p-books.com
Time and Tide - A Romance of the Moon
by Robert S. (Robert Stawell) Ball
1  2  3     Next Part
Home - Random Browse

The Romance of Science.

TIME AND TIDE,

A Romance of the Moon.

Being Two Lectures Delivered in the Theatre of the London Institution, on the Afternoons of November 19 and 26, 1888.

by

SIR ROBERT S. BALL, LL.D., F.R.S., Royal Astronomer of Ireland.



Published under the Direction of the Committee of General Literature and Education Appointed by the Society for Promoting Christian Knowledge.

London: Society for Promoting Christian Knowledge, Northumberland Avenue, W.C.; 43, Queen Victoria Street, E.C. Brighton: 135, North Street. New York: E. & J. B. Young & Co.



TO The Members of the London Institution I DEDICATE THIS LITTLE BOOK.



PREFACE.

Having been honoured once again with a request that I should lecture before the London Institution, I chose for my subject the Theory of Tidal Evolution. The kind reception which these lectures received has led to their publication in the present volume. I have taken the opportunity to supplement the lectures as actually delivered by the insertion of some additional matter. I am indebted to my friends Mr. Close and Mr. Rambaut for their kindness in reading the proofs.

ROBERT S. BALL.

Observatory, CO. DUBLIN, April 26, 1889.



TIME AND TIDE.



LECTURE I.

It is my privilege to address you this afternoon on a subject in which science and poetry are blended in a happy conjunction. If there be a peculiar fascination about the earlier chapters of any branch of history, how great must be the interest which attaches to that most primeval of all terrestrial histories which relates to the actual beginnings of this globe on which we stand.

In our efforts to grope into the dim recesses of this awful past, we want the aid of some steadfast light which shall illumine the dark places without the treachery of the will-o'-the-wisp. In the absence of that steadfast light, vague conjectures as to the beginning of things could never be entitled to any more respect than was due to mere matters of speculation.

Of late, however, the required light has been to some considerable extent forthcoming, and the attempt has been made, with no little success, to elucidate a most interesting and wonderful chapter of an exceedingly remote history. To chronicle this history is the object of the present lectures before this Institution.

First, let us be fully aware of the extraordinary remoteness of that period of which our history treats. To attempt to define that period chronologically would be utterly futile. When we have stated that it is more ancient than almost any other period which we can discuss, we have expressed all that we are really entitled to say. Yet this conveys not a little. It directs us to look back through all the ages of modern human history, through the great days of ancient Greece and Rome, back through the times when Egypt and Assyria were names of renown, through the days when Nineveh and Babylon were mighty and populous cities in the zenith of their glory. Back earlier still to those more ancient nations of which we know hardly anything, and still earlier to the prehistoric man, of whom we know less; back, finally, to the days when man first trod on this planet, untold ages ago. Here is indeed a portentous retrospect from most points of view, but it is only the commencement of that which our subject suggests.

For man is but the final product of the long anterior ages during which the development of life seems to have undergone an exceedingly gradual elevation. Our retrospect now takes its way along the vistas opened up by the geologists. We look through the protracted tertiary ages, when mighty animals, now generally extinct, roamed over the continents. Back still earlier through those wondrous secondary periods, where swamps or oceans often covered what is now dry land, and where mighty reptiles of uncouth forms stalked and crawled and swam through the old world and the new. Back still earlier through those vitally significant ages when the sunbeams were being garnered and laid aside for man's use in the great forests, which were afterwards preserved by being transformed into seams of coal. Back still earlier through endless thousands of years, when lustrous fishes abounded in the oceans; back again to those periods characterized by the lower types of life; and still earlier to that incredibly remote epoch when life itself began to dawn on our awakening globe. Even here the epoch of our present history can hardly be said to have been reached. We have to look through a long succession of ages still antecedent. The geologist, who has hitherto guided our view, cannot render us much further assistance; but the physicist is at hand—he teaches us that the warm globe on which life is beginning has passed in its previous stages through every phase of warmth, of fervour, of glowing heat, of incandescence, and of actual fusion; and thus at last our retrospect reaches to that particular period of our earth's past history which is specially illustrated by the modern doctrine of Time and Tide.

The present is the clue to the past. It is the steady application of this principle which has led to such epoch-making labours as those by which Lyell disclosed the origin of the earth's crust, Darwin the origin of species, Max Mueller the origin of language. In our present subject the course is equally clear. Study exactly what is going on at present, and then have the courage to apply consistently and rigorously what we have learned from the present to the interpretation of the past.

Thus we begin with the ripple of the tide on the sea-beach which we see to-day. The ebb and the flow of the tide are the present manifestations of an agent which has been constantly at work. Let that present teach us what tides must have done in the indefinite past.

It has been known from the very earliest times that the moon and the tides were connected together—connected, I say, for a great advance had to be made in human knowledge before it would have been possible to understand the true relation between the tides and the moon. Indeed, that relation is so far from being of an obvious character, that I think I have read of a race who felt some doubt as to whether the moon was the cause of the tides, or the tides the cause of the moon. I should, however, say that the moon is not the sole agent engaged in producing this periodic movement of our waters. The sun also arouses a tide, but the solar tide is so small in comparison with that produced by the moon, that for our present purpose we may leave it out of consideration. We must, however, refer to the solar tide at a later period of our discourses, for it will be found to have played a very splendid part at the initial stage of the Earth-Moon History, while in the remote future it will again rise into prominence.

It will be well to set forth a few preliminary figures which shall explain how it comes to pass that the efficiency of the sun as a tide-producing agent is so greatly inferior to that of the moon. Indeed, considering that the sun has a mass so stupendous, that it controls the entire planetary system, how is it that a body so insignificant as the moon can raise a bigger tide on the ocean than can the sun, of which the mass is 26,000,000 times as great as that of our satellite?

This apparent paradox will disappear when we enunciate the law according to which the efficiency of a tide-producing agent is to be estimated. This law is somewhat different from the familiar form in which the law of gravitation is expressed. The gravitation between two distant masses is to be measured by multiplying these masses together, and dividing the product by the square of the distance. The law for expressing the efficiency of a tide-producing agent varies not according to the inverse square, but according to the inverse cube of the distance. This difference in the expression of the law will suffice to account for the superiority of the moon as a tide-producer over the sun. The moon's distance on an average is about one 386th part of that of the sun, and thus it is easy to show that so far as the mere attraction of gravitation is concerned, the efficiency of the sun's force on the earth is about one hundred and seventy-five times as great as the force with which the moon attracts the earth. That is of course calculated under the law of the inverse square. To determine the tidal efficiency we have to divide this by three hundred and eighty-six, and thus we see that the tidal efficiency of the sun is less than half that of the moon.

When the solar tide and the lunar tide are acting in unison, they conspire to produce very high tides and very low tides, or, as we call them, spring tides. On the other hand, when the sun is so placed as to give us a low tide while the moon is producing a high tide, the net result that we actually experience is merely the excess of the lunar tide over the solar tide; these are what we call neap tides. In fact, by very careful and long-continued observations of the rise and fall of the tides at a particular port, it becomes possible to determine with accuracy the relative ranges of spring tides and neap tides; and as the spring tides are produced by moon plus sun, while the neap tides are produced by moon minus sun, we obtain a means of actually weighing the relative masses of the sun and moon. This is one of the remarkable facts which can be deduced from a prolonged study of the tides.

The demonstration of the law of the tide-producing force is of a mathematical character, and I do not intend in these lectures to enter into mathematical calculations. There is, however, a simple line of reasoning which, though it falls far short of actual demonstration, may yet suffice to give a plausible reason for the law.

The tides really owe their origin to the fact that the tide-producing agent operates more powerfully on those parts of the tide-exhibiting body which are near to it, than on the more distant portions of the same. The nearer the two bodies are together, the larger proportionally will be the differences in the distances of its various parts from the tide-producing body; and on this account the leverage, so to speak, of the action by which the tides are produced is increased. For instance, if the two bodies were brought within half their original distance of each other, the relative size of each body, as viewed from the other, will be doubled; and what we have called the leverage of the tide-producing ability will be increased twofold. The gravitation also between the two bodies is increased fourfold when the distance is halved, and consequently, the tide-producing ability is doubled for one reason, and increased fourfold again by another; hence, the tides will be increased eightfold when the distance is reduced to one half. Now, as eight is the cube of two, this illustration may be taken as a verification of the law, that the efficiency of a body as a tide-producer varies inversely as the cube of the distance between it and the body on which the tides are being raised.

For simplicity we may make the assumption that the whole of the earth is buried beneath the ocean, and that the moon is placed in the plane of the equator. We may also entirely neglect for the present the tides produced by the sun, and we shall also make the further assumption that friction is absent. What friction is capable of doing we shall, however, refer to later on. The moon will act on the ocean and deform it, so that there will be high tide along one meridian, and high tide also on the opposite meridian. This is indeed one of the paradoxes by which students are frequently puzzled when they begin to learn about the tides. That the moon should pull the water up in a heap on one side seems plausible enough. High tide will of course be there; and the student might naturally think that the water being drawn in this way into a heap on one side, there will of course be low tide on the opposite side of the earth. A natural assumption, perhaps, but nevertheless a very wrong one. There are at every moment two opposite parts of the earth in a condition of high water; in fact, this will be obvious if we remember that every day, or, to speak a little more accurately, in every twenty-four hours and fifty one minutes, we have on the average two high tides at each locality. Of course this could not be if the moon raised only one heap of high water, because, as the moon only appears to revolve around the earth once a day, or, more accurately, once in that same average period of twenty-four hours and fifty-one minutes, it would be impossible for us to have high tides succeeding each other as they do in periods a little longer than twelve hours, if only one heap were carried round the earth.

The first question then is, as to how these two opposite heaps of water are placed in respect to the position of the moon. The most obvious explanation would seem to be, that the moon should pull the waters up into a heap directly underneath it, and that therefore there should be high water underneath the moon. As to the other side, the presence of a high tide there was, on this theory, to be accounted for by the fact that the moon pulled the earth away from the waters on the more remote side, just as it pulled the waters away from the more remote earth on the side underneath the moon. It is, however, certainly not the case that the high tide is situated in the simple position that this law would indicate, and which we have represented in Fig. 1, where the circular body is the earth, the ocean surrounding which is distorted by the action of the tides.



We have here taken an oval to represent the shape into which the water is supposed to be forced or drawn by the tidal action of the tide-producing body. This may possibly be a correct representation of what would occur on an ideal globe entirely covered with a frictionless ocean. But as our earth is not covered entirely by water, and as the ocean is very far from being frictionless, the ideal tide is not the tide that we actually know; nor is the ideal tide represented by this oval even an approximation to the actual tides to which our oceans are subject. Indeed, the oval does not represent the facts at all, and of this it is only necessary to adduce a single fact in demonstration. I take the fundamental issue so often debated, as to whether in the ocean vibrating with ideal tides the high water or the low water should be under the moon. Or to put the matter otherwise; when we represent the displaced water by an oval, is the long axis of the oval to be turned to the moon, as generally supposed, or is it to be directed at right angles therefrom? If the ideal tides were in any degree representative of the actual tides, so fundamental a question as this could be at once answered by an appeal to the facts of observation. Even if friction in some degree masked the phenomena, surely one would think that the state of the actual tides should still enable us to answer this question.

But a study of the tides at different ports fails to realize this expectation. At some ports, no doubt, the tide is high when the moon is on the meridian. In that case, of course, the high water is under the moon, as apparently ought to be the case invariably, on a superficial view. But, on the other hand, there are ports where there is often low water when the moon is crossing the meridian. Yet other ports might be cited in which every intermediate phase could be observed. If the theory of the tides was to be the simple one so often described, then at every port noon should be the hour of high water on the day of the new moon or of the full moon, because then both tide-exciting bodies are on the meridian at the same time. Even if the friction retarded the great tidal wave uniformly, the high tide on the days of full or change should always occur at fixed hours; but, unfortunately, there is no such delightful theory of the tides as this would imply. At Greenock no doubt there is high water at or about noon on the day of full or change; and if it could be similarly said that on the day of full or change there was high water everywhere at local noon, then the equilibrium theory of the tides, as it is called, would be beautifully simple. But this is not the case. Even around our own coasts the discrepancies are such as to utterly discredit the theory as offering any practical guide. At Aberdeen the high tide does not appear till an hour later than the doctrine would suggest. It is two hours late at London, three at Tynemouth, four at Tralee, five at Sligo, and six at Hull. This last port would be indeed the haven of refuge for those who believe that the low tide ought to be under the moon. At Hull this is no doubt the case; and if at all other places the water behaved as it does at Hull, why then, of course, it would follow that the law of low water under the moon was generally true. But then this would not tally with the condition of affairs at the other places I have named; and to complete the cycle I shall add a few more. At Bristol the high water does not get up until seven hours after the moon has passed the meridian, at Arklow the delay is eight hours, at Yarmouth it is nine, at the Needles it is ten hours, while lastly, the moon has nearly got back to the meridian again ere it has succeeded in dragging up the tide on which Liverpool's great commerce so largely depends.

Nor does the result of studying the tides along other coasts beside our own decide more conclusively on the mooted point. Even ports in the vast ocean give a very uncertain response. Kerguelen Island and Santa Cruz might seem to prove that the high tide occurs under the moon, but unfortunately both Fiji and Ascension seem to present us with an equally satisfactory demonstration, that beneath the moon is the invariable home of low water.

I do not mean to say that the study of the tides is in other respects such a confused subject as the facts I have stated would seem to indicate. It becomes rather puzzling, no doubt, when we compare the tides at one port with the tides elsewhere. The law and order are, then, by no means conspicuous, they are often hardly discernible. But when we confine our attention to the tides at a single port, the problem becomes at once a very intelligible one. Indeed, the investigation of the tides is an easy subject, if we are contented with a reasonably approximate solution; should, however, it be necessary to discuss fully the tides at any port, the theory of the method necessary for doing so is available, and a most interesting and beautiful theory it certainly is.

Let us then speak for a few moments about the methods by which we can study the tides at a particular port. The principle on which it is based is a very simple one.

It is the month of August, the 18th, we shall suppose, and we are going to enjoy a delicious swim in the sea. We desire, of course, to secure a high tide for the purpose of doing so, and we call an almanac to help us. I refer to the Thom's Dublin Directory, where I find the tide to be high at 10h. 14m. on the morning of the 18th of August. That will then be the time to go down to the baths at Howth or Kingstown.

But what I am now going to discourse to you about is not the delights of sea-bathing, it is rather a different inquiry. I want to ask, How did the people who prepared that almanac know years beforehand, that on that particular day the tide would be high at that particular hour? How do they predict for every day the hour of high water? and how comes it to pass that these predictions are invariably correct?

We first refer to that wonderful book, the Nautical Almanac. In that volume the movements of the moon are set forth with full detail; and among other particulars we can learn on page iv of every month the mean time of the moon's meridian passage. It appears that on the day in question the moon crossed the meridian at 11h. 23m. Thus we see there was high water at Dublin at 10h. 14m., and 1h. 9m. later, that is, at 11h. 23m., the moon crossed the meridian.

Let us take another instance. There is a high tide at 3.40 P.M. on the 25th August, and again the infallible Nautical Almanac tells us that the moon crossed the meridian at 5h. 44m., that is, at 2h. 4m. after the high water.

In the first case the moon followed the tide in about an hour, and in the second case the moon followed in about two hours. Now if we are to be satisfied with a very rough tide rule for Dublin, we may say generally that there is always a high tide an hour and a half before the moon crosses the meridian. This would not be a very accurate rule, but I can assure you of this, that if you go by it you will never fail of finding a good tide to enable you to enjoy your swim. I do not say this rule would enable you to construct a respectable tide-table. A ship-owner who has to creep up the river, and to whom often the inches of water are material, will require far more accurate tables than this simple rule could give. But we enter into rather complicated matters when we attempt to give any really accurate methods of computation. On these we shall say a few words presently. What I first want to do, is to impress upon you in a simple way the fact of the relation between the tide and the moon.

To give another illustration, let us see how the tides at London Bridge are related to the moon. On Jan. 1st, 1887, it appeared that the tide was high at 6h. 26m. P.M., and that the moon had crossed the meridian 56m. previously; on the 8th Jan. the tide was high at 0h. 43m. P.M., and the moon had crossed the meridian 2h. 1m. previously. Therefore we would have at London Bridge high water following the moon's transit in somewhere about an hour and a half.

I choose a day at random, for example—the 12th April. The moon crosses the upper meridian at 3h. 39m. A.M., and the lower meridian at 4h 6m. P.M. Adding an hour and a half to each would give the high tides at 5h 9m. A.M. and 5h. 36m. P.M.; as a matter of fact, they are 4h. 58m. A.M. and 5h. 20m. P.M.

But these illustrations are sufficient. We find that at London, in a general way, high water appears at London Bridge about an hour and a half after the moon has passed the meridian of London. It so happens that the interval at Dublin is about the same, i.e. an hour and a half; only that in the latter case the high water precedes the moon by that interval instead of following it. We may employ the same simple process at other places. Choose two days about a week distant; find on each occasion the interval between the transit of the moon and the time of high water, then the mean of these two differences will always give some notion of the interval between high water and the moon's transit. If then we take from the Nautical Almanac the time of the moon's transit, and apply to it the correction proper for the port, we shall always have a sufficiently good tide-table to guide us in choosing a suitable time for taking our swim or our walk by the sea-side; though if you be the captain of a vessel, you will not be so imprudent as to enter port without taking counsel of the accurate tide-tables, for which we are indebted to the Admiralty.

Every one who visits the sea-side, or who lives at a sea-port, should know this constant for the tides, which affect him and his movements so materially. If he will discover it from his own experience, so much the better.

The first point to be ascertained is the time of high water. Do not take this from any local table; you ought to observe it for yourself. You will go to the pier head, or, better still, to some place where the rise and fall of the mere waves of the sea will not embarrass you in your work. You must note by your watch the time when the tide is highest. An accurate way of doing this will be to have a scale on which you can measure the height at intervals of five minutes about the time of high water. You will then be able to conclude the time at which the tide was actually at its highest point; but even if no great accuracy be obtainable, you can still get much interesting information, for you will without much difficulty be right within ten minutes or a quarter of an hour.

The correction for the port is properly called the "establishment," this being the average time of high water on the days of full and change of the moon at the particular port in question.

We can considerably amend the elementary notion of the tides which the former method has given us, if we adopt the plan described by Dr. Whewell in the first four editions of the Admiralty Manual of Scientific Inquiry. We speak of the interval between the transit of the moon and the time of high water as the luni-tidal interval. Of course at full and change this is the same thing as the establishment, but for other phases of the moon the establishment must receive a correction before being used as the luni-tidal interval. The correction is given by the following table—

Hour of Moon's transit after Sun:

0 1 2 3 4 5 6 7 8 9 10 11 - + 0 -20m -30m -50m -60m -60m -60m -40m -10m +10m +20m +10m

Correction of establishment to find luni-tidal interval:

Thus at a port where the establishment was 3h. 25m., let us suppose that the transit of the moon took place at 6 P.M.; then we correct the establishment by -60m., and find the luni-tidal interval to be 2h. 25m., and accordingly the high water takes place at 8h. 25m. P.M.

But even this method is only an approximation. The study of the tides is based on accurate observation of their rise and fall on different places round the earth. To show how these observations are to be made, and how they are to be discussed and reduced when they have been made, I may refer to the last edition of the Admiralty Manual of Scientific Inquiry, 1886. For a complete study of the tides at any port a self-registering tide-gauge should be erected, on which not alone the heights and times of high and low water should be depicted, but also the continuous curve which shows at any time the height of the water. In fact, the whole subject of the practical observation and discussion and prediction of tides is full of valuable instruction, and may be cited as one of the most complete examples of the modern scientific methods.

In the first place, the tide-gauge itself is a delicate instrument; it is actuated by a float which rises and falls with the water, due provision being made that the mere influence of waves shall not make it to oscillate inconveniently. The motion of the float when suitably reduced by mechanism serves to guide a pencil, which, acting on the paper round a revolving drum, gives a faithful and unintermitting record of the height of the water.

Thus what the tide-gauge does is to present to us a long curved line of which the summits correspond to the heights of high water, while the depressions are the corresponding points of low water. The long undulations of this curve are, however, very irregular. At spring tides, when the sun and the moon conspire, the elevations rise much higher and the depressions sink much lower than they do at neap tides, when the high water raised by the moon is reduced by the action of the sun. There are also many minor irregularities which show the tides to be not nearly such simple phenomena as might be at first supposed. But what we might hastily think of as irregularities are, in truth, the most interesting parts of the whole phenomena. Just as in the observations of the planets the study of the perturbations has led us to results of the widest interest and instruction, so it is these minor phenomena of the tides which seem most pregnant with scientific interest.

The tide-gauge gives us an elaborate curve. How are we to interpret that curve? Here indeed a most beautiful mathematical theorem comes to our aid. Just as ordinary sounds consist of a number of undulations blended together, so the tidal wave consists of a number of distinct undulations superposed. Of these the ordinary lunar tide and the ordinary solar tide are the two principal; but there are also minor undulations, harmonics, so to speak, some originating from the moon, some originating from the sun, and some from both bodies acting in concert.

In the study of sound we can employ an acoustic apparatus for the purpose of decomposing any proposed note, and finding not only the main undulation itself, but the several superposed harmonics which give to the note its timbre. So also we can analyze the undulation of the tide, and show the component parts. The decomposition is effected by the process known as harmonic analysis. The principle of the method may be very simply described. Let us fix our attention on any particular "tide," for so the various elements are denoted. We can always determine beforehand, with as much accuracy as we may require, what the period of that tide will be. For instance, the period of the lunar semi-diurnal tide will of course be half the average time occupied by the moon to travel round from the meridian of any place until it regains the same meridian; the period of the lunar diurnal tide will be double as great; and there are fortnightly tides, and others of periods still greater. The essential point to notice is, that the periods of these tides are given by purely astronomical considerations from the periods of the motions theory, and do not depend upon the actual observations.

We measure off on the curve the height of the tide at intervals of an hour. The larger the number of such measures that are available the better; but even if there be only three hundred and sixty or seven hundred and twenty consecutive hours, then, as shown by Professor G. H. Darwin in the Admiralty Manual already referred to, it will still be possible to obtain a very competent knowledge of the tides in the particular port where the gauge has been placed.

The art (for such indeed it may be described) of harmonic analysis consists in deducing from the hourly observations the facts with regard to each of the constituent tides. This art has been carried to such perfection, that it has been reduced to a very simple series of arithmetical operations. Indeed it has now been found possible to call in the aid of ingenious mechanism, by which the labours of computation are entirely superseded. The pointer of the harmonic analyzer has merely to be traced over the curve which the tide-gauge has drawn, and it is the function of the machine to decompose the composite undulation into its parts, and to exhibit the several constituent tides whose confluence gives the total result.

As if nothing should be left to complete the perfection of a process which, both from its theoretical and its practical sides, is of such importance, a machine for predicting tides has been designed, constructed, and is now in ordinary use. When by the aid of the harmonic analysis the effectiveness of the several constituent tides affecting a port have become fully determined, it is of course possible to predict the tides for that port. Each "tide" is a simple periodic rise and fall, and we can compute for any future time the height of each were it acting alone. These heights can all be added together, and thus the height of the water is obtained. In this way a tide-table is formed, and such a table when complete will express not alone the hours and heights of high water on every day, but the height of the water at any intervening hour.

The computations necessary for this purpose are no doubt simple, so far as their principle is concerned; but they are exceedingly tedious, and any process must be welcomed which affords mitigation of a task so laborious. The entire theory of the tides owes much to Sir William Thomson in the methods of observation and in the methods of reduction. He has now completed the practical parts of the subject by inventing and constructing the famous tide-predicting engine.

The principle of this engine is comparatively simple. There is a chain which at one end is fixed, and at the other end carries the pencil which is pressed against the revolving drum on which the prediction is to be inscribed. Between its two ends the chain passes up and down over pulleys. Each pulley corresponds to one of the "tides," and there are about a dozen altogether, some of which exercise but little effect. Of course if the centres of the pulleys were all fixed the pen could not move, but the centre of each pulley describes a circle with a radius proportional to the amplitude of the corresponding tide, and in a time proportional to the period of that tide. When these pulleys are all set so as to start at the proper phases, the motion is produced by turning round a handle which makes the drum rotate, and sets all the pulleys in motion. The tide curve is thus rapidly drawn out; and so expeditious is the machine, that the tides of a port for an entire year can be completely worked out in a couple of hours.

While the student or the philosopher who seeks to render any account of the tide on dynamical grounds is greatly embarrassed by the difficulties introduced by friction, we, for our present purpose in the study of the great romance of modern science opened up to us by the theory of the tides, have to welcome friction as the agent which gives to the tides their significance from our point of view.

There is the greatest difference between the height of the rise and fall of the tide at different localities. Out in mid-ocean, for instance, an island like St. Helena is washed by a tide only about three feet in range; an enclosed sea like the Caspian is subject to no appreciable tides whatever, while the Mediterranean, notwithstanding its connection with the Atlantic, is still only subject to very inconsiderable tides, varying from one foot to a few feet. The statement that water always finds its own level must be received, like many another proposition in nature, with a considerable degree of qualification. Long ere one tide could have found its way through the Straits of Gibraltar in sufficient volume to have appreciably affected the level of the great inland sea, its effects would have been obliterated by succeeding tides. On the other hand, there are certain localities which expose a funnel-shape opening to the sea; into these the great tidal wave rushes, and as it passes onwards towards the narrow part, the waters become piled up so as to produce tidal phenomena of abnormal proportions. Thus, in our own islands, we have in the Bristol Channel a wide mouth into which a great tide enters, and as it hurries up the Severn it produces the extraordinary phenomenon of the Bore. The Bristol Channel also concentrates the great wave which gives Chepstow and Cardiff a tidal range of thirty-seven or thirty-eight feet at springs, and forces the sea up the river Avon so as to give Bristol a wonderful tide. There is hardly any more interesting spot in our islands for the observation of tides than is found on Clifton Suspension Bridge. From that beautiful structure you look down on a poor and not very attractive stream, which two hours later becomes transformed into a river of ample volume, down which great ships are navigated. But of all places in the world, the most colossal tidal phenomena are those in the Bay of Fundy. Here the Atlantic passes into a long channel whose sides gradually converge. When the great pulse of the tide rushes up this channel, it is gradually accumulated into a mighty volume at the upper end, the ebb and flow of which at spring tides extends through the astonishing range of not less than fifty feet.

These discrepancies between the tides at different places are chiefly due to the local formations of the coasts and the sea-beds. Indeed, it seems that if the whole earth were covered with an uniform and deep ocean of water, the tides would be excessively feeble. On no other supposition can we reasonably account for the fact that our barometric records fail to afford us any very distinct evidence as to the existence of tides in the atmosphere. For you will, of course, remember that our atmosphere may be regarded as a deep and vast ocean of air, which embraces the whole earth, extending far above the loftiest summits of the mountains.

It is one of the profoundest of nature's laws that wherever friction takes place, energy has to be consumed. Perhaps I ought rather to say transformed, for of course it is now well known that consumption of energy in the sense of absolute loss is impossible. Thus, when energy is expended in moving a body in opposition to the force of friction, or in agitating a liquid, the energy which disappears in its mechanical form reappears in the form of heat. The agitation of water by paddles moving through it warms the water, and the accession of heat thus acquired measures the energy which has been expended in making the paddles rotate. The motion of a liquid of which the particles move among each other with friction, can only be sustained by the incessant degradation of energy from the mechanical form into the lower form of diffused heat. Thus the very fact that the tides are ebbing and flowing, and that there is consequently incessant friction going on among all the particles of water in the ocean, shows us that there must be some great store of energy constantly available to supply the incessant draughts made upon it by the daily oscillation of the tides. In addition to the mere friction between the particles of water, there are also many other ways in which the tides proclaim to us that there is some great hoard of energy which is continually accessible to their wants. Stand on the bank of an estuary or river up and down which a great tidal current ebbs and flows; you will see the water copiously charged with sediment which the tide is bearing along. Engineers are well aware of the potency of the tide as a vehicle for transporting stupendous quantities of sand or mud. A sand-bank impedes the navigation of a river; the removal of that sand-bank would be a task, perhaps, conceivably possible by the use of steam dredges and other appliances, whereby vast quantities of sand could be raised and transported to another locality where they would be innocuous. It is sometimes possible to effect the desired end by applying the power of the tide. A sea-wall judiciously thrown out will sometimes concentrate the tide into a much narrower channel. Its daily oscillations will be accomplished with greater vehemence, and as the tide rushes furiously backwards and forwards over the obstacle, the incessant action will gradually remove it, and the impediment to navigation may be cleared away. Here we actually see the tides performing a piece of definite and very laborious work, to accomplish which by the more ordinary agents would be a stupendous task.

In some places the tides are actually harnessed so as to accomplish useful work. I have read that underneath old London Bridge there used formerly to be great water-wheels, which were turned by the tide as it rushed up the river, and turned again, though in the opposite way, by the ebbing tide. These wheels were, I believe, employed to pump up water, though it does not seem obvious for what purposes the water would have been suitable. Indeed in the ebb and flow all round our coasts there is a potential source of energy which has hitherto been allowed to run to waste. The tide could be utilized in various ways. Many of you will remember the floating mills on the Rhine. They are vessels like paddle steamers anchored in the rapid current. The flow of the river makes the paddles rotate, and thus the machinery in the interior is worked. Such craft moored in a rapid tide-way could also be made to convey the power of the tides into the mechanism of the mill. Or there is still another method which has been employed, and which will perhaps have a future before it in those approaching times when the coal-cellars of England shall be exhausted. Imagine on the sea-coast a large flat extent which is inundated twice every day by the tide. Let us build a stout wall round this area, and provide it with a sluice-gate. Open the gate as the tide rises, and the great pond will be filled; then at the moment of high water close the sluice, and the pond-full will be impounded. If at low tide the sluice be opened the water will rush tumultuously out. Now suppose that a water-wheel be provided, so that the rapid rush of water from the exit shall fall upon its blades; then a source of power is obviously the result.

At present, however, such a contrivance would naturally find no advocates, for of course the commercial aspect of the question is that which will decide whether the scheme is practicable and economical. The issue indeed can be very simply stated. Suppose that a given quantity of power be required—let us say that of one hundred horse. Then we have to consider the conditions under which a contrivance of the kind we have sketched shall yield a power of this amount. Sir William Thomson, in a very interesting address to the British Association at York in 1881, discussed this question, and I shall here make use of the facts he brought forward on that occasion. He showed that to obtain as much power as could be produced by a steam-engine of one hundred horse power, a very large reservoir would be required. It is doubtful indeed whether there would be many localities on the earth which would be suitable for the purpose. Suppose, however, an estuary could be found which had an area of forty acres; then if a wall were thrown across the mouth so that the tide could be impounded, the total amount of power that could be yielded by a water-wheel worked by the incessant influx and efflux of the tide would be equal to that yielded by the one hundred horse engine, running continuously from one end of the year to the other.

There are many drawbacks to a tide-mill of this description. In the first place, its situation would naturally be far removed from other conveniences necessary for manufacturing purposes. Then too there is the great irregularity in the way in which the power is rendered available. At certain periods during the twenty-four hours the mill would stop running, and the hours when this happened would be constantly changing. The inconvenience from the manufacturer's point of view of a deficiency of power during neap tides might not be compensated by the fact that he had an excessive supply of power at spring-tides. Before tide-mills could be suitable for manufacturing purposes, some means must be found for storing away the energy when it is redundant, and applying it when its presence is required. We should want in fact for great sources of energy some contrivance which shall fulfil the same purpose as the accumulators do in an electrical installation.

Even then, however, the financial consideration remains, as to whether the cost of building the dam and maintaining the tide-mill in good order will not on the whole exceed the original price and the charges for the maintenance of a hundred horse power steam-engine. There cannot be a doubt that in this epoch of the earth's history, so long as the price of coal is only a few shillings a ton, the tide-mill, even though we seem to get its power without current expense, is vastly more expensive than a steam-engine. Indeed, Sir William Thomson remarks, that wherever a suitable tidal basin could be found, it would be nearly as easy to reclaim the land altogether from the sea. And if this were in any locality where manufactures were possible, the commercial value of forty acres of reclaimed land would greatly exceed all the expenses attending the steam-engine. But when the time comes, as come it apparently will, that the price of coal shall have risen to several pounds a ton, the economical aspect of steam as compared with other prime movers will be greatly altered; it will then no doubt be found advantageous to utilize great sources of energy, such as Niagara and the tides, which it is now more prudent to let run to waste.

For my argument, however, it matters little that the tides are not constrained to do much useful work. They are always doing work of some kind, whether that be merely heating the particles of water by friction, or vaguely transporting sand from one part of the ocean to the other. Useful work or useless work are alike for the purpose of my argument. We know that work can never be done unless by the consumption or transformation of energy. For each unit of work that is done—whether by any machine or contrivance, by the muscles of man or any other animal, by the winds, the waves, or the tides, or in any other way whatever—a certain equivalent quantity of energy must have been expended. When, therefore, we see any work being performed, we may always look for the source of energy to which the machine owes its efficiency. In fact, it is the old story illustrated, that perpetual motion is impossible. A mechanical device, however ingenious may be the construction, or however accurate the workmanship, can never possess what is called perpetual motion. It is needless to enter into details of any proposed contrivance of wheels, of pumps, of pulleys; it is sufficient to say that nothing in the shape of mechanism can work without friction, that friction produces heat, that heat is a form of energy, and that to replace the energy consumed in producing the heat there must be some source from which the machine is replenished if its motion is to be continued indefinitely.

Hence, as the tides may be regarded as a machine doing work, we have to ascertain the origin of that energy which they are continually expending. It is at this point that we first begin to feel the difficulties inherent in the theory of tidal evolution. I do not mean difficulties in the sense of doubts, for up to the present I have mentioned no doubtful point. When I come to such I shall give due warning. By difficulties I now mean points which it is not easy to understand without a little dynamical theory; but we must face these difficulties, and endeavour to elucidate them as well as we can.

Let us first see what the sources of energy can possibly be on which the tides are permitted to draw. Our course is simplified by the fact that the energy of which we have to speak is of a mechanical description, that is to say, not involving heat or other more obscure forms of energy. A simple type of energy is that possessed by a clock-weight after the clock has been wound. A store of power is thus laid up which is gradually doled out during the week in small quantities, second by second, to sustain the motion of the pendulum. The energy in this case is due to the fact that the weight is attracted by the earth, and is yielded according as the weight sinks downwards. In the separation between two mutually attracting bodies, a store of energy is thus implied. What we learn from an ordinary clock may be extended to the great bodies of the universe. The moon is a gigantic globe separated from our earth by a distance of 240,000 miles. The attraction between these two bodies always tends to bring them together. No doubt the moon is not falling towards the earth as the descending clock-weight is doing. We may, in fact, consider the moon, so far as our present object is concerned, to be revolving almost in a circle, of which the earth is the centre. If the moon, however, were to be stopped, it would at once commence to rush down towards the earth, whither it would arrive with an awful crash in the course of four or five days. It is fortunately true that the moon does not behave thus; but it has the ability of doing so, and thus the mere separation between the earth and the moon involves the existence of a stupendous quantity of energy, capable under certain conditions of undergoing transformation.

There is also another source of mechanical energy besides that we have just referred to. A rapidly moving body possesses, in virtue of its motion, a store of readily available energy, and it is easy to show that energy of this type is capable of transformation into other types. Think of a cannon-ball rushing through the air at a speed of a thousand feet per second; it is capable of wreaking disaster on anything which it meets, simply because its rapid motion is the vehicle by which the energy of the gunpowder is transferred from the gun to where the blow is to be struck. Had the cannon been directed vertically upwards, then the projectile, leaving the muzzle with the same initial velocity as before, would soar up and up, with gradually abating speed, until at last it reached a turning-point, the elevation of which would depend upon the initial velocity. Poised for a moment at the summit, the cannon-ball may then be likened to the clock-weight, for the entire energy which it possessed by its motion has been transformed into the statical energy of a raised weight. Thus we see these two forms of energy are mutually interchangeable. The raised weight if allowed to fall will acquire velocity, or the rapidly moving weight if directed upwards will acquire altitude.

The quantity of energy which can be conveyed by a rapidly moving body increases greatly with its speed. For instance, if the speed of the body be doubled, the energy will be increased fourfold, or, in general, the energy which a moving body possesses may be said to be proportional to the square of its speed. Here then we have another source of the energy present in our earth-moon system; for the moon is hurrying along in its path with a speed of two-thirds of a mile per second, or about twice or three times the speed of a cannon-shot. Hence the fact that the moon is continuously revolving in a circle shows us that it possesses a store of energy which is nine times as great as that which a cannon-ball as massive as the moon, and fired with the ordinary velocity, would receive from the powder which discharged it.

Thus we see that the moon is endowed with two sources of energy, one of which is due to its separation from the earth, and the other to the speed of its motion. Though these are distinct, they are connected together by a link which it is important for us to comprehend. The speed with which the moon revolves around the earth is connected with the moon's distance from the earth. The moon might, for instance, revolve in a larger circle than that which it actually pursues; but if it did so, the speed of its motion would have to be appropriately lessened. The orbit of the moon might have a much smaller radius than it has at present, provided that the speed was sufficiently increased to compensate for the increased attraction which the earth would exercise at the lessened distance. Indeed, I am here only stating what every one is familiar with under the form of Kepler's Law, that the square of the periodic time is in proportion to the cube of the mean distance. To each distance of the moon therefore belongs an appropriate speed. The energy due to the moon's position and the energy due to its motion are therefore connected together. One of these quantities cannot be altered without the other undergoing change. If the moon's orbit were increased there would be a gain of energy due to the enlarged distance, and a loss of energy due to the diminished speed. These would not, however, exactly compensate. On the whole, we may represent the total energy of the moon as a single quantity, which increases when the distance of the moon from the earth increases, and lessens when the distance from the earth to the moon lessens. For simplicity we may speak of this as moon-energy.

But the most important constituent of the store of energy in the earth-moon system is that contributed by the earth itself. I do not now speak of the energy due to the velocity of the earth in its orbit round the sun. The moon indeed participates in this equally with the earth, but it does not affect those mutual actions between the earth and moon with which we are at present concerned. We are, in fact, discussing the action of that piece of machinery the earth-moon system; and its action is not affected by the circumstance that the entire machine is being bodily transported around the sun in a great annual voyage. This has little more to do with the action of our present argument than has the fact that a man is walking about to do with the motions of the works of the watch in his pocket. We shall, however, have to allude to this subject further on.

The energy of the earth which is significant in the earth-moon theory is due to the earth's rotation upon its axis. We may here again use as an illustration the action of machinery; and the special contrivance that I now refer to is the punching-engine that is used in our ship-building works. In preparing a plate of iron to be riveted to the side of a ship, a number of holes have to be made all round the margin of the plate. These holes must be half an inch or more in diameter, and the plate is sometimes as much as, or more than, half an inch in thickness. The holes are produced in the metal by forcing a steel punch through it; and this is accomplished without even heating the plate so as to soften the iron. It is needless to say that an intense force must be applied to the punch. On the other hand, the distance through which the punch has to be moved is comparatively small. The punch is attached to the end of a powerful lever, the other end of the lever is raised by a cam, so as to depress the punch to do its work. An essential part of the machine is a small but heavy fly-wheel connected by gearing with the cam.

This fly-wheel when rapidly revolving contains within it, in virtue of its motion, a large store of energy which has gradually accumulated during the time that the punch is not actually in action. The energy is no doubt originally supplied from a steam-engine. What we are especially concerned with is the action of the rapidly rotating wheel as a reservoir in which a large store of energy can be conveniently maintained until such time as it is wanted. In the action of punching, when the steel die comes down upon the surface of the plate, a large quantity of energy is suddenly demanded to force the punch against the intense resistance it experiences; the energy for this purpose is drawn from the store in the fly-wheel, which experiences no doubt a check in its velocity, to be regained again from the energy of the engine during the interval which elapses before the punch is called on to make the next hole.

Another illustration of the fly-wheel on a splendid scale is seen in our mighty steel works, where ponderous rails are being manufactured. A white-hot ingot of steel is presented to a pair of powerful rollers, which grip the steel, and send it through at the other side both compressed and elongated. Tremendous power is required to meet the sudden demand on the machine at the critical moment. To obtain this power an engine of stupendous proportions is sometimes attached directly to the rollers, but more frequently an engine of rather less horse-power will be used, the might of this engine being applied to giving rapid rotation to an immense fly-wheel, which may thus be regarded as a reservoir full of energy. The rolling mills then obtain from this store in the fly-wheel whatever energy is necessary for their gigantic task.

These illustrations will suffice to show how a rapidly rotating body may contain energy in virtue of its rotation, just as a cannon-ball contains energy in virtue of its speed of translation, or as a clock-weight has energy in virtue of the fact that it has some distance to fall before it reaches the earth. The rotating body need not necessarily have the shape of a wheel—it may be globular in form; nor need the axes of rotation be fixed in bearings, like those of the fly-wheel; nor of course is there any limit to the dimensions which the rotating body may assume. Our earth is, in fact, a vast rotating body 8000 miles in diameter, and turning round upon its axis once every twenty-three hours and fifty-six minutes. Viewed in this way, the earth is to be regarded as a gigantic fly-wheel containing a quantity of energy great in correspondence with the earth's mass. The amount of energy which can be stored by rotation also depends upon the square of the velocity with which the body turns round; thus if our earth turned round in half the time which it does at present, that is, if the day was twelve hours instead of twenty-four hours, the energy contained in virtue of that rotation would be four times its present amount.

Reverting now to the earth-moon system, the energy which that system contains consists essentially of two parts—the moon-energy, whose composite character I have already explained, and the earth-energy, which has its origin solely in the rotation of the earth on its axis. It is necessary to observe that these are essentially distinct—there is no necessary relation between the speed of the earth's rotation and the distance of the moon, such as there is between the distance of the moon and the speed with which it revolves in its orbit.

For completeness, it ought to be added that there is also some energy due to the moon's rotation on its axis, but this is very small for two reasons: first, because the moon is small compared with the earth, and second, because the angular velocity of the moon is also very small compared with that of the earth. We may therefore dismiss as insignificant the contributions from this source of energy to the sum total.

I have frequently used illustrations derived from machinery, but I want now to emphasize the profound distinction that exists between the rotation of the earth and the rotation of a fly-wheel in a machine shop. They are both, no doubt, energy-holders, but it must be borne in mind, that as the fly-wheel doles out its energy to supply the wants of the machines with which it is connected, a restitution of its store is continually going on by the action of the engine, so that on the whole the speed of the fly-wheel does not slacken. The earth, however, must be likened to a fly-wheel which has been disconnected with the engine. If, therefore, the earth have to supply certain demands on its accumulation of energy, it can only do so by a diminution of its hoard, and this involves a sacrifice of some of its speed.

In the earth-moon system there is no engine at hand to restore the losses of energy which are inevitable when work has to be done. But we have seen that work is done; we have shown, in fact, that the tides are at present doing work, and have been doing work for as long a period in the past as our imagination can extend to. The energy which this work has necessitated can only have been drawn from the existing store in the system; that energy consists of two parts—the moon-energy and the earth's rotation energy. The problem therefore for us to consider is, which of these two banks the tides have drawn on to meet their constant expenditure. This is not a question that can be decided offhand; in fact, if we attempt to decide it in an offhand manner we shall certainly go wrong. It seems so very plausible to say that as the moon causes the tides, therefore the energy which these tides expend should be contributed by the moon. But this is not the case. It actually happens that though the moon does cause the tides, yet when those tides consume energy they draw it not from the distant moon, but from the vast supply which they find ready to their hand, stored up in the rotation of the earth.

The demonstration of this is not a very simple matter; in fact, it is so far from being simple that many philosophers, including some eminent ones too, while admitting that of course the tides must have drawn their energy from one or other or both of these two sources, yet found themselves unable to assign how the demand was distributed between the two conceivable sources of supply.

We are indebted to Professor Purser of Belfast for having indicated the true dynamical principle on which the problem depends. It involves reasoning based simply on the laws of motion and on elementary mathematics, but not in the least involving questions of astronomical observation. It would be impossible for me in a lecture like this to give any explanation of the mathematical principles referred to. I shall, however, endeavour by some illustrations to set before you what this profound principle really is. Were I to give it the old name I should call it the law of the conservation of areas; the more modern writers, however, speak of it as the conservation of moment of momentum, an expression which exhibits the nature of the principle in a more definite manner.

I do not see how to give any very accurate illustration of what this law means, but I must make the attempt, and if you think the illustration beneath the dignity of the subject, I can only plead the difficulty of mathematics as an excuse. Let us suppose that a ball-room is fairly filled with dancers, or those willing to dance, and that a merry waltz is being played; the couples have formed, and the floor is occupied with pairs who are whirling round and round in that delightful amusement. Some couples drop out for a while and others strike in; the fewer couples there are the wider is the range around which they can waltz, the more numerous the couples the less individual range will they possess. I want you to realize that in the progress of the dance there is a certain total quantity of spin at any moment in progress; this spin is partly made up of the rotation by which each dancer revolves round his partner, and partly of the circular orbit about the room which each couple endeavours to describe. If there are too many couples on the floor for the general enjoyment of the dance, then both the orbit and the angular velocity of each couple will be restricted by the interference with their neighbours. We may, however, assert that so long as the dance is in full swing the total quantity of spin, partly rotational and partly orbital, will remain constant. When there are but few couples the unimpeded rotation and the large orbits will produce as much spin as when there is a much larger number of couples, for in the latter case the diminished freedom will lessen the quantity of spin produced by each individual pair. It will sometimes happen too that collision will take place, but the slight diversions thus arising only increase the general merriment, so that the total quantity of spin may be sustained, even though one or two couples are placed temporarily hors de combat. I have invoked a ball-room for the purpose of bringing out what we may call the law of the conservation of spin. No matter how much the individual performers may change, or no matter what vicissitudes arise from their collision and other mutual actions, yet the total quantity of spin remains unchanged.

Let us look at the earth-moon system. The law of the conservation of moment of momentum may, with sufficient accuracy for our present purpose, be interpreted to mean that the total quantity of spin in the system remains unaltered. In our system the spin is threefold; there is first the rotation of the earth on its axis, there is the rotation of the moon on its axis, and then there is the orbital revolution of the moon around the earth. The law to which we refer asserts that the total quantity of these three spins, each estimated in the proper way, will remain constant. It matters not that tides may ebb and flow, or that the distribution of the spin shall vary, but its total amount remains inflexibly constant. One constituent of the total amount—that is, the rotation of the moon on its axis—is so insignificant, that for our present purposes it may be entirely disregarded. We may therefore assert that the amount of spin in the earth, due to its rotation round its axis, added to the amount of spin in the moon due to its revolution round the earth, remains unalterable. If one of these quantities change by increase or by decrease, the other must correspondingly change by decrease or by increase. If, therefore, from any cause, the earth began to spin a little more quickly round its axis, the moon must do a little less spin; and consequently, it must shorten its distance from the earth. Or suppose that the earth's velocity of rotation is abated, then its contribution to the total amount of spin is lessened; the deficiency must therefore be made up by the moon, but this can only be done by an enlargement of the moon's orbit. I should add, as a caution, that these results are true only on the supposition that the earth-moon system is isolated from all external interference. With this proviso, however, it matters not what may happen to the earth or moon, or what influence one of them may exert upon the other, no matter what tides may be raised, no matter even if the earth fly into fragments, the whole quantity of spin of all those fragments would, if added to the spin of the moon, yield the same unalterable total. We are here in possession of a most valuable dynamical principle. We are not concerned with any special theory as to the action of the tides; it is sufficient for us that in some way or other the tides have been caused by the moon, and that being so, the principle of the conservation of spin will apply.

Were the earth and the moon both rigid bodies, then there could be of course no tides on the earth, it being rigid and devoid of ocean. The rotation of the earth on its axis would therefore be absolutely without change, and therefore the necessary condition of the conservation of spin would be very simply attained by the fact that neither of the constituent parts changed. The earth, however, not being entirely rigid, and being subject to tides, this simple state of things cannot continue; there must be some change in progress.

I have already shown that the fact of the ebbing and the flowing of the tide necessitates an expenditure of energy, and we saw that this energy must come either from that stored up in the earth by its rotation, or from that possessed by the moon in virtue of its distance and revolution. The law of the conservation of spin will enable us to decide at once as to whence the tides get their energy. Suppose they took it from the moon, the moon would then lose in energy, and consequently come nearer the earth. The quantity of spin contributed by the moon would therefore be lessened, and accordingly the spin to be made up by the earth would be increased. That means, of course, that the velocity of the earth rotating on its axis must be increased, and this again would necessitate an increase in the earth's rotational energy. It can be shown, too, that to keep the total spin right, the energy of the earth would have to gain more than the moon would have lost by revolving in a smaller orbit. Thus we find that the total quantity of energy in the system would be increased. This would lead to the absurd result that the action of the tides manufactured energy in our system. Of course, such a doctrine cannot be true; it would amount to a perpetual motion! We might as well try to get a steam-engine which would produce enough heat by friction not only to supply its own boilers, but to satisfy all the thermal wants of the whole parish. We must therefore adopt the other alternative. The tides do not draw their energy from the moon; they draw it from the store possessed by the earth in virtue of its rotation.

We can now state the end of this rather long discussion in a very simple and brief manner. Energy can only be yielded by the earth at the expense of some of the speed of its rotation. The tides must therefore cause the earth to revolve more slowly; in other words, the tides are increasing the length of the day.

The earth therefore loses some of its velocity of rotation; consequently it does less than its due share of the total quantity of spin, and an increased quantity of spin must therefore be accomplished by the moon; but this can only be done by an enlargement of its orbit. Thus there are two great consequences of the tides in the earth-moon system—the days are getting longer, the moon is receding further.

These points are so important that I shall try and illustrate them in another way, which will show, at all events, that one and both of these tidal phenomena commend themselves to our common sense. Have we not shown how the tides in their ebb and flow are incessantly producing friction, and have we not also likened the earth to a great wheel? When the driver wants to stop a railway train the brakes are put on, and the brake is merely a contrivance for applying friction to the circumference of a wheel for the purpose of checking its motion. Or when a great weight is being lowered by a crane, the motion is checked by a band which applies friction on the circumference of a wheel, arranged for the special purpose. Need we then be surprised that the friction of the tides acts like a brake on the earth, and gradually tends to check its mighty rotation? The progress of lengthening the day by the tides is thus readily intelligible. It is not quite so easy to see why the ebbing and the flowing of the tide on the earth should actually have the effect of making the moon to retreat; this phenomenon is in deference to a profound law of nature, which tells us that action and reaction are equal and opposite to each other. If I might venture on a very homely illustration, I may say that the moon, like a troublesome fellow, is constantly annoying the earth by dragging its waters backward and forward by means of tides; and the earth, to free itself from this irritating interference, tries to push off the aggressor and to make him move further away.



Another way in which we can illustrate the retreat of the moon as the inevitable consequence of tidal friction is shown in the adjoining figure, in which the large body E represents the earth, and the small body M the moon. We may for simplicity regard the moon as a point, and as this attracts each particle of the earth, the total effect of the moon on the earth may be represented by a single force. By the law of equality of action and reaction, the force of the earth on the moon is to be represented by an equal and opposite force. If there were no tides then the moon's force would of course pass through the earth's centre; but as the effect of the moon is to slacken the earth's rotation, it follows that the total force does not exactly pass through the line of the earth's centre, but a little to one side, in order to pull the opposite way to that in which the earth is turning, and thus bring down its speed. We may therefore decompose the earth's total force on the moon into two parts, one of which tends directly towards the earth's centre, while the other acts tangentially to the moon's orbit. The central force is of course the main guiding power which keeps the moon in its path; but the incessant tangential force constantly tends to send the moon out further and further, and thus the growth of its orbit can be accounted for.

We therefore conclude finally, that the tides are making the day longer and sending the moon away further. It is the development of the consequences of these laws that specially demands our attention in these lectures. We must have the courage to look at the facts unflinchingly, and deduce from them all the wondrous consequences they involve. Their potency arises from a characteristic feature—they are unintermitting. Most of the great astronomical changes with which we are ordinarily familiar are really periodic: they gradually increase in one direction for years, for centuries, or for untold ages; but then a change comes, and the increase is changed into a decrease, so that after the lapse of becoming periods the original state of things is restored. Such periodic phenomena abound in astronomy. There is the annual fluctuation of the seasons; there is the eighteen or nineteen year period of the moon; there is the great period of the precession of the equinoxes, amounting to twenty-six thousand years; and then there is the stupendous Annus Magnus of hundreds of thousands of years, during which the earth's orbit itself breathes in and out in response to the attraction of the planets. But these periodic phenomena, however important they may be to us mere creatures of a day, are insignificant in their effects on the grand evolution through which the celestial bodies are passing. The really potent agents in fashioning the universe are those which, however slow or feeble they may seem to be, are still incessant in their action. The effect which a cause shall be competent to produce depends not alone upon the intensity of that cause, but also upon the time during which it has been in operation. From the phenomena of geology, as well as from those of astronomy, we know that this earth and the system to which it belongs has endured for ages, not to be counted by scores of thousands of years, or, as Prof. Tyndall has so well remarked, "Not for six thousand years, nor for sixty thousand years, nor six hundred thousand years, but for aeons of untold millions." Those slender agents which have devoted themselves unceasingly to the accomplishment of a single task may in this long lapse of time have accomplished results of stupendous magnitude. In famed stalactite caverns we are shown a colossal figure of crystal extending from floor to roof, and the formation of that column is accounted for when we see a tiny drop falling from the roof above to the floor beneath. A lifetime may not suffice for that falling drop to add an appreciable increase to the stalactite down which it trickles, or to the growing stalagmite on which it falls; but when the operation has been in progress for immense ages, it is capable of the formation of the stately column. Here we have an illustration of an influence which, though apparently trivial, acquires colossal significance when adequate time is afforded. It is phenomena of this kind which the student of nature should most narrowly watch, for they are the real architects of the universe.

The tidal consequences which we have already demonstrated are emphatically of this non-periodic class—the day is always lengthening, the moon is always retreating. To-day is longer than yesterday; to-morrow will be longer than to-day. It cannot be said that the change is a great one; it is indeed too small to be appreciable even by our most delicate observations. In one thousand years the alteration in the length of a day is only a small fraction of a second; but what may be a very small matter in one thousand years can become a very large one in many millions of years. Thus it is that when we stretch our view through immense vistas of time past, or when we look forward through immeasurable ages of time to come, the alteration in the length of the day will assume the most startling proportions, and involve the most momentous consequences.

Let us first look back. There was a time when the day, instead of being the twenty-four hours we now have, must have been only twenty-three hours, How many millions of years ago that was I do not pretend to say, nor is the point material for our argument; suffice it to say, that assuming, as geology assures us we may assume, the existence of these aeons of millions of years, there was once a time when the day was not only one hour shorter, but was even several hours less than it is at present. Nor need we stop our retrospect at a day of even twenty, or fifteen, or ten hours long; we shall at once project our glance back to an immeasurably remote epoch, at which the earth was spinning round in a time only one sixth or even less of the length of the present day. There is here a reason for our retrospect to halt, for at some eventful period, when the day was about three or four hours long, the earth must have been in a condition of a very critical kind.

It is well known that fearful accidents occasionally happen where large grindstones are being driven at a high speed. The velocity of rotation becomes too great for the tenacity of the stone to withstand the stress; a rupture takes place, the stone flies in pieces, and huge fragments are hurled around. For each particular grindstone there is a certain special velocity depending upon its actual materials and character, at which it would inevitably fly in pieces. I have once before likened our earth to a wheel; now let me liken it to a grindstone. There is therefore a certain critical velocity of rotation for the earth at which it would be on the brink of rupture. We cannot exactly say, in our ignorance of the internal constitution of the earth, what length of day would be the shortest possible for our earth to have consistently with the preservation of its integrity; we may, however, assume that it will be about three or four hours, or perhaps a little less than three. The exact amount, however, is not really very material to us; it would be sufficient for our argument to assert that there is a certain minimum length of day for which the earth can hold together. In our retrospect, therefore, through the abyss of time past our view must be bounded by that state of the earth when it is revolving in this critical period. With what happened before that we shall not at present concern ourselves. Thus we look back to a time at the beginning of the present order of things, when the day was only some three or four hours long.

Let us now look at the moon, and examine where it must have been during these past ages. As the moon is gradually getting further and further from us at present, so, looking back into past time, we find that the moon was nearer and nearer to the earth the further back our view extends; in fact, concentrating our attention solely on essential features, we may say that the path of the moon is a sort of spiral which winds round and round the earth, gradually getting larger, though with extreme slowness. Looking back we see this spiral gradually coiling in and in, until in a retrospect of millions of years, instead of its distance from the earth being 240,000 miles, it must have been much less. There was a time when the moon was only 200,000 miles away; there was a time many millions of years ago, when the moon was only 100,000 miles away. Nor can we here stop our retrospect; we must look further and further back, and follow the moon's spiral path as it creeps in and in towards the earth, until at last it appears actually in contact with that great globe of ours, from which it is now separated by a quarter of a million of miles.

Surely the tides have thus led us to the knowledge of an astounding epoch in our earth's past history, when the earth is spinning round in a few hours, and when the moon is, practically speaking, in contact with it. Perhaps I should rather say, that the materials of our present moon were in this situation, for we would hardly be entitled to assume that the moon then possessed the same globular form in which we see it now. To form a just apprehension of the true nature of both bodies at this critical epoch, we must study their concurrent history as it is disclosed to us by a totally different line of reasoning.

Drop, then, for a moment all thought of tides, and let us bring to our aid the laws of heat, which will disclose certain facts in the ancient history of the earth-moon system perhaps as astounding as those to which the tides have conducted us. In one respect we may compare these laws of heat with the laws of the tides; they are both alike non-periodic, their effects are cumulative from age to age, and imagination can hardly even impose a limit to the magnificence of the works they can accomplish. Our argument from heat is founded on a very simple matter. It is quite obvious that a heated body tends to grow cold. I am not now speaking of fires or of actual combustion whereby heat is produced; I am speaking merely of such heat as would be possessed by a red-hot poker after being taken from the fire, or by an iron casting after the metal has been run into the mould. In such cases as this the general law holds good, that the heated body tends to grow cold. The cooling may be retarded no doubt if the passage of heat from the body is impeded. We can, for instance, retard the cooling of a teapot by the well-known practice of putting a cosy upon it; but the law remains that, slowly or quickly, the heated body will tend to grow colder. It seems almost puerile to insist with any emphasis on a point so obvious as this, but yet I frequently find that people do not readily apprehend all the gigantic consequences that can flow from a principle so simple. It is true that a poker cools when taken from the fire; we also find that a gigantic casting weighing many tons will grow gradually cold, though it may require days to do so. The same principle will extend to any object, no matter how vast it may happen to be. Were that great casting 2000 miles in diameter, or were it 8000 miles in diameter, it will still steadily part with its heat, though no doubt the process of cooling becomes greatly prolonged with an increase in the dimensions of the heated body. The earth and the moon cannot escape from the application of these simple principles.

Let us first speak of the earth. There are multitudes of volcanoes in action at the present moment in various countries upon this earth. Now whatever explanation may be given of the approximate cause of the volcanic phenomena, there can be no doubt that they indicate the existence of heat in the interior of the earth. It may possibly be, as some have urged, that the volcanoes are merely vents for comparatively small masses of subterranean molten matter; it may be, as others more reasonably, in my opinion, believe, that the whole interior of the earth is at the temperature of incandescence, and that the eruptions of volcanoes and the shocks of earthquakes are merely consequences of the gradual shrinkage of the external crust, as it continually strives to accommodate itself to the lessening bulk of the fluid interior. But whichever view we may adopt, it is at least obvious that the earth is in part, at all events, a heated body, and that the heat is not in the nature of a combustion, generated and sustained by the progress of chemical action. No doubt there may be local phenomena of this description, but by far the larger proportion of the earth's internal heat seems merely the fervour of incandescence. It is to be likened to the heat of the molten iron which has been run into the sand, rather than to the glowing coals in the furnace in which that iron has been smelted.

There is one volcanic outbreak of such exceptional interest in these modern times that I cannot refrain from alluding to it. Doubtless every one has heard of that marvellous eruption of Krakatoa, which occurred on August 26th and 27th, 1883, and gives a unique chapter in the history of volcanic phenomena. Not alone was the eruption of Krakatoa alarming in its more ordinary manifestations, but it was unparalleled both in the vehemence of the shock and in the distance to which the effects of the great eruption were propagated. I speak not now of the great waves of ocean that inundated the coasts of Sumatra and Java, and swept away thirty-six thousand people, nor do I allude to the intense darkness which spread for one hundred and eighty miles or more all round. I shall just mention the three most important phenomena, which demonstrate the energy which still resides in the interior of our earth. Place a terrestrial globe before you, and fix your attention on the Straits of Sunda; think also of the great atmospheric ocean some two or three hundred miles deep which envelopes our earth. When a pebble is tossed into a pond a beautiful series of concentric ripples diverge from it; so when Krakatoa burst up in that mighty catastrophe, a series of gigantic waves were propagated through the air; they embraced the whole globe, converged to the antipodes of Krakatoa, thence again diverged, and returned to the seat of the volcano; a second time the mighty series of atmospheric ripples spread to the antipodes, and a second time returned. Seven times did that series of waves course over our globe, and leave their traces on every self-recording barometer that our earth possesses. Thirty-six hours were occupied in the journey of the great undulation from Krakatoa to its antipodes. Perhaps even more striking was the extent of our earth's surface over which the noise of the great explosion spread. At Batavia, ninety-four miles away, the concussions were simply deafening; at Macassar, in Celebes, two steamers were sent out to investigate the explosions which were heard, little thinking that they came from Krakatoa, nine hundred and sixty-nine miles away. Alarming sounds were heard over the island of Timor, one thousand three hundred and fifty-one miles away from Krakatoa. Diego Garcia in the Chogos islands is two thousand two hundred and sixty-seven miles from Krakatoa, but the thunders traversed even this distance, and were attributed to some ship in distress, for which a search was made. Most astounding of all, there is undoubted evidence that the sound of the mighty explosion was propagated across nearly the entire Indian ocean, and was heard in the island of Rodriguez, almost three thousand miles away. The immense distance over which this sound journeyed will be appreciated by the fact, that the noise did not reach Rodriguez until four hours after it had left Krakatoa. In fact, it would seem that if Vesuvius were to explode with the same vehemence as Krakatoa did, the thunders of the explosion might penetrate so far as to be heard in London.

1  2  3     Next Part
Home - Random Browse