p-books.com
Volcanic Islands
by Charles Darwin
Previous Part     1  2  3  4     Next Part
Home - Random Browse

BASALTIC SERIES.

The margin of the island is formed by a rude circle of great, black, stratified, ramparts of basalt, dipping seaward, and worn into cliffs, which are often nearly perpendicular, and vary in height from a few hundred feet to two thousand. This circle, or rather horse-shoe shaped ring, is open to the south, and is breached by several other wide spaces. Its rim or summit generally projects little above the level of the adjoining inland country; and the more recent feldspathic lavas, sloping down from the central heights, generally abut against and overlap its inner margin; on the north-western side of the island, however, they appear (judging from a distance) to have flowed over and concealed portions of it. In some parts, where the basaltic ring has been breached, and the black ramparts stand detached, the feldspathic lavas have passed between them, and now overhang the sea-coast in lofty cliffs. The basaltic rocks are of a black colour and thinly stratified; they are generally highly vesicular, but occasionally compact; some of them contain numerous crystals of glassy feldspar and octahedrons of titaniferous iron; others abound with crystals of augite and grains of olivine. The vesicles are frequently lined with minute crystals (of chabasie?) and even become amygdaloidal with them. The streams are separated from each other by cindery matter, or by a bright red, friable, saliferous tuff, which is marked by successive lines like those of aqueous deposition; and sometimes it has an obscure, concretionary structure. The rocks of this basaltic series occur nowhere except near the coast. In most volcanic districts the trachytic lavas are of anterior origin to the basaltic; but here we see, that a great pile of rock, closely related in composition to the trachytic family, has been erupted subsequently to the basaltic strata: the number, however, of dikes, abounding with large crystals of augite, with which the feldspathic lavas have been injected, shows perhaps some tendency to a return to the more usual order of superposition.

BASAL SUBMARINE LAVAS.

The lavas of this basal series lie immediately beneath both the basaltic and feldspathic rocks. According to Mr. Seale, they may be seen at intervals on the sea-beach round the entire island. ("Geognosy of the Island of St. Helena." Mr. Seale has constructed a gigantic model of St. Helena, well worth visiting, which is now deposited at Addiscombe College, in Surrey.) In the sections which I examined, their nature varied much; some of the strata abound with crystals of augite; others are of a brown colour, either laminated or in a rubbly condition; and many parts are highly amygdaloidal with calcareous matter. The successive sheets are either closely united together, or are separated from each other by beds of scoriaceous rock and of laminated tuff, frequently containing well-rounded fragments. The interstices of these beds are filled with gypsum and salt; the gypsum also sometimes occurring in thin layers. From the large quantity of these two substances, from the presence of rounded pebbles in the tuffs, and from the abundant amygdaloids, I cannot doubt that these basal volcanic strata flowed beneath the sea. This remark ought perhaps to be extended to a part of the superincumbent basaltic rocks; but on this point, I was not able to obtain clear evidence. The strata of the basal series, whenever I examined them, were intersected by an extraordinary number of dikes.

FLAGSTAFF HILL AND THE BARN.

(FIGURE 8. FLAGSTAFF HILL AND THE BARN. (Section West (left) to East (right)) Flagstaff Hill, 2,272 feet high to The Barn, 2,015 feet high.

The double lines represent the basaltic strata; the single, the basal submarine strata; the dotted, the upper feldspathic strata; the dikes are shaded transversely.)

I will now describe some of the more remarkable sections, and will commence with these two hills, which form the principal external feature on the north-eastern side of the island. The square, angular outline, and black colour of the Barn, at once show that it belongs to the basaltic series; whilst the smooth, conical figure, and the varied bright tints of Flagstaff Hill, render it equally clear, that it is composed of the softened, feldspathic rocks. These two lofty hills are connected (as is shown in Figure 8) by a sharp ridge, which is composed of the rubbly lavas of the basal series. The strata of this ridge dip westward, the inclination becoming less and less towards the Flagstaff; and the upper feldspathic strata of this hill can be seen, though with some difficulty, to dip conformably to the W.S.W. Close to the Barn, the strata of the ridge are nearly vertical, but are much obscured by innumerable dikes; under this hill, they probably change from being vertical into being inclined into an opposite direction; for the upper or basaltic strata, which are about eight hundred or one thousand feet in thickness, are inclined north-eastward, at an angle between thirty and forty degrees.

This ridge, and likewise the Barn and Flagstaff Hills, are interlaced by dikes, many of which preserve a remarkable parallelism in a N.N.W. and S.S.E. direction. The dikes chiefly consist of a rock, porphyritic with large crystals of augite; others are formed of a fine-grained and brown- coloured trap. Most of these dikes are coated by a glossy layer, from one to two-tenths of an inch in thickness, which, unlike true pitchstone, fuses into a black enamel; this layer is evidently analogous to the glossy superficial coating of many lava streams. (This circumstance has been observed (Lyell "Principles of Geology" volume 4 chapter 10 page 9) in the dikes of the Atrio del Cavallo, but apparently it is not of very common occurrence. Sir G. Mackenzie, however, states (page 372 "Travels in Iceland") that all the veins in Iceland have a "black vitreous coating on their sides." Captain Carmichael, speaking of the dikes in Tristan d'Acunha, a volcanic island in the Southern Atlantic, says ("Linnaean Transactions" volume 12 page 485) that their sides, "where they come in contact with the rocks, are invariably in a semi-vitrified state.") The dikes can often be followed for great lengths both horizontally and vertically, and they seem to preserve a nearly uniform thickness ("Geognosy of the Island of St. Helena" plate 5.): Mr. Seale states, that one near the Barn, in a height of 1,260 feet, decreases in width only four inches,—from nine feet at the bottom, to eight feet and eight inches at the top. On the ridge, the dikes appear to have been guided in their course, to a considerable degree, by the alternating soft and hard strata: they are often firmly united to the harder strata, and they preserve their parallelism for such great lengths, that in very many instances it was impossible to conjecture, which of the beds were dikes, and which streams of lava. The dikes, though so numerous on this ridge, are even more numerous in the valleys a little south of it, and to a degree I never saw equalled anywhere else: in these valleys they extend in less regular lines, covering the ground with a network, like a spider's web, and with some parts of the surface even appearing to consist wholly of dikes, interlaced by other dikes.

From the complexity produced by the dikes, from the high inclination and anticlinal dip of the strata of the basal series, which are overlaid, at the opposite ends of the short ridge, by two great masses of different ages and of different composition, I am not surprised that this singular section has been misunderstood. It has even been supposed to form part of a crater; but so far is this from having been the case, that the summit of Flagstaff Hill once formed the lower extremity of a sheet of lava and ashes, which were erupted from the central, crateriform ridge. Judging from the slope of the contemporaneous streams in an adjoining and undisturbed part of the island, the strata of the Flagstaff Hill must have been upturned at least twelve hundred feet, and probably much more, for the great truncated dikes on its summit show that it has been largely denuded. The summit of this hill now nearly equals in height the crateriform ridge; and before having been denuded, it was probably higher than this ridge, from which it is separated by a broad and much lower tract of country; we here, therefore, see that the lower extremities of a set of lava-streams have been tilted up to as great a height as, or perhaps greater height than, the crater, down the flanks of which they originally flowed. I believe that dislocations on so grand a scale are extremely rare in volcanic districts. (M. Constant Prevost "Mem. de la Soc. Geolog." tome 2 observes that "les produits volcaniques n'ont que localement et rarement meme derange le sol, a travers lequel ils se sont fait jour.") The formation of such numbers of dikes in this part of the island shows that the surface must here have been stretched to a quite extraordinary degree: this stretching, on the ridge between Flagstaff and Barn Hills, probably took place subsequently (though perhaps immediately so) to the strata being tilted; for had the strata at that time extended horizontally, they would in all probability have been fissured and injected transversely, instead of in the planes of their stratification. Although the space between the Barn and Flagstaff Hill presents a distinct anticlinal line extending north and south, and though most of the dikes range with much regularity in the same line, nevertheless, at only a mile due south of the ridge the strata lie undisturbed. Hence the disturbing force seems to have acted under a point, rather than along a line. The manner in which it has acted, is probably explained by the structure of Little Stony-top, a mountain 2,000 feet high, situated a few miles southward of the Barn; we there see, even from a distance, a dark-coloured, sharp, wedge of compact columnar rock, with the bright-coloured feldspathic strata, sloping away on each side from its uncovered apex. This wedge, from which it derives its name of Stony-top, consists of a body of rock, which has been injected whilst liquified into the overlying strata; and if we may suppose that a similar body of rock lies injected, beneath the ridge connecting the Barn and Flagstaff, the structure there exhibited would be explained.

TURK'S CAP AND PROSPEROUS BAYS.

(FIGURE 9. PROSPEROUS HILL AND THE BARN. (Section S.S.E. (left) to N.N.W. (right) Prosperous Hill through Hold-fast-Tom and Flagstaff Hill to The Barn.

The double lines represent the basaltic strata; the single, the basal submarine strata; the dotted, the upper feldspathic strata.)

Prosperous Hill is a great, black, precipitous mountain, situated two miles and a half south of the Barn, and composed, like it, of basaltic strata. These rest, in one part, on the brown-coloured, porphyritic beds of the basal series, and in another part, on a fissured mass of highly scoriaceous and amygdaloidal rock, which seems to have formed a small point of eruption beneath the sea, contemporaneously with the basal series. Prosperous Hill, like the Barn, is traversed by many dikes, of which the greater number range north and south, and its strata dip, at an angle of about 20 degrees, rather obliquely from the island towards the sea. The space between Prosperous Hill and the Barn, as represented in Figure 9, consists of lofty cliffs, composed of the lavas of the upper or feldspathic series, which rest, though unconformably, on the basal submarine strata, as we have seen that they do at Flagstaff Hill. Differently, however, from in that hill, these upper strata are nearly horizontal, gently rising towards the interior of the island; and they are composed of greenish-black, or more commonly, pale brown, compact lavas, instead of softened and highly coloured matter. These brown-coloured, compact lavas, consist almost entirely of small glimmering scales, or of minute acicular crystals, of feldspar, placed close by the side of each other, and abounding with minute black specks, apparently of hornblende. The basaltic strata of Prosperous Hill project only a little above the level of the gently-sloping, feldspathic streams, which wind round and abut against their upturned edges. The inclination of the basaltic strata seems to be too great to have been caused by their having flowed down a slope, and they must have been tilted into their present position before the eruption of the feldspathic streams.

BASALTIC RING.

Proceeding round the Island, the lavas of the upper series, southward of Prosperous Hill, overhang the sea in lofty precipices. Further on, the headland, called Great Stony-top, is composed, as I believe, of basalt; as is Long Range Point, on the inland side of which the coloured beds abut. On the southern side of the island, we see the basaltic strata of the South Barn, dipping obliquely seaward at a considerable angle; this headland, also, stands a little above the level of the more modern, feldspathic lavas. Further on, a large space of coast, on each side of Sandy Bay, has been much denuded, and there seems to be left only the basal wreck of the great, central crater. The basaltic strata reappear, with their seaward dip, at the foot of the hill, called Man-and-Horse; and thence they are continued along the whole north-western coast to Sugar-Loaf Hill, situated near to the Flagstaff; and they everywhere have the same seaward inclination, and rest, in some parts at least, on the lavas of the basal series. We thus see that the circumference of the island is formed by a much-broken ring, or rather, a horse-shoe, of basalt, open to the south, and interrupted on the eastern side by many wide breaches. The breadth of this marginal fringe on the north-western side, where alone it is at all perfect, appears to vary from a mile to a mile and a half. The basaltic strata, as well as those of the subjacent basal series, dip, with a moderate inclination, where they have not been subsequently disturbed, towards the sea. The more broken state of the basaltic ring round the eastern half, compared with the western half of the island, is evidently due to the much greater denuding power of the waves on the eastern or windward side, as is shown by the greater height of the cliffs on that side, than to leeward. Whether the margin of basalt was breached, before or after the eruption of the lavas of the upper series, is doubtful; but as separate portions of the basaltic ring appear to have been tilted before that event, and from other reasons, it is more probable, that some at least of the breaches were first formed. Reconstructing in imagination, as far as is possible, the ring of basalt, the internal space or hollow, which has since been filled up with the matter erupted from the great central crater, appears to have been of an oval figure, eight or nine miles in length by about four miles in breadth, and with its axis directed in a N.E. and S W. line, coincident with the present longest axis of the island.

THE CENTRAL CURVED RIDGE.

This ridge consists, as before remarked, of grey feldspathic lavas, and of red, brecciated, argillaceous tuffs, like the beds of the upper coloured series. The grey lavas contain numerous, minute, black, easily fusible specks; and but very few large crystals of feldspar. They are generally much softened; with the exception of this character, and of being in many parts highly cellular, they are quite similar to those great sheets of lava which overhang the coast at Prosperous Bay. Considerable intervals of time appear to have elapsed, judging from the marks of denudation, between the formation of the successive beds, of which this ridge is composed. On the steep northern slope, I observed in several sections a much worn undulating surface of red tuff, covered by grey, decomposed, feldspathic lavas, with only a thin earthy layer interposed between them. In an adjoining part, I noticed a trap-dike, four feet wide, cut off and covered up by the feldspathic lava, as is represented in Figure 9. The ridge ends on the eastern side in a hook, which is not represented clearly enough in any map which I have seen; towards the western end, it gradually slopes down and divides into several subordinate ridges. The best defined portion between Diana's Peak and Nest Lodge, which supports the highest pinnacles in the island varying from 2,000 to 2,700 feet, is rather less than three miles long in a straight line. Throughout this space the ridge has a uniform appearance and structure; its curvature resembles that of the coast-line of a great bay, being made up of many smaller curves, all open to the south. The northern and outer side is supported by narrow ridges or buttresses, which slope down to the adjoining country. The inside is much steeper, and is almost precipitous; it is formed of the basset edges of the strata, which gently decline outwards. Along some parts of the inner side, a little way beneath the summit, a flat ledge extends, which imitates in outline the smaller curvatures of the crest. Ledges of this kind occur not unfrequently within volcanic craters, and their formation seems to be due to the sinking down of a level sheet of hardened lava, the edges of which remain (like the ice round a pool, from which the water has been drained) adhering to the sides. (A most remarkable instance of this structure is described in Ellis "Polynesian Researches" second edition where an admirable drawing is given of the successive ledges or terraces, on the borders of the immense crater at Hawaii, in the Sandwich Islands.)

(FIGURE 10. DIKE. (Section showing layers 1, 2 and 3 from top to bottom.)

1. Grey feldspathic lava.

2. A layer, one inch in thickness, of a reddish earthy matter.

3. Brecciated, red, argillaceous tuff.)

In some parts, the ridge is surmounted by a wall or parapet, perpendicular on both sides. Near Diana's Peak this wall is extremely narrow. At the Galapagos Archipelago I observed parapets, having a quite similar structure and appearance, surmounting several of the craters; one, which I more particularly examined, was composed of glossy, red scoriae firmly cemented together; being externally perpendicular, and extending round nearly the whole circumference of the crater, it rendered it almost inaccessible. The Peak of Teneriffe and Cotopaxi, according to Humboldt, are similarly constructed; he states that "at their summits a circular wall surrounds the crater, which wall, at a distance, has the appearance of a small cylinder placed on a truncated cone. ("Personal Narrative" volume 1 page 171.) On Cotopaxi this peculiar structure is visible to the naked eye at more than two thousand toises' distance; and no person has ever reached its crater. (Humboldt "Picturesque Atlas" folio plate 10.) On the Peak of Teneriffe, the parapet is so high, that it would be impossible to reach the caldera, if on the eastern side there did not exist a breach." The origin of these circular parapets is probably due to the heat or vapours from the crater, penetrating and hardening the sides to a nearly equal depth, and afterwards to the mountain being slowly acted on by the weather, which would leave the hardened part, projecting in the form of a cylinder or circular parapet.

From the points of structure in the central ridge, now enumerated,—namely, from the convergence towards it of the beds of the upper series,—from the lavas there becoming highly cellular,—from the flat ledge, extending along its inner and precipitous side, like that within some still active craters,—from the parapet-like wall on its summit,—and lastly, from its peculiar curvature, unlike that of any common line of elevation, I cannot doubt that this curved ridge forms the last remnant of a great crater. In endeavouring, however, to trace its former outline, one is soon baffled; its western extremity gradually slopes down, and, branching into other ridges, extends to the sea-coast; the eastern end is more curved, but it is only a little better defined. Some appearances lead me to suppose that the southern wall of the crater joined the present ridge near Nest Lodge; in this case the crater must have been nearly three miles long, and about a mile and a half in breadth. Had the denudation of the ridge and the decomposition of its constituent rocks proceeded a few steps further, and had this ridge, like several other parts of the island, been broken up by great dikes and masses of injected matter, we should in vain have endeavoured to discover its true nature. Even now we have seen that at Flagstaff Hill the lower extremity and most distant portion of one sheet of the erupted matter has been upheaved to as great a height as the crater down which it flowed, and probably even to a greater height. It is interesting thus to trace the steps by which the structure of a volcanic district becomes obscured, and finally obliterated: so near to this last stage is St. Helena, that I believe no one has hitherto suspected that the central ridge or axis of the island is the last wreck of the crater, whence the most modern volcanic streams were poured forth.

The great hollow space or valley southward of the central curved ridge, across which the half of the crater must once have extended, is formed of bare, water-worn hillocks and ridges of red, yellow, and brown rocks, mingled together in chaos-like confusion, interlaced by dikes, and without any regular stratification. The chief part consists of red decomposing scoriae, associated with various kinds of tuff and yellow argillaceous beds, full of broken crystals, those of augite being particularly large. Here and there masses of highly cellular and amygdaloidal lavas protrude. From one of the ridges in the midst of the valley, a conical precipitous hill, called Lot, boldly stands up, and forms a most singular and conspicuous object. It is composed of phonolite, divided in one part into great curved laminae, in another, into angular concretionary balls, and in a third part into outwardly radiating columns. At its base the strata of lava, tuff, and scoriae, dip away on all sides (Abich in his "Views of Vesuvius" plate 6 has shown the manner in which beds, under nearly similar circumstances, are tilted up. The upper beds are more turned up than the lower; and he accounts for this, by showing that the lava insinuates itself horizontally between the lower beds.); the uncovered portion is 197 feet in height (This height is given by Mr. Seale in his Geognosy of the island. The height of the summit above the level of the sea is said to be 1,444 feet.), and its horizontal section gives an oval figure. The phonolite is of a greenish-grey colour, and is full of minute acicular crystals of feldspar; in most parts it has a conchoidal fracture, and is sonorous, yet it is crenulated with minute air-cavities. In a S.W. direction from Lot, there are some other remarkable columnar pinnacles, but of a less regular shape, namely, Lot's Wife, and the Asses' Ears, composed of allied kinds of rock. From their flattened shape, and their relative position to each other, they are evidently connected on the same line of fissure. It is, moreover, remarkable that this same N.E. and S.W. line, joining Lot and Lot's Wife, if prolonged would intersect Flagstaff Hill, which, as before stated, is crossed by numerous dikes running in this direction, and which has a disturbed structure, rendering it probable that a great body of once fluid rock lies injected beneath it.

In this same great valley there are several other conical masses of injected rock (one, I observed, was composed of compact greenstone), some of which are not connected, as far as is apparent, with any line of dike; whilst others are obviously thus connected. Of these dikes, three or four great lines stretch across the valley in a N.E. and S.W. direction, parallel to that one connecting the Asses' Ears, Lot's Wife, and probably Lot. The number of these masses of injected rock is a remarkable feature in the geology of St. Helena. Besides those just mentioned, and the hypothetical one beneath Flagstaff Hill, there is Little Stony-top and others, as I have reason to believe, at the Man-and-Horse, and at High Hill. Most of these masses, if not all of them, have been injected subsequently to the last volcanic eruptions from the central crater. The formation of conical bosses of rock on lines of fissure, the walls of which are in most cases parallel, may probably be attributed to inequalities in the tension, causing small transverse fissures, and at these points of intersection the edges of the strata would naturally yield, and be easily turned upwards. Finally, I may remark, that hills of phonolite everywhere are apt to assume singular and even grotesque shapes, like that of Lot (D'Aubuisson in his "Traite de Geognosie" tome 2 page 540 particularly remarks that this is the case.): the peak at Fernando Noronha offers an instance; at St. Jago, however, the cones of phonolite, though tapering, have a regular form. Supposing, as seems probable, that all such hillocks or obelisks have originally been injected, whilst liquified, into a mould formed by yielding strata, as certainly has been the case with Lot, how are we to account for the frequent abruptness and singularity of their outlines, compared with similarly injected masses of greenstone and basalt? Can it be due to a less perfect degree of fluidity, which is generally supposed to be characteristic of the allied trachytic lavas?

SUPERFICIAL DEPOSITS.

Soft calcareous sandstone occurs in extensive, though thin, superficial beds, both on the northern and southern shores of the island. It consists of very minute, equal-sized, rounded particles of shells, and other organic bodies, which partially retain their yellow, brown, and pink colours, and occasionally, though very rarely, present an obscure trace of their original external forms. I in vain endeavoured to find a single unrolled fragment of a shell. The colour of the particles is the most obvious character by which their origin can be recognised, the tints being affected (and an odour produced) by a moderate heat, in the same manner as in fresh shells. The particles are cemented together, and are mingled with some earthy matter: the purest masses, according to Beatson, contain 70 per cent of carbonate of lime. The beds, varying in thickness from two or three feet to fifteen feet, coat the surface of the ground; they generally lie on that side of the valley which is protected from the wind, and they occur at the height of several hundred feet above the level of the sea. Their position is the same which sand, if now drifted by the trade-wind, would occupy; and no doubt they thus originated, which explains the equal size and minuteness of the particles, and likewise the entire absence of whole shells, or even of moderately-sized fragments. It is remarkable that at the present day there are no shelly beaches on any part of the coast, whence calcareous dust could be drifted and winnowed; we must, therefore, look back to a former period when before the land was worn into the present great precipices, a shelving coast, like that of Ascension, was favourable to the accumulation of shelly detritus. Some of the beds of this limestone are between six hundred and seven hundred feet above the sea; but part of this height may possibly be due to an elevation of the land, subsequent to the accumulation of the calcareous sand.

The percolation of rain-water has consolidated parts of these beds into a solid rock, and has formed masses of dark brown, stalagmitic limestone. At the Sugar-Loaf quarry, fragments of rock on the adjoining slopes have been thickly coated by successive fine layers of calcareous matter. (In the earthy detritus on several parts of this hill, irregular masses of very impure, crystallised sulphate of lime occur. As this substance is now being abundantly deposited by the surf at Ascension, it is possible that these masses may thus have originated; but if so, it must have been at a period when the land stood at a much lower level. This earthy selenite is now found at a height of between six hundred and seven hundred feet.) It is singular, that many of these pebbles have their entire surfaces coated, without any point of contact having been left uncovered; hence, these pebbles must have been lifted up by the slow deposition between them of the successive films of carbonate of lime. Masses of white, finely oolitic rock are attached to the outside of some of these coated pebbles. Von Buch has described a compact limestone at Lanzarote, which seems perfectly to resemble the stalagmitic deposition just mentioned: it coats pebbles, and in parts is finely oolitic: it forms a far-extended layer, from one inch to two or three feet in thickness, and it occurs at the height of 800 feet above the sea, but only on that side of the island exposed to the violent north-western winds. Von Buch remarks, that it is not found in hollows, but only on the unbroken and inclined surfaces of the mountain. ("Description des Isles Canaries" page 293.) He believes, that it has been deposited by the spray which is borne over the whole island by these violent winds. It appears, however, to me much more probable that it has been formed, as at St. Helena, by the percolation of water through finely comminuted shells: for when sand is blown on a much-exposed coast, it always tends to accumulate on broad, even surfaces, which offer a uniform resistance to the winds. At the neighbouring island, moreover, of Feurteventura, there is an earthy limestone, which, according to Von Buch, is quite similar to specimens which he has seen from St. Helena, and which he believes to have been formed by the drifting of shelly detritus. (Idem pages 314 and 374.)

The upper beds of the limestone, at the above-mentioned quarry on the Sugar-Loaf Hill, are softer, finer-grained and less pure, than the lower beds. They abound with fragments of land-shells, and with some perfect ones; they contain, also, the bones of birds, and the large eggs, apparently of water-fowl. (Colonel Wilkes, in a catalogue presented with some specimens to the Geological Society, states that as many as ten eggs were found by one person. Dr. Buckland has remarked ("Geolog. Trans." volume 5 page 474) on these eggs.) It is probable that these upper beds remained long in an unconsolidated form, during which time, these terrestrial productions were embedded. Mr. G.R. Sowerby has kindly examined three species of land-shells, which I procured from this bed, and has described them in detail. One of them is a Succinea, identical with a species now living abundantly on the island; the two others, namely, Cochlogena fossilis and Helix biplicata, are not known in a recent state: the latter species was also found in another and different locality, associated with a species of Cochlogena which is undoubtedly extinct.

BEDS OF EXTINCT LAND-SHELLS.

Land-shells, all of which appear to be species now extinct, occur embedded in earth, in several parts of the island. The greater number have been found at a considerable height on Flagstaff Hill. On the N.W. side of this hill, a rain-channel exposes a section of about twenty feet in thickness, of which the upper part consists of black vegetable mould, evidently washed down from the heights above, and the lower part of less black earth, abounding with young and old shells, and with their fragments: part of this earth is slightly consolidated by calcareous matter, apparently due to the partial decomposition of some of the shells. Mr. Seale, an intelligent resident, who first called attention to these shells, gave me a large collection from another locality, where the shells appear to have been embedded in very black earth. Mr. G.R. Sowerby has examined these shells, and has described them. There are seven species, namely, one Cochlogena, two species of the genus Cochlicopa, and four of Helix; none of these are known in a recent state, or have been found in any other country. The smaller species were picked out of the inside of the large shells of the Cochlogena aurisvulpina. This last-mentioned species is in many respects a very singular one; it was classed, even by Lamarck, in a marine genus, and having thus been mistaken for a sea-shell, and the smaller accompanying species having been overlooked, the exact localities where it was found have been measured, and the elevation of this island thus deduced! It is very remarkable that all the shells of this species found by me in one spot, form a distinct variety, as described by Mr. Sowerby, from those procured from another locality by Mr. Seale. As this Cochlogena is a large and conspicuous shell, I particularly inquired from several intelligent countrymen whether they had ever seen it alive; they all assured me that they had not, and they would not even believe that it was a land animal: Mr. Seale, moreover, who was a collector of shells all his life at St. Helena, never met with it alive. Possibly some of the smaller species may turn out to be yet living kinds; but, on the other hand, the two land- shells which are now living on the island in great numbers, do not occur embedded, as far as is yet known, with the extinct species. I have shown in my "Journal" ("Journal of Researches" page 582.), that the extinction of these land-shells possibly may not be an ancient event; as a great change took place in the state of the island about one hundred and twenty years ago, when the old trees died, and were not replaced by young ones, these being destroyed by the goats and hogs, which had run wild in numbers, from the year 1502. Mr. Seale states, that on Flagstaff Hill, where we have seen that the embedded land-shells are especially numerous, traces are everywhere discoverable, which plainly indicate that it was once thickly clothed with trees; at present not even a bush grows there. The thick bed of black vegetable mould which covers the shell-bed, on the flanks of this hill, was probably washed down from the upper part, as soon as the trees perished, and the shelter afforded by them was lost.

ELEVATION OF THE LAND.

Seeing that the lavas of the basal series, which are of submarine origin, are raised above the level of the sea, and at some places to the height of many hundred feet, I looked out for superficial signs of the elevation of the land. The bottoms of some of the gorges, which descend to the coast, are filled up to the depth of about a hundred feet, by rudely divided layers of sand, muddy clay, and fragmentary masses; in these beds, Mr. Seale has found the bones of the tropic-bird and of the albatross; the former now rarely, and the latter never visiting the island. From the difference between these layers, and the sloping piles of detritus which rest on them, I suspect that they were deposited, when the gorges stood beneath the sea. Mr. Seale, moreover, has shown that some of the fissure- like gorges become, with a concave outline, gradually rather wider at the bottom than at the top; and this peculiar structure was probably caused by the wearing action of the sea, when it entered the lower part of these gorges. (A fissure-like gorge, near Stony-top, is said by Mr. Seale to be 840 feet deep, and only 115 feet in width.) At greater heights, the evidence of the rise of the land is even less clear: nevertheless, in a bay-like depression on the table-land behind Prosperous Bay, at the height of about a thousand feet, there are flat-topped masses of rock, which it is scarcely conceivable, could have been insulated from the surrounding and similar strata, by any other agency than the denuding action of a sea- beach. Much denudation, indeed, has been effected at great elevations, which it would not be easy to explain by any other means: thus, the flat summit of the Barn, which is 2,000 feet high, presents, according to Mr. Seale, a perfect network of truncated dikes; on hills like the Flagstaff, formed of soft rock, we might suppose that the dikes had been worn down and cut off by meteoric agency, but we can hardly suppose this possible with the hard, basaltic strata of the Barn.

COAST DENUDATION.

The enormous cliffs, in many parts between one and two thousand feet in height, with which this prison-like island is surrounded, with the exception of only a few places, where narrow valleys descend to the coast, is the most striking feature in its scenery. We have seen that portions of the basaltic ring, two or three miles in length by one or two miles in breadth, and from one to two thousand feet in height, have been wholly removed. There are, also, ledges and banks of rock, rising out of profoundly deep water, and distant from the present coast between three and four miles, which, according to Mr. Seale, can be traced to the shore, and are found to be the continuations of certain well-known great dikes. The swell of the Atlantic Ocean has obviously been the active power in forming these cliffs; and it is interesting to observe that the lesser, though still great, height of the cliffs on the leeward and partially protected side of the island (extending from the Sugar-Loaf Hill to South West Point), corresponds with the lesser degree of exposure. When reflecting on the comparatively low coasts of many volcanic islands, which also stand exposed in the open ocean, and are apparently of considerable antiquity, the mind recoils from an attempt to grasp the number of centuries of exposure, necessary to have ground into mud and to have dispersed the enormous cubic mass of hard rock which has been pared off the circumference of this island. The contrast in the superficial state of St. Helena, compared with the nearest island, namely, Ascension, is very striking. At Ascension, the surfaces of the lava-streams are glossy, as if just poured forth, their boundaries are well defined, and they can often be traced to perfect craters, whence they were erupted; in the course of many long walks, I did not observe a single dike; and the coast round nearly the entire circumference is low, and has been eaten back (though too much stress must not be placed on this fact, as the island may have been subsiding) into a little wall only from ten to thirty feet high. Yet during the 340 years, since Ascension has been known, not even the feeblest signs of volcanic action have been recorded. (In the "Nautical Magazine" for 1835 page 642, and for 1838 page 361, and in the "Comptes Rendus" April 1838, accounts are given of a series of volcanic phenomena—earthquakes—troubled water—floating scoriae and columns of smoke—which have been observed at intervals since the middle of the last century, in a space of open sea between longitudes 20 degrees and 22 degrees west, about half a degree south of the equator. These facts seem to show, that an island or an archipelago is in process of formation in the middle of the Atlantic: a line joining St. Helena and Ascension, prolonged, intersects this slowly nascent focus of volcanic action.) On the other hand, at St. Helena, the course of no one stream of lava can be traced, either by the state of its boundaries or of its superficies; the mere wreck of one great crater is left; not the valleys only, but the surfaces of some of the highest hills, are interlaced by worn-down dikes, and, in many places, the denuded summits of great cones of injected rock stand exposed and naked; lastly, as we have seen, the entire circuit of the island has been deeply worn back into the grandest precipices.

CRATERS OF ELEVATION.

There is much resemblance in structure and in geological history between St. Helena, St. Jago, and Mauritius. All three islands are bounded (at least in the parts which I was able to examine) by a ring of basaltic mountains, now much broken, but evidently once continuous. These mountains have, or apparently once had, their escarpments steep towards the interior of the island, and their strata dip outwards. I was able to ascertain, only in a few cases, the inclination of the beds; nor was this easy, for the stratification was generally obscure, except when viewed from a distance. I feel, however, little doubt that, according to the researches of M. Elie de Beaumont, their average inclination is greater than that which they could have acquired, considering their thickness and compactness, by flowing down a sloping surface. At St. Helena, and at St. Jago, the basaltic strata rest on older and probably submarine beds of different composition. At all three islands, deluges of more recent lavas have flowed from the centre of the island, towards and between the basaltic mountains; and at St. Helena the central platform has been filled up by them. All three islands have been raised in mass. At Mauritius the sea, within a late geological period, must have reached to the foot of the basaltic mountains, as it now does at St. Helena; and at St. Jago it is cutting back the intermediate plain towards them. In these three islands, but especially at St. Jago and at Mauritius, when, standing on the summit of one of the old basaltic mountains, one looks in vain towards the centre of the island,—the point towards which the strata beneath one's feet, and of the mountains on each side, rudely converge,—for a source whence these strata could have been erupted; but one sees only a vast hollow platform stretched beneath, or piles of matter of more recent origin.

These basaltic mountains come, I presume, into the class of Craters of elevation: it is immaterial whether the rings were ever completely formed, for the portions which now exist have so uniform a structure, that, if they do not form fragments of true craters, they cannot be classed with ordinary lines of elevation. With respect to their origin, after having read the works of Mr. Lyell ("Principles of Geology" fifth edition volume 2 page 171.), and of MM. C. Prevost and Virlet, I cannot believe that the great central hollows have been formed by a simple dome-shaped elevation, and the consequent arching of the strata. On the other hand, I have very great difficulty in admitting that these basaltic mountains are merely the basal fragments of great volcanoes, of which the summits have either been blown off, or more probably swallowed up by subsidence. These rings are, in some instances, so immense, as at St. Jago and at Mauritius, and their occurrence is so frequent, that I can hardly persuade myself to adopt this explanation. Moreover, I suspect that the following circumstances, from their frequent concurrence, are someway connected together,—a connection not implied in either of the above views: namely, first, the broken state of the ring; showing that the now detached portions have been exposed to great denudation, and in some cases, perhaps, rendering it probable that the ring never was entire; secondly, the great amount of matter erupted from the central area after or during the formation of the ring; and thirdly, the elevation of the district in mass. As far as relates to the inclination of the strata being greater than that which the basal fragments of ordinary volcanoes would naturally possess, I can readily believe that this inclination might have been slowly acquired by that amount of elevation, of which, according to M. Elie de Beaumont, the numerous upfilled fissures or dikes are the evidence and the measure,—a view equally novel and important, which we owe to the researches of that geologist on Mount Etna.

A conjecture, including the above circumstances, occurred to me, when,— with my mind fully convinced, from the phenomena of 1835 in South America, that the forces which eject matter from volcanic orifices and raise continents in mass are identical,—I viewed that part of the coast of St. Jago, where the horizontally upraised, calcareous stratum dips into the sea, directly beneath a cone of subsequently erupted lava. (I have given a detailed account of these phenomena, in a paper read before the Geological Society in March 1838. At the instant of time, when an immense area was convulsed and a large tract elevated, the districts immediately surrounding several of the great vents in the Cordillera remained quiescent; the subterranean forces being apparently relieved by the eruptions, which then recommenced with great violence. An event of somewhat the same kind, but on an infinitely smaller scale, appears to have taken place, according to Abich ("Views of Vesuvius" plates 1 and 9), within the great crater of Vesuvius, where a platform on one side of a fissure was raised in mass twenty feet, whilst on the other side, a train of small volcanoes burst forth in eruption.) The conjecture is that, during the slow elevation of a volcanic district or island, in the centre of which one or more orifices continue open, and thus relieve the subterranean forces, the borders are elevated more than the central area; and that the portions thus upraised do not slope gently into the central, less elevated area, as does the calcareous stratum under the cone at St. Jago, and as does a large part of the circumference of Iceland, but that they are separated from it by curved faults. (It appears, from information communicated to me in the most obliging manner by M. E. Robert, that the circumferential parts of Iceland, which are composed of ancient basaltic strata alternating with tuff, dip inland, thus forming a gigantic saucer. M. Robert found that this was the case, with a few and quite local exceptions, for a space of coast several hundred miles in length. I find this statement corroborated, as far as regards one place, by Mackenzie in his "Travels" page 377, and in another place by some MS. notes kindly lent me by Dr. Holland. The coast is deeply indented by creeks, at the head of which the land is generally low. M. Robert informs me, that the inwardly dipping strata appear to extend as far as this line, and that their inclination usually corresponds with the slope of the surface, from the high coast-mountains to the low land at the head of these creeks. In the section described by Sir G. Mackenzie, the dip is 120. The interior parts of the island chiefly consist, as far as is known, of recently erupted matter. The great size, however, of Iceland, equalling the bulkiest part of England, ought perhaps to exclude it from the class of islands we have been considering; but I cannot avoid suspecting that if the coast-mountains, instead of gently sloping into the less elevated central area, had been separated from it by irregularly curved faults, the strata would have been tilted seaward, and a "Crater of elevation," like that of St. Jago or that of Mauritius, but of much vaster dimensions, would have been formed. I will only further remark, that the frequent occurrence of extensive lakes at the foot of large volcanoes, and the frequent association of volcanic and fresh-water strata, seem to indicate that the areas around volcanoes are apt to be depressed beneath the level of the adjoining country, either from having been less elevated, or from the effects of subsidence.) We might expect, from what we see along ordinary faults, that the strata on the upraised side, already dipping outwards from their original formation as lava-streams, would be tilted from the line of fault, and thus have their inclination increased. According to this hypothesis, which I am tempted to extend only to some few cases, it is not probable that the ring would ever be formed quite perfect; and from the elevation being slow, the upraised portions would generally be exposed to much denudation, and hence the ring become broken; we might also expect to find occasional inequalities in the dip of the upraised masses, as is the case at St. Jago. By this hypothesis the elevation of the districts in mass, and the flowing of deluges of lava from the central platforms, are likewise connected together. On this view the marginal basaltic mountains of the three foregoing islands might still be considered as forming "Craters of elevation;" the kind of elevation implied having been slow, and the central hollow or platform having been formed, not by the arching of the surface, but simply by that part having been upraised to a less height.

CHAPTER V.—GALAPAGOS ARCHIPELAGO.

Chatham Island. Craters composed of a peculiar kind of tuff. Small basaltic craters, with hollows at their bases. Albemarle Island; fluid lavas, their composition. Craters of tuff; inclination of their exterior diverging strata, and structure of their interior converging strata. James Island, segment of a small basaltic crater; fluidity and composition of its lava-streams, and of its ejected fragments. Concluding remarks on the craters of tuff, and on the breached condition of their southern sides. Mineralogical composition of the rocks of the archipelago. Elevation of the land. Direction of the fissures of eruption.

(FIGURE 11. MAP 3. GALAPAGOS ARCHIPELAGO.

Showing Wenman, Abingdon, Bindloes, Tower, Narborough, Albemarle, James, Indefatigable, Barrington, Chatham, Charles and Hood's Islands.)

This archipelago is situated under the equator, at a distance of between five and six hundred miles from the west coast of South America. It consists of five principal islands, and of several small ones, which together are equal in area, but not in extent of land, to Sicily, conjointly with the Ionian Islands. (I exclude from this measurement, the small volcanic islands of Culpepper and Wenman, lying seventy miles northward of the group. Craters were visible on all the islands of the group, except on Towers Island, which is one of the lowest; this island is, however, formed of volcanic rocks.) They are all volcanic: on two, craters have been seen in eruption, and on several of the other islands, streams of lava have a recent appearance. The larger islands are chiefly composed of solid rock, and they rise with a tame outline to a height of between one and four thousand feet. They are sometimes, but not generally, surmounted by one principal orifice. The craters vary in size from mere spiracles to huge caldrons several miles in circumference; they are extraordinarily numerous, so that I should think, if enumerated, they would be found to exceed two thousand; they are formed either of scoriae and lava, or of a brown-coloured tuff; and these latter craters are in several respects remarkable. The whole group was surveyed by the officers of the "Beagle." I visited myself four of the principal islands, and received specimens from all the others. Under the head of the different islands I will describe only that which appears to me deserving of attention.

CHATHAM ISLAND. CRATERS COMPOSED OF A SINGULAR KIND OF TUFF.

Towards the eastern end of this island there occur two craters composed of two kinds of tuff; one kind being friable, like slightly consolidated ashes; and the other compact, and of a different nature from anything which I have met with described. This latter substance, where it is best characterised, is of a yellowish-brown colour, translucent, and with a lustre somewhat resembling resin; it is brittle, with an angular, rough, and very irregular fracture, sometimes, however, being slightly granular, and even obscurely crystalline: it can readily be scratched with a knife, yet some points are hard enough just to mark common glass; it fuses with ease into a blackish-green glass. The mass contains numerous broken crystals of olivine and augite, and small particles of black and brown scoriae; it is often traversed by thin seams of calcareous matter. It generally affects a nodular or concretionary structure. In a hand specimen, this substance would certainly be mistaken for a pale and peculiar variety of pitchstone; but when seen in mass its stratification, and the numerous layers of fragments of basalt, both angular and rounded, at once render its subaqueous origin evident. An examination of a series of specimens shows that this resin-like substance results from a chemical change on small particles of pale and dark-coloured scoriaceous rocks; and this change could be distinctly traced in different stages round the edges of even the same particle. The position near the coast of all the craters composed of this kind of tuff or peperino, and their breached condition, renders it probable that they were all formed when standing immersed in the sea; considering this circumstance, together with the remarkable absence of large beds of ashes in the whole archipelago, I think it highly probable that much the greater part of the tuff has originated from the trituration of fragments of the grey, basaltic lavas in the mouths of craters standing in the sea. It may be asked whether the heated water within these craters has produced this singular change in the small scoriaceous particles and given to them their translucent, resin-like fracture. Or has the associated lime played any part in this change? I ask these questions from having found at St. Jago, in the Cape de Verde Islands, that where a great stream of molten lava has flowed over a calcareous bottom into the sea, the outermost film, which in other parts resembles pitchstone, is changed, apparently by its contact with the carbonate of lime, into a resin-like substance, precisely like the best characterised specimens of the tuff from this archipelago. (The concretions containing lime, which I have described at Ascension, as formed in a bed of ashes, present some degree of resemblance to this substance, but they have not a resinous fracture. At St. Helena, also, I found veins of a somewhat similar, compact, but non- resinous substance, occurring in a bed of pumiceous ashes, apparently free from calcareous matter: in neither of these cases could heat have acted.)

To return to the two craters: one of them stands at the distance of a league from the coast, the intervening tract consisting of a calcareous tuff, apparently of submarine origin. This crater consists of a circle of hills some of which stand quite detached, but all have a very regular, qua- qua versal dip, at an inclination of between thirty and forty degrees. The lower beds, to the thickness of several hundred feet, consist of the resin- like stone, with embedded fragments of lava. The upper beds, which are between thirty and forty feet in thickness, are composed of a thinly stratified, fine-grained, harsh, friable, brown-coloured tuff, or peperino. (Those geologists who restrict the term of "tuff" to ashes of a white colour, resulting from the attrition of feldspathic lavas, would call these brown-coloured strata "peperino.") A central mass without any stratification, which must formerly have occupied the hollow of the crater, but is now attached only to a few of the circumferential hills, consists of a tuff, intermediate in character between that with a resin-like, and that with an earthy fracture. This mass contains white calcareous matter in small patches. The second crater (520 feet in height) must have existed until the eruption of a recent, great stream of lava, as a separate islet; a fine section, worn by the sea, shows a grand funnel-shaped mass of basalt, surrounded by steep, sloping flanks of tuff, having in parts an earthy, and in others a semi-resinous fracture. The tuff is traversed by several broad, vertical dikes, with smooth and parallel sides, which I did not doubt were formed of basalt, until I actually broke off fragments. These dikes, however, consist of tuff like that of the surrounding strata, but more compact, and with a smoother fracture; hence we must conclude, that fissures were formed and filled up with the finer mud or tuff from the crater, before its interior was occupied, as it now is, by a solidified pool of basalt. Other fissures have been subsequently formed, parallel to these singular dikes, and are merely filled with loose rubbish. The change from ordinary scoriaceous particles to the substance with a semi-resinous fracture, could be clearly followed in portions of the compact tuff of these dikes.

(FIGURE 12. THE KICKER ROCK, 400 FEET HIGH.)

At the distance of a few miles from these two craters, stands the Kicker Rock, or islet, remarkable from its singular form. It is unstratified, and is composed of compact tuff, in parts having the resin-like fracture. It is probable that this amorphous mass, like that similar mass in the case first described, once filled up the central hollow of a crater, and that its flanks, or sloping walls, have since been worn quite away by the sea, in which it stands exposed.

SMALL BASALTIC CRATERS.

A bare, undulating tract, at the eastern end of Chatham Island, is remarkable from the number, proximity, and form of the small basaltic craters with which it is studded. They consist, either of a mere conical pile, or, but less commonly, of a circle, of black and red, glossy scoriae, partially cemented together. They vary in diameter from thirty to one hundred and fifty yards, and rise from about fifty to one hundred feet above the level of the surrounding plain. From one small eminence, I counted sixty of these craters, all of which were within a third of a mile from each other, and many were much closer. I measured the distance between two very small craters, and found that it was only thirty yards from the summit-rim of one to the rim of the other. Small streams of black, basaltic lava, containing olivine and much glassy feldspar, have flowed from many, but not from all of these craters. The surfaces of the more recent streams were exceedingly rugged, and were crossed by great fissures; the older streams were only a little less rugged; and they were all blended and mingled together in complete confusion. The different growth, however, of the trees on the streams, often plainly marked their different ages. Had it not been for this latter character, the streams could in few cases have been distinguished; and, consequently, this wide undulatory tract might have (as probably many tracts have) been erroneously considered as formed by one great deluge of lava, instead of by a multitude of small streams, erupted from many small orifices.

In several parts of this tract, and especially at the base of the small craters, there are circular pits, with perpendicular sides, from twenty to forty feet deep. At the foot of one small crater, there were three of these pits. They have probably been formed, by the falling in of the roofs of small caverns. (M. Elie de Beaumont has described ("Mem. pour servir" etc. tome 4 page 113) many "petits cirques d'eboulement" on Etna, of some of which the origin is historically known.) In other parts, there are mammiform hillocks, which resemble great bubbles of lava, with their summits fissured by irregular cracks, which appeared, upon entering them, to be very deep; lava has not flowed from these hillocks. There are, also, other very regular, mammiform hillocks, composed of stratified lava, and surmounted by circular, steep-sided hollows, which, I suppose have been formed by a body of gas, first, arching the strata into one of the bubble- like hillocks, and then, blowing off its summit. These several kinds of hillocks and pits, as well as the numerous, small, scoriaceous craters, all show that this tract has been penetrated, almost like a sieve, by the passage of heated vapours. The more regular hillocks could only have been heaved up, whilst the lava was in a softened state. (Sir G. Mackenzie "Travels in Iceland" pages 389 to 392, has described a plain of lava at the foot of Hecla, everywhere heaved up into great bubbles or blisters. Sir George states that this cavernous lava composes the uppermost stratum; and the same fact is affirmed by Von Buch "Descript. des Isles Canaries" page 159, with respect to the basaltic stream near Rialejo, in Teneriffe. It appears singular that it should be the upper streams that are chiefly cavernous, for one sees no reason why the upper and lower should not have been equally affected at different times;—have the inferior streams flowed beneath the pressure of the sea, and thus been flattened, after the passage through them, of bodies of gas?)

ALBEMARLE ISLAND.

This island consists of five, great, flat-topped craters, which, together with the one on the adjoining island of Narborough, singularly resemble each other, in form and height. The southern one is 4,700 feet high, two others are 3,720 feet, a third only 50 feet higher, and the remaining ones apparently of nearly the same height. Three of these are situated on one line, and their craters appear elongated in nearly the same direction. The northern crater, which is not the largest, was found by the triangulation to measure, externally, no less than three miles and one-eighth of a mile in diameter. Over the lips of these great, broad caldrons, and from little orifices near their summits, deluges of black lava have flowed down their naked sides.

FLUIDITY OF DIFFERENT LAVAS.

Near Tagus or Banks' Cove, I examined one of these great streams of lava, which is remarkable from the evidence of its former high degree of fluidity, especially when its composition is considered. Near the sea-coast this stream is several miles in width. It consists of a black, compact base, easily fusible into a black bead, with angular and not very numerous air-cells, and thickly studded with large, fractured crystals of glassy albite, varying from the tenth of an inch to half an inch in diameter. (In the Cordillera of Chile, I have seen lava very closely resembling this variety at the Galapagos Archipelago. It contained, however, besides the albite, well-formed crystals of augite, and the base (perhaps in consequence of the aggregation of the augitic particles) was a shade lighter in colour. I may here remark, that in all these cases, I call the feldspathic crystals, "albite," from their cleavage-planes (as measured by the reflecting goniometer) corresponding with those of that mineral. As, however, other species of this genus have lately been discovered to cleave in nearly the same planes with albite, this determination must be considered as only provisional. I examined the crystals in the lavas of many different parts of the Galapagos group, and I found that none of them, with the exception of some crystals from one part of James Island, cleaved in the direction of orthite or potash-feldspar.) This lava, although at first sight appearing eminently porphyritic, cannot properly be considered so, for the crystals have evidently been enveloped, rounded, and penetrated by the lava, like fragments of foreign rock in a trap-dike. This was very clear in some specimens of a similar lava, from Abingdon Island, in which the only difference was, that the vesicles were spherical and more numerous. The albite in these lavas is in a similar condition with the leucite of Vesuvius, and with the olivine, described by Von Buch, as projecting in great balls from the basalt of Lanzarote. ("Description des Isles Canaries" page 295.) Besides the albite, this lava contains scattered grains of a green mineral, with no distinct cleavage, and closely resembling olivine (Humboldt mentions that he mistook a green augitic mineral, occurring in the volcanic rocks of the Cordillera of Quito, for olivine.); but as it fuses easily into a green glass, it belongs probably to the augitic family: at James Island, however, a similar lava contained true olivine. I obtained specimens from the actual surface, and from a depth of four feet, but they differed in no respect. The high degree of fluidity of this lava-stream was at once evident, from its smooth and gently sloping surface, from the manner in which the main stream was divided by small inequalities into little rills, and especially from the manner in which its edges, far below its source, and where it must have been in some degree cooled, thinned out to almost nothing; the actual margin consisting of loose fragments, few of which were larger than a man's head. The contrast between this margin, and the steep walls, above twenty feet high, bounding many of the basaltic streams at Ascension, is very remarkable. It has generally been supposed that lavas abounding with large crystals, and including angular vesicles, have possessed little fluidity; but we see that the case has been very different at Albemarle Island. (The irregular and angular form of the vesicles is probably caused by the unequal yielding of a mass composed, in almost equal proportion, of solid crystals and of a viscid base. It certainly seems a general circumstance, as might have been expected, that in lava, which has possessed a high degree of fluidity, AS WELL AS AN EVEN-SIZED GRAIN, the vesicles are internally smooth and spherical.) The degree of fluidity in different lavas, does not seem to correspond with any APPARENT corresponding amount of difference in their composition: at Chatham Island, some streams, containing much glassy albite and some olivine, are so rugged, that they may be compared to a sea frozen during a storm; whilst the great stream at Albemarle Island is almost as smooth as a lake when ruffled by a breeze. At James Island, black basaltic lava, abounding with small grains of olivine, presents an intermediate degree of roughness; its surface being glossy, and the detached fragments resembling, in a very singular manner, folds of drapery, cables, and pieces of the bark of trees. (A specimen of basaltic lava, with a few small broken crystals of albite, given me by one of the officers, is perhaps worthy of description. It consists of cylindrical ramifications, some of which are only the twentieth of an inch in diameter, and are drawn out into the sharpest points. The mass has not been formed like a stalactite, for the points terminate both upwards and downwards. Globules, only the fortieth of an inch in diameter, have dropped from some of the points, and adhere to the adjoining branches. The lava is vesicular, but the vesicles never reach the surface of the branches, which are smooth and glossy. As it is generally supposed that vesicles are always elongated in the direction of the movement of the fluid mass, I may observe, that in these cylindrical branches, which vary from a quarter to only the twentieth of an inch in diameter, every air-cell is spherical.)

CRATERS OF TUFF.

About a mile southward of Banks' Cove, there is a fine elliptic crater, about five hundred feet in depth, and three-quarters of a mile in diameter. Its bottom is occupied by a lake of brine, out of which some little crateriform hills of tuff rise. The lower beds are formed of compact tuff, appearing like a subaqueous deposit; whilst the upper beds, round the entire circumference, consist of a harsh, friable tuff, of little specific gravity, but often containing fragments of rock in layers. This upper tuff contains numerous pisolitic balls, about the size of small bullets, which differ from the surrounding matter, only in being slightly harder and finer grained. The beds dip away very regularly on all sides, at angles varying, as I found by measurement, from twenty-five to thirty degrees. The external surface of the crater slopes at a nearly similar inclination, and is formed by slightly convex ribs, like those on the shell of a pecten or scallop, which become broader as they extend from the mouth of the crater to its base. These ribs are generally from eight to twenty feet in breadth, but sometimes they are as much as forty feet broad; and they resemble old, plastered, much flattened vaults, with the plaster scaling off in plates: they are separated from each other by gullies, deepened by alluvial action. At their upper and narrow ends, near the mouth of the crater, these ribs often consist of real hollow passages, like, but rather smaller than, those often formed by the cooling of the crust of a lava-stream, whilst the inner parts have flowed onward;—of which structure I saw many examples at Chatham Island. There can be no doubt but that these hollow ribs or vaults have been formed in a similar manner, namely, by the setting or hardening of a superficial crust on streams of mud, which have flowed down from the upper part of the crater. In another part of this same crater, I saw open concave gutters between one and two feet wide, which appear to have been formed by the hardening of the lower surface of a mud stream, instead of, as in the former case, of the upper surface. From these facts I think it is certain that the tuff must have flowed as mud. (This conclusion is of some interest, because M. Dufrenoy "Mem. pour servir" tome 4 page 274, has argued from strata of tuff, apparently of similar composition with that here described, being inclined at angles between 18 degrees and 20 degrees, that Monte Nuevo and some other craters of Southern Italy have been formed by upheaval. From the facts given above, of the vaulted character of the separate rills, and from the tuff not extending in horizontal sheets round these crateriform hills, no one will suppose that the strata have here been produced by elevation; and yet we see that their inclination is above 20 degrees, and often as much as 30 degrees. The consolidated strata also, of the internal talus, as will be immediately seen, dips at an angle of above 30 degrees.) This mud may have been formed either within the crater, or from ashes deposited on its upper parts, and afterwards washed down by torrents of rain. The former method, in most of the cases, appears the more probable one; at James Island, however, some beds of the friable kind of tuff extend so continuously over an uneven surface, that probably they were formed by the falling of showers of ashes.

Within this same crater, strata of coarse tuff, chiefly composed of fragments of lava, abut, like a consolidated talus, against the inside walls. They rise to a height of between one hundred and one hundred and fifty feet above the surface of the internal brine-lake; they dip inwards, and are inclined at an angle varying from thirty to thirty-six degrees. They appear to have been formed beneath water, probably at a period when the sea occupied the hollow of the crater. I was surprised to observe that beds having this great inclination did not, as far as they could be followed, thicken towards their lower extremities.

BANKS' COVE.

(FIGURE 13. A SECTIONAL SKETCH OF THE HEADLANDS FORMING BANKS' COVE, showing the diverging crateriform strata, and the converging stratified talus. The highest point of these hills is 817 feet above the sea.)

This harbour occupies part of the interior of a shattered crater of tuff larger than that last described. All the tuff is compact, and includes numerous fragments of lava; it appears like a subaqueous deposit. The most remarkable feature in this crater is the great development of strata converging inwards, as in the last case, at a considerable inclination, and often deposited in irregular curved layers. These interior converging beds, as well as the proper, diverging crateriform strata, are represented in Figure 13, a rude, sectional sketch of the headlands, forming this Cove. The internal and external strata differ little in composition, and the former have evidently resulted from the wear and tear, and redeposition of the matter forming the external crateriform strata. From the great development of these inner beds, a person walking round the rim of this crater might fancy himself on a circular anticlinal ridge of stratified sandstone and conglomerate. The sea is wearing away the inner and outer strata, and especially the latter; so that the inwardly converging strata will, perhaps, in some future age, be left standing alone—a case which might at first perplex a geologist. (I believe that this case actually occurs in the Azores, where Dr. Webster "Description" page 185, has described a basin-formed, little island, composed of STRATA OF TUFF, dipping inwards and bounded externally by steep sea-worn cliffs. Dr. Daubeny supposes "Volcanoes" page 266, that this cavity must have been formed by a circular subsidence. It appears to me far more probable, that we here have strata which were originally deposited within the hollow of a crater, of which the exterior walls have since been removed by the sea.)

JAMES ISLAND.

Two craters of tuff on this island are the only remaining ones which require any notice. One of them lies a mile and a half inland from Puerto Grande: it is circular, about the third of a mile in diameter, and 400 feet in depth. It differs from all the other tuff-craters which I examined, in having the lower part of its cavity, to the height of between one hundred and one hundred and fifty feet, formed by a precipitous wall of basalt, giving to the crater the appearance of having burst through a solid sheet of rock. The upper part of this crater consists of strata of the altered tuff, with a semi-resinous fracture. Its bottom is occupied by a shallow lake of brine, covering layers of salt, which rest on deep black mud. The other crater lies at the distance of a few miles, and is only remarkable from its size and perfect condition. Its summit is 1,200 feet above the level of the sea, and the interior hollow is 600 feet deep. Its external sloping surface presented a curious appearance from the smoothness of the wide layers of tuff, which resembled a vast plastered floor. Brattle Island is, I believe, the largest crater in the Archipelago composed of tuff; its interior diameter is nearly a nautical mile. At present it is in a ruined condition, consisting of little more than half a circle open to the south; its great size is probably due, in part, to internal degradation, from the action of the sea.

SEGMENT OF A BASALTIC CRATER.

(FIGURE 14. SEGMENT OF A VERY SMALL ORIFICE OF ERUPTION, on the beach of Fresh-water Bay.)

One side of Fresh-water Bay, in James Island, is bounded by a promontory, which forms the last wreck of a great crater. On the beach of this promontory, a quadrant-shaped segment of a small subordinate point of eruption stands exposed. It consists of nine separate little streams of lava piled upon each other; and of an irregular pinnacle, about fifteen feet high, of reddish-brown, vesicular basalt, abounding with large crystals of glassy albite, and with fused augite. This pinnacle, and some adjoining paps of rock on the beach, represent the axis of the crater. The streams of lava can be followed up a little ravine, at right angles to the coast, for between ten and fifteen yards, where they are hidden by detritus: along the beach they are visible for nearly eighty yards, and I do not believe that they extend much further. The three lower streams are united to the pinnacle; and at the point of junction (as shown in Figure 14, a rude sketch made on the spot), they are slightly arched, as if in the act of flowing over the lip of the crater. The six upper streams no doubt were originally united to this same column before it was worn down by the sea. The lava of these streams is of similar composition with that of the pinnacle, excepting that the crystals of albite appear to be more comminuted, and the grains of fused augite are absent. Each stream is separated from the one above it by a few inches, or at most by one or two feet in thickness, of loose fragmentary scoriae, apparently derived from the abrasion of the streams in passing over each other. All these streams are very remarkable from their thinness. I carefully measured several of them; one was eight inches thick, but was firmly coated with three inches above, and three inches below, of red scoriaceous rock (which is the case with all the streams), making altogether a thickness of fourteen inches: this thickness was preserved quite uniformly along the entire length of the section. A second stream was only eight inches thick, including both the upper and lower scoriaceous surfaces. Until examining this section, I had not thought it possible that lava could have flowed in such uniformly thin sheets over a surface far from smooth. These little streams closely resemble in composition that great deluge of lava at Albemarle Island, which likewise must have possessed a high degree of fluidity.

PSEUDO-EXTRANEOUS, EJECTED FRAGMENTS.

In the lava and in the scoriae of this little crater, I found several fragments, which, from their angular form, their granular structure, their freedom from air-cells, their brittle and burnt condition, closely resembled those fragments of primary rocks which are occasionally ejected, as at Ascension, from volcanoes. These fragments consist of glassy albite, much mackled, and with very imperfect cleavages, mingled with semi-rounded grains, having tarnished, glossy surfaces, of a steel-blue mineral. The crystals of albite are coated by a red oxide of iron, appearing like a residual substance; and their cleavage-planes also are sometimes separated by excessively fine layers of this oxide, giving to the crystals the appearance of being ruled like a glass micrometer. There was no quartz. The steel-blue mineral, which is abundant in the pinnacle, but which disappears in the streams derived from the pinnacle, has a fused appearance, and rarely presents even a trace of cleavage; I obtained, however, one measurement, which proved that it was augite; and in one other fragment, which differed from the others, in being slightly cellular, and in gradually blending into the surrounding matrix the small grains of this mineral were tolerably well crystallised. Although there is so wide a difference in appearance between the lava of the little streams, and especially of their red scoriaceous crusts, and one of these angular ejected fragments, which at first sight might readily be mistaken for syenite, yet I believe that the lava has originated from the melting and movement of a mass of rock of absolutely similar composition with the fragments. Besides the specimen above alluded to, in which we see a fragment becoming slightly cellular, and blending into the surrounding matrix, some of the grains of the steel-blue augite also have their surfaces becoming very finely vesicular, and passing into the nature of the surrounding paste; other grains are throughout, in an intermediate condition. The paste seems to consist of the augite more perfectly fused, or, more probably, merely disturbed in its softened state by the movement of the mass, and mingled with the oxide of iron and with finely comminuted, glassy albite. Hence probably it is that the fused albite, which is abundant in the pinnacle, disappears in the streams. The albite is in exactly the same state, with the exception of most of the crystals being smaller in the lava and in the embedded fragments; but in the fragments they appear to be less abundant: this, however, would naturally happen from the intumescence of the augitic base, and its consequent apparent increase in bulk. It is interesting thus to trace the steps by which a compact granular rock becomes converted into a vesicular, pseudo-porphyritic lava, and finally into red scoriae. The structure and composition of the embedded fragments show that they are parts either of a mass of primary rock which has undergone considerable change from volcanic action, or more probably of the crust of a body of cooled and crystallised lava, which has afterwards been broken up and re-liquified; the crust being less acted on by the renewed heat and movement.

CONCLUDING REMARKS ON THE TUFF-CRATERS.

These craters, from the peculiarity of the resin-like substance which enters largely into their composition, from their structure, their size and number, present the most striking feature in the geology of this Archipelago. The majority of them form either separate islets, or promontories attached to the larger islands; and those which now stand at some little distance from the coast are worn and breached, as if by the action of the sea. From this general circumstance of their position, and from the small quantity of ejected ashes in any part of the Archipelago, I am led to conclude, that the tuff has been chiefly produced, by the grinding together of fragments of lava within active craters, communicating with the sea. In the origin and composition of the tuff, and in the frequent presence of a central lake of brine and of layers of salt, these craters resemble, though on a gigantic scale, the "salses," or hillocks of mud, which are common in some parts of Italy and in other countries. (D'Aubuisson "Traite de Geognosie" tome 1 page 189. I may remark, that I saw at Terceira, in the Azores, a crater of tuff or peperino, very similar to these of the Galapagos Archipelago. From the description given in Freycinet "Voyage," similar ones occur at the Sandwich Islands; and probably they are present in many other places.) Their closer connection, however, in this Archipelago, with ordinary volcanic action, is shown by the pools of solidified basalt, with which they are sometimes filled up.

It at first appears very singular, that all the craters formed of tuff have their southern sides, either quite broken down and wholly removed, or much lower than the other sides. I saw and received accounts of twenty-eight of these craters; of these, twelve form separate islets (These consist of the three Crossman Islets, the largest of which is 600 feet in height; Enchanted Island; Gardner Island (760 feet high); Champion Island (331 feet high); Enderby Island; Brattle Island; two islets near Indefatigable Island; and one near James Island. A second crater near James Island (with a salt lake in its centre) has its southern side only about twenty feet high, whilst the other parts of the circumference are about three hundred feet in height.), and now exist as mere crescents quite open to the south, with occasionally a few points of rock marking their former circumference: of the remaining sixteen, some form promontories, and others stand at a little distance inland from the shore; but all have their southern sides either the lowest, or quite broken down. Two, however, of the sixteen had their northern sides also low, whilst their eastern and western sides were perfect. I did not see, or hear of, a single exception to the rule, of these craters being broken down or low on the side, which faces a point of the horizon between S.E. and S.W. This rule does not apply to craters composed of lava and scoriae. The explanation is simple: at this Archipelago, the waves from the trade-wind, and the swell propagated from the distant parts of the open ocean, coincide in direction (which is not the case in many parts of the Pacific), and with their united forces attack the southern sides of all the islands; and consequently the southern slope, even when entirely formed of hard basaltic rock, is invariably steeper than the northern slope. As the tuff-craters are composed of a soft material, and as probably all, or nearly all, have at some period stood immersed in the sea, we need not wonder that they should invariably exhibit on their exposed sides the effects of this great denuding power. Judging from the worn condition of many of these craters, it is probable that some have been entirely washed away. As there is no reason to suppose, that the craters formed of scoriae and lava were erupted whilst standing in the sea, we can see why the rule does not apply to them. At Ascension, it was shown that the mouths of the craters, which are there all of terrestrial origin, have been affected by the trade-wind; and this same power might here, also, aid in making the windward and exposed sides of some of the craters originally the lowest.

MINERALOGICAL COMPOSITION OF THE ROCKS.

In the northern islands, the basaltic lavas seem generally to contain more albite than they do in the southern half of the Archipelago; but almost all the streams contain some. The albite is not unfrequently associated with olivine. I did not observe in any specimen distinguishable crystals of hornblende or augite; I except the fused grains in the ejected fragments, and in the pinnacle of the little crater, above described. I did not meet with a single specimen of true trachyte; though some of the paler lavas, when abounding with large crystals of the harsh and glassy albite, resemble in some degree this rock; but in every case the basis fuses into a black enamel. Beds of ashes and far-ejected scoriae, as previously stated, are almost absent; nor did I see a fragment of obsidian or of pumice. Von Buch believes that the absence of pumice on Mount Etna is consequent on the feldspar being of the Labrador variety ("Description des Isles Canaries" page 328.); if the presence of pumice depends on the constitution of the feldspar, it is remarkable, that it should be absent in this archipelago, and abundant in the Cordillera of South America, in both of which regions the feldspar is of the albitic variety. Owing to the absence of ashes, and the general indecomposable character of the lava in this Archipelago, the islands are slowly clothed with a poor vegetation, and the scenery has a desolate and frightful aspect.

ELEVATION OF THE LAND.

Proofs of the rising of the land are scanty and imperfect. At Chatham Island, I noticed some great blocks of lava, cemented by calcareous matter, containing recent shells; but they occurred at the height of only a few feet above high-water mark. One of the officers gave me some fragments of shells, which he found embedded several hundred feet above the sea, in the tuff of two craters, distant from each other. It is possible, that these fragments may have been carried up to their present height in an eruption of mud; but as, in one instance, they were associated with broken oyster- shells, almost forming a layer, it is more probable that the tuff was uplifted with the shells in mass. The specimens are so imperfect that they can be recognised only as belonging to recent marine genera. On Charles Island, I observed a line of great rounded blocks, piled on the summit of a vertical cliff, at the height of fifteen feet above the line, where the sea now acts during the heaviest gales. This appeared, at first, good evidence in favour of the elevation of the land; but it was quite deceptive, for I afterwards saw on an adjoining part of this same coast, and heard from eye- witnesses, that wherever a recent stream of lava forms a smooth inclined plane, entering the sea, the waves during gales have the power of ROLLING UP ROUNDED blocks to a great height, above the line of their ordinary action. As the little cliff in the foregoing case is formed by a stream of lava, which, before being worn back, must have entered the sea with a gently sloping surface, it is possible or rather it is probable, that the rounded boulders, now lying on its summit, are merely the remnants of those which had been ROLLED UP during storms to their present height.

DIRECTION OF THE FISSURES OF ERUPTION.

The volcanic orifices in this group cannot be considered as indiscriminately scattered. Three great craters on Albermarle Island form a well-marked line, extending N.W. by N. and S.E. by S. Narborough Island, and the great crater on the rectangular projection of Albemarle Island, form a second parallel line. To the east, Hood's Island, and the islands and rocks between it and James Island, form another nearly parallel line, which, when prolonged, includes Culpepper and Wenman Islands, lying seventy miles to the north. The other islands lying further eastward, form a less regular fourth line. Several of these islands, and the vents on Albemarle Island, are so placed, that they likewise fall on a set of rudely parallel lines, intersecting the former lines at right angles; so that the principal craters appear to lie on the points where two sets of fissures cross each other. The islands themselves, with the exception of Albemarle Island, are not elongated in the same direction with the lines on which they stand. The direction of these islands is nearly the same with that which prevails in so remarkable a manner in the numerous archipelagoes of the great Pacific Ocean. Finally, I may remark, that amongst the Galapagos Islands there is no one dominant vent much higher than all the others, as may be observed in many volcanic archipelagoes: the highest is the great mound on the south- western extremity of Albemarle Island, which exceeds by barely a thousand feet several other neighbouring craters.

CHAPTER VI.—TRACHYTE AND BASALT.—DISTRIBUTION OF VOLCANIC ISLES.

The sinking of crystals in fluid lava. Specific gravity of the constituent parts of trachyte and of basalt, and their consequent separation. Obsidian. Apparent non-separation of the elements of plutonic rocks. Origin of trap-dikes in the plutonic series. Distribution of volcanic islands; their prevalence in the great oceans. They are generally arranged in lines. The central volcanoes of Von Buch doubtful. Volcanic islands bordering continents. Antiquity of volcanic islands, and their elevation in mass. Eruptions on parallel lines of fissure within the same geological period.

ON THE SEPARATION OF THE CONSTITUENT MINERALS OF LAVA, ACCORDING TO THEIR SPECIFIC GRAVITIES.

One side of Fresh-water Bay, in James Island, is formed by the wreck of a large crater, mentioned in the last chapter, of which the interior has been filled up by a pool of basalt, about two hundred feet in thickness. This basalt is of a grey colour, and contains many crystals of glassy albite, which become much more numerous in the lower, scoriaceous part. This is contrary to what might have been expected, for if the crystals had been originally disseminated in equal numbers, the greater intumescence of this lower scoriaceous part would have made them appear fewer in number. Von Buch has described a stream of obsidian on the Peak of Teneriffe, in which the crystals of feldspar become more and more numerous, as the depth or thickness increases, so that near the lower surface of the stream the lava even resembles a primary rock. ("Description des Isles Canaries" pages 190 and 191.) Von Buch further states, that M. Dree, in his experiments in melting lava, found that the crystals of feldspar always tended to precipitate themselves to the bottom of the crucible. In these cases, I presume there can be no doubt that the crystals sink from their weight. (In a mass of molten iron, it is found ("Edinburgh New Philosophical Journal" volume 24 page 66) that the substances, which have a closer affinity for oxygen than iron has, rise from the interior of the mass to the surface. But a similar cause can hardly apply to the separation of the crystals of these lava-streams. The cooling of the surface of lava seems, in some cases, to have affected its composition; for Dufrenoy ("Mem. pour servir" tome 4 page 271) found that the interior parts of a stream near Naples contained two-thirds of a mineral which was acted on by acids, whilst the surface consisted chiefly of a mineral unattackable by acids.) The specific gravity of feldspar varies from 2.4 to 2.58, whilst obsidian seems commonly to be from 2.3 to 2.4; and in a fluidified state its specific gravity would probably be less, which would facilitate the sinking of the crystals of feldspar. (I have taken the specific gravities of the simple minerals from Von Kobell, one of the latest and best authorities, and of the rocks from various authorities. Obsidian, according to Phillips, is 2.35; and Jameson says it never exceeds 2.4; but a specimen from Ascension, weighed by myself, was 2.42.) At James Island, the crystals of albite, though no doubt of less weight than the grey basalt, in the parts where compact, might easily be of greater specific gravity than the scoriaceous mass, formed of melted lava and bubbles of heated gas.

The sinking of crystals through a viscid substance like molten rock, as is unequivocally shown to have been the case in the experiments of M. Dree, is worthy of further consideration, as throwing light on the separation of the trachytic and basaltic series of lavas. Mr. P. Scrope has speculated on this subject; but he does not seem to have been aware of any positive facts, such as those above given; and he has overlooked one very necessary element, as it appears to me, in the phenomenon—namely, the existence of either the lighter or heavier mineral in globules or in crystals. In a substance of imperfect fluidity, like molten rock, it is hardly credible, that the separate, infinitely small atoms, whether of feldspar, augite, or of any other mineral, would have power from their slightly different gravities to overcome the friction caused by their movement; but if the atoms of any one of these minerals became, whilst the others remained fluid, united into crystals or granules, it is easy to perceive that from the lessened friction, their sinking or floating power would be greatly increased. On the other hand, if all the minerals became granulated at the same time, it is scarcely possible, from their mutual resistance, that any separation could take place. A valuable, practical discovery, illustrating the effect of the granulation of one element in a fluid mass, in aiding its separation, has lately been made: when lead containing a small proportion of silver, is constantly stirred whilst cooling, it becomes granulated, and the grains of imperfect crystals of nearly pure lead sink to the bottom, leaving a residue of melted metal much richer in silver; whereas if the mixture be left undisturbed, although kept fluid for a length of time, the two metals show no signs of separating. (A full and interesting account of this discovery, by Mr. Pattinson, was read before the British Association in September 1838. In some alloys, according to Turner "Chemistry" page 210, the heaviest metal sinks, and it appears that this takes place whilst both metals are fluid. Where there is a considerable difference in gravity, as between iron and the slag formed during the fusion of the ore, we need not be surprised at the atoms separating, without either substance being granulated.) The sole use of the stirring seems to be, the formation of detached granules. The specific gravity of silver is 10.4, and of lead 11.35: the granulated lead, which sinks, is never absolutely pure, and the residual fluid metal contains, when richest, only 1/119 part of silver. As the difference in specific gravity, caused by the different proportions of the two metals, is so exceedingly small, the separation is probably aided in a great degree by the difference in gravity between the lead, when granular though still hot, and when fluid.

In a body of liquified volcanic rock, left for some time without any violent disturbance, we might expect, in accordance with the above facts, that if one of the constituent minerals became aggregated into crystals or granules, or had been enveloped in this state from some previously existing mass, such crystals or granules would rise or sink, according to their specific gravity. Now we have plain evidence of crystals being embedded in many lavas, whilst the paste or basis has continued fluid. I need only refer, as instances, to the several, great, pseudo-porphyritic streams at the Galapagos Islands, and to the trachytic streams in many parts of the world, in which we find crystals of feldspar bent and broken by the movement of the surrounding, semi-fluid matter. Lavas are chiefly composed of three varieties of feldspar, varying in specific gravity from 2.4 to 2.74; of hornblende and augite, varying from 3.0 to 3.4; of olivine, varying from 3.3 to 3.4; and lastly, of oxides of iron, with specific gravities from 4.8 to 5.2. Hence crystals of feldspar, enveloped in a mass of liquified, but not highly vesicular lava, would tend to rise to the upper parts; and crystals or granules of the other minerals, thus enveloped, would tend to sink. We ought not, however, to expect any perfect degree of separation in such viscid materials. Trachyte, which consists chiefly of feldspar, with some hornblende and oxide of iron, has a specific gravity of about 2.45; whilst basalt, composed chiefly of augite and feldspar, often with much iron and olivine, has a gravity of about 3.0. (Trachyte from Java was found by Von Buch to be 2.47; from Auvergne, by De la Beche, it was 2.42; from Ascension, by myself, it was 2.42. Jameson and other authors give to basalt a specific gravity of 3.0; but specimens from Auvergne were found, by De la Beche, to be only 2.78; and from the Giant's Causeway, to be 2.91.) Accordingly we find, that where both trachytic and basaltic streams have proceeded from the same orifice, the trachytic streams have generally been first erupted owing, as we must suppose, to the molten lava of this series having accumulated in the upper parts of the volcanic focus. This order of eruption has been observed by Beudant, Scrope, and by other authors; three instances, also, have been given in this volume. As the later eruptions, however, from most volcanic mountains, burst through their basal parts, owing to the increased height and weight of the internal column of molten rock, we see why, in most cases, only the lower flanks of the central, trachytic masses, are enveloped by basaltic streams. The separation of the ingredients of a mass of lava, would, perhaps, sometimes take place within the body of a volcanic mountain, if lofty and of great dimensions, instead of within the underground focus; in which case, trachytic streams might be poured forth, almost contemporaneously, or at short recurrent intervals, from its summit, and basaltic streams from its base: this seems to have taken place at Teneriffe. (Consult Von Buch's well-known and admirable "Description Physique" of this island, which might serve as a model of descriptive geology.) I need only further remark, that from violent disturbances the separation of the two series, even under otherwise favourable conditions, would naturally often be prevented, and likewise their usual order of eruption be inverted. From the high degree of fluidity of most basaltic lavas, these perhaps, alone, would in many cases reach the surface.

Previous Part     1  2  3  4     Next Part
Home - Random Browse