|
[Transcriber's Note: All footnotes are grouped at the end of the file. Those that include non-bibliographic information are also shown after their referring paragraph.]
* * * * *
AMERICAN SOCIETY OF CIVIL ENGINEERS Instituted 1852
TRANSACTIONS
Paper No. 1171
FEDERAL INVESTIGATIONS OF MINE ACCIDENTS, STRUCTURAL MATERIALS, AND FUELS.[1]
By HERBERT M. WILSON, M. Am. Soc. C. E.
With Discussion by Messrs. KENNETH ALLEN, HENRY KREISINGER, WALTER O. SNELLING, A. BARTOCCINI, H. G. STOTT, B. W. DUNN, and HERBERT M. WILSON.
INTRODUCTION.
The mine disaster, which occurred at Cherry, Ill., on November 13th, 1909, when 527 men were in the mine, resulting in the entombment of 330 men, of whom 310 were killed, has again focused public attention on the frequent recurrence of such disasters and their appalling consequences. Interest in the possible prevention of such disasters, and the possible means of combating subsequent mine fires and rescuing the imprisoned miners, has been heightened as it was not even by the series of three equally extensive disasters which occurred in 1907, for the reason that, after the Cherry disaster, 20 men were rescued alive after an entombment of one week, when practically all hope of rescuing any of the miners had been abandoned.
This accident, occurring, as it does, a little more than 1 years after the enactment of legislation by Congress instructing the Director of the United States Geological Survey to investigate the causes and possible means of preventing the loss of life in coal-mining operations, makes this an opportune time to review what has been done by the Geological Survey during this time, toward carrying out the intent of this Act.
It may be stated with confidence, that had such a disaster occurred a year or more ago, all the entombed men must have perished, as it would have been impossible to enter the mine without the protection afforded by artificial respiratory apparatus. Moreover, but for the presence of the skilled corps of Government engineers, experienced by more than a year's training in similar operations in more than twenty disasters, the mine would have been sealed until the fire had burned out, and neither the dead, nor those who were found alive, would have been recovered for many weeks. In the interval great suffering and loss would have been inflicted on the miners, because of enforced idleness, and on the mine owners because of continued inability to re-open and resume operations.
Character of the Work.—The United States Geological Survey has been engaged continuously since 1904 in conducting investigations relating to structural materials, such as stone, clay, cement, etc., and in making tests and analyses of the coals, lignites, and other mineral fuel substances, belonging to, and for the use of, the Government.
Incidentally, the Survey has been considering means to increase efficiency in the use of these resources as fuels and structural materials, in the hope that the investigations will lead to their best utilization.
These inquiries attracted attention to the waste of human life incident to the mining of fuel and its preparation for the market, with the result that, in May, 1908, provision was made by Congress for investigations into the causes of mine explosions with a view to their prevention.
Statistics collected by the Geological Survey show that the average death rate in the coal mines of the United States from accidents of all kinds, including gas and dust explosions, falls of roof, powder explosions, etc., is three times that of France, Belgium, or Germany. On the other hand, in no country in the world are natural conditions so favorable for the safe extraction of coal as in the United States. In Belgium, foremost in the study of mining conditions, a constant reduction in the death rate has been secured, and from a rate once nearly as great as that of the United States, namely, 3.28 per thousand, in the period 1851-60, it had been reduced to about 2 per thousand in the period 1881-90; and in the last decade this has been further reduced to nearly 1 per thousand. It seems certain, from the investigations already made by the Geological Survey, that better means of safeguarding the lives of miners will be found, and that the death rate from mine accidents will soon show a marked reduction.
Other statistics collected by the Geological Survey show that, to the close of 1907, nearly 7,000,000,000 tons of coal had been mined in the United States, and it is estimated that for every ton mined nearly a ton has been wasted, 3,500,000,000 tons being left in the ground or thrown on the dump as of a grade too low for commercial use. To the close of 1907 the production represents an exhaustion of somewhat more than 10,000,000,000 tons of coal. It has been estimated that if the production continues to increase, from the present annual output of approximately 415,000,000 tons, at the rate which has prevailed during the last fifty years, the greater part of the more accessible coal supply will be exhausted before the middle of the next century.
The Forest Service estimates that, at the present rate of consumption, renewals of growth not being taken into account, the timber supply will be exhausted within the next quarter of a century. It is desirable, therefore, that all information possible be gained regarding the most suitable substitutes for wood for building and engineering construction, such as iron, stone, clay products, concrete, etc., and that the minimum proportion in which these materials should be used for a given purpose, be ascertained. Exhaustion, by use in engineering and building construction, applies not only to the iron ore, clay, and cement-making materials, but, in larger ratio, to the fuel essential to rendering these substances available for materials of construction. Incidentally, investigations into the waste of structural materials have developed the fact that the destructive losses, due to fires in combustible buildings, amount to more than $200,000,000 per annum. A sum even greater than this is annually expended on fire protection. Inquiries looking to the reduction of fire losses are being conducted in order to ascertain the most suitable fire-resisting materials for building construction.
Early in 1904, during the Louisiana Purchase Exposition, Congress made provision for tests, demonstrations, and investigations concerning the fuels and structural materials of the United States. These investigations were organized subsequently as the Technologic Branch of the United States Geological Survey, under Mr. Joseph A. Holmes, Expert in Charge, and the President of the United States invited a group of civilian engineers and Chiefs of Engineering Bureaus of the Government to act as a National Advisory Board concerning the method of conducting this work, with a view to making it of more immediate benefit to the Government and to the people of the United States. This Society is formally represented on this Board by C. C. Schneider, Past-President, Am. Soc. C. E., and George S. Webster, M. Am. Soc. C. E. Among representatives of other engineering societies, or of Government Bureaus, the membership of the National Advisory Board includes other members of this Society, as follows: General William Crozier, Frank T. Chambers, Professor W. K. Hatt, Richard L. Humphrey, Robert W. Hunt, H. G. Kelley, Robert W. Lesley, John B. Lober, Hunter McDonald, and Frederick H. Newell.
In view, therefore, of the important part taken both officially and unofficially by members of this Society in the planning and organization of this work, it seems proper to present a statement of the scope, methods, and progress of these investigations. Whereas the Act governing this work limits the testing and investigation of fuels and of structural materials to those belonging to the United States, the activities of the Federal Government in the use of these materials so far exceeds that of any other single concern in the United States, that the results cannot but be of great value to all engineers and to all those engaged in engineering works.
MINE ACCIDENTS INVESTIGATIONS.
Organization, and Character of the Work.—The mine rescue investigations, carried on at the Federal testing station, at Pittsburg, Pa., include five lines of attack:
1.—Investigations in the mines to determine the conditions leading up to mine disasters, the presence and the relative explosibility of mine gas and coal dust, and mine fires and means of preventing and combating them.
2.—Tests to determine the relative safety, or otherwise, of the various explosives used in coal mining, when ignited in the presence of explosible mixtures of natural gas and air, or coal dust, or of both.
3.—Tests to determine the conditions under which electric equipment is safe in coal-mining operations.
4.—Tests to determine the safety of various types of mine lights in the presence of inflammable gas, and their accuracy in detecting small percentages of mine gas.
5.—Tests of the various artificial breathing apparatus, and the training of miners and of skilled mining engineers in rescue methods.
The first four of these lines of investigation have to do with preventive measures, and are those on which ultimately the greatest dependence must be placed. The fifth is one in which the result seems at first to be the most apparent. It has to do, not with prevention, but with the cure of conditions which should not arise, or, at least, should be greatly ameliorated.
During the last 19 years, 28,514 men have been killed in the coal-mining industries.[2] In 1907 alone, 3,125 men lost their lives in coal mines, and, in addition, nearly 800 were killed in the metal mines and quarries of the country. Including the injured, 8,441 men suffered casualties in the mines in that year. In every mining camp containing 1,000 men, 4.86 were taken by violent death in that year. In the mining of coal in Great Britain, 1.31 men were killed in every 1,000 employed in the same year; in France, 1.1; in Belgium, 0.94, or less than 1 man in every 1,000 employed. It is thus seen that from three to four times as many men are being killed in the United States as in any European coal-producing country. This safer condition in Europe has resulted from the use of safer explosives, or the better use of the explosives available; from the reduction in the use of open lights; from the establishment of mine rescue stations and the training with artificial breathing apparatus; and from the adoption of regulations for safeguarding the lives of the workmen.
The mining engineering field force of the Geological Survey, at the head of which is Mr. George S. Rice, an experienced mining and consulting engineer, has already made great progress in the study of underground mining conditions and methods. Nearly all the more dangerous coal mines in the United States have been examined; samples of gas, coal, and dust have been taken and analyzed at the chemical laboratories at Pittsburg; extended tests have been made as to the explosibility of various mixtures of gas and air; as to the explosibility of dust from various typical coals; as to the chemical composition and physical characteristics of this dust; the degree of fineness necessary to the most explosive conditions; and the methods of dampening the dust by water, by humidifying, by steam, or of deadening its explosibility by the addition of calcium chloride, stone dust, etc. A bulletin outlining the results thus far obtained in the study of the coal-dust problem is now in course of publication.[3]
After reviewing the history of observations and experiments with coal dust carried on in Europe, and later, the experiments at the French, German, Belgian, and English explosives-testing stations, this bulletin takes up the coal-dust question in the United States. Further chapters concern the tests as to the explosibility of coal dust, made by the Geological Survey, at Pittsburg; investigations, both at the Pittsburg laboratory and in mines, as to the humidity of mine air. There is also a chapter on the chemical investigations into the ignition of coal dust by Dr. J. C. W. Frazer, of the Geological Survey. The application of some of these data to actual mine conditions in Europe, in the last year, is treated by Mr. Axel Larsen; the use of exhaust steam in a mine of the Consolidation Coal Company, in West Virginia, is discussed by Mr. Frank Haas, Consulting Engineer; and the use of sprays in Oklahoma coal mines is the subject of a chapter by Mr. Carl Scholz, Vice-President of the Rock Island Coal Mining Company.
An earlier bulletin setting forth the literature and certain mine investigations of explosive gases and dust,[4] has already been issued. After treating of methods of collecting and analyzing the gases found in mines, of investigations as to the rate of liberation of gas from coal, and of studies on coal dust, this bulletin discusses such factors as the restraining influence of shale dust and dampness on coal-dust explosions. It then takes up practical considerations as to the danger of explosions, including the relative inflammability of old and fresh coal dust. The problems involved are undergoing further investigation and elaboration, in the light of information already gathered.
Permissible Explosives.—The most important progress in these tests and investigations has been made in those relating to the various explosives used in getting coal from mines. Immediately upon the enactment of the first legislation, in the spring of 1908, arrangements were perfected whereby the lower portion of the old Arsenal grounds belonging to the War Department and adjacent to the Pennsylvania Railroad, on the Alleghany River, at 40th and Butler Streets, Pittsburg, Pa., were transferred to the Interior Department for use in these investigations. Meantime, in anticipation of the appropriation, Mr. Clarence Hall, an engineer experienced in the manufacture and use of explosives, was sent to Europe to study the methods of testing explosives practiced at the Government stations in Great Britain, Germany, Belgium, and France. Mr. Joseph A. Holmes also visited Europe for the purpose of studying methods of ameliorating conditions in the mines. Three foreign mining experts, the chiefs of investigating bureaus in Belgium, Germany, and England, spent three months studying conditions in the United States at the invitation of the Secretary of the Interior, to whom they submitted a valuable report.[5]
Under the supervision of the writer, Chief Engineer of these investigations, detailed plans and specifications had been prepared in advance for the necessary apparatus and the transformation of the buildings at Pittsburg to the purposes of this work. It was possible, therefore, to undertake immediately the changes in existing buildings, the erection of new buildings, the installation of railway tracks, laboratories, and the plumbing, heating, and lighting plant, etc. This work was carried on with unusual expedition, under the direction of the Assistant Chief Engineer, Mr. James C. Roberts, and was completed within a few months, by which time most of the apparatus was delivered and installed.
One building (No. 17) is devoted to the smaller physical tests of explosives. It was rendered fire resistant by heavily covering the floors, ceiling, and walls with cement on metal lath, and otherwise protecting the openings. In it are installed apparatus for determining calorific value of explosives, pressure produced on ignition, susceptibility to ignition when dropped, rate of detonation, length and duration of flame, and kindred factors. Elsewhere on the grounds is a gallery of boiler-steel plate, 100 ft. long and more than 6 ft. in diameter, solidly attached to a mass of concrete at one end, in which is embedded a cannon from which to discharge the explosive under test, and open at the other end, and otherwise so constructed as to simulate a small section of a mine gallery (Fig. 2, Plate VI). The heavy mortar pendulum, for the pendulum test for determining the force produced by an explosive, is near by, as is also an armored pit in which large quantities of explosive may be detonated, with a view to studying the effects of magazine explosions, and for testing as to the rate at which ignition of an explosive travels from one end to the other of a cartridge, and the sensitiveness of one cartridge to explosion by discharge of another near by.
In another building (No. 21), is a well-equipped chemical laboratory for chemical analyses and investigations of explosives, structural materials, and fuels.
Several months were required to calibrate the various apparatus, and to make analyses of the available natural gas to determine the correct method of proportioning it with air, so as to produce exact mixtures of 2, 4, 6, or 8% of methane with air. Tests of existing explosives were made in air and in inflammable mixtures of air and gas, with a view to fixing on some standard explosive as a basis of comparison. Ultimately, 40% nitro-glycerine dynamite was adopted as the standard. Investigative tests having been made, and the various factors concerning all the explosives on the market having been determined, a circular was sent to all manufacturers of explosives in the United States, on January 9th, 1909, and was also published in the various technical journals, through the associated press, and otherwise.
On May 15th, 1909, all the explosives which had been offered for test, as permissible, having been tested, the first list of permissible explosives was issued, as given in the following circular:
"EXPLOSIVES CIRCULAR NO. 1. "DEPARTMENT OF THE INTERIOR. "United States Geological Survey. "May 15, 1909.
"LIST OF PERMISSIBLE EXPLOSIVES. "Tested prior to May 15, 1909.
"As a part of the investigation of mine explosions authorized by Congress in May, 1908, it was decided by the Secretary of the Interior that a careful examination should be made of the various explosives used in mining operations, with a view to determining the extent to which the use of such explosives might be responsible for the occurrence of these disasters.
"The preliminary investigation showed the necessity of subjecting to rigid tests all explosives intended for use in mines where either gas or dry inflammable dust is present in quantity or under conditions which are indicative of danger.
"With this in view, a letter was sent by the Director of the United States Geological Survey on January 9, 1909, to the manufacturers of explosives in the United States, setting forth the conditions under which these explosives would be examined and the nature of the tests to which they would be subjected.
"Inasmuch as the conditions and tests described in this letter were subsequently followed in testing the explosives given in the list below, they are here reproduced, as follows:
"(1) The manufacturer is to furnish 100 pounds of each explosive which he desires to have tested; he is to be responsible for the care, handling, and delivery of this material at the testing station on the United States arsenal grounds, Fortieth and Butler streets, Pittsburg, Pa., at the time the explosive is to be tested; and he is to have a representative present during the tests, who will be responsible for the handling of the packages containing the explosives until they are opened for testing.
"(2) No one is to be present at or to participate in these tests except the necessary government officers at the testing station, their assistants, and the representative of the manufacturer of the explosives to be tested.
"(3) The tests will be made in the order of the receipt of the applications for them, provided the necessary quantity of the explosive is delivered at the plant by the time assigned, of which due notice will be given by the Geological Survey.
"(4) Preference will be given to the testing of explosives that are now being manufactured and that are in that sense already on the market. No test will be made of any new explosive which is not now being manufactured and marketed, until all explosives now on the market that may be offered for testing have been tested.
"(5) A list of the explosives which pass certain requirements satisfactorily will be furnished to the state mine inspectors, and will be made public in such further manner as may be considered desirable.
"TEST REQUIREMENTS FOR EXPLOSIVES.
"The tests will be made by the engineers of the United States Explosives Testing Station at Pittsburg, Pa., in gas and dust gallery No. 1. The charge of explosive to be fired in tests 1, 2, and 3 shall be equal in disruptive power to one-half pound (227 grams) of 40 per cent. nitroglycerin dynamite in its original wrapper, of the following formula:
Nitroglycerin 40 Nitrate of sodium 44 Wood pulp 15 Calcium carbonate 1 —- 100
"Each charge shall be fired with an electric fuse of sufficient power to completely detonate or explode the charge, as recommended by the manufacturer. The explosive must be in such condition that the chemical and physical tests do not show any unfavorable results. The explosives in which the charge used is less than 100 grams (0.22 pound) will be weighed in tinfoil without the original wrapper.
"The dust used in tests 2, 3, and 4 will be of the same degree of fineness and taken from one mine.[6]
[Footnote 6: With a view to obtaining a dust of uniform purity and inflammability.]
"TEST 1.—Ten shots with the charge as described above, in its original wrapper, shall be fired, each with 1 pound of clay tamping, at a gallery temperature of 77 F., into a mixture of gas and air containing 8 per cent. of methane and ethane. An explosive will pass this test if all ten shots fail to ignite the mixture.
"TEST 2.—Ten shots with charge as previously noted, in its original wrapper, shall be fired, each with 1 pound of clay tamping at a gallery temperature of 77 F., into a mixture of gas and air containing 4 per cent. of methane and ethane and 20 pounds of bituminous coal dust, 18 pounds of which is to be placed on shelves laterally arranged along the first 20 feet of the gallery, and 2 pounds to be placed near the inlet of the mixing system in such a manner that all or part of it will be suspended in the first division of the gallery. An explosive will pass this test if all ten shots fail to ignite the mixture.
"TEST 3.—Ten shots with charge as previously noted, in its original wrapper, shall be fired, each with 1 pound of clay tamping at a gallery temperature of 77 F., into 40 pounds of bituminous coal dust, 20 pounds of which is to be distributed uniformly on a horse placed in front of the cannon and 20 pounds placed on side shelves in sections 4, 5, and 6. An explosive will pass this test if all ten shots fail to ignite the mixture.
"TEST 4.—A limit charge will be determined within 25 grams by firing charges in their original wrappers, untamped, at a gallery temperature of 77 F., into a mixture of gas and air containing 4 per cent. of methane and ethane and 20 pounds of bituminous coal dust, to be arranged in the same manner as in test 2. This limit charge is to be repeated five times under the same conditions before being established.
"NOTE.—At least 2 pounds of clay tamping will be used with slow-burning explosives.
"Washington, D.C., January 9, 1909.
"In response to the above communication applications were received from 12 manufacturers for the testing of 29 explosives. Of these explosives, the 17 given in the following list have passed all the test requirements set forth, and will be termed permissible explosives.
"Permissible explosives tested prior to May 15, 1909.
+ Brand. Manufacturer. + tna coal powder A tna Powder Co., Chicago, Ill. tna coal powder B Do. Carbonite No. 1 E. I. Dupont de Nemours Powder Co., Wilmington, Del. Carbonite No. 2 E. I. Du Pont de Nemours Powder Co., Wilmington, Del. Carbonite No. 3 Do. Carbonite No. 1 L. F. Do. Carbonite No. 2 L. F. Do. Coal special No. 1 Keystone Powder Co., Emporium, Pa. Coal special No. 2 Do. Coalite No. 1 Potts Powder Co., New York City. Coalite No. 2 D Do. Collier dynamite No. 2 Sinnamahoning Powder Co., Emporium, Pa. Collier dynamite No. 4 Do. Collier dynamite No. 5 Do. Masurite M. L. F. Masurite Explosive Co., Sharon, Pa. Meteor dynamite E. I. Du Pont de Nemours Powder Co., Wilmington, Del. Monobel Do. +
"Subject to the conditions named below, a permissible explosive is defined as an explosive which has passed gas and dust gallery tests Nos. 1, 2, and 3 as described above, and of which in test No. 4 1 pounds (680 grams) of the explosive has been fired into the mixture there described without causing an ignition.
"Provided:
"1. That the explosive is in all respects similar to the sample submitted by the manufacturer for test.
"2. That double-strength detonators are used of not less strength than 1 gram charge consisting by weight of 90 parts of mercury fulminate and 10 parts of potassium chlorate (or its equivalent), except for the explosive 'Masurite M. L. F.' for which the detonator shall be of not less strength than 1 grams charge.
"3. That the explosive, if in a frozen condition, shall be thoroughly thawed in a safe and suitable manner before use.
"4. That the amount used in practice does not exceed 1 pounds (680 grams) properly tamped.
"The above partial list includes the permissible explosives that have passed these tests prior to May 15, 1909. The announcement of the passing of like tests by other explosives will be made public immediately after the completion of the tests for such explosives.
"A description of the method followed in making these and the many additional tests to which each explosive is subjected, together with the full data obtained in each case, will be published by the Survey at an early date.
"NOTES AND SUGGESTIONS.
"It may be wise to point out in this connection certain differences between the permissible explosives as a class and the black powders now so generally used in coal mining, as follows:
"(a) With equal quantities of each, the flame of the black powder is more than three times as long and has a duration three thousand to more than four thousand times that of one of the permissible explosives, also the rate of explosion is slower.
"(b) The permissible explosives are one and one-fourth to one and three-fourths times as strong and are said, if properly used, to do twice the work of black powder in bringing down coal; hence only half the quantity need be used.
"(c) With 1 pound of a permissible explosive or 2 pounds of black powder, the quantity of noxious gases given off from a shot averages approximately the same, the quantity from the black powder being less than from some of the permissible explosives and slightly greater than from others. The time elapsing after firing before the miner returns to the working face or fires another shot should not be less for permissible explosives than for black powder.
"The use of permissible explosives should be considered as supplemental to and not as a substitute for other safety precautions in mines where gas or inflammable coal dust is present under conditions indicative of danger. As stated above, they should be used with strong detonators; and the charge used in practice should not exceed 1 pounds, and in many cases need not exceed 1 pound.
"Inasmuch as no explosive manufactured for use in mining is flameless, and as no such explosive is entirely safe under all the variable mining conditions, the use of the terms 'flameless' and 'safety' as applied to explosives is likely to be misunderstood, may endanger human life, and should be discouraged.
"JOSEPH A. HOLMES, "Expert in Charge Technologic Branch.
"Approved, May 18, 1909: "GEO. OTIS SMITH, "Director."
In the meantime, many of the explosives submitted, which heretofore had been on the market as safety explosives, were found to be unsafe for use in gaseous or dusty mines, and the manufacturers were permitted to withdraw them. Their weaknesses being known, as a result of these tests, the manufacturers were enabled to produce similar, but safer, explosives. Consequently, applications for further tests continued to pour in, as they still do, and on October 1st, 1909, a second list of permissible explosives was issued, as follows:
"EXPLOSIVES CIRCULAR NO. 2. "DEPARTMENT OF THE INTERIOR. "United States Geological Survey. "October 1, 1909.
"LIST OF PERMISSIBLE EXPLOSIVES. "Tested prior to October 1, 1909.
"The following list of permissible explosives tested by the United States Geological Survey at Pittsburg, Pa., is hereby published for the benefit of operators, mine owners, mine inspectors, miners, and others interested.
"The conditions and test requirements described in Explosives Circular No. 1, issued under date of May 15, 1909, have been followed in all subsequent tests.
"Subject to the provisions named below, a permissible explosive is defined as an explosive which is in such condition that the chemical and physical tests do not show any unfavorable results; which has passed gas and dust gallery tests Nos. 1 and 3, as described in circular No. 1; and of which, in test No. 4, 1 pounds (680 grams) has been fired into the mixture there described without causing ignition.
"Permissible explosives tested prior to October 1, 1909.
"[Those reported in Explosives Circular No. 1 are marked *.]
+ - Brand. Manufacturer. + - *tna coal powder A tna Powder Co., Chicago, Ill. tna coal powder AA Do. *tna coal powder B Do. tna coal powder C Do. Bituminite No. 1 Jefferson Powder Co., Birmingham, Ala. Black Diamond No. 3 Illinois Powder Manufacturing Co., St. Louis, Mo. Black Diamond No. 4 Do. *Carbonite No. 1 E. I. Du Pont de Nemours Powder Co., Wilmington, Del. *Carbonite No. 2 Do. *Carbonite No. 3 Do. *Carbonite No. 1-L. F. Do. *Carbonite No. 2-L. F. Do. *Coalite No. 1 Potts Powder Co., New York City. *Coalite No. 2-D. Do. *Coal special No. 1 Keystone Powder Co., Emporium, Pa. *Coal special No. 2 Do. *Collier dynamite No. 2. Sinnamahoning Powder Manufacturing Co., Emporium, Pa. *Collier dynamite No. 4. Do. *Collier dynamite No. 5. Do. Giant A low-flame dynamite. Giant Powder Co. (Con.), Giant, Cal. Giant B low-flame dynamite. Do. Giant C low-flame dynamite. Do. *Masurite M. L. F. Masurite Explosives Co., Sharon, Pa. *Meteor dynamite. E. I. Du Pont de Nemours Powder Co., Wilmington, Del. Mine-ite A. Burton Powder Co., Pittsburg, Pa. Mine-ite B. Do. *Monobel. E. I. Du Pont de Nemours Powder Co., Wilmington, Del. Tunnelite No. 5. G. R. McAbee Powder and Oil Co., Pittsburg, Pa. Tunnelite No. 6. Do. Tunnelite No. 7. Do. Tunnelite No. 8. Do. + -
"Provided:
"1. That the explosive is in all respects similar to sample submitted by the manufacturer for test.
"2. That No. 6 detonators, preferably No. 6 electric detonators (double strength), are used of not less strength than 1 gram charge, consisting by weight of 90 parts of mercury fulminate and 10 parts of potassium chlorate (or its equivalent), except for the explosive 'Masurite M. L. F.,' for which the detonator shall be of not less strength than 1 grams charge.
"3. That the explosive, if frozen, shall be thoroughly thawed in a safe and suitable manner before use.
"4. That the amount used in practice does not exceed 1 pounds (680 grams), properly tamped.
"The above partial list includes all the permissible explosives that have passed these tests prior to October 1, 1909. The announcement of the passing of like tests by other explosives will be made public immediately after the completion of the tests.
"With a view to the wise use of these explosives it may be well in this connection to point out again certain differences between the permissible explosives as a class and the black powders now so generally used in coal mining, as follows:
"(a) With equal quantities of each, the flame of the black powder is more than three times as long and has a duration three thousand to more than four thousand times that of one of the permissible explosives; the rate of explosion also is slower.
"(b) The permissible explosives are one and one-fourth to one and three-fourths times as strong and are said, if properly used, to do twice the work of black powder in bringing down coal; hence only half the quantity need be used.
"(c) With 1 pound of a permissible explosive or 2 pounds of black powder, the quantity of noxious gases given off from a shot averages approximately the same, the quantity from the black powder being less than from some of the permissible explosives and slightly greater than from others. The time elapsing after firing before the miner returns to the working face or fires another shot should not be less for permissible explosives than for black powder.
"The use of permissible explosives should be considered as supplemental to and not as a substitute for other safety precautions in mines where gas or inflammable coal dust is present under conditions indicating danger. As stated above, they should be used with strong detonators, and the charge used in practice should not exceed 1 pounds and in many cases need not exceed 1 pound.
"JOSEPH A. HOLMES, "Expert in Charge Technologic Branch. "Approved, October 11, 1909. "H. C. RIZER, "Acting Director."
The second list contains 31 explosives which the Government is prepared to brand as permissible, and therefore comparatively safe, for use in gaseous and dusty mines. An equally large number of so-called safety powders failed to pass these tests. Immediately on the passing of the tests, as to the permissibility of any explosive, the facts are reported to the manufacturer and to the various State mine inspectors. When published, the permissible lists were issued to all explosives manufacturers, all mine operators in the United States, and State inspectors. The effect has been the enactment, by three of the largest coal-producing States, of legislation or regulations prohibiting the use of any but permissible explosives in gaseous or dusty mines, and other States must soon follow. To prevent fraud, endeavor is being made to restrict the use of the brand "Permissible Explosive, U.S. Testing Station, Pittsburg, Pa.," to only such boxes or packages as contain listed permissible explosives.
As these tests clearly demonstrate, both in the records thereof and visually to such as follow them, that certain explosives, especially those which are slow-burning like black powder, or produce high temperature in connection with comparative slow burning, will ignite mixtures of gas and air, or mixtures of coal dust and air, and cause explosions. The results point out clearly to all concerned, the danger of using such explosives. The remedy is also made available by the announcement of the names of a large number of explosives now on the market at reasonable cost, which will not cause explosions under these conditions. It is believed that when permissible explosives are generally adopted in coal mines, this source of danger will have been greatly minimized.
Explosives Investigations.—Questions have arisen on the part of miners or of mine operators as to the greater cost in using permissible explosives due to their expense, which is slightly in excess of that of other explosives; as to their greater shattering effect in breaking down the coal, and in giving a smaller percentage of lump and a larger percentage of slack; and as to the possible danger of breathing the gases produced.
Observations made in mines by Mr. J. J. Rutledge, an experienced coal miner and careful mining engineer connected with the Geological Survey, as to the amount of coal obtained by the use of permissible and other explosives, tend to indicate that the permissible explosives are not more, but perhaps less expensive than others, in view of the fact that, because of their greater relative power, a smaller quantity is required to do the work than is the case, say, with black powder. On the other hand, for safety and for certainty of detonation, stronger detonators are recommended for use with permissible explosives, preferably electric detonators. These may cost a few cents more per blast than the squib or fuse, but there is no danger that they will ignite the gas, and the difference in cost is, in some measure, offset by the greater certainty of action and the fact that they produce a much more powerful explosion, thus again permitting the use of still smaller quantities of the explosive and, consequently, reducing the cost. These investigations are still in progress.
Concerning the shattering of the coal: This is being remedied in some of the permissible explosives by the introduction of dopes, moisture, or other means of slowing down the disruptive effect, so as to produce the heaving and breaking effect obtained with the slower-burning powders instead of the shattering effect produced by dynamite. There is every reason to believe that as the permissible explosives are perfected, and as experience develops the proper methods of using them, this difficulty will be overcome in large measure. This matter is also being investigated by the Survey mining engineers and others, by the actual use of such explosives in coal-mining operations.
Of the gases given off by explosives, those resulting from black powder are accompanied by considerable odor and smoke, and, consequently, the miners go back more slowly after the shots, allowing time for the gases to be dissipated by the ventilation. With the permissible explosive, the miner, seeing no smoke and observing little odor, is apt to be incautious, and to think that he may run back immediately. As more is learned of the use of these explosives, this source of danger, which is, however, inconsiderable, will be diminished. Table 1 gives the percentages of the gaseous products of combustions from equal weights of black powder and two of the permissible explosives. Of the latter, one represents the maximum amount of injurious gases, and the other the minimum amount, between which limits the permissible explosives approximately vary.
Such noxious gases as may be produced by the discharge of the explosive are diluted by a much larger volume of air, and are practically harmless, as proven by actual analysis of samples taken at the face immediately after a discharge.
TABLE 1.
+ -+ Permissible Explosives. Black -+ powder. Maximum. Minimum. + -+ -+ CO_{2} 22.8 14.50 21.4 CO 10.3 27.74 1.3 N 10.3 45.09 74.4 + -+ -+
In addition to investigations as to explosives for use in coal mining, the Explosives Section of the Geological Survey analyzes and tests all such materials, fuses, caps, etc., purchased by the Isthmian Canal Commission, as well as many other kinds used by the Government. It is thus acquiring a large fund of useful information, which will be published from time to time, relative to the kinds of explosives and the manner of using them best suited to any blasting operations, either above or under water, in hard rock, earth, or coal. There has been issued from the press, recently, a primer of explosives,[7] by Mr. Clarence Hall, the engineer in charge of these tests, and Professor C. E. Munroe, Consulting Explosives Chemist, which contains a large amount of valuable fundamental information, so simply expressed as to be easily understandable by coal miners, and yet sufficiently detailed to be a valuable guide to all persons who have to handle or use explosives.
In the first chapters are described the various combustible substances, and the chemical reactions leading to their explosibility. The low and high explosives are differentiated, and the sensitiveness of fulminate of mercury and other detonators is clearly pointed out. The various explosives, such as gunpowder, black blasting powder, potassium chlorate powders, nitro-glycerine powders, etc., are described, and their peculiarities and suitability for different purposes are set forth. The character and method of using the different explosives, both in opening up work and in enclosed work in coal mines, follow, with information as to the proper method of handling, transporting, storing, and thawing the same. Then follow chapters on squibs, fuses, and detonators; on methods of shooting coal off the solid; location of bore-holes; undercutting; and the relative advantages of small and large charges, with descriptions of proper methods of loading and firing the same. The subjects of explosives for blasting in rock, firing machines, blasting machines, and tests thereof, conclude the report.
The work of the chemical laboratory in which explosives are analyzed, and in which mine gases and the gases produced by combustion of explosives and explosions of coal-gas or coal dust are studied, has been of the most fundamental and important character. The Government is procuring a confidential record of the chemical composition and mode of manufacture of all explosives, fuses, etc., which are on the market. This information cannot but add greatly to the knowledge as to the chemistry of explosives for use in mines, and will furnish the basis on which remedial measures may be devised.
A bulletin (shortly to go to press) which gives the details of the physical tests of the permissible explosives thus far tested, will set forth elaborately the character of the testing apparatus, and the method of use and of computing results.[8]
This bulletin contains a chapter, by Mr. Rutledge, setting forth in detail the results of his observations as to the best methods of using permissible explosives in getting coal from various mines in which they are used. This information will be most valuable in guiding mining engineers who desire to adopt the use of permissible explosives, as to the best methods of handling them.
Electricity in Mines.—In connection with the use of electricity in mines, an informal series of tests has been made on all enclosed electric fuses, as to whether or not they will ignite an explosive mixture of air and gas when blown out. The results of this work, which is under the direction of Mr. H. H. Clark, Electrical Engineer for Mines, have been furnished the manufacturers for their guidance in perfecting safer fuses, a series of tests of which has been announced. A series of tests as to the ability of the insulation of electric wiring to withstand the attacks of acid mine waters is in progress, which will lead, it is hoped, to the development of more permanent and cheaper insulation for use in mine wiring. A series of competitive tests of enclosed motors for use in mines has been announced, and is in progress, the object being to determine whether or not sparking from such motors will cause an explosion in the presence of inflammable gas.
In the grounds outside of Building No. 10 is a large steel gallery, much shorter than Gallery No. 1, in fact, but 30 ft. in length, and much greater in diameter, namely, 10 ft. (Fig. 3, Plate X), in which electric motors, electric cutting machines, and similar apparatus, are being tested in the presence of explosive mixtures of gas and dust and with large amperage and high voltage, such as may be used in the largest electrical equipment in mines.
The investigation as to the ability of insulation to withstand the effects of acid mine waters has been very difficult and complicated. At first it was believed possible that mine waters from nearby Pennsylvania mines and of known percentages of acidity could be procured and kept in an immersion tank at approximately any given percentage of strength. This was found to be impracticable, as these waters seem to undergo rapid change the moment they are exposed to the air or are transported, in addition to the changes wrought by evaporation in the tank. It has been necessary, therefore, to analyze and study carefully these waters with a view to reproducing them artificially for the purpose of these tests. Concerning the insulation, delicate questions have arisen as to a standard of durability which shall be commensurate with reasonable cost. These preliminary points are being solved in conference with the manufacturers, and it is expected that the results will soon permit of starting the actual tests.
Safety-Lamp Investigations.—Many so-called safety lamps are on the market, and preliminary tests of them have been made in the lamp gallery, in Building No. 17 (Fig. 2, Plate X). After nearly a year of endeavor to calibrate this gallery, and to co-ordinate its results with those produced in similar galleries in Europe, this preliminary inquiry has been completed, and the manufacturers and agents of all safety lamps have been invited to be present at tests of their products at the Pittsburg laboratory.
A circular dated November 19th, 1909, contains an outline of these tests, which are to be conducted under the direction of Mr. J. W. Paul, an experienced coal-mining engineer and ex-Chief of the Department of State Mine Inspection of West Virginia. The lamps will be subjected to the following tests:
(a).—Each lamp will be placed in a mixture of air and explosive natural gas containing 6, 8, and 10% of gas, moving at a velocity of from 200 to 2,500 ft. per min., to determine the velocity of the air current which will ignite the mixture surrounding the lamp. The current will be made to move against the lamp in a horizontal, vertical ascending, and vertical descending direction, and at an angle of 45, ascending and descending.
(b).—After completing the tests herein described, the lamps will be subjected to the tests described under (a), with the air and gas mixture under pressure up to 6 in. of water column.
(c).—Under the conditions outlined in (a), coal dust will be introduced into the current of air and gas to determine its effect, if any, in inducing the ignition of the gas mixture.
(d).—Each lamp will be placed in a mixture of air and varying percentages of explosive natural gas to determine the action of the gas on the flame of the lamp.
(e).—Each lamp will be placed in a mixture of air and varying percentages of carbonic acid gas to determine the action of the gas on the flame.
(f).—Lamps equipped with internal igniters will be placed in explosive mixtures of air and gas in a quiet state and in a moving current, and the effect of the igniter on the surrounding mixture will be observed.
(g).—The oils (illuminants) used in the lamps will be tested as to viscosity, gravity, flashing point, congealing point, and composition.
(h).—Safety-lamp globes will be tested by placing each globe in position in the lamp and allowing the flame to impinge against the globe for 3 min. after the lamp has been burning with a full flame for 10 min., to determine whether the globe will break.
(i).—Each safety-lamp globe will be mounted in a lighted lamp with up-feed, and placed for 5 min. in an explosive mixture of air and gas moving at the rate of 1,000 ft. per min., to determine whether the heat will break the glass and, if it is broken, to note the character of the fracture.
(j).—Safety-lamp globes will be broken by impact, by allowing each globe to fall and strike, horizontally, on a block of seasoned white oak, the distance of fall being recorded.
(k).—Each safety lamp globe will be mounted in a safety lamp and, when the lamp is in a horizontal position, a steel pick weighing 100 grammes will be permitted to fall a sufficient distance to break the globe by striking its center, the distance of the fall to be recorded.
(l).—To determine the candle power of safety lamps, a photometer equipped with a standardized lamp will be used. The candle-power will be determined along a line at right angles to the axis of the flame; also along lines at angles to the axis of the flame both above and below the horizontal. The candle-power will be read after the lamp has been burning 20 min.
(m).—The time a safety lamp will continue to burn with a full charge of illuminant will be determined.
(n).—Wicks in lamps must be of sufficient length to be at all times in contact with the bottom of the vessel in which the illuminant is contained, and, before it is used, the wick shall be dried to remove moisture.
Mine-Rescue Methods.—Mr. Paul, who has had perhaps as wide an experience as any mining man in the investigation of and in rescue work at mine disasters, is also in charge of the mine-rescue apparatus and training for the Geological Survey. These operations consist chiefly of a thorough test of the various artificial breathing apparatus, or so-called oxygen helmets. Most of these are of European make and find favor in Great Britain, Belgium, France, or Germany, largely according as they are of domestic design and manufacture. As yet nothing has been produced in the United States which fulfills all the requirements of a thoroughly efficient and safe breathing apparatus for use in mine disasters.
At the Pittsburg testing station there are a number of all kinds of apparatus. The tests of these are to determine ease of use, of repair, durability, safety under all conditions, period during which the supply of artificial air or oxygen can be relied on, and other essential data.
In addition to the central testing station, sub-stations for training miners, and as headquarters for field investigation as to the causes of mine disasters and for rescue work in the more dangerous coal fields, have been established; at Urbana, Ill., in charge of Mr. R. Y. Williams, Mining Engineer; at Knoxville, Tenn., in charge of Mr. J. J. Rutledge, Mining Engineer; at McAlester, Okla., in charge of Mr. L. M. Jones, Assistant Mining Engineer; and at Seattle, Wash., in charge of Mr. Hugh Wolflin, Assistant Mining Engineer. Others may soon be established in Colorado and elsewhere, in charge of skilled mining engineers who have been trained in this work at Pittsburg, and who will be assisted by trained miners. It is not to be expected that under any but extraordinary circumstances, such as those which occurred at Cherry, Ill., the few Government engineers, located at widely scattered points throughout the United States, can hope to save the lives of miners after a disaster occurs. As a rule, all who are alive in the mine on such an occasion, are killed within a few hours. This is almost invariably the case after a dust explosion, and is likely to be true after a gas explosion, although a fire such as that at Cherry, Ill., offers the greatest opportunity for subsequent successful rescue operations. The most to be hoped for from the Government engineers is that they shall train miners and be available to assist and advise State inspectors and mine owners, should their services be called for.
It should be borne in mind that the Federal Government has no police duties in the States, and that, therefore, its employees may not direct operations or have other responsible charge in the enforcement of State laws. There is little reason to doubt that these Federal mining engineers, both because of their preliminary education as mining engineers and their subsequent training in charge of mine operations, and more recently in mine-accidents investigations and rescue work, are eminently fitted to furnish advice and assistance on such occasions. The mere fact that, within a year, some of these men have been present at, and assisted in, rescue work or in opening up after disasters at nearly twenty of such catastrophes, whereas the average mining engineer or superintendent may be connected with but one in a lifetime, should make their advice and assistance of supreme value on such occasions. They cannot be held in any way responsible for tardiness, however, nor be unduly credited with effective measures taken after a mine disaster, because of their lack of responsible authority or charge, except in occasional instances where such may be given them by the mine owners or the State officials, from a reliance on their superior equipment for such work.
Successful rescue operations may only be looked for when the time, now believed to be not far distant, has been reached when the mine operators throughout the various fields will have their own rescue stations, as is the practice in Europe, and have available, at certain strategic mines, the necessary artificial breathing apparatus, and have in their employ skilled miners who have been trained in rescue work at the Government stations. Then, on the occurrence of a disaster, the engineer in charge of the Government station may advise by wire all those who have proper equipment or training to assemble, and it may be possible to gather, within an hour or two of a disaster, a sufficiently large corps of helmet-men to enable them to recover such persons as have not been killed before the fire—which usually is started by the explosion—has gained sufficient headway to prevent entrance into the mine. Without such apparatus, it is essential that the fans be started, and the mine cleared of gas. The usual effect of this is to give life to any incipient fire. With the apparatus, the more dense the gas, the safer the helmet-men are from a secondary explosion or from the rapid ignition of a fire, because of the absence of the oxygen necessary to combustion.
The miners who were saved at Cherry, Ill., on November 20th, 1909, owe their lives primarily to the work of the Government engineers. The sub-station of the Survey at Urbana, Ill., was promptly notified of the disaster on the afternoon of November 13th. Arrangements were immediately made, whereby Mr. R. Y. Williams, Mining Engineer in Charge, and his Assistant, Mr. J. M. Webb, with their apparatus, were rushed by special train to the scene, arriving early the following day (Sunday).
Chief Mining Engineer, George S. Rice, Chief of Rescue Division, J. W. Paul, and Assistant Engineer, F. F. Morris, learned of the disaster through the daily press, at their homes in Pittsburg, on Sunday. They left immediately with four sets of rescue apparatus, reaching Cherry on Monday morning. Meantime, Messrs. Williams and Webb, equipped with oxygen helmets, had made two trips into the shaft, but were driven out by the heat. Both shafts were shortly resealed with a view to combating the fire, which had now made considerable headway.
The direction of the operations at Cherry, was, by right of jurisdiction, in charge of the State Mine Inspectors of Illinois, at whose solicitation the Government engineers were brought into conference as to the proper means to follow in an effort to get into the mine. The disaster was not due to an explosion of coal or gas, but was the result of a fire ignited in hay, in the stable within the mine. The flame had come through the top of the air-shaft, and had disabled the ventilating fans. A rescue corps of twelve men, unprotected by artificial breathing apparatus, had entered the mine, and all had been killed. When the shafts were resealed on Monday evening, the 15th, a small hole was left for the insertion of a water-pipe or hose. During the afternoon and evening, a sprinkler was rigged up, and, by Tuesday morning, was in successful operation, the temperature in the shaft at that time being 109 Fahr. After the temperature had been reduced to about 100, the Federal engineers volunteered to descend into the shaft and make an exploration. The rescue party, consisting of Messrs. Rice, Paul, and Williams, equipped with artificial breathing apparatus, made an exploration near the bottom of the air-shaft and located the first body. After they had returned to the surface, three of the Illinois State Inspectors, who had previously received training by the Government engineers in the use of the rescue apparatus, including Inspectors Moses and Taylor, descended, made tests of the air, and found that with the fan running slowly, it was possible to work in the shaft. The rescue corps then took hose down the main shaft, having first attached it to a fire engine belonging to the Chicago Fire Department. Water was directed on the fire at the bottom of the shaft, greatly diminishing its force, and it was soon subdued sufficiently to permit the firemen to enter the mine without the protection of breathing apparatus.
Unfortunately, these operations could be pursued only under the most disadvantageous circumstances and surrounded by the greatest possible precautions, due to the frequent heavy falls of roof—a result of the heating by the mine fire—and the presence of large quantities of black-damp. All movements of unprotected rescuers had to be preceded by exploration by the trained rescue corps, who analyzed the gases, as the fire still continued to burn, and watched closely for falls, possible explosions, or a revival of the fire. While the heavy work of shoring up, and removing bodies, was being carried on by the unprotected rescue force, the helmet-men explored the more distant parts of the mine, and on Saturday afternoon, November 20th, one week after the disaster, a room was discovered in which a number of miners, with great presence of mind, had walled themselves in in order to keep out the smoke and heat. From this room 20 living men were taken, of whom 12 were recovered in a helpless condition, by the helmet-men.
This is not the first time this Government mining corps has performed valiant services. Directly and indirectly the members have saved from fifteen to twenty lives in the short time they have been organized. At the Marianna, Pa., disaster, the corps found one man still alive among 150 bodies, and he was brought to the surface. He recovered entirely after a month in the hospital.
At the Leiter mine, at Zeigler, Ill., two employees, who had been trained in the use of the oxygen helmets by members of the Government's corps, went down into the mine, following an explosion, and brought one man to the surface, where they resuscitated him.
Equally good service, either in actual rescue operations, or in explorations after mine disasters, or in fire-fighting, has been rendered by this force at the Darr, Star Junction, Hazel, Clarinda, Sewickley, Berwind-White No. 37, and Wehrum, Pa., mine disasters; at Monongah and Lick Branch, W. Va.; at Deering, Sunnyside, and Shelburn, Ind., Jobs, Ohio, and at Roslyn, Wash.
Explosives Laboratory.—The rooms grouped at the south end of Building No. 21, at Pittsburg, are occupied as a laboratory for the chemical examination and analysis of explosives, and are in charge of Mr. W. O. Snelling.
Samples of all explosives used in the testing gallery, ballistic pendulum, pressure gauge, and other testing apparatus, are here subjected to chemical analysis in order to determine the component materials and their exact percentages. Tests are also made to determine the stability of the explosive, or its liability to decompose at various temperatures, and other properties which are of importance in showing the factors which will control the safety of the explosive during transportation and storage.
In the investigation of all explosives, the first procedure is a qualitative examination to determine what constituents are present. Owing to the large number of organic and inorganic compounds which enter into the composition of explosive mixtures, this examination must be thorough. Several hundred chemical bodies have been used in explosives at different times, and some of these materials can be separated from others with which they are mixed only by the most careful and exact methods of chemical analysis.
Following the qualitative examination, a method is selected for the separation and weighing of each of the constituents previously found to be present. These methods, of course, vary widely, according to the particular materials to be separated, it being usually necessary to devise a special method of analysis for each explosive, unless it is found, by the qualitative analysis, to be similar to some ordinary explosive, in which case the ordinary method of analysis of that explosive can be carried out. Most safety powders require special treatment, while most grades of dynamite and all ordinary forms of black blasting powder are readily analyzed by the usual methods.
The examination of black blasting powder has been greatly facilitated and, at the same time, made considerably more accurate, by means of a densimeter devised at this laboratory. In this apparatus a Torricellian vacuum is used as a means of displacing the air surrounding the grains of powder, and through very simple manipulation the true density of black powder is determined with a high degree of accuracy. In Building No. 17 there is an apparatus for separating or grading the sizes of black powder (Fig. 1, Plate X).
By means of two factors, the moisture coefficient and the hygroscopic coefficient, which have been worked out at this laboratory, a number of important observations can be made on black powder, in determining the relative efficiency of the graphite coating to resist moisture, and also as a means of judging the thoroughness with which the components of the powder are mixed. The moisture coefficient relates to the amount of moisture which is taken up by the grains of the powder in a definite time under standard conditions of saturation; and the hygroscopic coefficient relates to the affinity of the constituents of the powder for moisture under the same standard conditions.
Besides the examination of explosives used at the testing station, those for the Reclamation Service, the Isthmian Canal Commission, and other divisions of the Government, are also inspected and analyzed at the explosives laboratory. At the present time, the Isthmian Canal Commission is probably the largest user of explosives in the world, and samples used in its work are inspected, tested, and analyzed at this laboratory, and at the branch laboratories at Gibbstown and Pompton Lakes, N.J., and at Xenia, Ohio.
Aside from the usual analysis of explosives for the Isthmian Canal Commission, special tests are made to determine the liability of the explosive to exude nitro-glycerine, and to deteriorate in unfavorable weather conditions. These tests are necessary, because of the warm and moist climate of the Isthmus of Panama.
Gas and Dust Gallery No. 1.—Gallery No. 1 is cylindrical in form, 100 ft. long, and has a minimum internal diameter of 6-1/3 ft. It consists of fifteen similar sections, each 6-2/3 ft. long and built up in in-and-out courses. The first three sections, those nearest the concrete head, are of -in. boiler-plate steel, the remaining twelve sections are of 3/8-in. boiler-plate steel, and have a tensile strength of, at least, 55,000 lb. per sq. in. Each section has one release pressure door, centrally placed on top, equipped with a rubber bumper to prevent its destruction when opened quickly. In use, this door may be either closed and unfastened, closed and fastened by stud-bolts, or left open. Each section is also equipped with one -in. plate-glass window, 6 by 6 in., centrally placed in the side of the gallery (Fig. 1, and Figs. 1 and 2, Plate VI). The sections are held together by a lap-joint. At each lap-joint there is, on the interior of the gallery, a 2-in. circular, angle iron, on the face of which a paper diaphragm may be placed and held in position by semicircular washers, studs, and wedges. These paper diaphragms are used to assist in confining a gas-and-air mixture.
Natural gas from the mains of the City of Pittsburg is used to represent that found in the mines by actual analysis. A typical analysis of this gas is as follows:
Volumetric Analysis of Typical Natural Gas.
Hydrogen gases 0 Carbon dioxide 0.1 Oxygen 0 Heavy hydrocarbons 0 Carbon monoxide 0 Methane 81.8 Ethane 16.8 Nitrogen 1.3
The volume of gas used is measured by an accurate test meter reading to one-twentieth of a cubic foot. The required amount is admitted near the bottom, to one or more of the 20-ft. divisions of the gallery, from a 2-in. pipe, 14 ft. long. The pipe has perforations arranged so that an equal flow of gas is maintained from each unit length.
Each 20-ft. division of the gallery is further equipped with an exterior circulating system, as shown by Fig. 1, thus providing an efficient method of mixing the gas with the air. For the first division this circulating system is stationary, a portion of the piping being equipped with heating coils for maintaining a constant temperature.
The other divisions have a common circulating system mounted on a truck which may be used on any of these divisions. Valves are provided for isolating the fan so that a possible explosion will not injure it.
In the center section of each division is an indicator cock which is used to provide means of recording pressures above and below atmospheric, or of sampling the air-and-gas mixture. The first division of the gallery is equipped with shelves laterally placed, for the support of coal dust.
The cannon in which the explosive is fired is placed in the concrete head, the axial line of the bore-hole being coincident with that of the gallery. This cannon (Fig. 2) is similar to that used in the ballistic pendulum. The charge is fired electrically from the observation room. To minimize the risk of loading the cannon, the charger carries in his pocket the plug of a stage switch (the only plug of its kind on the ground), so that it is impossible to complete the circuit until the charger has left the gallery. That portion of the first division of the gallery which is not embedded in concrete, has a 3-in. covering made up of blocks of magnesia, asbestos fiber, asbestos, cement, a thin layer of 8-oz. duck, and strips of water-proof roofing paper, the whole being covered with a thick coat of graphite paint. The object of this covering is to assist in maintaining a constant temperature.
The entire gallery rests on a concrete foundation 10 ft. wide, which has a maximum height of 4 ft. and a minimum height of 2 ft.
The concrete head in which the cannon is placed completely closes that end of the gallery. A narrow drain extends under the entire length of the gallery, and a tapped hole at the bottom of each section provides an efficient means of drainage.
The buildings near the gallery are protected by two barricades near the open end, each 10 ft. high and 30 ft. long. A back-stop, consisting of a swinging steel plate, 6 ft. high and 9 ft. long, 50 ft. from the end of the gallery, prevents any of the stemming from doing damage.
Tests are witnessed from an observation room, a protected position about 60 ft. from the gallery. The walls of the room are 18 in. thick, and the line of vision passes through a -in. plate glass, 6 in. wide and 37 ft. long, and is further confined by two external guards, each 37 ft. long and 3 ft. wide.
In this gallery a series of experiments has been undertaken to determine the amount of moisture necessary with different coal dusts, in order to reduce the likelihood of a coal-dust explosion from a blown-out shot of one of the dangerous types of explosives.
Coal dust taken from the roads of one of the coal mines in the Pittsburg district required at least 12% of water to prevent an ignition. It has also been proven that the finer the dust the more water is required, and when it was 100-mesh fine, 30% of water was required to prevent its ignition by the flame of a blown-out shot in direct contact. The methods now used in sprinkling have been proven entirely insufficient for thoroughly moistening the dust, and hence are unreliable in preventing a general dust explosion.
At this station successful experiments have been carried out by using humidifiers to moisten the atmosphere after the temperature of the air outside the gallery has been raised to mine temperature and drawn through the humidifiers. It has been found that if a relative humidity of 90%, at a temperature of 60 Fahr., is maintained for 48 hours, simulating summer conditions in a mine, the absorption of moisture by the dust and the blanketing effect of the humid air prevent the general ignition of the dust.
These humidity tests have been run in Gas and Dust Gallery No. 1 with special equipment consisting of a Koerting exhauster having a capacity of 240,000 cu. ft. per hour, which draws the air out of the gallery through the first doorway, or that next the concrete head in which the cannon is embedded.
The other end of the gallery is closed by means of brattice cloth and paper diaphragms, the entire gallery being made practically air-tight. The air enters the fifteenth doorway through a box, passing over steam radiators to increase its temperature, and then through the humidifier heads.
EXPLOSIVES TESTING APPARATUS.
There is no exposed woodwork in Building No. 17, which is 40 by 60 ft., two stories high, and substantially constructed of heavy stone masonry, with a slate roof. The structure within is entirely fire-proof. Iron columns and girders, and wooden girders heavily encased in cement, support the floors which are either of cement slab construction or of wooden flooring protected by expanded metal and cement mortar, both above and beneath. At one end, on the ground floor, is the exposing and recording apparatus for flame tests of explosives, also pressure gauges, and a calorimeter, and, at the other end, is a gallery for testing safety lamps.
The larger portion of the second floor is occupied by a gas-tight training room for rescue work, and an audience chamber, from which persons interested in such work may observe the methods of procedure. A storage room for rescue apparatus and different models of safety lamps is also on this floor.
The disruptive force of explosives is determined in three ways, namely, by the ballistic pendulum, by the Bichel pressure gauge, and by Trauzl lead blocks.
Ballistic Pendulum.—The disruptive force of explosives, as tested by the ballistic pendulum, is measured by the amount of oscillation. The standard unit of comparison is a charge of lb. of 40% nitro-glycerine dynamite. The apparatus consists essentially of a 12-in. mortar (Fig. 3, Plate VI), weighing 31,600 lb., and suspended as a pendulum from a beam having knife-edges. A steel cannon is mounted on a truck set on a track laid in line with the direction of the swing of the mortar. At the time of firing the cannon may be placed 1/16-in. from the muzzle of the mortar. The beam, from which the mortar is suspended, rests on concrete walls, 51 by 120 in. at the base and 139 in. high. On top of each wall is a 1-in. base-plate, 7 by 48 in., anchored to the wall by 5/8-in. bolts, 28 in. long. The knife-edges rest on bearing-plates placed on these base-plates. The bearing-plates are provided with small grooves for the purpose of keeping the knife-edges in oil and protected from the weather. The knife-edges are each 6 in. long, 2-11/16 in. deep from point to back, 2 in. wide at the back, and taper 50 with the horizontal, starting on a line 1 in. from the back. The point is rounded to conform to a radius of in. The back of each is 2 in. longer than the edge, making a total length of 10 in., and is 1 in. deep and 12 in. wide. This shoulder gives bolting surface to the beam from which the mortar is hung. The beam is of solid steel, has a 4 by 8-in. section, and is 87 in. long. Heavy steel castings are bolted to it to take the threads of the machine-steel rods which form the saddles on which the mortar is suspended. The radius of the swing, measured from the point of the knife-edges to the center of the trunnions, is 89 in.
The cannon consists of two parts, a jacket and a liner. The jacket is 36 in. long, has an external diameter of 24 in., and internal diameters of 9 and 7 in. It is made of the best cast steel or of forged steel.
The liner is 36 in. long, with a 1-in. shoulder, 7 in. from the back, changing the diameter from 9 to 7 in. The bore is smooth, being 2 in. in diameter and 21 in. long. The cannon rests on a 4-wheel truck, to which it is well braced by straps and rods. A track of 30-in. gauge extends about 9 ft. from the muzzle of the mortar to the bumper for the cannon.
The shot is fired by an electric firing battery, from the first floor of Building No. 17, about 10 yd. away. To insure the safety of the operator and the charger, the man who loads the cannon carries a safety plug without which the charge cannot be exploded. The wires for connecting to the fuse after charging are placed conveniently, and the safety plug is then inserted in a box at the end of the west wall. The completion of the firing battery by the switch at the firing place is indicated by the flashing of a red light, after which all that is necessary to set off the charge is to press a button on the battery. An automatic recording device at the back of the mortar records the length of swing which, by a vernier, may be read to 1/200 in.
Bichel Pressure Gauges.—Pressure gauges are constructed for the purpose of determining the unit disruptive force of explosives detonating at different rates of velocity, by measuring pressures developed in an enclosed space from which the generated gases cannot escape. The apparatus consists of a stout steel cylinder, which may be made absolutely air-tight; an air-pump and proper connections for exhausting the air in the cylinder to a pressure equivalent to 10 mm. of mercury; an insulated plug for providing the means of igniting the charge; a valve by which the gaseous products of combustion may be removed for subsequent analysis; and an indicator drum (Fig. 1, Plate VII) with proper connections for driving it at a determinable speed.
This apparatus is in the southeast corner of Building No. 17. The cylinder is 31 in. long, 19 in. in diameter, and is anchored to a solid concrete footing at a convenient height for handling. The explosion chamber is 19 in. long and 7-7/8 in. in diameter, with a capacity of exactly 15 liters. The cover of the cylinder is a heavy piece of steel held in place by stout screw-bolts and a heavy steel clamp.
The charge is placed on a small wire tripod, and connections are made with a fuse to an electric firing battery for igniting the charges. The cover is drawn tight, with the twelve heavy bolts against lead washers. The air in the cylinder is exhausted to 10 mm., mercury column, in order to approach more closely the conditions of a stemmed charge exploding in a bore-hole inaccessible to air; the indicator drum is placed in position and set in motion; and, finally, the shot is fired. The record shown on the indicator card is a rapidly ascending curve for quick explosives and a shallower, slowly rising curve for explosives of slow detonation. When the gases cool, the curve merges into a straight line, which indicates the pressures of the cooled gases on the sides of the chamber.
Since the ratio of the volume of the cylinder to the volume of the charge may be computed, the pressure of the confined charge may also be found, and this pressure often exceeds 100,000 lb. per sq. in. The cooling effect of the inner surface on the gaseous products of combustion, a vital point in computations of the disruptive force of explosives by this method, is determined by comparing the pressures obtained in the original cylinder with those in a second cylinder of larger capacity, into which has been inserted one or more steel cylinders to increase the superficial area while keeping the volume equal to that of the first cylinders. By comparing results, a curve may be plotted, which will determine the actual pressures developed, with the surface-cooling effect eliminated.
Trauzl Lead Blocks.—The lead-block test is the method adopted by the Fifth International Congress of Applied Chemistry as the standard for measuring the disruptive force of explosives. The unit by this test is defined to be the force required to enlarge the bore-hole in the block to an amount equivalent to that produced by 10 grammes of standard 40% nitro-glycerine dynamite stemmed with 50 grammes of dry sand under standard conditions as produced with the tamping device. The results of this test, when compared with those of the Bichel gauge, indicate that, for explosives of high detonation, the lead block is quite accurate, but for slow explosives, such as gunpowder, the expansion of the gases is not fast enough to make comparative results of value. The reason for this is that the gases escape through the bore of the block rather than take effect in expanding the bore-hole.
The lead blocks are cylindrical, 200 mm. in diameter, and 200 mm. high. Each has a central cavity, 25 mm. in diameter and 125 mm. deep (Fig. 1, Plate IX), in which the charge is placed. The blocks are made of desilverized lead of the best quality, and, as nearly as possible, under identical conditions. The charge is placed in the cavity and prepared for detonation with an electrical exploder and stemming. After the explosion the bore-hole is pear-shaped, the size of the cavity depending, not only on the disruptive power of the explosive, but also on its rate of detonation, as already indicated. The size of the bore-hole is measured by filling the cavity with water from a burette. The difference in the capacity of the cavity before and after detonation indicates the enlarging power of the explosive.
Calorimeter.—The explosion calorimeter is designed to measure the amount of heat given off by the detonation of explosive charges of 100 grammes. The apparatus consists of the calorimeter bomb (Fig. 1, Plate VIII), the inner receiver or immersion vessel, a wooden tub, a registering thermometer, and a rocking frame. This piece of apparatus stands on the east side of Building No. 17.
The bottle-shaped bomb is made of -in. wrought steel, and has a capacity of 30 liters. On opposite sides near the top are bored apertures, one for the exhaust valve for obtaining a partial vacuum (about 20 mm., mercury column) after the bomb has been charged, the other for inserting the plug through which passes the fuse wire for igniting the charge. The bomb is closed with a cap, by which the chamber may be made absolutely air-tight. It is 30 in. high with the cap on, weighs 158 lb., and is handled to and from the immersion vessel by a small crane.
The inner receiver is made of 1/16-in. sheet copper, 30-7/8 in. deep, and with an inner diameter of 17-7/8 in. It is nickel-plated, and strengthened on the outside with bands of copper wire, and its capacity is about 70 liters. The outer tub is made of 1-in. lumber strengthened with four brass hoops on the outside. It is 33 in. deep, and its inner diameter is 21 in.
The stirring device, operated vertically by an electric motor, consists of a small wooden beam connected to a system of three rings having a horizontal bearing surface. When the apparatus is put together, the inner receiver rests on a small standard on top of the base of the outer tank, and the rings of the stirring device are run between the bomb and the inner receiver. The bomb itself rests on a small standard placed on the bottom of the inner receiver. The apparatus is provided with a snugly fitting board cover. The bomb is charged from the top, the explosive being suspended in its center. The air is exhausted to the desired degree of rarification. The caps are then screwed on, and the apparatus is set together as described.
The apparatus is assembled on scales and weighed before the water is poured in and after the receiver is filled. From the weight of the water thus obtained and the rise of temperature, the calorific value may be computed. The charge is exploded by electricity, while the water is being stirred. The rise in the temperature of the water is read by a magnifying glass, from a thermometer which measures temperature differences of 0.01 degree. From the readings obtained, the maximum temperature of explosion may be determined, according to certain formulas for calorimetric experiments. Proper corrections are made for the effects, on the temperature readings, of the formation of the products of combustion, and for the heat-absorbing power of the apparatus.
Impact Machine.—In Building No. 17, at the south side, is an impact machine designed to gauge the sensitiveness of explosives to shock. For this purpose, a drop-hammer, constructed to meet the following requirements, is used: A substantial, unyielding foundation; minimum friction in the guide-grooves; and no escape or scattering of the explosive when struck by the falling weight. This machine is modeled after one used in Germany, but is much improved in details of construction.
The apparatus, Fig. 1, Plate XI, consists essentially of the following parts: An endless chain working in a vertical path and provided with lugs; a steel anvil on which the charge of explosive is held by a steel stamp; a demagnetizing collar moving freely in vertical guides and provided with jaws placed so that the lugs of the chain may engage them; a steel weight sliding loosely in vertical guides and drawn by the demagnetizing collar to determinable heights when the machine is in operation; a second demagnetizing collar, which may be set at known heights, and provided with a release for the jaws of the first collar; and a recording device geared to a vertically-driven threaded rod which raises or lowers, sets the second demagnetizing collar, and thus determines the height of fall of the weight. By this apparatus the weight may be lifted to different known heights, and dropped on the steel stamp which transmits the shock to the explosive. The fall necessary to explode the sample is thus determined.
The hammers are of varying weight, the one generally used weighing 2,000 grammes. As the sensitiveness of an explosive is influenced by temperature changes, water at 25 cent. is allowed to flow through the anvil in order to keep its temperature uniform.
Flame Test.—An apparatus, Fig. 2, Plate VIII, designed to measure the length and duration of flames given off by explosives, is placed at the northeast corner of Building No. 17. It consists essentially of a cannon, a photographing device, and a drum geared for high speed, to which a sensitized film may be attached.
About 13 ft. outside the wall of Building No. 17, set in a concrete footing, is a cannon pointing vertically into an encasing cylinder or stack, 20 ft. high and 43 in. in diameter. This cannon is a duplicate of the one used for the ballistic pendulum, details of which have already been given. The stack or cylinder is of -in. boiler plate, in twenty-four sections, and is absolutely tight against light at the base and on the sides. It is connected with a dark room in Building No. 17 by a light-tight conduit of rectangular section, 12 in. wide, horizontal on the bottom, and sloping on the top from a height of 8 ft. at the stack to 21 in. at the inside of the wall of the building.
The conduit is carefully insulated from the light at all joints, and is riveted to the stack. A vertical slit, 2 in. wide and 8 ft. long, coincident with the center line of the conduit, is cut in the stack. A vertical plane drawn through the center line of the bore-hole of the cannon and that of the slit, if produced, intersects the center line of a quartz lens, and coincides with the center of a stenopaic slit and the axis of the revolving drum carrying the film. The photographing apparatus consists of a shutter, a quartz lens, and a stenopaic slit, 76 by 1.7 mm., between the lens and the sensitized film on the rotary drum. The quartz lens is used because it will focus the ultra-violet rays, which are those attending extreme heat.
The drum is 50 cm. in circumference and 10 cm. deep. It is driven by a 220-volt motor connected to a tachometer which reads both meters per second and revolutions per minute. A maximum peripheral speed of 20 m. per sec. may be obtained.
When the cannon is charged, the operator retires to the dark room in which the recording apparatus is located, starts the drum, obtains the desired speed, and fires the shot by means of a battery. When developed, the film shows a blur of certain dimensions, produced by the flame from the charge. From the two dimensions—height and lateral displacement—the length and duration of the flame of the explosive are determined.
The results of flame tests of a permissible explosive and a test of black blasting powder, all shot without stemming, are shown on Fig. 2, Plate IX. In this test, the speed of the drum carrying the black powder negative was reduced to one sixty-fourth of that for the permissible explosives, in order that the photograph might come within the limits of the negative. In other words, the duration of the black powder flame, as shown, should be multiplied by 64 for comparison with that of the permissible explosive, which is from 3,500 to 4,000 times quicker.
Apparatus for Measuring Rate of Detonation.—The rate at which detonation travels through a given length of an explosive can be measured by an apparatus installed in and near Building No. 17. Its most essential feature is a recording device, with an electrical connection, by which very small time intervals can be measured with great exactness.
The explosive is placed in a sheet-iron tube about 1 in. in diameter and 4 ft. long, and suspended by cords in a pit, 11 ft. deep and 16 ft. in diameter. This pit was once used as the well of a gas tank, Fig. 2, Plate VIII. In adapting the pit to its new use, the tank was cut in two; the top half, inverted, was placed in the pit on a bed of saw-dust, and the space between the tank and the masonry walls of the pit was filled with saw-dust. The cover of the pit consists of heavy timbers framed together and overlaid by a 12-in. layer of concrete reinforced by six I-beams. Four straps extend over the top and down to eight "deadmen" planted about 8 ft. below the surface of the ground.
The recording device, known as the Mettegang recorder, Fig. 2, Plate VII, comprises two sparking induction coils and a rapidly revolving metallic drum driven by a small motor, the periphery of the drum having a thin coating of lampblack. A vibration tachometer which will indicate any speed between 50 and 150 rev. per sec., is directly connected to the drum, so that any chance of error by slipping is eliminated. The wires leading to the primary coils of the sparking coils pass through the explosive a meter or more apart. Wires lead from the secondary coils to two platinum points placed a fraction of a millimeter from the periphery of the drum. A separate circuit is provided for the firing lines.
In making a test, the separate cartridges, with the paper trimmed from the ends, are placed, end to end, in the sheet-iron tube; the drum is given the desired peripheral speed, and the charge is exploded. The usual length between the points in the tube is 1 m., and the time required for the detonation of a charge of that length is shown by the distance between the beginning of two rows of dots on the drum made by the sparks from the secondary coil circuits, the dots starting the instant the primary circuits are broken by the detonation. At one end of the drum are gear teeth, 1 mm. apart on centers, which can be made to engage a worm revolving a pointer in front of a dial graduated to hundredths; by means of this and a filar eyepiece, the distance between the start of the two rows of spark dots on the drum can be measured accurately to 0.01 mm. As the drum is 500 mm. in circumference, and its normal speed is 86 rev. per sec., it is theoretically possible to measure time to one four-millionth of a second, though with a cartridge 1 m. long, such refinement has not been found necessary.
The use of small lead blocks affords another means of determining the rate of detonation or quickness of an explosive. Each block (a cylinder, 2 in. long and 1 in. in diameter) is enclosed in a piece of paper so that a shell is formed above the block, in which to place the charge. A small steel disk of the same diameter as the block is first placed in the shell on top of the block, then the charge with a detonator is inserted. The charge is customarily 100 grammes. On detonation of the charge, a deformation of the lead takes place, the amount of which is due to the quickness of the explosive used (Fig. 3, Plate VIII).
Sample Record of Tests.
The procedure followed in the examination of an explosive is shown by the following outline:
1.—Physical Examination.
(a).—Record of appearance and marks on original package.
(b).—Dimensions of cartridge.
(c).—Weight of cartridge, color and specific gravity of powder.
2.—Chemical Analysis.
(a).—Record of moisture, nitro-glycerine, sodium or potassium nitrate, and other chemical constituents, as set forth by the analysis; percentage of ash, hygroscopic coefficient—the amount of water taken up in 24 hours in a saturated atmosphere, at 15 cent., by 5 grammes, as compared with the weight of the explosive.
(b).—Analysis of products of combustion from 100 grammes, including gaseous products, solids, and water.
(c).—Composition of gaseous products of combustion, including carbon monoxide and carbon dioxide, hydrogen, nitrogen, etc.
(d).—Composition of solid products of combustion, subdivided into soluble and insoluble.
3.—A Typical Analysis of Natural Gas.
Used in tests, as follows:
Carbon dioxide 0.0 per cent. Heavy hydrocarbons 0.2 " " Oxygen 0.1 " " Carbon monoxide 0.0 " " Methane 82.4 " " Ethane 15.3 " " Nitrogen 2.0 " " ——- 100.00 per cent.
4.—Typical Analysis of Bituminous Coal Dust, 100-Mesh Fine, Used in Tests.
Moisture 1.90 Volatile matter 35.05 Fixed carbon 58.92 Ash 4.13 ——— 100.00 Sulphur 1.04
5.—An Average Analysis of Detonators.
Used on Trauzl lead blocks, pressure gauge, calorimeter, and small lead blocks:
M - l(l/m). Triple-strength exploder.
Charge 1.5729 grammes.
Mercury Chlorate fulminate. of potash. Specification 89.73 10.27
Used on all other tests:
M - 260(l/m). Double-strength exploder.
Charge 0.9805 grammes.
Mercury Chlorate fulminate. of potash. Specification 91.31 8.69
6.—Ballistic-Pendulum Tests.
This record includes powder used, weight of charge, swing of mortar, and unit disruptive charge, the latter being the charge required to produce a swing of the mortar equal to that produced by lb. (227 grammes) of 40% dynamite, or 3.01 in.
7.—Record of Tests.
Tests Nos. 1 to 5 in Gallery No. 1, as set forth in preceding circular.
8.—Trauzl Lead-Block Test.
Powder and test numbers, expansion of bore-hole in cubic centimeters, and average expansion compared with that produced by a like quantity (10 grammes) of 40% dynamite, the latter giving an average expansion of 294 cu. cm.
9.—Pressure Gauge.
Powder and test number, weight of charge, charging density, height of curve, pressure developed, and pressure developed after cooling, compared with pressure developed after elimination of surface influences by a like quantity (100 grammes) of 40% dynamite, the average being 8,439 kg. per sq. cm.
10.—Rate of Detonation.
Powder and test number, size of cartridge, and rate of detonation in meters per second, for comparison with rate of detonation of 40% dynamite, which, under the same conditions, averages 4,690 m. per sec.
11.—Impact Machine.
Explosive and test numbers, distance of fall (2,000-gramme weight) necessary to cause explosion, for comparison with length of fall, 11 cm., necessary to cause explosion of 40% dynamite.
12.—Distance of Explosive Wave Transmitted by 1.25 by 8-in. Cartridge.
Explosive and test numbers, weight of cartridge, distance separating cartridges in tests, resulting explosion or non-explosion, for comparison with two cartridges of 40% dynamite, hung, under identical conditions, 13 in. apart, end to end, in which case detonation of the first cartridge will explode the second.
13.—Flame Test.
Explosive and test numbers, charge 100 grammes with 1 lb. of clay stemming, average length of flame and average duration of flame, for comparison with photographs produced by 40% dynamite under like conditions.
14.—Small Lead Blocks.
Powder and test numbers, weight of charge, and compression produced in blocks.
15.—Calories Developed.
Number of large calories developed per kilogramme of explosive, for comparison with 1,000 grammes of 40% dynamite, which develop, on an average, 1,229 large calories.
Blasting Powder Separator.
The grains of black blasting powder are graded by a separator, similar to those used in powder mills, but of reduced size. It consists of an inclined wooden box, with slots on the sides to carry a series of screens, and a vertical conduit at the end for carrying off the grains as they are screened into separate small bins (Fig. 1, Plate X). At the upper end of the screens is a small 12 by 16-in. hopper, with a sliding brass apron to regulate the feed. The screens are shaken laterally by an eccentric rod operated by hand. The top of the hopper is about 6 ft. above the floor. The box is 6 ft. 10 in. long, from tip to tip, and inclines at an angle of 9 degrees.
After separation the grains fall through a vertical conduit, and thence to the bins through zinc chutes, 1 by 2 in. in section. Care is taken to have no steel or iron exposed to the powder.
The screens are held by light wooden frames which slip into the inclined box from the upper end. In this way, any or all of the screens may be used at once, thus separating all grades, or making only such separations as are desired. The screens with the largest meshes are diagonally-perforated zinc plates. Table 2 gives the number of holes per square foot in zinc plates perforated with circular holes of the diameters stated.
TABLE 2.—Number of Holes per Square Foot in Zinc Plates with Circular Perforations.
-+ Diameter, Number in inches of holes. -+ 1/2 353 4/10 518 1/3 782 1/4 1,392 1/6 1,680 1/8 3,456 1/10 6,636 1/16 12,800 -+
The finer meshes are obtained by using linen screens with holes of two sizes, namely, 1/20 in. square and 1/28 in. square.
Until a few years ago, black blasting powder was manufactured in the sizes given in Table 3.
TABLE 3.—Gradation of Black Blasting Powder.
-+ - Grade. Mesh. -+ - CC 2 - 2 C 2 - 3 F 3 - 5 FF 5 - 8 FFF 8 - 16 FFFF 16 - 28 -+ -
In late years there has been considerable demand for special sizes and mixed grains for individual mines, especially in Illinois. As no material change has been made in the brands, the letters now used are not indicative of the size of the grains, which they are supposed to represent. Of 29 samples of black blasting powder recently received from the Illinois Powder Commission, only 10 were found to contain 95% of the size of grains they were supposed to represent; 4 contained 90%; 7 varied from 80 to 90%; several others were mixtures of small and large grains, and were branded FF black blasting powder; and one sample contained only 8.5% of the size of grains it was supposed to represent. The remaining samples showed many variations, even when sold under the same name. The practice of thus mixing grades is exceedingly dangerous, because a miner, after becoming accustomed to one brand of FF powder of uniform separation, may receive another make of similar brand but of mixed grains, and, consequently, he cannot gauge the quantity of powder to be used. The result is often an over-load or a blown-out shot. The smaller grains will burn first, and the larger ones may be thrown out before combustion is complete, and thus ignite any fire-damp present.
Lamp Testing Gallery.
At the Pittsburg testing station, there is a gallery for testing safety lamps in the presence of various percentages of inflammable gas. In this gallery the safety of the lamps in these gaseous mixtures may be tested, and it is also possible for mine inspectors and fire bosses to bring their safety lamps to this station, and test their measurements of percentage of gas, by noting the length and the appearance of the flame in the presence of mixtures containing known percentages of methane and air. |
|