, according to Daubeny, not less than 3500 feet above the sea.[1] Vulcano (referred to by Strabo under the name of Hiera) consists of a crater which constantly emits large quantities of sulphurous vapours, but was in a state of activity in the year 1786, when, after frequent earthquake shocks and subterranean noises, it vomited forth during fifteen days showers of sand, together with clouds of smoke and flame, altering materially the shape of the crater from which they proceeded.
The islands of Lipari are formed of beds of tuff, penetrated by numerous dykes of lava, from which uprise two or three craters, formed of pumice and obsidian passing into trachyte. Volcanic operations might have here been said to be extinct, were it not that their continuance is manifested by the existence of hot springs and "stufes," or vapour baths, at St. Calogero, about four miles from the town of Lipari. Daubeny considers it not improbable that this island may have had an active volcano even within the historical period, a view which is borne out by the statement of Strabo.[2]
(b.) But by far the most remarkable island of the group, as regards its present volcanic condition, is Stromboli, which has ever been in active eruption from the commencement of history down to the present day. Professor Judd, who visited this island in 1874, and has produced a striking representation of its aspect,[3] gives an account of which I shall here avail myself.[4] The island is of rudely circular outline, and rises into a cone, the summit of which is 3090 feet above the level of the Mediterranean. From a point on the side of the mountain masses of vapour are seen to issue, and these unite to form a cloud over the summit; the outline of this vapour-cloud varying continually according to the hygrometric state of the atmosphere, and the direction and force of the wind. At the time of Professor Judd's visit, the vapour-cloud was spread in a great horizontal stratum overshadowing the whole island; but it was clearly seen to be made up of a number of globular masses, each of which is a product of a distinct outburst of volcanic forces. Viewed at night-time, Stromboli presents a far more striking and singular spectacle. When watched from the deck of a vessel, a glow of red light is seen to make its appearance from time to time above the summit of the mountain; it may be observed to increase gradually in intensity, and then as gradually to die away. After a short interval the same appearances are repeated, and this goes on till the increasing light of dawn causes the phenomenon to be no longer visible. The resemblance presented by Stromboli to a "flashing light" on a most gigantic scale is very striking, and the mountain has long been known as "the lighthouse of the Mediterranean."
The mountain is built up of ashes, slag, and scoriae, to a height of (as already stated) over 3000 feet above the surface of the sea; but, as Professor Judd observes, this by no means gives a just idea of its vast bulk. Soundings in the sea surrounding the island show that the bottom gradually shelves around the shores to a depth of nearly 600 fathoms, so that Stromboli is a great conical mass of cinders and slaggy materials, having a height above its floor of about 6600 feet, and a base the diameter of which exceeds four miles.
The crater of Stromboli is situated, not at the apex of the cone, but at a distance of 1000 feet below it. The explosions of steam, accompanied by the roaring as of a smelting furnace, or of a railway engine when blowing off its steam, are said by Judd to take place at very irregular intervals of time, "varying from less than one minute to twenty minutes, or even more." On the other hand, Hoffmann describes them as occurring at "perfectly regular intervals," so that, perhaps, some variation has taken place within the interval of about forty years between each observation. Both observers agree in stating that lava is to be seen welling up from some of the apertures within the crater, and pouring down the slope towards the sea, which it seldom or never reaches.[5] The intermittent character of these eruptions appears to be due, as Mr. Scrope has suggested, to the exact proportion between the expansive and repressive forces; the expansive force arising from the generation of a certain amount of aqueous vapour and of elastic gas; the repressive, from the pressure of the atmosphere and from the weight of the superincumbent volcanic products. Steam is here, as in a steam-engine, not the originating agent in the phenomena recorded; but the result of water coming in contact with molten lava constantly welling up from the interior, by which it is converted into steam, which from time to time acquires sufficient elastic force to produce the eruptions; the water being obviously derived from the surrounding sea, which finds its way by filtration through fissures, or through the porous mass of which the mountain is formed. Were it not for the access of water this volcano would probably appear as a fissure-cone extruding a small and continuous stream of molten lava. The adventitious access of the sea water gives rise to the phenomena of intermittent explosions. The vitality of the volcano is therefore due, not to the presence of water, but to the welling up of matter from the internal reservoir through the throat of the volcano.
Pantelleria.—This island, lying between the coast of Sicily and Cape Bon in Africa, is wholly volcanic. It has a circumference of thirty miles, and from its centre rises an extinct crater-cone to a height of about 3000 feet. The flanks of this volcano are diversified by several fresh craters and lava-streams, while hot springs burst out with a hissing noise on its southern flank, showing that molten matter lies below at no very great depth.
This island probably lies along the dividing line between the non-volcanic and volcanic region of the Mediterranean, and is consequently liable to intermittent eruptions. It was at a short distance from this island that the remarkable submarine outburst of volcanic forces took place on October 17th, 1891, for an account of which we are indebted to Colonel J. C. Mackowen.[6] On that day, after a succession of earthquake shocks, the inhabitants were startled by observing a column of "smoke" rising out of the sea at a distance of three miles, in a north-westerly direction. The Governor, Francesco Valenza, having manned a boat, rowed out towards the fiery column, and on arriving found it to consist of black scoriaceous bombs, which were being hurled into the air to a height of nearly thirty yards; some of them burst in the air, others, discharging steam, ran hissing over the water; many of them were very hot, some even red-hot. One of these bombs, measuring two feet in diameter, was captured and brought to shore. It was observed that after the eruption the earthquake shocks ceased. A vast amount of material was cast out of the submarine crater, forming an island 500 yards in length and rising up to nine feet above the surface, but after a few days it was broken up and dispersed over the sea-bed by the action of the waves.
[1] Volcanoes, p. 262. These islands are described by Hoffmann, Poggendorf Annal., vol. xxvi. (1832); also by Lyell, Principles of Geology, vol. ii., and by Judd, who personally visited them, and gives a very vivid account of their appearance and structure.
[2] Strabo, lib. vi.
[3] Judd, Volcanoes, p. 8.
[4] Stromboli has also been described by Spallanzani, Hoffmann, Daubeny, and others. The account of Judd is the most recent. Of this island Strabo says, "Strongyle a rotundate figurae sic dicta, ignita ipsa quoque, violentia flammarum minor, fulgore excellens; ibi habitasse Aecolum ajunt."—Lib. vi.
[5] Poggend. Annal., vol. xxvi., quoted by Daubeny.
[6] Communicated by Captain Petrie to the Victoria Institute, 1st February 1892. See also a detailed and illustrated account of the eruption communicated by A. Ricco to the Annali dell' Ufficio centrale Meteorologico e Geodonamico, Ser. ii., Parte 3, vol. xi. Summarised by Mr. Butler in Nature, April 21, 1892.
CHAPTER IV.
THE SANTORIN GROUP.
(a.) Before leaving the subject of European active volcanoes, it is necessary to give some account of the remarkable volcanic island of Santorin, in the Grecian archipelago. This island for 2000 years has been the scene of active volcanic operations, and in its outline and configuration, both below and above the surface of the Mediterranean, presents the aspect of a partially submerged volcanic mountain. (See Section, Fig. 13.) If, for example, we can imagine the waters of the sea to rise around the flanks of Vesuvius until they have entered and overflowed to some depth the interior caldron of Somma, thus converting the old crater into a crescent-shaped island, and the cone of Vesuvius into an island—or group of islands—within the caldron, then we shall form some idea of the appearance and structure of the Santorin group.
Form of the Group.—The principal island, Thera, has somewhat the shape of a crescent, breaking off in a precipitous cliff on the inner side, but on the outer side sloping at an angle of about fifteen degrees into deep water. Continuing the curvature of the crescent, but separated by a channel, is the island of Therasia; and between this and the southern promontory of Thera is another island called Aspronisi. All these islands, if united, would form the rim of a crater, in which the volcanic matter slopes outward into deep water, descending at a short distance to a depth of 200 fathoms and upwards. In the centre of the gulf thus formed rise three islands, called the Old, New, and Little Kaimenis. These may be regarded as cones of eruption, which history records as having been thrown up at successive intervals. According to Pliny, the year 186 B.C. gave birth to Old Kaimeni, also called Hiera, or the Sacred Isle; and in the first year of our era Thera (the Divine) made its appearance above the water, and was soon joined to the older island by subsequent eruptions. Old Kaimeni also increased in size by the eruptions of 726 and 1427. A century and a half later, in 1573, another eruption produced the cone and crater called Micra-Kaimeni. Thus were formed, or rather were rendered visible above the water, the central craters of eruption; and between these and the inner cliff of Thera and Therasia is a ring of deep water, descending to a depth of over 200 fathoms. So that, were these islands raised out of the sea, we should have presented to our view a magnificent circular crater about six miles in diameter, bounded by nearly vertical walls of rock from 1000 to 1500 feet in height, and ruptured at one point, from the centre of which would rise two volcanic cones—namely, the Kaimenis—one with a double crater, still foci of eruption, and from time to time bursting forth in paroxysms of volcanic energy, of which those of 1650, 1707, and 1866 were the most violent and destructive.[1] Of this last I give a bird's-eye view (Fig. 14).
The only rock of non-volcanic origin in these islands consists of granular limestone and clay slate forming the ridge of Mount St. Elias, which rises to a height of 1887 feet at the south-eastern side of the island of Thera, crossing the island from its outer margin nearly to the interior cliff, so that the volcanic materials have been piled up along its sides. The rocks of St. Elias are much more ancient than any of the volcanic materials around; and, as Bory St. Vincent has shown, have been subjected to the same flexures, dip and strike, as those sedimentary rocks which go to form the non-volcanic islands of the Grecian archipelago.
(b.) Origin of the Santorin Group.—In reference to the origin of the Santorin group, Lyell regards it as a remnant of a great volcanic mountain which possessed a focus of eruption rising in the position of the present foci, but afterwards partially destroyed and the whole submerged to a depth of over 1000 feet. But another explanation is open to us, and one not inconsistent with what we now know of the physical changes to which the Mediterranean has been subjected since early Tertiary times. To my mind it is difficult to conceive how such a volcanic mountain as that of Santorin could have been formed under water; while, on the other hand, its physical structure and contour bear so striking a resemblance (as already observed) to those of Vesuvius and Rocca Monfina that we are much tempted to infer that it had a somewhat similar origin. Now we know that Vesuvius was built up by means of successive eruptions taking place under the air; and the question arises whether it could be possible that Santorin had a similar origin owing to the waters of the Mediterranean having been temporally lowered at a later Tertiary epoch. It has been stated by M. Fouque that the age of the more ancient volcanic beds of Santorin belong, as shown by the included fossils, to the newer Pliocene epoch. These are of course the unsubmerged, and therefore more recent strata, and may have been recently upheaved during one or more of the outbursts of volcanic energy. But it seems an impossibility that the Gulf of Santorin, with its precipitous walls and deep circular interior channel, as shown by the Ideal Section (Fig. 13), could have been formed otherwise than under the air. We are led, therefore, to inquire whether there was a time in the history of the Mediterranean, since the Eocene period, when the waters were lower than at present. That this was the case we have clear evidence. The remains of elephants, hippopotami, and other animals, which have been discovered in great numbers in the Maltese caves, show that this island was united to Sicily, and this again to Europe, during the later Pliocene epoch, so as to have become the abode of an Europasian fauna. According to Dr. Wallace, a causeway of dry land existed, stretching from Italy to Tunis in North Africa through the Maltese Islands—an inference involving the lowering of the waters of the Mediterranean by several hundred feet.[2] There is every reason for supposing that the old volcano of Santorin was in active eruption at this period; and its history may be considered to be similar to that of Vesuvius until, at the rising of the waters during the Pluvial (or Post-Pliocene) epoch, during which they rose higher than at present, Santorin was converted into a group of islands, slightly differing in form from those of the present day. This view seems to meet the difficulties regarding the origin of this group, difficulties which Lyell had long since clearly recognised.
(c.) Limit of the Mediterranean Volcanic Region.—With the Santorin group we conclude our account of the active European volcanoes. It may be observed, however, that from some cause not ascertained the volcanic districts of the Mediterranean and its shores are confined to the north side of that great inland sea; so that as regards vulcanicity the African coast presents a striking contrast to that of the opposite side. If we draw a line from the shores of the Levant to the Straits of Gibraltar, by Candia, Malta, and to the south of Pantelleria and Sardinia, we shall find that the volcanic islands and districts of the mainland lie to the north of it.[3] This has doubtless some connection with the internal geological structure. The immunity of the Libyan desert from volcanic irruptions is in keeping with the remarkably undisturbed condition of the Secondary strata, which seldom depart much from the horizontal position; while the igneous rocks of the Atlas mountains are probably of great geological antiquity. On the other hand, the Secondary and Tertiary formations of the northern shores and islands of the Mediterranean are generally characterised by the highly-inclined, flexured, and folded position of the strata. Hence we may suppose that the crust over the region lying to the north of the volcanic line, owing to its broken and ruptured condition, was less able to resist the pressure of the internal forces of eruption than that lying to the south of it; and that, in consequence, vents and fissures of eruption were established over the former of these regions, while they are absent in the latter.
[1] Fuller details will be found in Daubeny's Volcanoes, chap. xviii., and Lyell's Principles of Geology, vol. ii. p. 65 (edition 1872). The bird's-eye view is taken from this latter work by kind permission of the publisher, Mr. J. Murray, as also the accompanying Ideal Section, Fig. 13.
[2] Wallace, Geographical Distribution of Animals (1876). The author's Sketch of Geological History, p. 130 (Deacon & Co., 1887).
[3] The volcanic area lying to the north of this line will include Sardinia, Sicily, Pantelleria, the Grecian Archipelago, Asia Minor, and Syria; the non-volcanic area lying to the south of this line will include the African coast, Malta, Isles of Crete and Cyprus. The Isle of Pantelleria is apparently just on the line, which, continued eastward, probably follows the north coast of Cyprus, parallel to the strike of the strata and of the central axis of that island.—See "Carte Geologique de l'ile de Chypre, par MM. Albert Gaudry et Amedee Damour" (1860).
CHAPTER V.
EUROPEAN EXTINCT OR DORMANT VOLCANOES.
We are naturally led on from a consideration of the active volcanoes of Europe to that of volcanoes which are either dormant or extinct in the same region. Such are to be found in Italy, Central France, both banks of the Rhine and Moselle, the Westerwald, Vogelsgebirge, and other districts of Germany; in Hungary, Styria, and the borders of the Grecian archipelago. But the subject is too large to be treated here in detail; and I propose to confine my observations to some selected cases which are to be found in Southern Italy, Central France, and the Rhenish districts, where the volcanic features are of so recent an age as to preserve their outward form and structure almost intact.
(a.) Southern Italy.—Extinct volcanoes and volcanic rocks occupy considerable tracts between the western flanks of the Apennines and the Mediterranean coast in the Neapolitan and Roman States, forming the remarkable group of the Phlegraean fields (Campi Phlegraei), with the adjoining islands of Ischia, Procida, Nisida, Vandolena, Ponza, and Palmarola; at Melfi and Avellino. All the region around Rome extending along the western slopes of the Apennines from Velletri to Orvieto, together with Mount Annato in Tuscany, is formed of volcanic material, and the same may be said of a large part of the island of Sardinia. From these districts I shall select some points which seem to be of special interest.
Monte Nuovo and the Phlegraean Fields.—The tract of which this celebrated district forms a part lies as it were in a bay of the Apennine limestone of Jurassic age. The floor of this bay is composed of puzzolana, a name given to beds of volcanic tuff of great thickness, and rising into considerable hills in the vicinity of the city of Naples, such as that of St. Elmo. Its composition is peculiar, as it is chiefly formed of small pieces of pumice, obsidian, and trachyte, in beds alternating with loam, ferriferous sand, and fragments of limestone. It is evidently of marine formation, as Sir William Hamilton, Professor Pilla, and others have detected sea-shells therein, of the genera Ostraea, Cardium, Pecten and Pectunculus, Buccinum, etc. It is generally of a greyish colour, and sometimes sufficiently firm to be used as a building stone. The Roman Campagna is largely formed of similar materials, which were deposited at a time when the districts in question were submerged, and matter was being erupted from volcanic vents at various points around, and spread over the sea-bed.
Such is the character of the general floor on which the more recent crater-cones of this district have been built. These are numerous, and all extinct with the exception of the Solfatara, near Puzzuoli, from which gases mixed with aqueous vapour are continually being exhaled. The gases consist of sulphuretted hydrogen mixed with a minute quantity of muriatic acid.[1] This district is also remarkable for containing several lakes occupying the interiors of extinct craters; amongst others, Lake Avernus, which, owing to its surface having been darkened by forests, and in consequence of the effluvia arising from its stagnant waters, has had imparted to it a character of gloom and terror, so that Homer in the Odyssey makes it the entrance to hell, and describes the visit of Ulysses to it. Virgil follows in his steps. Another lake of similar origin is Lake Agnano. Here also is the Grotto del Cane, a cavern from which are constantly issuing volumes of carbonic acid gas combined with much aqueous vapour, which is condensed by the coldness of the external air, thus proving the high temperature of the ground from which the gaseous vapour issues. This whole volcanic region, so replete with objects of interest,[2] may be considered, as regards its volcanic character, in a moribund condition; but that it is still capable of spasmodic movement is evinced by the origin of Monte Nuovo, the most recent of the crater-cones of the district. This mountain, rising from the shore of the Bay of Baiae, was suddenly formed in September 29th, 1538, and rises to a height of 440 feet above the sea-level. It is a crater-cone, and the depth of the crater has been determined by the Italian mineralogist Pini to be 421 English feet; its bottom is thus only 19 feet above the sea-level. A portion of the base of the cone is considered partly to occupy the site of the Lucrine Lake, which was itself nothing more than the crater of a pre-existent volcano, and was almost entirely filled up during the explosion of 1538. Monte Nuovo is composed of ashes, lapilli, and pumice-stones; and its sudden formation, heralded by earthquakes, and accompanied by the ejection of volcanic matter mixed with fire and water, is recorded by Falconi, who vividly depicts the terror and consternation of the inhabitants of the surrounding country produced by this sudden and terrible outburst of volcanic forces.[3]
(b.) Central Italy and the Roman States.—The tract bordering the western slopes of the Apennines northward from Naples into Tuscany, and including the Roman States, is characterised by volcanic rocks and physical features of remarkable interest and variety. These occur in the form of extinct craters, sometimes filled with water, and thus converted into circular lakes; or of extensive sheets and conical hills of tuff; or, finally, of old necks and masses of trachyte and basalt, sometimes exhibiting the columnar structure. The Eternal City itself is built on hills of volcanic material which some observers have supposed to be the crater of a great volcano; but Ponzi, Brocchi, and Daubeny all concur in the opinion that this is not the case, as will clearly appear from the following account.
The geological structure of the valley of the Tiber at Rome is very clearly described by Professor Ponzi in a memoir published in 1850, from which the accompanying section is taken.[4] (Fig. 16.) From this it will be seen that "the Seven-hilled City" is built upon promontories of stratified volcanic tuff, of which the Campagna is formed, breaking off along the banks of the Tiber, the hills being the result of the erosion, or denudation, of the strata along the side of the river valley. As the strata dip from west to east across the course of the river, it follows that those on the western banks are below those on the opposite side; and thus the marine sands and marls which underlie the volcanic tuff, and are concealed by it along the eastern side of the valley, emerge on the west, and form the range of hills on that side. Such being the structure of the formations under Rome, it is evident that it is not "built on a volcano."
The tuff contains fragments of lava and pebbles of Apennine limestone, and was deposited under the waters of an extensive lake at a time when volcanic action was rife amidst the Alban Hills. This lacustrine formation rests in turn on deposits of marine origin, containing oysters, patellae, and other sea-shells, of which the chain of hills on the right bank of the Tiber is chiefly formed.
The district around Albano lying to the south of Rome is of peculiar interest from the assemblage of old crater-lakes which it contains; as, for instance, those of Albano, Vallariccia, Nemi, Juturna, and the lake of Gabii. The lake of Albano, one of the most beautiful sheets of water in the world, is about six miles in circumference, and surrounded by beds of peperino, a variety of tuff presenting a bright, undecomposed aspect when newly broken. The level of this lake was lowered by the Romans during the siege of Veii by means of a tunnel, so that the waters are 200 feet lower than the level at which they originally stood. In the same district is the lake of Nemi, very regular in its circular outline; that of Juturna lying near the foot of the Alban Hills, and that of Ariccia lying in a deep hollow eight miles in circumference;—all may be supposed to have been the craters of extinct volcanoes, both by reason of their shape and of the materials of which they are formed. All these old craters are, however, according to Daubeny, "only the dependencies and offshoots, as it were, of the great extinct volcano, the traces of which still remain upon the summit of the Alban Hills, and which is comparable in its form to that of Vesuvius, as it is surrounded by an outer circle of volcanic rock comparable to that of Somma."[5]
To the north of the city of Rome are several crateriform lakes, some of which are of great size, such as that of Bolsena, over twenty miles in circumference, and the Lago di Bracciano, almost as large, and lying about twelve miles from the city. These extensive sheets of water are surrounded by banks of tuff and volcanic sand, in which fragments of augite, leucite, and crystals of titanite are distributed. The town of Viterbo is built up at the foot of a steep hill called Monte Cimini, the lower part of which is composed of trachyte; this is surmounted by tuff, which appears to have been ejected from an extinct crater occupying the summit of the mountain, and now converted into a lake called the Lake of Vico. This crater is perfectly circular, and from its centre rises a little conical hill covered by trees.
(c.) Physical History.—Space does not permit of a fuller description of the remarkable volcanic features of the tract lying along the western slope of the Apennines; but from what has been stated it will be clear that volcanic forces have been in operation at one time on a grand scale in the Roman States and the South of Tuscany, over a tract extending from Mount Annato to Velletri and Segni.
This tract was separated from that of the Neapolitan volcanic region by a range of limestone hills of Jurassic age between Segni and Gaeta, a protrusion of the Alban Hills westward; but the general structure and physical history of both regions are probably very similar, with the exception that the igneous forces still retain their vitality in the more southerly region. In the case of the Roman volcanic district, a bay seems to have been formed about the close of the Miocene period, bounded on all sides but the west by hills of limestone, over whose bed strata of marl, sandstone, and conglomerate were deposited. This tract was converted by subsequent movements into a fresh-water lake, and contemporaneously volcanic operations commenced over the whole region, and beds of tuff, often containing blocks of rock ejected from neighbouring craters, were deposited over those of marine origin. Meanwhile numerous crater-cones were thrown up; and, as the land gradually rose, the waters of the lake were drained off, leaving dry the Campagna and plain of the Tiber. Ultimately the volcanic fires smouldered down and died out, whether within the historic epoch or not is uncertain; lakes were formed within the now dormant craters, and the face of nature gradually assumed a more placid and less forbidding aspect over this memorable region, destined to be the site of Rome, the Mistress of the World.
[1] As determined by Daubeny in 1825.
[2] Including the ruins of the Temple of Serapis, whose pillars are perforated by marine boring shells up to a height of about 16 feet from their base; indicating that the land had sunk down beneath the sea, and afterwards been elevated to its present level.
[3] The account of Falconi, and another by Pietro Giacomo di Toledo, are given by Sir W. Hamilton, op. cit., p. 198, and also reproduced by Sir C. Lyell, Principles, vol. i. p. 608.
[4] Guiseppe Ponzi, "Sulla storia fisica del Bacino di Roma," Annali di Scienze Fisiche (Roma, 1850).
[5] Daubeny, Volcanoes, p. 171.
CHAPTER VI.
EXTINCT VOLCANOES OF CENTRAL FRANCE.
(a.) General Structure of the Auvergne District.—From a granitic and gneissose platform situated near the centre of France, and separated from the western spurs of the Alps by the wide valley of the Rhone, there rises a group of volcanic mountains surpassing in variety of form and structure any similar mountain group in Europe, and belonging to an epoch ranging from the Middle Tertiary down almost to the present day. This volcanic group of mountains gives rise to several important rivers, such as the Loire, the Allier, the Soule (a branch of the Loire), the Creuse, the Dordogne, and the Lot; and in the Plomb du Cantal attains an elevation of 6130 feet above the sea. Its southern section, that of Mont Dore, the Cantal, and the Haute Loire, is characterised by magnificent valleys, traversing plateaux of volcanic lava, and exhibiting the results of river erosion on a grand scale; while its northern section, that of the Puy de Dome, presents to us a varied succession of volcanic crater-cones and domes, with their extruded lava-streams, almost as fresh and unchanged in form as if they had only yesterday become extinct. A somewhat similar, but less important, chain of extinct volcanoes also occurs in the Velay and Vivarais, between the upper waters of the Loire and the Allier, in the vicinity of the town of Le Puy.[1] The principal city in this region is Clermont-Ferrand, lying near the base of the Puy de Dome, and ever memorable as the birthplace of Blaise Pascal.[2]
The physical structure of this region is on the whole very simple. The fundamental rocks consist of granite and gneiss passing into schist, all of extreme geological antiquity, forming a vast platform gradually rising in a southerly direction towards the head waters of the Loire and the Allier in the Departments of Haute Loire, Lozere, and Ardeche. On this platform are planted the whole of the volcanic mountains. (See Fig. 17.)
The granitic plateau is bounded on the east, throughout a distance of about 50 miles, by the wide and fertile plain of Clermont, watered by the Allier and its numerous branches descending from the volcanic mountains, and is about 25 miles in width from east to west in the parallel of Clermont, but gradually narrowing in a southerly direction, till at Brioude it becomes an ordinary mountain ravine. The eastern margin of the plain is formed by another granitic ridge expanding into a plateau towards the south, and joining in with that already described; but towards the north and directly east of Clermont it forms a high ridge traversed by the railway to St. Etienne and Lyons, and descending towards the east into the valley of the Loire. No more impressive view is to be obtained of the volcanic region than that from the summit of this second ridge, on arriving there towards evening from the city of Lyons. At your feet lies the richly-cultivated plain of Clermont, dotted with towns, villages, and hamlets, and decorated with pastures, orchards, vineyards, and numerous trees; while beyond rises the granitic plateau, breaking off abruptly along the margin of the plain, and deeply indented by the valleys and gorges along which the streams descend to join the Allier. But the chief point of interest is the chain of volcanic crater-cones and dome-shaped eminences which rise from the plateau, amongst which the Puy de Dome towers supreme. Their individual forms stand out in clear and sharp relief against the western sky, and gradually fade away towards the south into the serried masses of Mont Dore and Cantal, around whose summits the evening mists are gathering. Except the first view of the Mont Blanc range from the crest of the Jura, there is no scene perhaps which is calculated to impress itself more vividly on the memory than that here faintly described.[3]
(b.) The Vale of Clermont.—The plain upon which we look down was once the floor of an extensive lake, for it is composed of various strata of sand, clay, marl, and limestone, containing various genera and species of fresh-water shells. These strata are of great thickness, perhaps a thousand feet in some places; and along with such shells as Paludina, Planorbis, and Limnaea are also found remains of various other animals, such as fish, serpents, batrachians, crocodiles, ruminants, and those of huge pachyderms, as Rhinoceros, Dinotherium, and Caenotherium. This great lake, occupying a hollow in the old granitic platform of Central France, must have been in existence for an extensive period, which MM. Pomel, Aymard, and Lyell all unite in referring to that of the Lower Miocene. But what is to us of special interest is the fact that, in the deposits of this lake of the Haute Loire, with the exception of the very latest, there is no intermixture of volcanic products such as might have been expected to occur if the neighbouring volcanoes had been in activity during its existence. Hence it may be supposed that, as Scrope suggested, the waters of the lake were drained off owing to the disturbance in the levels of the country caused by the first explosions of the Auvergne volcanoes.[4] If this be so, then we possess a key by which to determine the period of the first formation of volcanoes in Central France; for, as the animal remains enclosed in the lacustrine deposits of the Vale of Clermont belong to the early Miocene stage, and the earliest traces of contemporaneous volcanic ejecta are found only in the uppermost deposits, we may conclude that the first outburst of volcanic action occurred towards the close of the Miocene period—a period remarkable for similar exhibitions of internal igneous action in other parts of the world.
(c.) Successive Stages of Volcanic Action in Auvergne.—The volcanic region here described, which has an area of about one hundred square miles, does not appear to have been at one and the same period of time the theatre of volcanic action over its whole extent. On the contrary, this action appears to have commenced at the southern border of the region in the Cantal, and travelling northwards, to have broken out in the Mont Dore region; finally terminating its outward manifestations among the craters and domes of the Puy de Dome. In a similar manner the volcanic eruptions of the Haute Loire and Ardeche, lying to the eastward, and separated from those of the Cantal by the granitoid ridge of the Montagnes de Margeride, belong to two successive periods referable very closely to those of the Mont Dore and the Puy de Dome groups.[5] The evidence in support of this view is very clear and conclusive; for, while the volcanic craters formed of ash, lapilli, and scoriae, together with the rounded domes of trachytic rock of which the Puy de Dome group is composed, preserve the form and surface indications of recently extinguished volcanoes, those which we may assume to have been piled up in the region of Mont Dore and Cantal have been entirely swept away by prolonged rain and river action, and the sites of the ancient craters and cones of eruption are only to be determined by tracing the great sheets of lava up the sides of the valleys to their sources, generally situated at the culminating points of their respective groups. Other points of evidence of the great antiquity of the latter groups might be adduced from the extent of the erosion which has taken place in the sheets of lava having their sources in the vents of the Plomb du Cantal and of Mont Dore, owing to which, magnificent valleys, many miles in length and hundreds of feet in depth, have been cut out of these sheets of lava and their supporting rocks, whether granitic or lacustrine, and the materials carried away by the streams which flow along their beds. These points will be better understood when I come to give an account of the several groups; and in doing so I will commence with that of the Cantal.[6]
(d.) The Volcanoes of the Cantal.—The original crater-cones of this group have entirely disappeared throughout the long ages which have elapsed since the lava-streams issued forth from their internal reservoirs. The general figure of this group of volcanic mountains is that of a depressed cone, whose sides slope away in all directions from the central heights, which are deeply eroded by streams rising near the apex and flowing downwards in all directions towards the circumference of the mountain, where they enter the Lot, the Dordogne, and the Allier. The orifice of eruption was situated at the Plomb du Cantal, formed of solid masses of trachyte, which, owing, as Mr. Scrope supposes, to a high degree of fluidity, were able to extend to great distances in extensive sheets, and were afterwards covered by repeated and widely-spread flows of basalt; so that the trachyte towards the margin of the volcanic area becomes less conspicuous than the basalt by which it is more or less concealed from view, or overlapped. Extensive beds of tuff and breccia accompany the trachytic masses.
Magnificent sections of the rocks are laid open to view along the sides of the valleys, which are steep and rock-bound. Except towards the south-west, about Aurillac, where lacustrine strata overlie the granite, the platform from which rises the volcanic dome is composed of granitic or gneissose rocks. Accompanying the lava-streams are great beds of volcanic agglomerate, which Mr. Scrope considers to have been formed contemporaneously with the lava which they envelop, and to be due to torrents of water tumultuously descending the sides of the volcano at periods of eruption, and bearing down immense volumes of its fragmental ejecta in company with its lava-streams.[7] Nowhere throughout this region do beds of trachyte and basalt alternate with one another; in all cases the basalt is the newer of the two varieties of rock, and this is generally the case throughout the region here described.
(e.) Volcanoes of Mont Dore.—This mountain lies to the north of that of Cantal, and somewhat resembles it in general structure and configuration. Like Cantal, it is destitute of any distinct crater; all that is left of the central focus of eruption being the solidified matter which filled the throat of the original volcano, and which forms a rocky mass of lava, rising in its highest point, the Pic de Saucy, to an elevation (as given by Ramond) of 6258 feet above the level of the sea, thus exceeding that of the Plomb du Cantal by 128 feet. Its figure will be best understood by supposing seven or eight rocky summits grouped together within a circle of about a mile in diameter, from whence, as from the apex of an irregular and flattened cone, all the sides slope more or less rapidly downwards, until their inclination is gradually lost in the plain around. This dome-shaped mass has been deeply eroded on opposite sides by the valleys of the Dordogne and Chambon; while it is further furrowed by numerous minor streams.[8]
The great beds of volcanic rock, disposed as above stated, consist of prodigious layers of scoriae, pumice-stones, and detritus, alternating with beds of trachyte and basalt, which often descend in uninterrupted currents till they reach the granite platform, and then spread themselves for miles around. The sheets of basalt are found to stretch to greater distances than those of trachyte, and have flowed as far as 15 or 20 miles from their orifices of eruption; while in some cases, on the east and north sides, they have extended as far as 25 or 30 miles from the central height. On the other hand, a radius of about ten miles from the centre would probably include all the streams of trachyte;—so much greater has been the viscosity of the basalt over the latter rock. Some portions of these great sheets of lava, cut off by river valleys or eroded areas from the main mass of which they once formed a part, are found forming isolated terraces and plateaux either on the granitic platform, or resting on the fresh-water strata of the valley of the Allier, while in a northern direction they overspread a large portion of the granitic plateau from which rise the Puy de Dome and associated volcanic mountains. Still more remarkable are the cases in which these lava-streams have descended into the old river channels which drained the granitic plateau. Thus the current which took its origin in the Puy Gros descended into the valley of the Dordogne, while another stream invaded the gorge of Champeix on the eastern side.
The more ancient lava-streams just described are invaded by currents and surmounted by cones of eruption of more recent date, similar to those of the Puy de Dome group lying to the northward. Such cones and currents, amongst which are the Puy de Tartaret and that of Montenard, present exactly the same characters as those of this group, to which we shall return further on.
(f.) Volcanoes of the Haute Loire and Ardeche.—Separated by the valley of the Allier and the granitic ridge of La Margeride from the volcanic regions of Cantal and Mont Dore is another volcanic region of great extent, which reaches its highest elevation in the central points of Mont Mezen, attaining an elevation (according to Cordier) of 5820 feet, and formed of "clinkstone." The volcanic products of Mezen have been erupted from one central orifice of vast size, and consist mainly of extensive sheets of "clinkstone," a variety of trachytic lava, which have taken courses mainly towards the north-west and south-east. These great sheets, one of which appears to have covered a space more than 26 miles in length with an average breadth of 6 miles, thus overspreading an estimated area of 156 square miles, has been deeply eroded by streams draining into the Loire, along whose banks the rocks tower in lofty cliffs; while it has also suffered enormous denudation, by which outlying fragments are disconnected from the main mass, and form flat-topped hills and plateaux as far distant as Roche en Reigner and Beauzac, at the extreme distance (as stated above) of 26 miles from the source of eruption.
But even more remarkable than the above are the vast basaltic sheets which stretch away for a distance of 30 miles by Privas almost to the banks of the Rhone, opposite Montlimart. These have their origin amongst the clinkstone heights of Mont Mezen, and taking their course along the granitic plateau in a south-easterly direction, ultimately pass over on to the Jurassic and Cretaceous formations composing the plateau of the Coiron, which break off in vertical cliffs from 300 to 400 feet in height, surmounting the slopes that rise from the banks of the Ardeche and Escourtais rivers near Villeneuve de Bere. This is probably one of the most extensive sheets of basalt with which we are acquainted in the European area, and it is only a remnant of a vastly greater original sheet.[9]
(g.) Newer Volcanoes of the Haute Loire (the Velay and Vivarais).—Subsequently to the formation of the lava-streams above described, and probably after the lapse of a lengthened period, the region of the Haute Loire and Ardeche became the scene of a fresh outburst of volcanic action, during which the surface of the older lavas, or of the fundamental granite, was covered by numerous crater-cones and lava-streams strewn along the banks of the Allier and of the Loire for many miles. These cones and craters are not quite so fresh as those of the Mont Dome group; those of the Haute Loire being slightly earlier in point of time, and, as Daubeny shows, belonging to a different system. So numerous are these more recent cones and craters that Scrope counted more than 150 of them, and probably omitted many.
The volcanic phenomena now described have a special interest as bearing on the question whether man was an inhabitant of this region at the time of these later eruptions. The question seems to be answered in the affirmative by the discovery of a human skull and several bones in the volcanic breccia of Mont Demise, in company with remains of the elephant (E. primigenius), rhinoceros (R. tichorhinus), stag, and other large mammifers. The discovery of these remains was made in the year 1844, and the circumstances were fully investigated and reported upon by M. Aymard, and afterwards by Mr. Poulett Scrope, upon whose mind no possible doubt of the fact remained. From what we now know of the occurrence of human remains and works of art in other parts of France and Europe, no surprise need be felt at the occurrence of human remains in company with some extinct mammalia in these volcanic tuffs, which belong to the Post-Pliocene or superficial alluvia antecedent to the historic period.[10]
(h.) Mont Dome Chain.—We now come to the consideration of the most recent of all the volcanic mountain groups of the region of Central France, that of the Puy de Dome, lying to the north of Mont Dore and Cantal. We have seen that there is almost conclusive evidence that man was a witness to the later volcanic outbursts of the Vivarais, and as these craters seem to be of somewhat earlier date than those of the Puy de Dome group, we cannot doubt that they were in active eruption when human beings inhabited the country, and not improbably within what is known as the Historic Period. No mention, however, is made either by Caesar, Pliny, or other Roman writers of the existence of active volcanoes in this region. Caesar, who was a close observer, and who carried the Roman arms into Auvergne, makes no mention of such; nor yet does the elder Pliny, who enumerated the known burning mountains of his day all over the Roman Empire. It is not till we come down to the fifth century of our era that we find any notices which might lead us to infer the existence of volcanic action in Central France. This is the well-known letter written by Sidonius Apollonarius, bishop of Auvergne, to Alcinus Avitus, bishop of Vienne, in which the former refers to certain terrific terrestrial manifestations which had occurred in the diocese of the latter. But, as Dr. Daubeny observes, this is no evidence of volcanic action in Auvergne, where Sidonius himself resided; the terrestrial disturbances above referred to may have been earthquake shocks of extreme severity.[11]
But although we have no reliably historical record of volcanic action amongst the mountains of the Mont Dome group, the fact that these are, comparatively, extremely recent will be evident to an observer visiting this district, and this conclusion is based on three principal grounds: first, because of the well-preserved forms of the original craters, though generally composed of very loose material, such as ashes, lapilli, and slag; secondly, because of the freshness of the lava-streams over whose rugged surfaces even a scanty herbage has in some places scarcely found a footing;[12] and thirdly, because the lava from the crater-cones has invaded channels previously occupied by the earlier lavas, or those which had been eroded since the overflow of the great basaltic sheets of Mont Dore. Still, as in the case of the valleys of Lake Aidot, of Channonat, and of Royat, these streams are sufficiently ancient to have given time for the existing rivers to have worn out in them channels of some depth, but bearing no comparison to the great valleys which had been eroded out of the more ancient lavas, such as those of the Coiron, of the Ardeche, and of the Dordogne and Chambon in the district of Mont Dore.
(i.) Dome-shaped Volcanic Hills.—I have previously (page 15) referred to the two classes of volcanic eminences to be found in the chain of the Puy de Dome; one indicated by the name itself, formed of a variety of trachytic lava called "domite," and of the form of a dome; the other, composed of fragmental matter piled up in the form of a crater or cup, often ruptured on one side by a stream of lava which has burst through the side, owing to its superior density. Of the former class the Puy de Dome and the Grand Sarcoui (see Fig. 18) are the most striking examples out of the five enumerated by Scrope, while there is a large number, altogether sixty-one, belonging to the latter class. These domes and crater-cones, as already stated, rise from a platform of granite, either directly or from one formed of the lava-sheets of the Mont Dore region, which in turn overlies the granitic platform. Of the nearly perfect craters there are the Petit Puy de Dome, lying partially against the northern flank of the greater eminence; the Puy de Cone, remarkable for the symmetry of its conical form, rising to a height of 900 feet from the plain; and the Puys de Chaumont and Thiolet lying to the north of the Puy de Dome. Of those to the south of this mount, two out of the three craters of the Puy de Barme and the Puy de Vichatel are perfect; but most of the crater-cones south of the Puy de Dome are breached. Some of the lava streams by which these craters were broken down flowed for long distances. That the lava followed the showers of ashes and lapilli forming the walls of the craters is rendered very evident in the case of the Puy de la Vache, whose lava-stream coalescing with those from the Puy de la Solas and Puy Noir, deluged the surrounding tracts and flowed down the Channonat Valley as far as La Roche Blanc in the Vale of Clermont. In the interior of the upper part of the crater still remaining may be seen the level (so to speak) to which the molten lava rose before it burst its barrier. This level is marked by a projecting platform of reddish or yellow material, rich in specular iron, apparently part of the frothy scum which formed on the surface of the lava and adhered to the side of the basin at the moment of its being emptied.
Space does not permit a fuller description of this remarkable assemblage of extinct volcanoes, and the reader must be referred for further details to the work of Mr. Scrope. I shall content myself with some further reference to the central figure in this grand chain, the Puy de Dome itself.
Ascent of the Puy de Dome.—On ascending by the winding path up the steep side of the mount, and on reaching the somewhat flattened summit, the first objects which strike the eye are the massive foundations of the Roman temple of Mercury; they are hewn out of solid grey lava, altogether different from the rock of the Puy de Dome itself, which must have been obtained from one of the lava-sheets of the Mont Dore group. To have carried these large blocks to their present resting-place must have cost no little labour and effort. The temple is supposed to have been surmounted by a colossal statue of the winged deity, visible from all parts of the surrounding country which was dedicated to his honour, and the foundations were only discovered a few years ago when excavating for the foundation of the observatory, which stands a little further on under the charge of Professor Janssen. On proceeding to the northern crest of the platform a wonderful view of the extinct craters and domes—about forty in number, and terminating in the Puy de Beauny, the most northerly member of the chain—is presented to the spectator. To the right is the Vale of Clermont and the rich valley of the Allier merging into the great plain of Central France. On the south side of the platform a no less remarkable spectacle meets the eye. The chain of Puys and broken craters stretches away southwards for a distance of nearly ten miles, while the horizon is bounded in that direction by the lofty masses of the Mont Dore, Cantal, and Le Puy ranges. Nor does it require much effort of the imagination to restore the character of the region when these now dormant volcanoes were in full activity, projecting showers of ashes and stones high into the air amidst flames of fire and vast clouds of incandescent gas and steam.
The material of which the Puy de Dome is formed consists of a light grey, nearly white, soft felsitic lava, containing crystals of mica, hornblende, and specular iron-ore. It is highly vesicular, and was probably extruded in a pasty condition from a throat piercing the granitic plateau and the overlying sheet of ancient lava of Mont Dore. It has been suggested that such highly felsitic and acid lavas as that of which the Puy de Dome, the Grand Sarcoui, and Cliersou are composed, may have had their origin in the granite itself, melted and rendered viscous by intense heat. Dr. E. Gordon Hull has suggested that the domite hills (owing to their low specific gravity) may have filled up pre-existing craters of ashes and scoriae without rupturing them, as in the case of the heavier basaltic lavas, and then still continuing to be extruded, may have entirely enveloped them in its mass; so that each domite hill encloses within its interior a crater formed of ashes, stones, and scoriae. In the case of the Puy de Dome there is some evidence that the domite matter rests on a basis of ashes and scoriae, which may be seen in a few places around the base of the cone. It is difficult without some such theory as this to explain how a viscous mass was able to raise mountains some 2000 or 3000 feet above the surrounding plain.[13]
(j.) Sketch of the Volcanic History of Central France.—It now only remains to give a brief resume of the volcanic history of this region as it may be gathered from the relations of the rocks and strata to the volcanic products, and of these latter to each other.
1st Stage.—It would appear that at the close of the Eocene period great terrestrial changes occurred. The bed of the sea was converted into dry land, the strata were flexured and denuded, and a depression was formed in the granitic floor of Central France, which, in the succeeding Miocene period, was converted into an extensive lake peopled by molluscs, fishes, reptiles, and pachyderms of the period.
2nd Stage.—Towards the close of the Miocene epoch volcanic eruptions commenced on a grand scale over the granitic platform in the districts now called Mont Dore, Cantal, and the Vivarais. Vast sheets of trachytic and basaltic lavas successively invaded the tracts surrounding the central orifices of eruption, now constituting the more ancient of the lava-sheets of the Auvergne region, and, invading the waters of the neighbouring lake, overspread the lacustrine deposits which were being accumulated therein. These volcanic eruptions probably continued throughout the Pliocene period, interrupted by occasional intervals of inactivity, and ultimately altogether ceased.
3rd Stage.—Towards the close of the Pliocene period terrestrial movements took place, owing to which the waters of the lake began to fall away, and the sheets of lava were subjected to great denudation. This process, probably accelerated by excessive rainfall during the succeeding Post-Pliocene and Pluvial periods, was continued until plains and extensive river-valleys were eroded out of the sheets of lava and their supporting granitic rocks and the adjoining lacustrine strata.
4th Stage.—A new outburst of volcanic forces marks this stage, during which the chain of the Puy de Dome was thrown up on the west, and that of the newer cones of the Vivarais on the south-east of the lacustrine tract. The waters of the lake were now completely drained away through the channel of the Allier, and denudation, extending down to the present day, began over the area now forming the Vale of Clermont and adjoining districts. The volcanic action ultimately spent its force; and somewhere about the time of the appearance of man, the mammoth, rhinoceros, stag, and reindeer on the scene, eruptions entirely ceased, and gradually the region assumed those conditions of repose by which it is now physically characterised.
[1] The literature referring to this region is very extensive. Guettard in 1775, afterwards Faujas, published descriptions of the rocks of the Vivarais and Velay; and Desmarest's geological map, published in 1779, is a work of great merit. The district was afterwards described by Daubeny, Lyell, Von Buch, and others; but by far the most complete work is that of Scrope, entitled Volcanoes of Central France, containing maps and numerous illustrations, published in 1826, and republished in a more extended form in 1858; to this I am largely indebted.
[2] A monument to Pascal, erected by the citizens, occupies the centre of the square in Clermont. It will be remembered that Pascal verified the conclusions arrived at by Torricelli regarding the pressure of the atmosphere, by carrying a Torricellian tube to the summit of the Puy de Dome, and recording how the mercury continually fell during the ascent, and rose as he descended. This experiment was made in 1645.
[3] In this visit to Auvergne in the summer of 1880, the author was accompanied by his son, Dr. E. Gordon Hull, and Sir Robert S. Ball. On reaching the station at the summit of the ridge it seemed as if the volcanic fires had again been lighted, for the whole sky was aglow with the rays of the western sun.
[4] On the other hand, certain beds of ash and other volcanic ejecta occur in the uppermost strata of lake deposits of Limagne, so that these may indicate the commencement of the period of eruption, as suggested further on.
[5] Only very closely; for Mr. Scrope considers that the crater-cones of the chain of the Haute Loire give evidence of a somewhat earlier epoch of activity than those of the Puy de Dome, as they have undergone a greater amount of subaerial erosion.
[6] The extent of this river erosion has been clearly brought out by Scrope, and is admirably illustrated by several of his panoramic views, such as that in Plate IX. of his work.
[7] Scrope, loc. cit., p. 147.
[8] Scrope, loc. cit., p. 144.
[9] Scrope gives a view of these remarkable basaltic cliffs in Plate XII. of his work, from which the above account is taken. At one spot near the village of Le Gua there is a break in the continuity of the sheet.
[10] See Scrope, loc. cit., p. 181; also Appendix, p. 228. While there is no prima facie reason for questioning the origin of the Demise skull, yet from what Lyell states in his Antiquity of Man, p. 196, it will be seen that he found it impossible to identify its position, or to determine beyond question that its interment was due to natural causes. But assuming this to be the case, he shows how the individual to whom it belonged might have been enveloped in volcanic tuff or mud showered down during the final eruption of the volcano of Demise. MM. Hebert and Lartet, on visiting the locality, also failed to find in situ any exact counterpart of the stone now in the museum of Le Puy.
[11] See Daubeny, Volcanoes, p. 31.
[12] That is to say, the surfaces of the lava-streams are not at all, or only slightly, decomposed into soil suitable for the growth of plants, except in rare instances.
[13] E. G. Hull, "On the Domite Mountains of Central France," Scien. Proc. Roy. Dublin Society, July 1881, p. 145. Dr. Hull determined the density of the domite of the Puy de Dome to be 2.5, while that of lava is about 3.0.
CHAPTER VII.
THE VOLCANIC DISTRICT OF THE RHINE VALLEY.
The region bordering the Rhine along both its banks above Bonn, and extending thence along the valley of the Moselle and into the Eifel, has been the theatre of active volcanic phenomena down into recent times, but at the present day the volcanoes are dormant or extinct.
(a.) Geological Structure.—The fundamental rocks of this region belong to the Silurian, Devonian, and Carboniferous systems, consisting of schists, grits, and limestones, with occasional horizontal beds of Miocene sandstone and shale with lignite, resting on the upturned edges of the older rocks. Scattered over the greater part of the district here referred to are a number of conical eminences, often with craters, the bottoms of which are usually sunk much below the present level of the country, and thus receiving the surface drainage, have been converted into little lakes called "maars," differing from ordinary lakes by their circular form and the absence of any apparent outlet for their waters.[1]
But before entering into details, it may be desirable to present the reader with a short outline of the physical history of the region (which has been ably done by Dr. Hibbert in his treatise, to which I have already referred), so as to enable him better to understand the succession of physical events in its volcanic history.
(b.) Physical History.—From the wide distribution of stratified deposits of sand and clay at high levels on both banks of the Rhine north of the Moselle, it would appear that an extensive fresh-water basin, which Dr. Hibbert calls "The Basin of Neuwied," occupied a considerable tract on both banks, in the centre of which the present city of Neuwied stands. This basin was bounded towards the south by the slopes of the Huendsruck and Taunus, which at the time here referred to formed a continuous chain of mountains. (Fig. 20.) To the south of this chain lay the Tertiary basin of Mayence, which was connected at an early period—that of the Miocene—with the waters of the ocean, as shown by the fact that the lower strata contain marine shells; these afterwards gave place to fresh-water conditions. The basin of Neuwied was bounded towards the north by a ridge of Devonian strata which extended across the present gorge of the Rhine between Andernach and Linz, and to the north of this barrier lay another more extensive fresh-water basin, that of Cologne. From this it will be seen that the Rhine, as we now find it, had then only an infantile existence; in fact, its waters to the south of the Huendsruck ridge drained away towards the south. But towards the commencement of the Pliocene period the barriers of the Huendsruck and Taunus, as also that of the Linz, were broken through, and the course of the waters was changed; and thus gradually, as the river deepened its bed, the waters were drained off from the great lakes.[2] This rupture of the barriers may have been due, in the first instance, to the terrestrial disturbances accompanying the volcanic eruptions of the Eifel and Siebengebirge, though the erosion of the gorges at Bingen and at Linz to their present depth and dimensions is of course due to prolonged river action. It was about the epoch we have now arrived at—viz., the close of the Miocene—that volcanic action burst forth in the region of the Lower Rhine. It is probable that this action commenced in the district of the Siebengebirge, and afterwards extended into that of the Moselle and the Eifel, the volcanoes of which bear evidence of recent date. Layers of trachytic tuff are interstratified with the deposits of sand, clay, and lignite of the formation known as that of the Brown Coal—of Miocene age—which underlies nearly the whole of the volcanic district on both sides of the Rhine near Bonn,[3] thus showing that volcanic action had already commenced in that part to some extent; but it does not appear from Dr. Hibbert's statement that any such fragments of eruptive rock are to be found in the strata which were deposited over the floor of the Neuwied basin.[4] It will be recollected that the epoch assigned for the earliest volcanic eruptions of Auvergne was that here inferred for those of the Lower Rhine—viz., the close of the Miocene stage—and from evidence subsequently to be adduced from other European districts, it will be found that there was a very widely spread outburst of volcanic action at this epoch.
(c.) The Range of the Siebengebirge.—This range of hills—formed of the older volcanic rocks of the Lower Rhine—rises along the right bank of this noble river opposite Bonn, where it leaves the narrow gorge which it traverses all the way from Bingen, and opens out on the broad plain of Northern Germany. The range consists of a succession of conical hills sometimes flat-topped—as in the case of Petersberg; and at the Drachenfels, near the centre of the range it presents to the river a bold front of precipitous cliffs of trachyte porphyry. The sketch (Fig. 21) here presented was taken by the author in 1857 from the old extinct volcano of Roderberg, and will convey, perhaps, a better idea of the character of this picturesque range than a description. The Siebengebirge, although appearing as an isolated group of hills, is in reality an offshoot from the range of the Westerwald, which is connected with another volcanic district of Central Germany known as the Vogelsgebirge. The highest point in the range is attained in the Lohrberg, which rises 1355 feet above the sea; the next, the Great Traenkeberg, 1330 feet; and the next, Great Oelberg, 1296 feet.
The range consists mainly of trachytic rocks—namely, trachyte-conglomerate, and solid trachyte, of which H. von Dechen makes two varieties—that of the Drachenfels, and that of the Wolkenburg. But associated with these highly-silicated varieties of lava—and generally, if not always, of later date—are basaltic rocks which cap the hills of Petersberg, Nonnenstrom, Gr. and Ll. Oelberg, Gr. Weilberg, and Ober Dollendorfer Hardt. The question whether there is a transition from the one variety of volcanic rock into the other, or whether each belongs to a distinct and separate epoch of eruption, does not seem to be very clearly determined. Mr. Leonard Horner states that it would be easy to form a suite of specimens showing a gradation from a white trachyte to a black basalt;[5] but we must recollect that when Mr. Horner wrote, the microscopic examination of rocks by means of thin sections was not known or practised, and an examination by this process might have proved that this apparent transition is unreal. According to H. von Dechen, there are sheets of basalt older than the greater mass of the brown coal formation, and others newer than the trachyte;[6] while dykes of basalt traversing the trachytic lavas are not uncommon.[7]
The trachyte-conglomerate—which seems to be associated with the upper beds of the brown coal strata—is traversed by dykes of trachyte of later date; and though it is difficult to trace the line between the two varieties of this rock on the ground, Dr. von Rath has recognised the general distinction between them, which consists in the greater abundance of hornblende and mica in the trachyte of the Wolkenburg than in that of the Drachenfels.
The trachyte of the Drachenfels was probably the neck of a volcano which burst through the fundamental schists of the Devonian period. It is remarkable for the large crystals of sanidine (glassy felspar) which it contains, and has a rude columnar structure.
The absence of any clearly-defined craters of eruption, such as are to be found in the Eifel district and on the left bank of the Rhine—as, for example, in the case of the Roderberg—may be regarded as sufficient evidence that this range is of comparatively high antiquity. It seems to bear the same relation to the more modern craters of the Eifel and Moselle that the Mont Dore and Cantal volcanoes do to those of the Puy de Dome. In both cases, denudation carried on throughout perhaps the Pliocene and Post-Pliocene periods down to the present day has had the effect of demolishing the original craters; so that what we now observe as forming these ranges are the consolidated columns of original molten matter which filled the throats of the old volcanoes, or the sheets of lava which were extruded from them, but are now probably much reduced in size and extent.
Having thus given a description of the older volcanic range on the right bank of the Rhine, we shall cross the river in search of some details regarding the more recent group of Rhenish volcanoes, commencing with that of the Roderberg, a remarkable hill a few miles south of Bonn, from which the view of the Seven Mountains was taken.
(d.) The Roderberg.—This crater, which was visited by the author in 1857, is about one-fourth of a mile in diameter, and is in the form of a cup with gentle slopes on all sides. In its centre is a farmhouse surrounded by corn-fields. The general section through the hill is represented above (Fig. 22).
The flanks on the north side are composed of loose quartzose gravel (gerolle), a remnant of the deposits formed around the margin of the "Basin of Neuwied" described above (p. 114). This gravel is found covering the terraces of the brown coal formation several hundred feet above the Rhine. Besides quartz-pebbles, the deposit contains others of slate, grit, and volcanic rock. On reaching the edge of the crater we find the gravel covered over by black and purple scoria or slag the superposition of the scoria on the gravel being visible in several places, showing that the former is of more recent origin. On the opposite side of the crater, overlooking the Rhine, we find the cliff of Rolandsec composed of hard vesicular lava, rudely prismatic, and extending from the summit of the hill to its base, about 250 feet below. This is the most northerly of the group of the Eifel volcanoes.
(e.) District of the Rivers Bruehl and Nette.—The volcanic region of the Lower Eifel, drained by these two principal streams which flow into the Rhine, will amply repay exploration by the student of volcanic phenomena, owing to the variety of forms and conditions under which these present themselves within a small space. The fundamental rock is slate or grit of Devonian age, furrowed by numerous valleys, often richly wooded, and diversified by conical hills of trachyte; or by crater-cones, formed of basalt or ashes, sometimes ruptured on one side, and occasionally sending forth streams of lava, as in the cases of the Perlinkopf, the Bausenberg, and the Engelerkopf. The district attains its greatest altitude in the High Acht (Der Hohe Acht), an isolated cone of slate capped by basalt with olivine, and reaching a level of 2434 Rhenish feet.[8]
(f.) The Laacher See.—It would be impossible in a work of this kind to attempt a detailed description of the Eifel volcanoes, often of a very complex character and obscure physical history, as in the case of the basin of Rieden, where tufaceous deposits, trachytic and basaltic lavas and crater-cones, are confusedly intermingled, so that I shall confine my remarks to the deservedly famous district of the Laacher See, which I had an opportunity of personally visiting some years since.[9]
The Laacher See is a lake of an oval form, over an English mile in the shorter diameter, and surrounded by high banks of volcanic sand, gravel, and scoriae, except on the east side, where cliffs of clay-slate, in a nearly vertical position, and striking nearly E.W., may be observed. Its depth from the surface of the water is 214 feet.[10] The ashes of the encircling banks contain blocks of slate and lava which have been torn from the sides of the orifice or neck of the volcano and blown into the air; and there can be no doubt that the ashes and volcanic gravel is the result of very recent eruptions.
At the east side of the lake we find a stream of scoriaceous lava of a purple or reddish colour, highly vesicular, and containing crystals of mica; but the most important lava-stream is that which has taken a southerly direction from the crater of the Laacher See towards Nieder Mendig and Mayen, for a distance of about six miles. This great stream is covered throughout half its distance by beds of volcanic ash and lapilli, but emerges into the air at a distance of about two miles from the edge of the crater (see Fig. 23), and was formerly extensively quarried in underground caverns for millstones. Here the rock is a vesicular trachyte, of a greyish colour, solidified in vertical columns of hexagonal form, about four feet in diameter, and traversed by transverse joint planes. These quarries have been worked from the time of the Roman occupation of the country; and, before the introduction of iron or steel rollers for grinding corn, millstones were exported to all parts of Europe and the British Isles from this quarry.[11]
The district around the Laacher See is covered by laminated ejecta of the old volcano, probably of subaerial origin, through which bosses of the fundamental slate peer up at intervals, while the surface is diversified by several truncated cones.
(g.) Trass of the Bruehl Valley.—The Bruehl Valley, which unites with that of the Rhine at the town of that name, and drains the northern side of the volcanic region, has always been regarded with much interest by travellers for the presence of a deposit of "trass" with which it is partially filled. The origin of this valley was pre-volcanic, as it is hewn out of the slaty rocks of the district. But at a later period it became filled with volcanic mud (tuffstein), out of which the stream has made for itself a fresh channel. The source of this mud is considered by Hibbert[12] to have been the old volcano of the Lummerfeld, which, after becoming dormant, was filled with water, and thus became a lake. At a subsequent period, however, a fresh eruption took place near the edge of the lake, resulting in the remarkable ruptured crater known as the Kunkskoepfe, which rises about four miles to the north of the Laacher See. The eruptions of this volcano appear to have displaced the mud of the Lummerfeld, causing it to flow down into the deep gorge of the Bruehl, which it completely filled, as stated above.
On walking down the valley one may sometimes see the junction of the tuff with the slate-rock which enfolds it. The tuff consists of white felspathic mud, with fragments of slate and lava, reaching a depth in some places of 150 feet. After it has been quarried it is ground in mills, and used for cement stone under the name of trass. It is said to resemble the volcanic mud by which Herculaneum was overwhelmed during the first eruption of Vesuvius, and which was produced by the torrents of rain mixing with the ashes as they were blown out of the volcano.
Sufficient has probably now been written regarding the dormant, or recently extinct, volcanic districts of Europe to give the reader a clear idea regarding their nature and physical structure. Other districts might be added, such as those of Central Germany, Hungary, Transylvania, and Styria; but to do so would be to exceed the proposed limits of this work; and we may therefore pass on to the consideration of the volcanic region of Syria and Palestine, which adjoins the Mediterranean district we have considered in a former page.
[1] Daubeny, loc. cit., p. 71. The geology of this region has had many investigators, of whom the chief are Steininger, Erloschenen Vulkane in der Eifel (1820); Hibbert, Extinct Volcanoes of the Basin of Neuwied, 1832; Noeggerath, Das Gebirge im Rheinland, etc., 4 vols.; Horner, "On the Geology of Bonn," Transactions of the Geological Society, London, vol. iv.
[2] The views of Dr. Hibbert are not inconsistent with those of the late Sir A. Ramsay, on "The Physical History of the Valley of the Rhine," Quart. Jour. Geol. Soc., vol. xxx. (1874).
[3] Von Dechen, Geog. Beschreib. des Siebengebirges am Rhein (Bonn, 1852).
[4] Hibbert, loc. cit., p. 18.
[5] Horner, "Geology of Environs of Bonn," Transactions of the Geological Society, vol. iv., new series.
[6] H. von Dechen, Geog. Fuehrer in das Siebengebirge am Rhein (Bonn, 1861).
[7] Ibid., p. 191.
[8] Dr. Hibbert's work is illustrated by very carefully drawn and accurate views of some of the old cones and craters of this district, accompanied by detailed descriptions.
[9] The lava of Schorenberg, near Rieden, is interesting from the fact, stated by Zirkel, that it contains leucite, nosean, and nephelin.—Die Mikros. Beschaf. d. Miner. u. Gesteine, p. 154 (1873).
[10] Hibbert, loc. cit., p. 23.
[11] At the time of the author's visit the underground caverns, which are deliciously cool in summer, were used for the storage of the celebrated beer brewed by the Moravians of Neuwied.
[12] Hibbert, loc. cit., p. 129.
PART III.
DORMANT OR MORIBUND VOLCANOES OF OTHER PARTS OF THE WORLD.
CHAPTER I.
DORMANT VOLCANOES OF PALESTINE AND ARABIA.
(a.) Region east of the Jordan and Dead Sea.—The remarkable line of country lying along the valley of the Jordan, and extending into the great Arabian Desert, has been the seat of extensive volcanic action in prehistoric times. The specially volcanic region seems to be bounded by the depression of the Jordan, the Dead Sea, and the Arabah as far south as the Gulf of Akabah; for, although Safed, lying at the head of the Sea of Galilee on the west of the Jordan valley, is built on a basaltic sheet, and is in proximity to an extinct crater, its position is exceptional to the general arrangement of the volcanic products which may be traced at intervals from the base of Hermon into Central Arabia, a distance of about 1000 miles.[1]
The tract referred to has been described at intervals by several authors, of whom G. Schumacher,[2] L. Lartet,[3] Canon Tristram,[4] M. Niebuhr,[5] and C. M. Doughty[6] may be specially mentioned in this connection.
The most extensive manifestations of volcanic energy throughout this long tract of country appear to be concentrated at its extreme limits. At the northern extremity the generally wild and rugged tract of the Jaulan and Hauran, called in the Bible Trachonitis, and still farther to the eastward the plateau of the Lejah, with its row of volcanic peaks sloping down to the vast level of Bashan, is covered throughout nearly its whole extent by great sheets of basaltic lava, above which rise at intervals, and in very perfect form, the old crater-cones of eruption. A similar group of extinct craters with lava-flows has been described and figured by a recent traveller, Mr. C. M. Doughty, in parts of Central Arabia. The general resemblance of these Arabian volcanoes to those of the Jaulan is unquestionable; and as they are connected with each other by sheets of basaltic lava at intervals throughout the land of Moab, it is tolerably certain that the volcanoes lying at either end of the chain belong to one system, and were contemporaneously in a state of activity.
(b.) Geological Conditions.—Before entering any further into particulars regarding the volcanic phenomena of this region, it may be desirable to give a short account of its geological structure, and the physical conditions amongst which the igneous eruptions were developed.
Down to the close of the Eocene period the whole region now under consideration was occupied by the waters of the ocean. The mountains of Sinai were islands in this ocean, which had a very wide range over parts of Asia, Africa, and Europe. But at the commencement of the succeeding Miocene stage the crust was subjected to lateral contraction, owing to which the ocean bed was upraised. The strata were flexured, folded, and often faulted and fissured along lines ranging north and south, the great fault of the Jordan-Arabah valley being the most important. At this period the mountains of the Lebanon, the table-lands of Judaea and of Arabia, formed of limestone, previously constituting the bed of the ocean during the Eocene and Cretaceous periods, were converted into land surfaces. Along with this upheaval of the sea-bed there was extensive denudation and erosion of the strata, so that valleys were eroded over the subaerial tracts, and the Jordan-Arabah valley received its primary form and outline.
Up to this time there does not appear to have been any outbreak of volcanic forces; but with the succeeding Pliocene period these came into play, and eruptions of basaltic lava took place along rents and fissures in the strata, while craters and cones of slag, scoriae, and ashes were thrown up over the region lying to the east of the Sea of Galilee and the sources of the Jordan on the one hand, and the central parts of the great Arabian Desert on the other. These eruptions, probably intermittent, continued into the succeeding Glacial or Pluvial period, and only died out about the time that the earliest inhabitants appeared on the scene.
(c.) The Jaulan and Hauran.—This tract is bounded by the valley of the Jordan and the Sea of Galilee on the west, from which it rises by steep and rocky declivities into an elevated table-land, drained by the Yarmuk (Hieromax), the Nahr er Rukkad, and other streams, which flow westwards into the Jordan along deep channels in which the basaltic sheets and underlying limestone strata are well laid open to view. |
|