p-books.com
Vestiges of the Natural History of Creation
by Robert Chambers
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

A late writer, in a work embracing a vast amount of miscellaneous knowledge, but written in a dogmatic style, argues at great length for the doctrine of more immediate exertions on the part of the Deity in the works of his creation. One of the most striking of his illustrations is as follows:- "The coral polypi, united by a common animal bond, construct a defined form in stone; many kinds construct many forms. An allotted instinct may permit each polypus to construct its own cell, but there is no superintending one to direct the pattern, nor can the workers unite by consultation for such an end. There is no recipient for an instinct by which the pattern might be constructed. It is God alone, therefore, who is the architect; and for this end, consequently, he must dispose of every new polypus required to continue the pattern, in a new and peculiar position, which the animal could not have discovered by itself. Yet more, millions of these blind workers unite their works to form an island, which is also wrought out according to a constant general pattern, and of a very peculiar nature, though the separate coral works are numerously diverse. Still less, then, here is an instinct possible. The Great Architect himself must execute what he planned, in each case equally. He uses these little and senseless animals as hands; but they are hands which himself must direct. He must direct each one everywhere, and therefore he is ever acting." {159} This is a most notable example of a dangerous kind of reasoning. It is now believed that corals have a general life and sensation throughout the whole mass, residing in the nervous tissue which envelops them; consequently, there is nothing more wonderful in their determinate general forms than in those of other animals.

It may here be remarked that there is in our doctrine that harmony in all the associated phenomena which generally marks great truths. First, it agrees, as we have seen, with the idea of planet-creation by natural law. Secondly, upon this supposition, all that geology tells us of the succession of species appears natural and intelligible. Organic life PRESSES IN, as has been remarked, wherever there was room and encouragement for it, the forms being always such as suited the circumstances, and in a certain relation to them, as, for example, where the limestone-forming seas produced an abundance of corals, crinoidea, and shell-fish. Admitting for a moment a re-origination of species after a cataclysm, as has been surmised by some geologists, though the hypothesis is always becoming less and less tenable, it harmonizes with nothing so well as the idea of a creation by law. The more solitary commencements of species, which would have been the most inconceivably paltry exercise for an immediately creative power, are sufficiently worthy of one operating by laws.

It is also to be observed, that the thing to be accounted for is not merely the origination of organic being upon this little planet, third of a series which is but one of hundreds of thousands of series, the whole of which again form but one portion of an apparently infinite globe-peopled space, where all seems analogous. We have to suppose, that every one of these numberless globes is either a theatre of organic being, or in the way of becoming so. This is a conclusion which every addition to our knowledge makes only the more irresistible. Is it conceivable, as a fitting mode of exercise for creative intelligence, that it should be constantly moving from one sphere to another, to form and plant the various species which may be required in each situation at particular times? Is such an idea accordant with our general conception of the dignity, not to speak of the power, of the Great Author? Yet such is the notion which we must form, if we adhere to the doctrine of special exercise. Let us see, on the other hand, how the doctrine of a creation by law agrees with this expanded view of the organic world.

Unprepared as most men may be for such an announcement, there can be no doubt that we are able, in this limited sphere, to form some satisfactory conclusions as to the plants and animals of those other spheres which move at such immense distances from us. Suppose that the first persons of an early nation who made a ship and ventured to sea in it, observed, as they sailed along, a set of objects which they had never before seen—namely, a fleet of other ships—would they not have been justified in supposing that those ships were occupied, like their own, by human beings possessing hands to row and steer, eyes to watch the signs of the weather, intelligence to guide them from one place to another—in short, beings in all respects like themselves, or only shewing such differences as they knew to be producible by difference of climate and habits of life. Precisely in this manner we can speculate on the inhabitants of remote spheres. We see that matter has originally been diffused in one mass, of which the spheres are portions. Consequently, inorganic matter must be presumed to be everywhere the same, although probably with differences in the proportions of ingredients in different globes, and also some difference of conditions. Out of a certain number of the elements of inorganic matter are composed organic bodies, both vegetable and animal; such must be the rule in Jupiter and in Sirius, as it is here. We, therefore, are all but certain that herbaceous and ligneous fibre, that flesh and blood, are the constituents of the organic beings of all those spheres which are as yet seats of life. Gravitation we see to be an all-pervading principle: therefore there must be a relation between the spheres and their respective organic occupants, by virtue of which they are fixed, as far as necessary, on the surface. Such a relation, of course, involves details as to the density and elasticity of structure, as well as size, of the organic tenants, in proportion to the gravity of the respective planets— peculiarities, however, which may quite well consist with the idea of a universality of general types, to which we are about to come. Electricity we also see to be universal; if, therefore, it be a principle concerned in life and in mental action, as science strongly suggests, life and mental action must everywhere be of one general character. We come to comparatively a matter of detail, when we advert to heat and light; yet it is important to consider that these are universal agents, and that, as they bear marked relations to organic life and structure on earth, they may be presumed to do so in other spheres also. The considerations as to light are particularly interesting, for, on our globe, the structure of one important organ, almost universally distributed in the animal kingdom, is in direct and precise relation to it. Where there is light there will be eyes, and these, in other spheres, will be the same in all respects as the eyes of tellurian animals, with only such differences as may be necessary to accord with minor peculiarities of condition and of situation. It is but a small stretch of the argument to suppose that, one conspicuous organ of a large portion of our animal kingdom being thus universal, a parity in all the other organs—species for species, class for class, kingdom for kingdom—is highly likely, and that thus the inhabitants of all the other globes of space bear not only a general, but a particular resemblance to those of our own.

Assuming that organic beings are thus spread over all space, the idea of their having all come into existence by the operation of laws everywhere applicable, is only conformable to that principle, acknowledged to be so generally visible in the affairs of Providence, to have all done by the employment of the smallest possible amount of means. Thus, as one set of laws produced all orbs and their motions and geognostic arrangements, so one set of laws overspread them all with life. The whole productive or creative arrangements are therefore in perfect unity.



PARTICULAR CONSIDERATIONS RESPECTING THE ORIGIN OF THE ANIMATED TRIBES.



The general likelihood of an organic creation by law having been shewn, we are next to inquire if science has any facts tending to bring the assumption more nearly home to nature. Such facts there certainly are; but it cannot be surprising that they are comparatively few and scattered, when we consider that the inquiry is into one of nature's profoundest mysteries, and one which has hitherto engaged no direct attention in almost any quarter.

Crystallization is confessedly a phenomenon of inorganic matter; yet the simplest rustic observer is struck by the resemblance which the examples of it left upon a window by frost bear to vegetable forms. In some crystallizations the mimicry is beautiful and complete; for example, in the well-known one called the Arbor Dianae. An amalgam of four parts of silver and two of mercury being dissolved in nitric acid, and water equal to thirty weights of the metals being added, a small piece of soft amalgam of silver suspended in the solution, quickly gathers to itself the particles of the silver of the amalgam, which form upon it a CRYSTALLIZATION PRECISELY RESEMBLING A SHRUB. The experiment may be varied in a way which serves better to detect the influence of electricity in such operations, as noted below. {166} Vegetable figures are also presented in some of the most ordinary appearances of the electric fluid. In the marks caused by positive electricity, or which it leaves in its passage, we see the ramifications of a tree, as well as of its individual leaves; those of the negative, recal the bulbous or the spreading root, according as they are clumped or divergent. These phenomena seem to say that the electric energies have had something to do in determining the forms of plants. That they are intimately connected with vegetable life is indubitable, for germination will not proceed in water charged with negative electricity, while water charged positively greatly favours it; and a garden sensibly increases in luxuriance, when a number of conducting rods are made to terminate in branches over its beds. With regard to the resemblance of the ramifications of the branches and leaves of plants to the traces of the positive electricity, and that of the roots to the negative, it is a circumstance calling for especial remark, that the atmosphere, particularly its lower strata, is generally charged positively, while the earth is always charged negatively. The correspondence here is curious. A plant thus appears as a thing formed on the basis of a natural electrical operation—the BRUSH realized. We can thus suppose the various forms of plants as, immediately, the result of a law in electricity variously affecting them according to their organic character, or respective germinal constituents. In the poplar, the brush is unusually vertical, and little divergent; the reverse in the beech: in the palm, a pencil has proceeded straight up for a certain distance, radiates there, and turns outwards and downwards; and so on. We can here see at least traces of secondary means by which the Almighty Deviser might establish all the vegetable forms with which the earth is overspread.

Vegetable and animal bodies are mainly composed of the same four simple substances or elements—carbon, oxygen, hydrogen, and nitrogen. The first combinations of these in animals are into what are called proximate principles, as albumen, fibrin, urea, alantoin, &c., out of which the structure of the animal body is composed. Now the chemist, by the association of two parts oxygen, four hydrogen, two carbon, and two nitrogen, can MAKE UREA. Alantoin has also been produced artificially. Two of the proximate principles being realizable by human care, the possibility of realizing or forming all is established. Thus the chemist may be said to have it in his power to realize the first step in organization. {169a} Indeed, it is fully acknowledged by Dr. Daubeny, that in the combinations forming the proximate principles there is no chemical peculiarity. "It is now certain," he says, "that the same simple laws of composition pervade the whole creation; and that, if the organic chemist only takes the requisite precautions to avoid resolving into their ultimate elements the proximate principles upon which he operates, the results of his analysis will shew that they are combined precisely according to the same plan as the elements of mineral bodies are known to be." {169b} A particular fact is here worthy of attention. "The conversion of fecula into sugar, as one of the ordinary processes of vegetable economy, is effected by the production of a secretion termed diastose, which occasions both the rupture of the starch vesicles, and the change of their contained gum into sugar. This diastose may be separately obtained by the chemist, and it acts as effectually in his laboratory as in the vegetable organization. He can also imitate its effects by other chemical agents." {170} The writer quoted below adds, "No reasonable ground has yet been adduced for supposing that, if we had the power of bringing together the elements of any organic compound, in their requisite states and proportions, the result would be any other than that which is found in the living body."

It is much to know the elements out of which organic bodies are composed. It is something more to know their first combinations, and that these are simply chemical. How these combinations are associated in the structure of living bodies is the next inquiry, but it is one to which as yet no satisfactory answer can be given. The investigation of the minutiae of organic structure by the microscope is of such recent origin, that its results cannot be expected to be very clear. Some facts, however, are worthy of attention with regard to the present inquiry. It is ascertained that the basis of all vegetable and animal substances consists of nucleated cells; that is, cells having granules within them. Nutriment is converted into these before being assimilated by the system. The tissues are formed from them. The ovum destined to become a new creature, is originally only a cell with a contained granule. We see it acting this reproductive part in the simplest manner in the cryptogamic plants. "The parent cell, arrived at maturity by the exercise of its organic functions, bursts, and liberates its contained granules. These, at once thrown upon their own resources, and entirely dependent for their nutrition on the surrounding elements, develop themselves into new cells, which repeat the life of their original. Amongst the higher tribes of the cryptogamia, the reproductive cell does not burst, but the first cells of the new structure are developed within it, and these gradually extend, by a similar process of multiplication, into that primary leaf-like expansion which is the first formed structure in all plants." {171} HERE THE LITTLE CELL BECOMES DIRECTLY A PLANT, THE FULL FORMED LIVING BEING. It is also worthy of remark that, in the sponges, (an animal form,) a gemmule detached from the body of the parent, and trusting for sustentation only to the fluid into which it has been cast, becomes, without further process, the new creature. Further, it has been recently discovered by means of the microscope, that there is, as far as can be judged, a perfect resemblance between the ovum of the mammal tribes, during that early stage when it is passing through the oviduct, and the young of the infusory animalcules. One of the most remarkable of these, the volvox globator, has exactly the form of the germ which, after passing through a long foetal progress, becomes a complete mammifer, an animal of the highest class. It has even been found that both are alike provided with those cilia, which, producing a revolving motion, or its appearance, is partly the cause of the name given to this animalcule. These resemblances are the more entitled to notice, that they were made by various observers, distant from each other at the time. {172} It has likewise been noted that the globules of the blood are reproduced by the expansion of contained granules; they are, in short, DISTINCT ORGANISMS MULTIPLIED BY THE SAME FISSIPAROUS GENERATION. So that all animated nature may be said to be based on this mode of origin; THE FUNDAMENTAL FORM OF ORGANIC BEING IS A GLOBULE, HAVING A NEW GLOBULE FORMING WITHIN ITSELF, by which it is in time discharged, and which is again followed by another and another, in endless succession. It is of course obvious that, if these globules could be produced by any process from inorganic elements, we should be entitled to say that the fact of a transit from the inorganic into the organic had been witnessed in that instance; the possibility of the commencement of animated creation by the ordinary laws of nature might be considered as established. Now it was given out some years ago by a French physiologist, that GLOBULES COULD BE PRODUCED IN ALBUMEN BY ELECTRICITY. If, therefore, these globules be identical with the cells which are now held to be reproductive, it might be said that the production of albumen by artificial means is the only step in the process wanting. This has not yet been effected; but it is known to be only a chemical process, the mode of which may be any day discovered in the laboratory, and two compounds perfectly co-ordinate, urea and alantoin, have actually been produced.

In such an investigation as the present, it is not unworthy of notice that the production of shell is a natural operation which can be precisely imitated artificially. Such an incrustation takes place on both the outside and inside of the wheel in a bleaching establishment, in which cotton cloth is rinsed free of the lime employed in its purification. From the DRESSING employed by the weaver, the cloth obtains the animal matter, gelatin; this and the lime form the constituents of the incrustation, exactly as in natural shell. In the wheel employed at Catrine, in Ayrshire, where the phenomenon was first observed by the eye of science, it had required ten years to produce a coating the tenth of an inch in thickness. This incrustation has all the characters of shell, displaying a highly polished surface, beautifully iridescent, and, when broken, a foliated texture. The examination of it has even thrown some light on the character and mode of formation of natural shell. "The plates into which the substance is divisible have been formed in succession, and certain intervals of time have elapsed between their formation; in general, every two contiguous laminae are separated by a thin iridescent film, varying from the three to the fifty millionth part of an inch in thickness, and producing all the various colours of thin plates which correspond to intermediate thicknesses: between some of the laminae no such film exists, probably in consequence of the interval of time between their formation being too short; and between others the film has been formed of unequal thickness. There can be no doubt that these iridescent films are formed when the dash- wheel is at rest during the night, and that when no film exists between two laminae, an interval too short for its formation, (arising, perhaps, from the stopping of the work during the day,) has elapsed during the drying or induration of one lamina and the deposition of another." {175} From this it has been deduced, by a patient investigation, that those colours of mother-of-pearl, which are incommunicable to wax, arise from iridescent films deposited between the laminae of its structure, and it is hence inferred that THE ANIMAL, like the wheel, RESTS PERIODICALLY FROM ITS LABOURS IN FORMING THE NATURAL SUBSTANCE.

These, it will be owned, are curious and not irrelevant facts; but it will be asked what actual experience says respecting the origination of life. Are there, it will be said, any authentic instances of either plants or animals, of however humble and simple a kind, having come into existence otherwise than in the ordinary way of generation, since the time of which geology forms the record? It may be answered, that the negative of this question could not be by any means formidable to the doctrine of law-creation, seeing that the conditions necessary for the operation of the supposed life-creating laws may not have existed within record to any great extent. On the other hand, as we see the physical laws of early times still acting with more or less force, it might not be unreasonable to expect that we should still see some remnants, or partial and occasional workings of the life-creating energy amidst a system of things generally stable and at rest. Are there, then, any such remnants to be traced in our own day, or during man's existence upon earth? If there be, it clearly would form a strong evidence in favour of the doctrine, as what now takes place upon a confined scale and in a comparatively casual manner may have formerly taken place on a great scale, and as the proper and eternity-destined means of supplying a vacant globe with suitable tenants. It will at the same time be observed that, the earth being now supplied with both kinds of tenants in great abundance, we only could expect to find the life-originating power at work in some very special and extraordinary circumstances, and probably only in the inferior and obscurer departments of the vegetable and animal kingdoms.

Perhaps, if the question were asked of ten men of approved reputation in science, nine out of the number would answer in the negative. This is because, in a great number of instances where the superficial observers of former times assumed a non-generative origin for life, (as in the celebrated case in Virgil's fourth Georgic,) either the direct contrary has been ascertained, or exhaustive experiments have left no alternative from the conclusion that ordinary generation did take place, albeit in a manner which escapes observation. Finding that an erroneous assumption has been formed in many cases, modern inquirers have not hesitated to assume that there can be no case in which generation is not concerned; an assumption not only unwarranted by, but directly opposed to, the principles of philosophical investigation. Yet this is truly the point at which the question now rests in the scientific world.

I have no wish here to enter largely into a subject so wide and so full of difficulties; but I may remark, that the explanations usually suggested where life takes its rise without apparent generative means, always appear to me to partake much of the fallacy of the petitio principii. When, for instance, lime is laid down upon a piece of waste moss ground, and a crop of white clover for which no seeds were sown is the consequence, the explanation that the seeds have been dormant there for an unknown time, and were stimulated into germination when the lime produced the appropriate circumstances, appears extremely unsatisfactory, especially when we know that (as in an authentic case under my notice) the spot is many miles from where clover is cultivated, and that there is nothing for six feet below but pure peat moss, clover seeds being, moreover, known to be too heavy to be transported, as many other seeds are, by the winds. Mushrooms, we know, can be propagated by their seed; but another mode of raising them, well known to the gardener, is to mix cow and horse dung together, and thus form a bed in which they are expected to grow without any seed being planted. It is assumed that the seeds are carried by the atmosphere, unperceived by us, and, finding here an appropriate field for germination, germinate accordingly; but this is only assumption, and though designed to be on the side of a severe philosophy, in reality makes a pretty large demand on credulity. There are several persons eminent in science who profess at least to find great difficulties in accepting the doctrine of invariable generation. One of these, in the work noted below, {179a} has stated several considerations arising from analogical reasoning, which appear to him to throw the balance of evidence in favour of the aboriginal production of infusoria, {179b} the vegetation called mould, and the like. One seems to be of great force; namely, that the animalcules, which are supposed (altogether hypothetically) to be produced by ova, are afterwards found increasing their numbers, not by that mode at all, but by division of their bodies. If it be the nature of these creatures to propagate in this splitting or fissiparous manner, how could they be communicated to a vegetable infusion? Another fact of very high importance is presented in the following terms:- "The nature of the animalcule, or vegetable production, bears a constant relation to the state of the infusion, so that, in similar circumstances, the same are always produced without this being influenced by the atmosphere. There seems to be a certain PROGRESSIVE ADVANCE IN THE PRODUCTIVE POWERS OF THE INFUSION, for at the first the animalcules are only of the smaller kinds, or monades, and afterwards THEY BECOME GRADUALLY LARGER AND MORE COMPLICATED IN THEIR STRUCTURE; AFTER A TIME, THE PRODUCTION CEASES, ALTHOUGH THE MATERIALS ARE BY NO MEANS EXHAUSTED. When the quantity of water is very small, and the organic matter abundant, the production is usually of a vegetable nature; when there is much water, animalcules are more frequently produced." It has been shewn by the opponents of this theory, that when a vegetable infusion is debarred from the contact of the atmosphere, by being closely sealed up or covered with a layer of oil, no animalcules are produced; but it has been said, on the other hand, that the exclusion of the air may prevent some simple condition necessary for the aboriginal development of life—and nothing is more likely. Perhaps the prevailing doctrine is in nothing placed in greater difficulties than it is with regard to the entozoa, or creatures which live within the bodies of others. These creatures do, and apparently can, live nowhere else than in the interior of other living bodies, where they generally take up their abode in the viscera, but also sometimes in the chambers of the eye, the interior of the brain, the serous sacs, and other places having no communication from without. Some are viviparous, others oviparous. Of the latter it cannot reasonably be supposed that the ova ever pass through the medium of the air, or through the blood-vessels, for they are too heavy for the one transit, and too large for the other. Of the former, it cannot be conceived how they pass into young animals—certainly not by communication from the parent, for it has often been found that entozoa do not appear in certain generations, and some of peculiar and noted character have only appeared at rare intervals, and in very extraordinary circumstances. A candid view of the less popular doctrine, as to the origin of this humble form of life, is taken by a distinguished living naturalist. "To explain the beginning of these worms within the human body, on the common doctrine that all created beings proceed from their likes, or a primordial egg, is so difficult, that the moderns have been driven to speculate, as our fathers did, on their spontaneous birth; but they have received the hypothesis with some modification. Thus it is not from putrefaction or fermentation that the entozoa are born, for both of these processes are rather fatal to their existence, but from the aggregation and fit apposition of matter which is already organized, or has been thrown from organized surfaces. Their origin in this manner is not more wonderful or more inexplicable than that of many of the inferior animals from sections of themselves. * * Particles of matter fitted by digestion, and their transmission through a living body, for immediate assimilation with it, or flakes of lymph detached from surfaces already organized, seem neither to exceed nor fall below that simplicity of structure which favours this wonderful development; and the supposition that, like morsels of a planaria, they may also, when retained in contact with living parts, and in other favourable circumstances, continue to live and be gradually changed into creatures of analogous conformation, is surely not so absurd as to be brought into comparison with the Metamorphoses of Ovid. * * We think the hypothesis is also supported in some degree by the fact, that the origin of the entozoa is favoured by all causes which tend to disturb the equality between the secerning and absorbent systems." {182} Here particles of organized matter are suggested as the germinal origin of distinct and fully organized animals, many of which have a highly developed reproductive system. How near such particles must be to the inorganic form of matter may be judged from what has been said within the last few pages. If, then, this view of the production of entozoa be received, it must be held as in no small degree favourable to the general doctrine of an organic creation by law.

There is another series of facts, akin to the above, and which deserve not less attention. The pig, in its domestic state, is subject to the attacks of a hydatid, from which the wild animal is free; hence the disease called measles in pork. The domestication of the pig is of course an event subsequent to the origin of man; indeed, comparatively speaking, a recent event. Whence, then, the first progenitor of this hydatid? So also there is a tinea which attacks dressed wool, but never touches it in its unwashed state. A particular insect disdains all food but chocolate, and the larva of the OINOPOTA CELLARIS lives nowhere but in wine and beer, all of these being articles manufactured by man. There is likewise a creature called the PIMELODES CYCLOPUM, which is only found in subterranean cavities connected with certain specimens of the volcanic formation in South America, dating from a time posterior to the arrangements of the earth for our species. Whence the first pymelodes cyclopum? Will it, to a geologist, appear irrational to suppose that, just as the pterodactyle was added in the era of the new red sandstone, when the earth had become suited for such a creature, so may these creatures have been added when media suitable for their existence arose, and that such phenomena may take place any day, the only cause for their taking place seldom being the rarity of the rise of new physical conditions on a globe which seems to have already undergone the principal part of its destined mutations?

Between such isolated facts and the greater changes which attended various geological eras, it is not easy to see any difference, besides simply that of the scale on which the respective phenomena took place, as the throwing off of one copy from an engraved plate is exactly the same process as that by which a thousand are thrown off. Nothing is more easy to conceive than that to Creative Providence, the numbers of such phenomena, the time when, and the circumstances under which they take place, are indifferent matters. The Eternal One has arranged for everything beforehand, and trusted all to the operation of the laws of his appointment, himself being ever present in all things. We can even conceive that man, in his many doings upon the surface of the earth, may occasionally, without his being aware of it, or otherwise, act as an instrument in preparing the association of conditions under which the creative laws work; and perhaps some instances of his having acted as such an instrument have actually occurred in our own time.

I allude, of course, to the experiments conducted a few years ago by Mr. Crosse, which seemed to result in the production of a heretofore unknown species of insect in considerable numbers. Various causes have prevented these experiments and their results from receiving candid treatment, but they may perhaps be yet found to have opened up a new and most interesting chapter of nature's mysteries. Mr. Crosse was pursuing some experiments in crystallization, causing a powerful voltaic battery to operate upon a saturated solution of silicate of potash, when the insects unexpectedly made their appearance. He afterwards tried nitrate of copper, which is a deadly poison, and from that fluid also did live insects emerge. Discouraged by the reception of his experiments, Mr. Crosse soon discontinued them; but they were some years after pursued by Mr. Weekes, of Sandwich, with precisely the same results. This gentleman, besides trying the first of the above substances, employed ferro-cyanet of potash, on account of its containing a larger proportion of carbon, the principal element of organic bodies; and from this substance the insects were produced IN INCREASED NUMBERS. A few weeks sufficed for this experiment, with the powerful battery of Mr. Crosse; but the first attempts of Mr. Weekes required about eleven months, a ground of presumption in itself that the electricity was chiefly concerned in the phenomenon. The changes undergone by the fluid operated upon, were in both cases remarkable, and nearly alike. In Mr. Weekes' apparatus, the silicate of potash became first turbid, then of a milky appearance; round the negative wire of the battery, dipped into the fluid, there gathered a quantity of GELATINOUS MATTER, a part of the process of considerable importance, considering that gelatin is one of the proximate principles, or first compounds, of which animal bodies are formed. From this matter Mr. Weekes observed one of the insects in the very act of emerging, immediately after which, it ascended to the surface of the fluid, and sought concealment in an obscure corner of the apparatus. The insects produced by both experimentalists seem to have been the same, a species of acarus, minute and semi-transparent, and furnished with long bristles, which can only be seen by the aid of the microscope. It is worthy of remark, that some of these insects, soon after their existence had commenced, were found to be likely to extend their species. They were sometimes observed to go back to the fluid to feed, and occasionally they devoured each other. {187}

The reception of novelties in science must ever be regulated very much by the amount of kindred or relative phenomena which the public mind already possesses and acknowledges, to which the new can be assimilated. A novelty, however true, if there be no received truths with which it can be shewn in harmonious relation, has little chance of a favourable hearing. In fact, as has been often observed, there is a measure of incredulity from our ignorance as well as from our knowledge, and if the most distinguished philosopher three hundred years ago had ventured to develop any striking new fact which only could harmonize with the as yet unknown Copernican solar system, we cannot doubt that it would have been universally scoffed at in the scientific world, such as it then was, or at the best interpreted in a thousand wrong ways in conformity with ideas already familiar. The experiments above described, finding a public mind which had never discovered a fact or conceived an idea at all analogous, were of course ungraciously received. It was held to be impious, even to surmise that animals could have been formed through any instrumentality of an apparatus devised by human skill. The more likely account of the phenomena was said to be, that the insects were only developed from ova, resting either in the fluid, or in the wooden frame on which the experiments took place. On these objections the following remarks may be made. The supposition of impiety arises from an entire misconception of what is implied by an aboriginal creation of insects. The experimentalist could never be considered as the author of the existence of these creatures, except by the most unreasoning ignorance. The utmost that can be claimed for, or imputed to him is that he arranged the natural conditions under which the true creative energy—that of the Divine Author of all things—was pleased to work in that instance. On the hypothesis here brought forward, the acarus Crossii was a type of being ordained from the beginning, and destined to be realized under certain physical conditions. When a human hand brought these conditions into the proper arrangement, it did an act akin to hundreds of familiar ones which we execute every day, and which are followed by natural results; but it did nothing more. The production of the insect, if it did take place as assumed, was as clearly an act of the Almighty himself, as if he had fashioned it with hands. For the presumption that an act of aboriginal creation did take place, there is this to be said, that, in Mr. Weekes's experiment, every care that ingenuity could devise was taken to exclude the possibility of a development of the insects from ova. The wood of the frame was baked in a powerful heat; a bell-shaped glass covered the apparatus, and from this the atmosphere was excluded by the constantly rising fumes from the liquid, for the emission of which there was an aperture so arranged at the top of the glass, that only these fumes could pass. The water was distilled, and the substance of the silicate had been subjected to white heat. Thus every source of fallacy seemed to be shut up. In such circumstances, a candid mind, which sees nothing either impious or unphilosophical in the idea of a new creation, will be disposed to think that there is less difficulty in believing in such a creation having actually taken place, than in believing that, in two instances, separated in place and time, exactly the same insects should have chanced to arise from concealed ova, and these a species heretofore unknown.



HYPOTHESIS OF THE DEVELOPMENT OF THE VEGETABLE AND ANIMAL KINGDOMS.



It has been already intimated, as a general fact, that there is an obvious gradation amongst the families of both the vegetable and animal kingdoms, from the simple lichen and animalcule respectively up to the highest order of dicotyledonous trees and the mammalia. Confining our attention, in the meantime, to the animal kingdom—it does not appear that this gradation passes along one line, on which every form of animal life can be, as it were, strung; there may be branching or double lines at some places; or the whole may be in a circle composed of minor circles, as has been recently suggested. But still it is incontestable that there are general appearances of a scale beginning with the simple and advancing to the complicated. The animal kingdom was divided by Cuvier into four sub-kingdoms, or divisions, and these exhibit an unequivocal gradation in the order in which they are here enumerated:- Radiata, (polypes, &c.;) mollusca, (pulpy animals;) articulata, (jointed animals;) vertebrata, (animals with internal skeleton.) The gradation can, in like manner, be clearly traced in the CLASSES into which the sub-kingdoms are subdivided, as, for instance, when we take those of the vertebrata in this order—reptiles, fishes, birds, mammals.

While the external forms of all these various animals are so different, it is very remarkable that the whole are, after all, variations of a fundamental plan, which can be traced as a basis throughout the whole, the variations being merely modifications of that plan to suit the particular conditions in which each particular animal has been designed to live. Starting from the primeval germ, which, as we have seen, is the representative of a particular order of full-grown animals, we find all others to be merely advances from that type, with the extension of endowments and modification of forms which are required in each particular case; each form, also, retaining a strong affinity to that which precedes it, and tending to impress its own features on that which succeeds. This unity of structure, as it is called, becomes the more remarkable, when we observe that the organs, while preserving a resemblance, are often put to different uses. For example: the ribs become, in the serpent, organs of locomotion, and the snout is extended, in the elephant, into a prehensile instrument.

It is equally remarkable that analogous purposes are served in different animals by organs essentially different. Thus, the mammalia breathe by lungs; the fishes, by gills. These are not modifications of one organ, but distinct organs. In mammifers, the gills exist and act at an early stage of the foetal state, but afterwards go back and appear no more; while the lungs are developed. In fishes, again, the gills only are fully developed; while the lung structure either makes no advance at all, or only appears in the rudimentary form of an air-bladder. So, also, the baleen of the whale and the teeth of the land mammalia are different organs. The whale, in embryo, shews the rudiments of teeth; but these, not being wanted, are not developed, and the baleen is brought forward instead. The land animals, we may also be sure, have the rudiments of baleen in their organization. In many instances, a particular structure is found advanced to a certain point in a particular set of animals, (for instance, feet in the serpent tribe,) although it is not there required in any degree; but the peculiarity, being carried a little farther forward, is perhaps useful in the next set of animals in the scale. Such are called rudimentary organs. With this class of phenomena are to be ranked the useless mammae of the male human being, and the unrequired process of bone in the male opossum, which is needed in the female for supporting her pouch. Such curious features are most conspicuous in animals which form links between various classes.

As formerly stated, the marsupials, standing at the bottom of the mammalia, shew their affinity to the oviparous vertebrata, by the rudiments of two canals passing from near the anus to the external surfaces of the viscera, which are fully developed in fishes, being required by them for the respiration of aerated waters, but which are not needed by the atmosphere-breathing marsupials. We have also the peculiar form of the sternum and rib-bones of the lizards REPRESENTED in the mammalia in certain white cartilaginous lines traceable among their abdominal muscles. The struphionidae (birds of the ostrich type) form a link between birds and mammalia, and in them we find the wings imperfectly or not at all developed, a diaphragm and urinary sac, (organs wanting in other birds,) and feathers approaching the nature of hair. Again, the ornithorynchus belongs to a class at the bottom of the mammalia, and approximating to birds, and in it behold the bill and web-feet of that order!

For further illustration, it is obvious that, various as may be the lengths of the upper part of the vertebral column in the mammalia, it always consists of the same parts. The giraffe has in its tall neck the same number of bones with the pig, which scarcely appears to have a neck at all. {195} Man, again, has no tail; but the notion of a much-ridiculed philosopher of the last century is not altogether, as it happens, without foundation, for the bones of a caudal extremity exist in an undeveloped state in the os coccygis of the human subject. The limbs of all the vertebrate animals are, in like manner, on one plan, however various they may appear. In the hind- leg of a horse, for example, the angle called the hock is the same part which in us forms the heel; and the horse, and all other quadrupeds, with almost the solitary exception of the bear, walk, in reality, upon what answers to the toes of a human being. In this and many other quadrupeds the fore part of the extremities is shrunk up in a hoof, as the tail of the human being is shrunk up in the bony mass at the bottom of the back. The bat, on the other hand, has these parts largely developed. The membrane, commonly called its wing, is framed chiefly upon bones answering precisely to those of the human hand; its extinct congener, the pterodactyle, had the same membrane extended upon the fore-finger only, which in that animal was prolonged to an extraordinary extent. In the paddles of the whale and other animals of its order, we see the same bones as in the more highly developed extremities of the land mammifers; and even the serpent tribes, which present no external appearance of such extremities, possess them in reality, but in an undeveloped or rudimental state.

The same law of development presides over the vegetable kingdom. Amongst phanerogamous plants, a certain number of organs appear to be always present, either in a developed or rudimentary state; and those which are rudimentary can be developed by cultivation. The flowers which bear stamens on one stalk and pistils on another, can be caused to produce both, or to become perfect flowers, by having a sufficiency of nourishment supplied to them. So also, where a special function is required for particular circumstances, nature has provided for it, not by a new organ, but by a modification of a common one, which she has effected in development. Thus, for instance, some plants destined to live in arid situations, require to have a store of water which they may slowly absorb. The need is arranged for by a cup-like expansion round the stalk, in which water remains after a shower. Now the pitcher, as this is called, is not a new organ, but simply a metamorphose of a leaf.

These facts clearly shew how all the various organic forms of our world are bound up in one—how a fundamental unity pervades and embraces them all, collecting them, from the humblest lichen up to the highest mammifer, in one system, the whole creation of which must have depended upon one law or decree of the Almighty, though it did not all come forth at one time. After what we have seen, the idea of a separate exertion for each must appear totally inadmissible. The single fact of abortive or rudimentary organs condemns it; for these, on such a supposition, could be regarded in no other light than as blemishes or blunders—the thing of all others most irreconcilable with that idea of Almighty Perfection which a general view of nature so irresistibly conveys. On the other hand, when the organic creation is admitted to have been effected by a general law, we see nothing in these abortive parts but harmless peculiarities of development, and interesting evidences of the manner in which the Divine Author has been pleased to work.

We have yet to advert to the most interesting class of facts connected with the laws of organic development. It is only in recent times that physiologists have observed that each animal passes, in the course of its germinal history, through a series of changes resembling the PERMANENT FORMS of the various orders of animals inferior to it in the scale. Thus, for instance, an insect, standing at the head of the articulated animals, is, in the larva state, a true annelid, or worm, the annelida being the lowest in the same class. The embryo of a crab resembles the perfect animal of the inferior order myriapoda, and passes through all the forms of transition which characterize the intermediate tribes of crustacea. The frog, for some time after its birth, is a fish with external gills, and other organs fitting it for an aquatic life, all of which are changed as it advances to maturity, and becomes a land animal. The mammifer only passes through still more stages, according to its higher place in the scale. Nor is man himself exempt from this law. His first form is that which is permanent in the animalcule. His organization gradually passes through conditions generally resembling a fish, a reptile, a bird, and the lower mammalia, before it attains its specific maturity. At one of the last stages of his foetal career, he exhibits an intermaxillary bone, which is characteristic of the perfect ape; this is suppressed, and he may then be said to take leave of the simial type, and become a true human creature. Even, as we shall see, the varieties of his race are represented in the progressive development of an individual of the highest, before we see the adult Caucasian, the highest point yet attained in the animal scale.

To come to particular points of the organization. The brain of man, which exceeds that of all other animals in complexity of organization and fulness of development, is, at one early period, only "a simple fold of nervous matter, with difficulty distinguishable into three parts, while a little tail-like prolongation towards the hinder parts, and which had been the first to appear, is the only representation of a spinal marrow. Now, in this state it perfectly resembles the brain of an adult fish, thus assuming in transitu the form that in the fish is permanent. In a short time, however, the structure is become more complex, the parts more distinct, the spinal marrow better marked; it is now the brain of a reptile. The change continues; by a singular motion, certain parts (corpora quadragemina) which had hitherto appeared on the upper surface, now pass towards the lower; the former is their permanent situation in fishes and reptiles, the latter in birds and mammalia. This is another advance in the scale, but more remains yet to be done. The complication of the organ increases; cavities termed ventricles are formed, which do not exist in fishes, reptiles, or birds; curiously organized parts, such as the corpora striata, are added; it is now the brain of the mammalia. Its last and final change alone seems wanting, that which shall render it the brain of MAN." {201} And this change in time takes place.

So also with the heart. This organ, in the mammalia, consists of four cavities, but in the reptiles of only three, and in fishes of two only, while in the articulated animals it is merely a prolonged tube. Now in the mammal foetus, at a certain early stage, the organ has the form of a prolonged tube; and a human being may be said to have then the heart of an insect. Subsequently it is shortened and widened, and becomes divided by a contraction into two parts, a ventricle and an auricle; it is now the heart of a fish. A subdivision of the auricle afterwards makes a triple-chambered form, as in the heart of the reptile tribes; lastly, the ventricle being also subdivided, it becomes a full mammal heart.

Another illustration here presents itself with the force of the most powerful and interesting analogy. Some of the earliest fishes of our globe, those of the Old Red Sandstone, present, as we have seen, certain peculiarities, as the one-sided tail and an inferior position of the mouth. No fishes of the present day, in a mature state, are so characterized; but some, at a certain stage of their existence, have such peculiarities. It occurred to a geologist to inquire if the fish which existed before the Old Red Sandstone had any peculiarities assimilating them to the foetal condition of existing fish, and particularly if they were small. The first which occur before the time of the Old Red Sandstone, are those described by Mr. Murchison, as belonging to the Upper Ludlow Rocks; THEY ARE ALL RATHER SMALL. Still older are those detected by Mr. Philips, in the Aymestry Limestone, being the most ancient of the class which have as yet been discovered; THESE ARE SO EXTREMELY MINUTE AS ONLY TO BE DISTINGUISHABLE BY THE MICROSCOPE. Here we apparently have very clear demonstrations of a parity, or rather identity, of laws presiding over the development of the animated tribes on the face of the earth, and that of the individual in embryo.

The tendency of all these illustrations is to make us look to DEVELOPMENT as the principle which has been immediately concerned in the peopling of this globe, a process extending over a vast space of time, but which is nevertheless connected in character with the briefer process by which an individual being is evoked from a simple germ. What mystery is there here—and how shall I proceed to enunciate the conception which I have ventured to form of what may prove to be its proper solution! It is an idea by no means calculated to impress by its greatness, or to puzzle by its profoundness. It is an idea more marked by simplicity than perhaps any other of those which have explained the great secrets of nature. But in this lies, perhaps, one of its strongest claims to the faith of mankind.

The whole train of animated beings, from the simplest and oldest up to the highest and most recent, are, then, to be regarded as a series of ADVANCES OF THE PRINCIPLE OF DEVELOPMENT, which have depended upon external physical circumstances, to which the resulting animals are appropriate. I contemplate the whole phenomena as having been in the first place arranged in the counsels of Divine Wisdom, to take place, not only upon this sphere, but upon all the others in space, under necessary modifications, and as being carried on, from first to last, here and elsewhere, under immediate favour of the creative will or energy. {204} The nucleated vesicle, the fundamental form of all organization, we must regard as the meeting-point between the inorganic and the organic—the end of the mineral and beginning of the vegetable and animal kingdoms, which thence start in different directions, but in perfect parallelism and analogy. We have already seen that this nucleated vesicle is itself a type of mature and independent being in the infusory animalcules, as well as the starting point of the foetal progress of every higher individual in creation, both animal and vegetable. We have seen that it is a form of being which electric agency will produce—though not perhaps usher into full life—in albumen, one of those compound elements of animal bodies, of which another (urea) has been made by artificial means. Remembering these things, we are drawn on to the supposition, that the first step in the creation of life upon this planet was A CHEMICO-ELECTRIC OPERATION, BY WHICH SIMPLE GERMINAL VESICLES WERE PRODUCED. This is so much, but what were the next steps? Let a common vegetable infusion help us to an answer. There, as we have seen, simple forms are produced at first, but afterwards they become more complicated, until at length the life-producing powers of the infusion are exhausted. Are we to presume that, in this case, the simple engender the complicated? Undoubtedly, this would not be more wonderful as a natural process than one which we never think of wondering at, because familiar to us—namely, that in the gestation of the mammals, the animalcule-like ovum of a few days is the parent, in a sense, of the chick-like form of a few weeks, and that in all the subsequent stages—fish, reptile, &c.—the one may, with scarcely a metaphor, be said to be the progenitor of the other. I suggest, then, as an hypothesis already countenanced by much that is ascertained, and likely to be further sanctioned by much that remains to be known, that the first step was AN ADVANCE UNDER FAVOUR OF PECULIAR CONDITIONS, FROM THE SIMPLEST FORMS OF BEING, TO THE NEXT MORE COMPLICATED, AND THIS THROUGH THE MEDIUM OF THE ORDINARY PROCESS OF GENERATION.

Unquestionably, what we ordinarily see of nature is calculated to impress a conviction that each species invariably produces its like. But I would here call attention to a remarkable illustration of natural law which has been brought forward by Mr. Babbage, in his Ninth Bridgewater Treatise. The reader is requested to suppose himself seated before the calculating machine, and observing it. It is moved by a weight, and there is a wheel which revolves through a small angle round its axis, at short intervals, presenting to his eye successively, a series of numbers engraved on its divided circumference.

Let the figures thus seen be the series, 1, 2, 3, 4, 5, &c., of natural numbers, each of which exceeds its immediate antecedent by unity.

"Now, reader," says Mr. Babbage, "let me ask you how long you will have counted before you are firmly convinced that the engine has been so adjusted, that it will continue, while its motion is maintained, to produce the same series of natural numbers? Some minds are so constituted, that, after passing the first hundred terms, they will be satisfied that they are acquainted with the law. After seeing five hundred terms few will doubt, and after the fifty thousandth term the propensity to believe that the succeeding term will be fifty thousand and one, will be almost irresistible. That term WILL be fifty thousand and one; and the same regular succession will continue; the five millionth and the fifty millionth term will still appear in their expected order, and one unbroken chain of natural numbers will pass before your eyes, from ONE up to ONE HUNDRED MILLION.

"True to the vast induction which has been made, the next succeeding term will be one hundred million and one; but the next number presented by the rim of the wheel, instead of being one hundred million and two, is one hundred million TEN THOUSAND and two. The whole series from the commencement being thus, -

1 2 3 4 5 . . . . . . 99,999,999 100,000,000 regularly as far as 100,000,001 100,010,002 the law changes. 100,030,003 100,060,004 100,100,005 100,150,006 100,210,007 100,280,008 . . . . . . . . .

"The law which seemed at first to govern this series failed at the hundred million and second term. This term is larger than we expected by 10,000. The next term is larger than was anticipated by 30,000, and the excess of each term above what we had expected forms the following table:-

10,000 30,000 60,000 100,000 150,000 . . . . . .

being, in fact, the series of TRIANGULAR NUMBERS, {208} each multiplied by 10,000.

"If we now continue to observe the numbers presented by the wheel, we shall find, that for a hundred, or even for a thousand terms, they continue to follow the new law relating to the triangular numbers; but after watching them for 2761 terms, we find that this law fails in the case of the 2762d term.

"If we continue to observe, we shall discover another law then coming into action, which also is dependent, but in a different manner, on triangular numbers. This will continue through about 1430 terms, when a new law is again introduced which extends over about 950 terms, and this, too, like all its predecessors, fails, and gives place to other laws, which appear at different intervals.

"Now it must be observed that THE LAW THAT EACH NUMBER PRESENTED BY THE ENGINE IS GREATER BY UNITY THAN THE PRECEDING NUMBER, which law the observer had deduced from an induction of a hundred million instances, WAS NOT THE TRUE LAW THAT REGULATED ITS ACTION, and that the occurrence of the number 100,010,002 at the 100,000,002nd term was AS NECESSARY A CONSEQUENCE OF THE ORIGINAL ADJUSTMENT, AND MIGHT HAVE BEEN AS FULLY FOREKNOWN AT THE COMMENCEMENT, AS WAS THE REGULAR SUCCESSION OF ANY ONE OF THE INTERMEDIATE NUMBERS TO ITS IMMEDIATE ANTECEDENT. The same remark applies to the next apparent deviation from the new law, which was founded on an induction of 2761 terms, and also to the succeeding law, with this limitation only—that, whilst their consecutive introduction at various definite intervals, is a necessary consequence of the mechanical structure of the engine, our knowledge of analysis does not enable us to predict the periods themselves at which the more distant laws will be introduced."

It is not difficult to apply the philosophy of this passage to the question under consideration. It must be borne in mind that the gestation of a single organism is the work of but a few days, weeks, or months; but the gestation (so to speak) of a whole creation is a matter probably involving enormous spaces of time. Suppose that an ephemeron, hovering over a pool for its one April day of life, were capable of observing the fry of the frog in the water below. In its aged afternoon, having seen no change upon them for such a long time, it would be little qualified to conceive that the external branchiae of these creatures were to decay, and be replaced by internal lungs, that feet were to be developed, the tail erased, and the animal then to become a denizen of the land. Precisely such may be our difficulty in conceiving that any of the species which people our earth is capable of advancing by generation to a higher type of being. During the whole time which we call the historical era, the limits of species have been, to ordinary observation, rigidly adhered to. But the historical era is, we know, only a small portion of the entire age of our globe. We do not know what may have happened during the ages which preceded its commencement, as we do not know what may happen in ages yet in the distant future. All, therefore, that we can properly infer from the apparently invariable production of like by like is, that such is the ordinary procedure of nature in the time immediately passing before our eyes. Mr. Babbage's illustration powerfully suggests that this ordinary procedure may be subordinate to a higher law which only PERMITS it for a time, and in proper season interrupts and changes it. We shall soon see some philosophical evidence for this very conclusion.

It has been seen that, in the reproduction of the higher animals, the new being passes through stages in which it is successively fish-like and reptile-like. But the resemblance is not to the adult fish or the adult reptile, but to the fish and reptile at a certain point in their foetal progress; this holds true with regard to the vascular, nervous, and other systems alike. It may be illustrated by a simple diagram. The foetus of all the four classes may be supposed to advance in an identical condition to the point A.

M B / D + R / C + F / A +

The fish there diverges and passes along a line apart, and peculiar to A itself, to its mature state at F. The reptile, bird, and mammal, go on together to C, where the reptile diverges in like manner, and advances by itself to R. The bird diverges at D, and goes on to B. The mammal then goes forward in a straight line to the highest point of organization at M. This diagram shews only the main ramifications; but the reader must suppose minor ones, representing the subordinate differences of orders, tribes, families, genera, &c., if he wishes to extend his views to the whole varieties of being in the animal kingdom. Limiting ourselves at present to the outline afforded by this diagram, it is apparent that the only thing required for an advance from one type to another in the generative process is that, for example, the fish embryo should not diverge at A, but go on to C before it diverges, in which case the progeny will be, not a fish, but a reptile. To protract the STRAIGHTFORWARD PART OF THE GESTATION OVER A SMALL SPACE—and from species to species the space would be small indeed—is all that is necessary.

This might be done by the force of certain external conditions operating upon the parturient system. The nature of these conditions we can only conjecture, for their operation, which in the geological eras was so powerful, has in its main strength been long interrupted, and is now perhaps only allowed to work in some of the lowest departments of the organic world, or under extraordinary casualties in some of the higher, and to these points the attention of science has as yet been little directed. But though this knowledge were never to be clearly attained, it need not much affect the present argument, provided it be satisfactorily shewn that there must be some such influence within the range of natural things.

To this conclusion it must be greatly conducive that the law of organic development is still daily seen at work to certain effects, only somewhat short of a transition from species to species. Sex we have seen to be a matter of development. There is an instance, in a humble department of the animal world, of arrangements being made by the animals themselves for adjusting this law to the production of a particular sex. Amongst bees, as amongst several other insect tribes, there is in each community but one true female, the queen bee, the workers being false females or neuters; that is to say, sex is carried on in them to a point where it is attended by sterility. The preparatory states of the queen bee occupy sixteen days; those of the neuters, twenty; and those of males, twenty-four. Now it is a fact, settled by innumerable observations and experiments, that the bees can so modify a worker in the larva state, that, when it emerges from the pupa, it is found to be a queen or true female. For this purpose they enlarge its cell, make a pyramidal hollow to allow of its assuming a vertical instead of a horizontal position, keep it warmer than other larvae are kept, and feed it with a peculiar kind of food. From these simple circumstances, leading to a shortening of the embryotic condition, results a creature different in form, and also in dispositions, from what would have otherwise been produced. Some of the organs possessed by the worker are here altogether wanting. We have a creature "destined to enjoy love, to burn with jealousy and anger, to be incited to vengeance, and to pass her time without labour," instead of one "zealous for the good of the community, a defender of the public rights, enjoying an immunity from the stimulus of sexual appetite and the pains of parturition; laborious, industrious, patient, ingenious, skilful; incessantly engaged in the nurture of the young, in collecting honey and pollen, in elaborating wax, in constructing cells and the like!—paying the most respectful and assiduous attention to objects which, had its ovaries been developed, it would have hated and pursued with the most vindictive fury till it had destroyed them!" {215} All these changes may be produced by a mere modification of the embryotic progress, which it is within the power of the adult animals to effect. But it is important to observe that this modification is different from working a direct change upon the embryo. It is not the different food which effects a metamorphosis. All that is done is merely to accelerate the period of the insect's perfection. By the arrangements made and the food given, the embryo becomes sooner fit for being ushered forth in its imago or perfect state. Development may be said to be thus arrested at a particular stage—that early one at which the female sex is complete. In the other circumstances, it is allowed to go on four days longer, and a stage is then reached between the two sexes, which in this species is designed to be the perfect condition of a large portion of the community. Four days more make it a perfect male. It is at the same time to be observed that there is, from the period of oviposition, a destined distinction between the sexes of the young bees. The queen lays the whole of the eggs which are designed to become workers, before she begins to lay those which become males. But probably the condition of her reproductive system governs the matter of sex, for it is remarked that when her impregnation is delayed beyond the twenty-eighth day of her entire existence, she lays only eggs which become males.

We have here, it will be admitted, a most remarkable illustration of the principle of development, although in an operation limited to the production of sex only. Let it not be said that the phenomena concerned in the generation of bees may be very different from those concerned in the reproduction of the higher animals. There is a unity throughout nature which makes the one case an instructive reflection of the other.

We shall now see an instance of development operating within the production of what approaches to the character of variety of species. It is fully established that a human family, tribe, or nation, is liable, in the course of generations, to be either advanced from a mean form to a higher one, or degraded from a higher to a lower, by the influence of the physical conditions in which it lives. The coarse features, and other structural peculiarities of the negro race only continue while these people live amidst the circumstances usually associated with barbarism. In a more temperate clime, and higher social state, the face and figure become greatly refined. The few African nations which possess any civilization also exhibit forms approaching the European; and when the same people in the United States of America have enjoyed a within-door life for several generations, they assimilate to the whites amongst whom they live. On the other hand, there are authentic instances of a people originally well-formed and good-looking, being brought, by imperfect diet and a variety of physical hardships, to a meaner form. It is remarkable that prominence of the jaws, a recession and diminution of the cranium, and an elongation and attenuation of the limbs, are peculiarities always produced by these miserable conditions, for they indicate an unequivocal retrogression towards the type of the lower animals. Thus we see nature alike willing to go back and to go forward. Both effects are simply the result of the operation of the law of development in the generative system. Give good conditions, it advances; bad ones, it recedes. Now, perhaps, it is only because there is no longer a possibility, in the higher types of being, of giving sufficiently favourable conditions to carry on species to species, that we see the operation of the law so far limited.

Let us trace this law also in the production of certain classes of monstrosities. A human foetus is often left with one of the most important parts of its frame imperfectly developed: the heart, for instance, goes no farther than the three-chambered form, so that it is the heart of a reptile. There are even instances of this organ being left in the two-chambered or fish form. Such defects are the result of nothing more than a failure of the power of development in the system of the mother, occasioned by weak health or misery. Here we have apparently a realization of the converse of those conditions which carry on species to species, so far, at least, as one organ is concerned. Seeing a complete specific retrogression in this one point, how easy it is to imagine an access of favourable conditions sufficient to reverse the phenomenon, and make a fish mother develop a reptile heart, or a reptile mother develop a mammal one. It is no great boldness to surmise that a super-adequacy in the measure of this under-adequacy (and the one thing seems as natural an occurrence as the other) would suffice in a goose to give its progeny the body of a rat, and produce the ornithorynchus, or might give the progeny of an ornithorynchus the mouth and feet of a true rodent, and thus complete at two stages the passage from the aves to the mammalia.

Perhaps even the transition from species to species does still take place in some of the obscurer fields of creation, or under extraordinary casualties, though science professes to have no such facts on record. It is here to be remarked, that such facts might often happen, and yet no record be taken of them, for so strong is the prepossession for the doctrine of invariable like-production, that such circumstances, on occurring, would be almost sure to be explained away on some other supposition, or, if presented, would be disbelieved and neglected. Science, therefore, has no such facts, for the very same reason that some small sects are said to have no discreditable members—namely, that they do not receive such persons, and extrude all who begin to verge upon the character. There are, nevertheless, some facts which have chanced to be reported without any reference to this hypothesis, and which it seems extremely difficult to explain satisfactorily upon any other. One of these has already been mentioned—a progression in the forms of the animalcules in a vegetable infusion from the simpler to the more complicated, a sort of microcosm, representing the whole history of the progress of animal creation as displayed by geology. Another is given in the history of the Acarus Crossii, which may be only the ultimate stage of a series of similar transformations effected by electric agency in the solution subjected to it. There is, however, one direct case of a translation of species, which has been presented with a respectable amount of authority. {221} It appears that, whenever oats sown at the usual time are kept cropped down during summer and autumn, and allowed to remain over the winter, a thin crop of rye is the harvest presented at the close of the ensuing summer. This experiment has been tried repeatedly, with but one result; invariably the secale cereale is the crop reaped where the avena sativa, a recognised different species, was sown. Now it will not satisfy a strict inquirer to be told that the seeds of the rye were latent in the ground and only superseded the dead product of the oats; for if any such fact were in the case, why should the usurping grain be always rye? Perhaps those curious facts which have been stated with regard to forests of one kind of trees, when burnt down, being succeeded (without planting) by other kinds, may yet be found most explicable, as this is, upon the hypothesis of a progression of species which takes place under certain favouring conditions, now apparently of comparatively rare occurrence. The case of the oats is the more valuable, as bearing upon the suggestion as to a protraction of the gestation at a particular part of its course. Here, the generative process is, by the simple mode of cropping down, kept up for a whole year beyond its usual term. The type is thus allowed to advance, and what was oats becomes rye.

The idea, then, which I form of the progress of organic life upon the globe—and the hypothesis is applicable to all similar theatres of vital being—is, THAT THE SIMPLEST AND MOST PRIMITIVE TYPE, UNDER A LAW TO WHICH THAT OF LIKE-PRODUCTION IS SUBORDINATE, GAVE BIRTH TO THE TYPE NEXT ABOVE IT, THAT THIS AGAIN PRODUCED THE NEXT HIGHER, AND SO ON TO THE VERY HIGHEST, the stages of advance being in all cases very small—namely, from one species only to another; so that the phenomenon has always been of a simple and modest character. Whether the whole of any species was at once translated forward, or only a few parents were employed to give birth to the new type, must remain undetermined; but, supposing that the former was the case, we must presume that the moves along the line or lines were simultaneous, so that the place vacated by one species was immediately taken by the next in succession, and so on back to the first, for the supply of which the formation of a new germinal vesicle out of inorganic matter was alone necessary. Thus, the production of new forms, as shewn in the pages of the geological record, has never been anything more than a new stage of progress in gestation, an event as simply natural, and attended as little by any circumstances of a wonderful or startling kind, as the silent advance of an ordinary mother from one week to another of her pregnancy. Yet, be it remembered, the whole phenomena are, in another point of view, wonders of the highest kind, for in each of them we have to trace the effect of an Almighty Will which had arranged the whole in such harmony with external physical circumstances, that both were developed in parallel steps—and probably this development upon our planet is but a sample of what has taken place, through the same cause, in all the other countless theatres of being which are suspended in space.

This may be the proper place at which to introduce the preceding illustrations in a form calculated to bring them more forcibly before the mind of the reader. The following table was suggested to me, in consequence of seeing the scale of animated nature presented in Dr. Fletcher's Rudiments of Physiology. Taking that scale as its basis, it shews the wonderful parity observed in the progress of creation, as presented to our observation in the succession of fossils, and also in the foetal progress of one of the principal human organs. {224} This scale, it may be remarked, was not made up with a view to support such an hypothesis as the present, nor with any apparent regard to the history of fossils, but merely to express the appearance of advancement in the orders of the Cuvierian system, assuming, as the criterion of that advancement, "an increase in the number and extent of the manifestations of life, or of the relations which an organized being bears to the external world." Excepting in the relative situation of the annelida and a few of the mammal orders, the parity is perfect; nor may even these small discrepancies appear when the order of fossils shall have been further investigated, or a more correct scale shall have been formed. Meanwhile, it is a wonderful evidence in favour of our hypothesis, that a scale formed so arbitrarily should coincide to such a nearness with our present knowledge of the succession of animal forms upon earth, and also that both of these series should harmonize so well with the view given by modern physiologists of the embryotic progress of one of the organs of the highest order of animals.

TABLE {226}

Table shows: scale of animal kingdom (the numbers indicate orders); order of animals in; ascending series of rocks; foetal human brain resembles, in

(The numbers indicate orders)

Rocks: 1. Gneiss and Mica Slate system Foetal: 1st month, that of an avertebrated animal;

Scale: RADIATA (1, 2, 3, 4, 5) Order: Zoophyta, Polypiaria Rocks: 2. Clay Slate and Grawacke system Foetal: 1st month, that of an avertebrated animal;

Scale: MOLLUSCA (6, 7, 8, 9, 10, 11) Order: Conchifera, Double-shelled Mollusks Rocks: 3. Silurian system Foetal: 1st month, that of an avertebrated animal;

Scale: ARTICULATA Annelida (12, 13, 14) Rocks: 3. Silurian system Foetal: 1st month, that of an avertebrated animal;

Scale: ARTICULATA Crustacea (15, 16, 17, 18, 19, 20) Order: Crustacea, Annelida, Crustaceous Fishes Rocks: 3. Silurian system Foetal: 1st month, that of an avertebrated animal;

Scale: ARTICULATA Arachnida & Insecta (21-31) Order: Crustaceous Fishes Rocks: 4. Old Red Sandstone Foetal: 1st month, that of an avertebrated animal;

Scale: VERTEBRATA Pisces (32, 33, 34, 35, 36) Order: True Fishes Rocks: 5. Carboniferous formation Foetal: 2nd month, that of a fish;

Scale: VERTEBRATA Reptilia (37, 38, 39, 40) Order: Piscine Saurians (ichthyosaurus, &c.), Pterodactyles, Crocodiles, Tortoises, Batrachians Rocks: 6. New Red Sandstone Foetal: 3rd month, that of a turtle;

Scale: VERTEBRATA Aves (41, 42, 43, 44, 45, 46) Order: Birds Rocks: 6. New Red Sandstone Foetal: 4th month, that of a bird;

Scale: VERTEBRATA Mammalia: 47 Cetacea Order: (Bone of a marsupial animal) Rocks: 7. Oolite

Scale: VERTEBRATA Mammalia: 48 Ruminantia Order: (Bone of a marsupial animal) Rocks: 8. Cretaceous formation

Scale: VERTEBRATA Mammalia: 49 Pachydermata Order: Pachydermata (tapirs, horses, &c.) Rocks: 9. Lower Eocene

Scale: VERTEBRATA Mammalia: 50 Edentata Order: Pachydermata (tapirs, horses, &c.) Rocks: 9. Lower Eocene

Scale: VERTEBRATA Mammalia: 51 Rodentia Order: Rodentia (dormouse, squirrel, &c.) Rocks: 9. Lower Eocene Foetal: 5th month, that of a rodent;

Scale: VERTEBRATA Mammalia: 52 Marsupialia Order: Marsupialia (racoon, opossum, &c.) Rocks: 9. Lower Eocene Foetal: 6th month, that of a ruminant;

Scale: VERTEBRATA Mammalia: 53 Amphibia Order: Marsupialia (racoon, opossum, &c.) Rocks: 9. Lower Eocene Foetal: 6th month, that of a ruminant;

Scale: VERTEBRATA Mammalia: 54 Digitigrada Order: Digitigrada (genette, fox, wolf, &c.) Rocks: 10. Miocene Foetal: 7th month, that of a digitigrade animal;

Scale: VERTEBRATA Mammalia: 55 Plantigrada Order: Plantigrada (bear) Rocks: 10. Miocene

Scale: VERTEBRATA Mammalia: 55 Plantigrada Order: Cetacea (lamantins, seals, whales) Rocks: 10. Miocene

Scale: VERTEBRATA Mammalia: 56 Insectivora Order: Edentata (sloths, &c.) Rocks: 11. Pliocene

Scale: VERTEBRATA Mammalia: 56 Insectivora Order: Ruminantia (oxen, deer, &c.) Rocks: 11. Pliocene

Scale: VERTEBRATA Mammalia: 57 Cheiroptera Rocks: 11. Pliocene

Scale: VERTEBRATA Mammalia: 58 Quadrumana Order: Quadrumana (monkeys) Rocks: 11. Pliocene Foetal: 8th month, that of the quadrumana;

Scale: VERTEBRATA Mammalia: 59 Bimana Order: Bimana (man) Rocks: 12. Superficial deposits Foetal: 9th month, attains full human character;

The reader has seen physical conditions several times referred to, as to be presumed to have in some way governed the progress of the development of the zoological circle. This language may seem vague, and, it may be asked,—can any particular physical condition be adduced as likely to have affected development? To this it may be answered, that air and light are probably amongst the principal agencies of this kind which operated in educing the various forms of being. Light is found to be essential to the development of the individual embryo. When tadpoles were placed in a perforated box, and that box sunk in the Seine, light being the only condition thus abstracted, they grew to a great size in their original form, but did not pass through the usual metamorphose which brings them to their mature state as frogs. The proteus, an animal of the frog kind, inhabiting the subterraneous waters of Carniola, and which never acquires perfect lungs so as to become a land animal, is presumed to be an example of arrested development, from the same cause. When, in connexion with these facts, we learn that human mothers living in dark and close cells under ground,—that is to say, with an inadequate provision of air and light,—are found to produce an unusual proportion of defective children, {229} we can appreciate the important effects of both these physical conditions in ordinary reproduction. Now there is nothing to forbid the supposition that the earth has been at different stages of its career under different conditions, as to both air and light. On the contrary, we have seen reason for supposing that the proportion of carbonic acid gas (the element fatal to animal life) was larger at the time of the carboniferous formation than it afterwards became. We have also seen that astronomers regard the zodiacal light as a residuum of matter enveloping the sun, and which was probably at one time denser than it is now. Here we have the indications of causes for a progress in the purification of the atmosphere and in the diffusion of light during the earlier ages of the earth's history, with which the progress of organic life may have been conformable. An accession to the proportion of oxygen, and the effulgence of the central luminary, may have been the immediate prompting cause of all those advances from species to species which we have seen, upon other grounds, to be necessarily supposed as having taken place. And causes of the like nature may well be supposed to operate on other spheres of being, as well as on this. I do not indeed present these ideas as furnishing the true explanation of the progress of organic creation; they are merely thrown out as hints towards the formation of a just hypothesis, the completion of which is only to be looked for when some considerable advances shall have been made in the amount and character of our stock of knowledge.

Early in this century, M. Lamarck, a naturalist of the highest character, suggested an hypothesis of organic progress which deservedly incurred much ridicule, although it contained a glimmer of the truth. He surmised, and endeavoured, with a great deal of ingenuity, to prove, that one being advanced in the course of generations to another, in consequence merely of its experience of wants calling for the exercise of its faculties in a particular direction, by which exercise new developments of organs took place, ending in variations sufficient to constitute a new species. Thus he thought that a bird would be driven by necessity to seek its food in the water, and that, in its efforts to swim, the outstretching of its claws would lead to the expansion of the intermediate membranes, and it would thus become web-footed. Now it is possible that wants and the exercise of faculties have entered in some manner into the production of the phenomena which we have been considering; but certainly not in the way suggested by Lamarck, whose whole notion is obviously so inadequate to account for the rise of the organic kingdoms, that we only can place it with pity among the follies of the wise. Had the laws of organic development been known in his time, his theory might have been of a more imposing kind. It is upon these that the present hypothesis is mainly founded. I take existing natural means, and shew them to have been capable of producing all the existing organisms, with the simple and easily conceivable aid of a higher generative law, which we perhaps still see operating upon a limited scale. I also go beyond the French philosopher to a very important point, the original Divine conception of all the forms of being which these natural laws were only instruments in working out and realizing. The actuality of such a conception I hold to be strikingly demonstrated by the discoveries of Macleay, Vigors, and Swainson, with respect to the affinities and analogies of animal (and by implication vegetable) organisms. {232} Such a regularity in the STRUCTURE, as we may call it, of the CLASSIFICATION OF ANIMALS, as is shewn in their systems, is totally irreconcilable with the idea of form going on to form merely as needs and wishes in the animals themselves dictated. Had such been the case, all would have been irregular, as things arbitrary necessarily are. But, lo, the whole plan of being is as symmetrical as the plan of a house, or the laying out of an old-fashioned garden! This must needs have been devised and arranged for beforehand. And what a preconception or forethought have we here! Let us only for a moment consider how various are the external physical conditions in which animals live—climate, soil, temperature, land, water, air—the peculiarities of food, and the various ways in which it is to be sought; the peculiar circumstances in which the business of reproduction and the care-taking of the young are to be attended to—all these required to be taken into account, and thousands of animals were to be formed suitable in organization and mental character for the concerns they were to have with these various conditions and circumstances—here a tooth fitted for crushing nuts; there a claw fitted to serve as a hook for suspension; here to repress teeth and develop a bony net-work instead; there to arrange for a bronchial apparatus, to last only for a certain brief time; and all these animals were to be schemed out, each as a part of a great range, which was on the whole to be rigidly regular: let us, I say, only consider these things, and we shall see that the decreeing of laws to bring the whole about was an act involving such a degree of wisdom and device as we only can attribute, adoringly, to the one Eternal and Unchangeable. It may be asked, how does this reflection comport with that timid philosophy which would have us to draw back from the investigation of God's works, lest the knowledge of them should make us undervalue his greatness and forget his paternal character? Does it not rather appear that our ideas of the Deity can only be worthy of him in the ratio in which we advance in a knowledge of his works and ways; and that the acquisition of this knowledge is consequently an available means of our growing in a genuine reverence for him!

But the idea that any of the lower animals have been concerned in any way with the origin of man—is not this degrading? Degrading is a term, expressive of a notion of the human mind, and the human mind is liable to prejudices which prevent its notions from being invariably correct. Were we acquainted for the first time with the circumstances attending the production of an individual of our race, we might equally think them degrading, and be eager to deny them, and exclude them from the admitted truths of nature. Knowing this fact familiarly and beyond contradiction, a healthy and natural mind finds no difficulty in regarding it complacently. Creative Providence has been pleased to order that it should be so, and it must therefore be submitted to. Now the idea as to the progress of organic creation, if we become satisfied of its truth, ought to be received precisely in this spirit. It has pleased Providence to arrange that one species should give birth to another, until the second highest gave birth to man, who is the very highest: be it so, it is our part to admire and to submit. The very faintest notion of there being anything ridiculous or degrading in the theory—how absurd does it appear, when we remember that every individual amongst us actually passes through the characters of the insect, the fish, and reptile, (to speak nothing of others,) before he is permitted to breathe the breath of life! But such notions are mere emanations of false pride and ignorant prejudice. He who conceives them little reflects that they, in reality, involve the principle of a contempt for the works and ways of God. For it may be asked, if He, as appears, has chosen to employ inferior organisms as a generative medium for the production of higher ones, even including ourselves, what right have we, his humble creatures, to find fault? There is, also, in this prejudice, an element of unkindliness towards the lower animals, which is utterly out of place. These creatures are all of them part products of the Almighty Conception, as well as ourselves. All of them display wondrous evidences of his wisdom and benevolence. All of them have had assigned to them by their Great Father a part in the drama of the organic world, as well as ourselves. Why should they be held in such contempt? Let us regard them in a proper spirit, as parts of the grand plan, instead of contemplating them in the light of frivolous prejudices, and we shall be altogether at a loss to see how there should be any degradation in the idea of our race having been genealogically connected with them.



MACLEAY SYSTEM OF ANIMATED NATURE. THIS SYSTEM CONSIDERED IN CONNEXION WITH THE PROGRESS OF ORGANIC CREATION, AND AS INDICATING THE NATURAL STATUS OF MAN.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse