p-books.com
Time and Change
by John Burroughs
Previous Part     1  2  3  4  5     Next Part
Home - Random Browse

"I see afar down the huge first Nothing, and I know I was even there."

I do not know that Whitman had any concrete belief in the truth of the animal origin of man. He read as picture and parable that which the man of science reads as demonstrable fact. He saw and felt the great truth of evolution, but he saw it as written in his own heart and not in the great stone book of the earth, and he saw it written large. He felt its cosmic truth, its truth in relation to the whole scheme of things; he felt his own kinship with all that lives, and had a vivid personal sense of his debt to the past, not only of human history, but also to the past of the earth and the spheres. And he felt this as a poet and not as a man of science.

The theory of evolution as applied to the whole universe and its inevitable corollary, the animal origin of man, is now well established in most of the leading minds of the world, but it is still rejected by many timid and sensitive souls, and it will be a long time before it becomes universally accepted.

Doubtless one source of the trouble we have in accepting the theory comes from the fact that our minds have not been used to such thoughts; in the mind of the race they are a new thing: they are not in the literature nor in the philosophy nor in the sacred books in which our minds have been nurtured; they are of yesterday; they came to us raw and unhallowed by the usage of ages; more than that, they savor of the materialism of all modern science, which is so distasteful to our finer ideals and religious sensibilities. In fact, these ideas are strangers of an alien race in our intellectual household, and we look upon them coldly and distrustfully. But probably to our children, or to our children's children, they will wear quite a different countenance; they will have become an accepted part of the great family of ideas of the race.

Another hindrance is the dullness and opacity of our own minds. We are slow to wake up to a sense of the divinity that hedges us about. The great office of science has been to show us this universe as much more wonderful and divine than we have been wont to believe; shot through and through with celestial laws and forces; matter, indeed, but matter informed with spirit and intelligence; the creative energy inherent and active in the ground underfoot not less than in the stars and nebulae overhead.

We look for the divine afar off. We gaze upon the beauty and purity of the heavenly bodies without thinking that we are also in the heavens. We must open our minds to the stupendous fact that God is immanent in his universe and that it is literally and exactly true, as we were taught long ago, that, during every moment of our lives, in Him we live and move and have our being.

Moreover, we are staggered by the element of vast time that is implied in the history of development. Were it not for the records in the rocks, we could not believe it at all. All the grand movements and processes of nature are quite beyond our ken. In the heavens only the astronomer with his prisms and telescopes traces them; only the geologist and palaeontologist read their history in the earth's crust. The soil we cultivate was once solid rock, but not in one lifetime, not in many lifetimes, do we see the transformation of the rocks into soil. Nations may rise and fall, and the rocks they looked upon and the soil they tilled remain practically unchanged. Geologists talk about the ancient continents that have passed away. What an abyss of time such things open! They talk about the birth of a mountain or the decay of a mountain as we talk of the birth and death of a man, but in doing so they reckon with periods of time for which we have no standards of measurement. They walk and talk with the Eternal. To us the mountains seem as fixed as the stars. But the stars, too, are flitting. Look at Orion some millions of years hence, and he will have been torn limb from limb. The combination of stars that forms that striking constellation and all other constellations is temporary as the grouping of the clouds. The rise of man from the lower orders implies a scale of time almost as great. It is unintelligible to us because it belongs to a category of facts that transcends our experience and the experience of the race as the interstellar spaces transcend our earthly measurements.

We now gaze upon the order below us across an impassable gulf, but that gulf we have crossed and without any supernatural means of transportation. We may say it has been bridged or filled with the humble ancestral forms that carried forward the precious evolutionary impulse of the vertebrate series till it culminated in man. All vestiges of that living bridge are now gone, and the legend of our crossing seems like a dream or a miracle. Biological evolution has gone hand in hand with geological evolution, and both are on a scale of time of which our hour-glass of the centuries gives us but a faint hint. Our notions of time are not formed on the pattern of the cosmic processes, or the geologic processes, or the evolutionary processes; they are formed on the pattern of our own brief span of life. In a few cases in the familiar life about us we see the evolutionary process abridged, and transformations like those of unrecorded time take place before our eyes, as when the tadpole becomes the frog or the grub becomes the butterfly. These rapid changes are analogous to those which in the depths of geologic time have evolved the bird from the fish or the reptile, or the seal and the manatee from a fourfooted land animal. Our common bluebird has long been recognized as a descendant of the thrush family; this origin is evident in the speckled breast of the young birds and in the voices of the mature birds. I have heard a bluebird with an unmistakable thrush note. The transformation has doubtless been so slow that an analogous change taking place in any of the bird forms of our own time would entirely escape observation. The bluebird may have been as long in getting his blue coat as man has been in getting his upright position.

Looking into the laws and processes of the common nature about us for clues to the origin of man is not unlike looking into the records of the phonograph for the secret of the music which that wonderful instrument voices for us. Something, some active principle or agent, has to invoke the music that slumbers or is latent in these lines.

In like manner some principle or force that we do not see is active in the ground underfoot and in the forms of life about us which is the final secret of the origin of man and of all other creatures. This something is the evolutionary impulse, this innate aspiration of living matter to reach higher and higher forms. "Urge and urge," says Whitman, "always the procreant urge of the world." It is in Emerson's worm "striving to be man." This "striving" pervades organic nature. Whence its origin science does not assume to say. [Footnote: This passage was written long before I had read Bergson's Creative Evolution, as were several others of the same import in this volume.]

Then the difference in kind between the mind of man and that of the lower orders makes evolution a doubly hard problem.

Look over the globe and see what a gulf separates man from all other creatures. All the other animals seem akin—as if the product of the same workman. Man, in contrast, seems like an introduction from some other sphere or the outcome of quite other psychological laws; his dominion over them all is so complete and universal. Without their specialization of structure or powers, he yet masters them all and uses them; without their powers of speed, he yet outstrips them; without their strength of tusk and limb, he yet subdues them; without their inerrant instinct, he yet outwits them; without their keenness of eye, ear, and nose, he yet wins in the chase; without their special adaptation to environment, he survives when they perish. A man is marked off from the animals below him, I say, as if he were a being of another sphere. He looks into their eyes and they into his, and no recognition passes; and yet we have to believe that he and they are fruit of the same biologic tree and that their stem forms unite in the same trunk somewhere in the abyss of biologic time.

The rise of man from the lower orders taxes our powers of belief and our faith in the divinity that lurks underfoot far more than did the special creation myth. Creation by omnipotent fiat seems easy when you have the omnipotent being to begin with, but creation through evolution is a kind of cosmic or biologic legerdemain that baffles and bewilders us. It so far transcends all our earthly knowledge and experience and all the flights of our philosophy that we stand speechless before it. It opens a gulf that the imagination cannot clear; it opens vistas from which we instinctively shrink; it opens up abysms of time in which our whole historic period would be but a day; it opens up a world of struggle, delay, waste, failure that palls the imagination. It challenges our faith in the immanency and in the ceaseless activity of God in his world; it brings the creative energy down from its celestial abode and clothes it with the flesh and blood of animal life. It may chill and shock us; it shows us that we are of the earth earthy; yea, that we are of the animal beastly; it presses us down in matter; it puts out the lights to which we have so long turned as lighting our origin; the words "sacred," "divine," "holy," and "celestial," as applied to our origin and development, we have no longer any use for, nor for any words or ideas that set us apart from the rest of creation—above it in our origin or apart from it in our relations. The atmosphere of mystery and miracle and sanctity that our religious training has thrown around our introduction upon this planet and around our relations and destiny science dispels. Our language and many of our ideas and habits of thought date back to pre-scientific times—when there were two worlds, the heavenly and the earthly, separated by a gulf. Now we know that the two worlds are one, that they are inseparably blended; that the celestial and the terrestrial are under the same law; that we can never be any more in the heavens than we are here and now, nor any nearer the final sources of life and power; that the divine is underfoot as well as overhead; that we are part and parcel of the physical universe, and take our chances in the cosmic processes the same as the rest, and draw upon the same fund of animal life that the other creatures do. We are identified with the worm underfoot no less than with the stars overhead. We are not degraded by such a thought, but the whole of creation is lifted up. Our minds and bodies are not less divine, but all things are more divine. We have to gird up our loins and try to summon strength to see this tremendous universe as it is, alive and divine to the last particle and embosomed in the Infinite.



II



Evolution is not the final explanation of the universe, but it is probably the largest generalization of the modern mind. Science has to start somewhere, and it starts with the universe as it finds it and seeks to trace secondary or proximate causes; the evolutionist seeks to trace the footsteps of creative energy in the world of animal life. How did God make man? Out of the dust of the earth, says the Bible of our fathers. The evolutionist teaches essentially the same thing, only he does not abridge the process as the catechism has abridged it for us; he would fain unfold the whole long road that man has traveled from the first protozoic cell to the vast communities of cells that now make up his physical life. He would show how man has risen on stepping-stones of his dead self. These stepping-stones have been the animal forms below him. In them and through them something, some impulse, some force, has mounted and mounted through all the enormous lapse of geologic time. In imagination we see the dim, shadowy man, restless and struggling in a vast number of earlier forms. He has struggled upward through the invertebrates, through the fish, through the reptile, through the lower mammals, through his simian ancestors till he reaches his goal in the man we know.

Darwin was not the author of the theory of evolution, but he made the theory alive and real to the imagination. He showed us what a master key it is for unlocking the riddle of the life of the globe. He launched biological science upon a new career and made it worthy of its place in the great trilogy of sciences, astronomy, geology, and biology, of which Tennyson, in his poem "Parnassus," recognized only the first two. Had Tennyson written his poem in our day he would undoubtedly have included biology among his "terrible Muses" that tower above all others, eclipsing the glory of the great poets. Or is it true that we find it easier to accept the theory of the evolution of the worlds and suns from nebulous matter than to accept the theory of the evolution of man from the maze of the lower animal forms? It is less personal to us. The astronomer has the advantage of the biologist in one important respect: he can show us in the heavens now the process of the evolution of worlds actually going on, but the biologist cannot show us the transformation of one species into another taking place to-day. We can sound the abysses of astronomic space easier than we can sound the abysses of geologic time. The stars and the nebulae we have always with us, but where are the myriad earlier forms that were the antecedents of the present animal life of the globe? True, the palaeontologist finds a more or less disjointed record of them in the stratified rocks and sees in a measure the course evolution has taken, but he does not actually see it at work as does the astronomer. More than that, the forces the astronomer deals with are mechanical and chemical, but the biologist deals with a new force called life that often reverses or defies mechanical and chemical forces, but which is yet so identified and blended with them that we cannot conceive it apart from them. The stomach does not digest itself, nor gravity hold the blood in the lower extremities. The tree lifts up its weight of fluids and solids and holds aloft its fruit and foliage in spite of gravity; its growing roots split and lift the rocks; mosses and lichens disintegrate granite; vital energy triumphs over chemical and mechanical energy.

Biological laws are much more subtle and difficult to trace and formulate than chemical and mechanical laws. Hence the student of organic evolution can rarely arrive at the demonstrable certainties in this field that he can in the sphere of chemistry and mechanics. It is very doubtful if life can ever be explained in terms of these things. Life works through chemical combinations and affinities, and yet is it not more than chemistry? It works with and through mechanical principles and forces, and yet it is evidently more than mechanics. It is manifested through matter, and yet no analysis of matter can reveal its secret. It comes and goes while matter stays; we destroy life, but cannot destroy matter. It is as fugitive as the wind which fills all sails one minute and is gone the next. It avails itself of fluids and gases and the laws which govern them, but fluids and gases do not explain it. It waits upon the rains and the dews, but it is more than they are; it follows in the footsteps of the decay and disintegration of the inorganic, and yet it is not the gift of these things; it transforms the face of the earth, and yet the earth has been and will be when it was not and when it will not be. Through his knowledge and his science man performs wonders every day; he can reduce mountains to powder and seas to dry land, but he cannot create or start de novo the least throb of life. At least, he has not yet done so. With all his vast resources of mechanics and chemistry, and his insight into the mechanism of the universe, he has not yet made the least particle of inorganic matter thrill with the mysterious something we call life.

There must have been a time when life was not upon the earth and there must again come a time when it will not be. It has probably vanished from the moon and all inferior planets, and it has not yet come to the superior planets, except maybe to Mars. It must be and must have always been potential in matter, but this fact leaves the mystery as profound as ever.

Yet if the artificial production of life were to happen to-day—if in some of our laboratories living matter were produced from non-living, should we not still have to credit the event to some mysterious potency residing in matter itself? If by a lucky stroke man were to evoke the organic from the inorganic, be assured he would not evoke something from nothing, or add anything to the latent possibilities of the elements with which he works. Does not the question still remain who or what made this feat possible? One dare affirm that man cannot create life de novo any more than he can create matter. He may yet evoke life as he evokes the spark from the flint and the flame from the match or as he evokes force from the food he eats. In this latter case he does not create the force; he liberates it through the vital forces of his body. The spark from the flint and the flame from the match were called forth by a mechanical process, but the process was set going by the will which waits upon the vital process. The body with all its many functions is a complicated system of mechanical devices and chemical processes, but that which is back of all and governs all is not mechanical; the body is a machine plus something else.

The chemist or biologist who shall produce a speck of protoplasm to-day will have the credit of unlocking a power in inorganic nature; he will prove by a short cut how immanent the creative energy or the vital force of the universe is in matter. He will not have eliminated the creative energy; he will only have disclosed it and availed himself of it.

We behold spontaneous combustion, a fire self-kindled, but we do not see the activity of the particles of matter that preceded it or penetrate the secret of their mysterious affinities. The fire was potential there in the very constitution of the elements. We flout at miracles, and then we disclose an unending miracle in the life about us.

All the life upon the globe, including man with all his marvelous powers, surely originated upon the globe, surely arose out of the non-living and the non-thinking, not by the fiat of some power external to nature, but through the creative energy inherent in nature and ever active there. The great physical instrumentality was heat—without heat the reaction called life could never have taken place. This fact has led a French biologist to say that life is only a surface accident in the history of the thermic evolution of the globe. Without the disintegration of the rocks and the formation of the soil and the precipitation of watery vapor, which was indirectly the work of heat, the vegetable and the animal could not have developed. If we succeed in proving that all these things are of chemico-mechanical origin, we still want to know who or what instituted these chemical and mechanical powers and the laws that govern them. Creation by chemistry and mechanics is as mysterious as creation by miracle. We must still have a creator, while we can do nothing with him nor find any place for him in an endless, beginningless, infinite series of events. So there we are. We go out of the same door by which we came in.

When all life vanishes from the earth, as it will when the condition of heat and moisture has radically changed, and eternal refrigeration sets in—what then? The potencies of matter will not have changed and life will reappear and go through its cycle again on some other sphere.

Life began upon this earth not by miracle in the old sense, but by miracle in the new scientific sense—by the immanence and ceaseless activity of the creative energy in the physical world about us—in the sunbeam, in the rains, in the snows, in the air currents, and in the soil underfoot; in oxygen, hydrogen, carbon, nitrogen, in lime, iron, silex, phosphorus, and in all the rest of them. Each has its laws, its ways, its fixed mode of procedure, its affinities, its likes and dislikes, and life is bound up with all of them. If we hypothesize the ether to explain certain phenomena, why should we not hypothesize a vital force to account for other mysteries?

The inorganic passes into the organic as night passes into day. Where does one end and the other begin? No man can tell. There is no beginning and no ending of either, and yet night comes and goes and day comes and goes—a constant becoming and a constant ending. We are probably in the midday of the life of the globe—life huge and rank and riotous—the youth of life has passed, life more sedate and aspiring and spiritual has come. The gigantic has gone or is going, the huge monsters of the sea and of the land have had their day, man appears at the end of the series of lesser but more complete forms.

Many intelligent persons who have been rocked in the cradle of the old creeds still look upon evolution as a godless doctrine and accuse it of vulgarizing high and sacred things. This state of mind can only be slowly outgrown by familiarizing ourselves with the processes of nature or of the creative energy in the world of life and matter about us; with our own origin in the low fishlike or apelike creature in the maternal womb; with the development of every plant, tree, and animal from a microscopic germ; with the unbroken sequence of natural law; with the waste, the delays, the pains, the failures on every hand; with the impersonal and the impartial character of all the physical forces; with the transformations and metamorphoses that marked the course of animal life; and, above all, with the thought that evolution is not self-caused or in any true sense a cause in itself, but the instrument or plan of the power that works in and through all things. The ways of God in all these details are past finding out, but science watches the unfolding of a bud, the development of a grain of wheat, the growth of the human embryo, the succession of life-forms upon the globe as revealed in the records of the stratified rocks, or observes in the heavens the condensation of nebulous matter into suns and systems, and it says this is one of his ways. Evolution—an endless unfolding and transformation. "Urge and urge and urge," says Whitman (I love to repeat this saying; it is so significant), "always the procreant urge of the world." Always the labor and travail pains of the universe to bring forth higher forms; always struggle and pain and failure and death, but always a new birth and an upward reach.

Strike out the element of time and we see evolution as the great prestidigitator of the biologic ages. The creative energy manipulates a fish and it turns into a reptile; it covers a mollusk as with a vapor and behold, a backboned creature instead! Now we see a little creature no larger than a fox and when we look again, behold the horse; a wolf or some kindred animal is plunged into the water, and behold, the seal! Some small creature of the lemur kind is covered with a capacious hand, and we look again, and behold man! We have only to minimize time and minimize space to see the impossible happening all about us or to see the Mosaic account of creation repeated; we have only the clay and water to begin with, when, presto! behold what we have now! We see the rocks covered with verdure, the mountains vanishing into plains, the valleys changing into hills or the plains changing into mountains, tropic lands covered with ice and snow.

Lord Salisbury thought he had discredited natural selection, which is one of the feet upon which evolution goes, when he charged that no one had ever seen it at work. We have not seen it at work because our little span of life is too short. Only the palaeontologist traces in the records of the rocks the footsteps of this god of change. And rarely if ever does he find a continuous and complete record—only a footprint here and there, but he sees the direction in which they are going and many of the places where the traveler tarried. The palaeontologist, that detective of the rocks, works up his case with the same thoroughness and caution and the same power of observation as does the detective in human affairs and with a greater sweep of scientific imagination.

An agent of evolution is the influence of the environment, but who sees the environment set its stamp upon animal life? After many generations we may see the accumulated results. In a few instances the results are rapid. Thus sheep lose their wool in tropical climates and a northern fur-bearing animal its fur. The well-being of the animal demands this change, and demands it quickly. Fish lose their sense of sight in underground streams; this loss is not so vital and it comes about much more slowly. A tropical climate sets its stamp upon the complexion and character of man, but this again is a slow process, as the same stress of necessity does not exist.

In the tendency to variation—in form, size, disposition, power, fertility—man differs from all other animals. In the same race, in the same family, we find infinitely varied types. Among the wild creatures all the individuals of a species are practically alike. We can hardly tell one fox, or one marmot, or one chipmunk, or one crow, or one hawk, or one black duck from another of the same species. Of course there are slight individual differences, but they are hardly distinguishable. Among the insects, one bee, one beetle, one ant, one butterfly seems the exact copy of every other individual of its kind. The law of variation seems practically annulled in the insect world.

It is the wide and free range of this law in the human species that has undoubtedly led to the great progress of the race. There has been no dead level—no democracy of talent—no equality of gifts, but only equality of opportunity. Men differ from one another in their mental endowments, capacities, and dispositions vastly more than do any other creatures upon the earth. This difference makes man's chances of progress so much the greater; he has so many more stakes in the game. If one type of talent fails, another type may win; if the lymphatic temperament is not a success, try the sanguine or the bilious; blue eyes and black eyes and brown eyes will win more triumphs than blue or black or brown alone. Arms or legs extra long, sight or hearing extra sharp, wit extra keen, judgment extra sure—all these things open doors to more progress. Variation gives natural selection a chance to take hold, and where the struggle for life is the most severe the changes will be the most rapid and the most radical. Without the pressure of the environment natural selection would not select. The tendency to physical variation in man is probably no greater than in other creatures, but his tendency to mental variation is enormous. He varies daily from mediocrity to genius, hence the enormous range of his chances of progress. From the first variation that started him on his way in his line of descent, variation must have been more and more active till he varied in the direction of reason, long before the dawn of history, since which time his progress has been by rapid strides—and more and more rapid till we see his leaps forward in recent times. The race owes its rapid progress to its exceptional men, its men of genius and power, and these have often been like sports or the sudden result of mutations—a man like Lincoln springing from the humblest parentage. No such extreme variations are seen in any of the lower orders. Indeed, in one's lifetime one sees but very slight variation in any of the wild or domestic creatures, less in the wild than in the domestic because they are less under the influence of that most variable of animals, man. And man's variations are mainly mental and not physical. The higher we go in the scale of powers, the greater the variation and hence the more rapid the evolution. Probably man's body has not changed radically in vast cycles of time, but his mind has developed enormously since the dawn of history.



IV



Biologists are coming more and more to recognize some unknown factor in evolution, probably some unknowable factor. The four factors of Osborn—heredity, ontogeny, environment, selection—play upon and modify endlessly the new form when it is started, but what about the original start? Whence comes this inborn momentum, this evolutionary send-off? What or who set the whole grand process going?

Bergson sees an internal psychological principle of development, hence the name of his book, "Creative Evolution." Osborn uses the word "directed." Certain characters, he says, are adaptive or suited to their purpose from the start; they do not have to be fitted to their place by natural selection. Huxley uses the word "predestined"—all the life of the globe and all the starry hosts of heaven are working out in boundless space and in endless time "their predestined course of evolution." Darwin must have had in mind the same mysterious something when he said that man had risen to the very summit of the animal scale, but not through his own exertions. Not by his own will or exertion, surely, any more than the embryo in its mother's womb develops into the full-grown child by its own exertion or than our temperaments and complexions and statures are matters of our own wills and choice. Something greater than man and before him, to which he sustains the relation that the unborn child sustains to its mother, must enter into our thought of his origin and development.

The great evolutionists have been very cautious about seeking to go behind evolution and name the Primal Cause. In such an attempt science would at once be beyond soundings. Darwin and Huxley were reverent, truth-loving men, but they hesitated as men of science to put themselves in a position where no step could be taken.

Slowly man emerges out of the abyss of geologic time into the dawn of history, and science gropes about like a man feeling his way in the dark or, at most, by the aid now and then of a dim flash of light, to trace the path he has come. He has surely arrived, and we are, I believe, safe in saying he has come by the way of the lower orders; but the precise forms through which he has come, the houses in which he has tarried by the way, and all the adventures and vicissitudes that befell him on the journey—can we ever hope to know these things? In any case, man has his antecedents; life has its antecedents; every beat of one's heart has its antecedent cause, which again has its antecedent. We can thus traverse the chain of causation only to find it is an endless chain; the separate links we can examine, but the first link or the last we see, by the very nature of things, and the laws of our own minds, must forever elude us. Science cannot admit of a break in the chain of causation, cannot admit that miracles or the supernatural in the old sense, as external and arbitrary interference with the natural order, can play or ever have played any part in this universe. Yet science has to postulate a First Cause when it knows, or metaphysics knows for it, that with the Infinite there can be no first and no last, no beginning and no ending, only endless succession.

To science man is not a fallen creature, but a many times risen creature and all the good of the universe centres in him. The mind that pervades all nature and is active in plant and animal alike first comes to know itself and regard itself and achieve intellectual appreciation in man. While all nature below man is wise only to its own ends and goes its appointed way as void of self-consciousness as the stone that falls or the wind that blows, the mind of man attains to disinterested wisdom and turns upon itself and upon the universe the power of objective thought; it alone achieves understanding.

In our studies of life and of the universe as soon as we begin to bridge chasms by an appeal to the miraculous, or to the extra-natural powers, we are traitors to the scientific spirit which we seek to serve. There are many things that science cannot explain. Perhaps I may say that it cannot give the ultimate explanation of anything. It can do little more than tell us of the action, the interaction, and the reaction of things, but of the things themselves, their origin and ultimate nature, or the source of the laws that govern them, what does it or what can it know?

Man is the heir of all the geologic ages; he inherits the earth after countless generations of animals and plants, and the beneficent forces of wind and rain, air and sky, have in the course of millions of years prepared it for him. His body has been built for him through the lives and struggles of the countless beings who are in the line of his long descent; his mind is equally an accumulated inheritance of the mental growth of the myriads of thinking men and unthinking animals that went before him. In the forms of his humbler forebears he has himself lived and died myriads of times to make ready the soil that nurses and sustains him to-day. He is a debtor to Cambrian and Silurian times, to the dragons and saurians and mastodons that have roamed over the earth. Indeed, what is there or has there been in the universe that he is not indebted to? The remotest star that shines has sent a ray that has entered into his life. All things are under his feet, and the keys of the heavens are in his hands.



V



One would fain arrive at some concrete belief or image of his line of descent in geologic time as he does in the historic period. But how hard it is to do so! Can we form any mental picture of the actual animal forms that the manward impulse has traveled through? With all the light that palaeontology throws upon the animal life of the past, can we see where amid the revel of these bizarre forms our ancestor hid himself? Can we see him as a reptile in the slime of the jungle or in the waters of the Mesozoic world? What was he like or what akin to? What mark or sign was there upon him at that time of the future that was before him? Can we see him as a fish in the old Devonian seas or lakes? Was he a big fish or a little fish? The primitive fishes were mostly of the shark kind. Is there any connection between that fact and the human sharks of to-day? Much less can one picture to one's self what his ancestor was like in the age of the invertebrates, amid the trilobites, etc., of the earlier Palaeozoic seas. But we must go back even earlier than that, back to unicellular life and to original protoplasm, and finally back to fiery nebulous matter. What can we make of it all by way of concrete conception of what actually took place—of the visible, eating, warring, breeding animal forms in whose safekeeping our heritage lay? Nothing. We are not merely at sea, we are in abysmal depths, and the darkness is so thick we can cut it.

We meet the same difficulty when we try to figure to ourselves the line of descent of any of the animal forms of to-day. How did they escape the world-wild catastrophe of earlier geologic times? Or did the creative impulse bank upon life as a whole and never become bankrupt, no matter what special lines or forms failed?

The first appearance of the primates is in Eocene times and the anthropoid apes in the Miocene, probably five millions of years ago. The form which may have been in our line of descent, the Dryopithecus, later appears to have become extinct. Did our fate hang upon the success of any of these forms? The monkeys and anthropoid apes appeared at the same time in different countries. Nature seems to have been making preliminary studies of man in these various forms, but when and where she hit upon the form that she perfected in man, who knows?

The horse appears to have been evolved in North America, true cattle in Asia, elephants in Africa. Can we narrow their line of descent down to a single pair for each? Many forms allied to the horse appeared in Europe and Asia in Miocene times. We find monkeys in different parts of the world in the same geologic horizons; did they all have a common origin?

Life's apprenticeship has been a long one. The earlier forms of vertebrate life were very large; later they became very small. Nature seems to have experimented with bulk, as if she thought size would win in the race. Hence those huge uncouth forms among the reptiles and early mammals. The scheme did not work well; bulk was not the thing, after all. Most of the gigantic forms became extinct. Then she tried smaller and more agile forms with larger brains—less flesh and more wit. On this line Nature continued to work till she produced her masterpiece in man—a rather feeble and nearly weaponless animal, but with an intangible armory of weapons and tools in his brain that enables him to put all creatures under his feet.



XII

THE HAZARDS OF THE PAST

I



Bergson, the new French philosopher, thinks we all had a narrow escape, back in geologic time, of having our eggs spoiled before they were hatched, or, rather, rendered incapable of hatching by too thick a shell. This was owing to the voracity of the early organisms. As they became more and more mobile, they began to take on thick armors and breastplates and shells and calcareous skins to protect themselves from one another. This tendency resulted, he thinks, in the arrest of the entire animal world in its evolution toward higher and higher forms. These shells and armors begat a kind of torpor and immobility which has continued down to our day with the echinoderms and mollusks, but the arthropods and vertebrates escaped it by some lucky stroke. Now you and I are here without imprisoning shells on our backs; but how or why did we escape? Bergson does not say. Was it a matter of luck or chance? Was there ever a time when the stream of life tended to harden and become fixed in its own forms like a stream of cooling lava, or has the innate plasticity of life been easily equal to its own ends? True, the clam remains a clam, and the starfish remains a starfish; some other forms have carried the evolutionary impulse forward till it flowered in man. Was this impulse ever really checked or endangered? Was the golden secret ever intrusted to the keeping of any single form? and, had that form been cut off, would the earth have been still without its man? These are puzzling questions.

Thus, when we have come to look upon life and nature in the light of evolution, what vistas are opened to us where before were only blank walls! The geologic ages take on a new interest to us. We know that in some form we were even there. The systems of sedimentary rocks which the geologist portrays, piled one upon the other to a depth of fifty miles or more, seem like the stairway by which we have ascended, taking on some new and more developed form at each rise. What we were at the first step in Cambrian times only the Lord knows, but whatever we were, we crept up or floated up to the next rise. In the Silurian seas we may have been a trilobite for aught we know; at any rate, we were the outcome of the life impulse that begat the trilobites, but our fate was not bound up with theirs, as their race came to an end in those early geologic ages, and our stem form did not. Whether or not we were a fish in the Devonian seas, there is little doubt that we had gills, because we have the gill slits yet in our early foetal life, and it is quite certain that in some way we owe our backbones to the fishes.

When the rocks that form my native Catskills were being laid down in the Devonian waters, I fancy that my aquatic embryo was swimming about somewhere and slowly waxing strong. Up and up I climbed across the sandstone steps, across the limestone, the conglomerate, the slate, up into Carboniferous times. The upper and nether millstones of the "millstone grit" did not crush me, neither did the floods and the convulsions of Carboniferous times that buried the vast vegetable growths that resulted in our coal measures engulf or destroy me. About that time probably, I emerged from the water and became an amphibian, and maybe got my five fingers and five toes on each side.

Nor did the wholesale destruction of animal life at the end of Palaeozoic time cut off my line of descent. The monstrous reptiles of the succeeding or Mesozoic age, the petrified remains of one of which was recently found in the sandstone rocks near the river's edge under the Palisades of the Hudson, do not seem to have endangered the golden thread by which our fate hung. Still "I mount and mount." The stairs by which I climb were rent by earthquakes and volcanoes, the strata were squeezed up and overturned and folded in the great mountain-chains; the Alps, the Andes, the Himalayas, the Coast Range were born; the earth-throes must have been tremendous at times; yet I escaped it all. The huge and fearful mammals of the third or Tertiary period passed me by unharmed. Eruptions and cataclysms, the sinking of the land, the inundations of the sea, world-wide deformations of the earth's crust, fire and ice and floods, monsters of the deep and dragons of the land and the air have beset my course from the first, and yet here I am, here we all are, and apparently none the worse for the appalling dangers we have passed through.

Evolution thus makes the world over for us. It shows us in what a complex web of vital and far-reaching relations we stand. It gives us an outlook upon the past that is startling, and in some ways forbidding, yet one that ought to be stimulating and inspiring. If we look back with a shudder we should look forward with a thrill. If the past is terrible, the future is in the same degree cheering and inviting. If we came out of those lowly and groveling forms, to what heights of being may we not be carried by the impetus that brought us thus far? In fact, to what heights has it already carried us!



II



That the hazards of the past, to many forms of life, at least, have been real and no myth, is evident from the vast number of forms that have been cut off and become extinct; various causes, now hard to decipher, have worked together to the end, such as changed geographical conditions, changes of climate, affecting the food-supply, extreme specialization, like that of the sabre-toothed tiger whose petrified remains have been found in various parts of this continent, and who apparently was finally handicapped by his huge dental sabre. Probably many more species of animals have become extinct than have survived, but none of these could have been in the line of man's descent, else the human race would not have been here. If the Eocene progenitor of the horse, the little four-toed eohippus, had been cut off, would not the world have been horseless to-day? The horse in America became extinct, from some cause only conjectural, many tens of thousands of years ago. Had the same fate befallen the horse in Europe and Asia, it seems probable that our civilization would have been far less advanced to-day than it is.

The fate of every species of mammal in our time seems to have been in the keeping of a single form in early Tertiary times. The end of the Cretaceous or chalk period saw the extinction of the giant reptiles both of sea and of land, at the same time that it saw the appearance of a great many species of small and inconspicuous mammals, among which doubtless were our own humble forebears. Extreme specialization in any direction may narrow an animal's chances of survival; they have but one chance in the game of life, whereas an animal with a more generalized organization has many chances. Man is one of the most generalized of animals; no special tools, no special weapons—his hand many tools and weapons in one. Hence he is the most adaptable of animals; all climes, all foods, all places are his; he is master of the land, of the sea, of the air.

Animal life is often curiously interdependent. I asked our guide in the Adirondacks if there were any ravens there. "Not nearly as many as there used to be," he said, and his explanation of their disappearance seems thoroughly scientific; it was that the wolves and the panthers kept them in meat, and now that these animals had disappeared, the ravens had little to feed upon. If the moose were compelled to graze from off the ground, like a sheep or a cow, the species would probably soon become extinct. Osborn thinks it probable that the huge beast called titanothere finally became extinct early in Tertiary times owing to the form of its teeth, which were of such a type that they could not change to meet a change in the flora upon which the creature fed. Of course we shall never know what narrow escapes our race had from extinction in the remote past; some forms have ended in a blind alley, like the sea-urchin and the oyster. Arthropoda have continued to evolve and have reached their high-water mark of intelligence in bees and ants. The vertebrates went forward and have culminated in man. Bergson thinks that in the vertebrates intelligence has been developed at the expense of instinct, and that in the invertebrates instinct has been perfected at the expense of intelligence.

Are we not compelled to adopt what is called the monophyletic hypothesis, that is, that our line of descent started from one pair, male and female, somewhere in the vast stretch of geologic or biologic time, and to reason that, had that pair been out of the race, we should not have appeared?

Can we narrow life to a single point, a single cell, in the past? Was there one and only one first bit of protoplasm? If we were to say that life first appeared on the globe in Cambrian times, just what should we mean? That it began as a single point, or as many points? When we say that the primates first appeared in Eocene times, do we mean that one single primate appeared then? If so, what form went immediately before him? This is all a vain speculation.

Does man presuppose all the vertebrate sub-kingdom? Was he safe as long as one vertebrate form remained? Are his forebears many, and not one pair? Can we think of his ancestry under the image of a tree, and of him as one of the many branches? If so, nothing but the destruction of the tree would have imperiled his appearance, or the lopping off of his particular branch. Probably all such images are misleading. We simply cannot figure to ourselves the tangled course of our biological descent. If thwartings and accidents arid delays could have cut man off, how could he have escaped? We cannot think of man as one; we are compelled to think of him as many; and yet in all our experience the many come from the one, or the one pair.

How thick the field of animal life in the past is strewn with extinct forms!—as thick as the sidereal spaces are strewn with the fragments of wrecked worlds! But other worlds and suns are spun out of the wrecked worlds and suns through the process of cosmic evolution. The world-stuff is worked over and over. Extinct animal forms must have given rise to other, allied forms before they perished, and these to still others, and so on down to our time.

The image of a tree is misleading from the fact that all the different branches of the animal kingdom, from the protozoa up to man, have come along with what we call the higher branches, the mammals; the suckers have kept pace with the main stalk, so that we have the image of a sheaf of branches starting from a common origin and all of equal length. Man has brought on his relations along with him.

There is no glamour of romance over that past. It was all hard, prosy, terrible fact. The earth's crust was less stable than now, the upheavals and subsidences and earthquakes more frequent, the warring of the elements more fierce and incessant, deluge and inundation in more rapid succession, and the riot and excesses of animal life far beyond anything we know of. And our line of descent was taking its chances amid it all. The widespread blotting out of life at the end of Palaeozoic time, and again at the end of Mesozoic times, when myriads of forms were cut off, probably from some convulsion of nature or some cosmic catastrophe; and again during the ice age, when the camel, the llama, the horse, the tapir, the mastodon, the elephant, the giant sloth, became extinct in North America—how fared it with our ancestor during these terrible ages? There is no sure trace of him till late Tertiary times, and it is probably not more than two hundred thousand years ago that he assumed the upright attitude and began to use tools. Probably in Europe fifty thousand years ago he was living in caves, clothed in skins, contending with the cave bear and cave lion, using rude stone implements, and hunting the hairy mastodon, etc. In Asia the probabilities are that he was farther on the road toward the dawn of history.

We may think of our descent in the historic period under the image of the stream, though of a stream many times delayed and diverted, even many times diminished by wars and plagues and famine, but a stream with some sort of unity and continuity, since man became man. The stream of life is like any other stream in this respect. Divert or use up part of the water of a stream, yet what is left flows on and keeps up the continuity and identity of the stream; dip your cup into it here, and you will not get precisely the same water you would have got had none of it been diverted or used far back in its course—you get the water that was allowed to flow by.

Had there been no loss of life by war and pestilence and accidents of various kinds, the different countries would have been occupied by quite other men and women than those that fill them to-day. The course of life in every neighborhood is changed by what seem like accidental causes, as when a family is practically wiped out by some accident or dread disease. This brings new people on the scene. The farm or the business falls into other hands, and new social relations spring up, new men and women are brought together or the old ones driven apart, marriage is hastened or retarded, opportunities for family life are made or unmade, and fewer children, or more children, as the case may be, are the result. The issue of some battle hundreds or thousands of years ago may have played a part in your life and mine to-day—other races, other individuals of the race, would have been thrown together had the issue been different, and other families started, so that some one else would have been here in our stead.

But the question of hazard to the race of man in geologic time is quite a different one. Here our fate seems to hang by a single thread—a golden thread, we may call it, but, in that terrible maze of clashing forces and devouring forms of the vast geologic periods, how liable to be broken! It is not now a question of the continuity of a stream, but of the continuity of a single evolutionary process, or, as Haeckel says, the continuity of the morphological chain which stretches from the lemurs up through tailed and tailless anthropoid apes to man. If the evolutionary impulse had been checked or extinguished in the lemur—that small apelike animal that went before the true ape, the fossil remains of which have been found on this continent and the survivals of which are now found in Madagascar—would man have appeared? Again, if the race of lemurs developed from a single pair, how precarious seems our fate! In fact, if any of the transitional forms between species can be reduced to a single pair—as the forms that connect the reptiles with the mammals—our fate would seem to be in the keeping of these forms. Over this single frail bridge which escaped the floods and the tornadoes and the earthquakes of those terrible ages we must have passed. What risky business it all seems! Was it luck or law that favored us? Doubtless, if we could penetrate the mystery, we should see that there was no chance or risk in the matter. We cannot go very far in solving these great fundamental questions by applying to them the tests of our own experience, Numberless specific forms become extinct, but the impulse that begat the form does not die out. Thus, all the giant reptiles died out—the dinosaurs, the mesosaurs—but the reptilian impulse still survives. How many types of invertebrates have perished! but the invertebrate impulse still goes on. How many species of mammals have been cut off! yet the mammal impulse has steadily gone forward. These things suggest the wave that moves on but leaves the water behind. The vertebrate impulse began in wormlike forms, in the old Palaeozoic seas, and stopped not till it culminated in man. This impulse has left many forms behind it; but has this impulse itself ever been endangered? If one looks at the matter thus in an abstract instead of a concrete way, the problem of our descent becomes easier.

When we look at the evolution of life on a grand scale, nature seems to feel her way, like a blind man, groping, hesitating, trying this road and then that. In some cases the line of evolution seems to end in a cul de sac beyond which no progress is possible. The forms thus cornered soon become extinct. The mystery, the unaccountable thing, is the appearance of new characters. The slow modification or transformation of an existing character may often be traced; natural selection, or the struggle for existence, takes it in hand and adapts and perpetuates it, or else eliminates it. But the origin of certain new parts or characters—that is the secret of the evolutionary process. Thus there was a time when no animal had horns; then horns appeared. "In the great quadruped known as titanothere," says Osborn, "rudiments of horns first arise independently at certain definite parts of the skull; they arise at first alike in both sexes, or asexually; then they become sexual, or chiefly characteristic of males; then they rapidly evolve in the males while being arrested in development in the females; finally, they become in some of the animals dominant characteristics to which all others bend." Nature seems to throw out these new characters and then lets them take their chances in the clash of forces and tendencies that go on in the arena of life. If they serve a purpose or are an advantage, they remain; if not, they drop out. Nature feels her way. The horns proved of less advantage to the females than to the males; they seem a part of the plus or overflow of the male principle, like the beard in man—the badge of masculinity. The titanothere is traceable back to a hornless animal the size of a sheep, and it ended in a horned quadruped nearly as large as an elephant. It flourished in Wyoming in early Tertiary times. Nature did not seem to know what to do with horns when she first got them. She played with them like a child with a new toy. Thus she gave two pairs to several species of mammals, one pair on the nose and one pair on the top of the skull—certainly an embarrassment of weapons.

The first horns appear to have been crude, heavy, uncouth, but long before we reach our own geologic era they appear in various species of quadrupeds, and become graceful and ornamental. How beautiful they are in many of the African antelope tribe! Nature's workmanship nearly always improves with time, like that of man's, and sooner or later takes on an ornamental phase.

The early uncouth, bizarre forms seem to be the result of the excess or surplus of life. Life in remote biologic times was rank and riotous, as it is now, in a measure, in tropical lands. One reason may be that the climate of the globe during the middle period, and well into the third period, appears to have been of a tropical character. The climatic and seasonal divisions were not at all pronounced, and both animal and vegetable life took on gigantic and grotesque forms. In the ugliness of alligator and rhinoceros and hippopotamus of our day we get some hint of what early reptilian and mammalian life was like.

That Nature should have turned out better and better handiwork as the ages passed; that she either should have improved upon every model or else discarded it; that she should have progressed from the bird, half-dragon, to the sweet songsters of our day and to the superb forms of the air that we know; that evolution should have entered upon a refining and spiritualizing phase, developing larger brains and smaller bodies, is a very significant fact, and one quite beyond the range of the mechanistic conception of life.

Our own immediate line of descent leads down through the minor forms of Tertiary and Mesozoic times—forms that probably skulked and dodged about amid the terrible and gigantic creatures of those ages as the small game of to-day hide and flee from the presence of their arch-enemy, man; and that the frail line upon which the fate of the human race hung should not have been severed during the wild turmoil of those ages is, to me, a source of perpetual wonder.



III



The hazards of the future of the race must be quite different from those I have been considering. They are the hazards incident to an exceptional being upon this earth—a being that takes his fate in his own hands in a sense that no other creature does.

Man has partaken of the fruit of the Tree of Good and Evil, which all the lower orders have escaped. He knows, and knows that he knows. Will this knowledge, through the opposition in which it places him to elemental nature and the vast system of artificial things with which it has enabled him to surround himself, cut short his history upon this planet? Will Nature in the end be avenged for the secrets he has forced from her? His civilization has doubtless made him the victim of diseases to which the lower orders, and even savage man, are strangers. Will not these diseases increase as his life becomes more and more complex and artificial? Will he go on extending his mastery over Nature and refining or suppressing his natural appetites till his original hold upon life is fatally enfeebled?

It seems as though science ought to save man and prolong his stay on this planet,—it ought to bring him natural salvation, as his religion promises him supernatural salvation. But of course, man's fate is bound up with the fate of the planet and of the biological tree of which he is one of the shoots. Biology is rooted in geology. The higher forms of life did not arbitrarily appear, they flowed out of conditions that were long in maturing; they flowered in season, and the flower will fall in season. Man could not have appeared earlier than he did, nor later than he did; he came out of what went before, and he will go out with what comes after. His coming was natural, and his going will be natural. His period had a beginning, and it will have an end. Natural philosophy leads one to affirm this; but of time measured by human history he may yet have a lease of tens of thousands of years.

The hazard of the future is a question of both astronomy and geology. That there are cosmic dangers, though infinitely remote, every astronomer knows. That there are collisions between heavenly bodies is an indubitable fact, and if collisions do happen to any, allow time enough and they must happen to all. That there are geologic dangers through the shifting and crumpling of the earth's crust, every geologist knows, though probably none that could wipe out the whole race of man. The biologic dangers of the past we have outlived—the dangers that must have beset a single line of descent amid the carnival of power and the ferocity of the monster reptiles of Mesozoic times, and the wholesale extinction of species that occurred in different geologic periods.

Nothing but a cosmic catastrophe, involving the fate of the whole earth, could now exterminate the human race. It is highly improbable that this will ever happen. The race of man will go out from a slow, insensible failure, through the aging of the planet, of the conditions of life that brought man here. The evolutionary process upon a cooling world must, after the elapse of a vast period of time, lose its impetus and cease.



XIII

THE GOSPEL OF NATURE

I



The other day a clergyman who described himself as a preacher of the gospel of Christ wrote, asking me to come and talk to his people on the gospel of Nature. The request set me to thinking whether or not Nature has any gospel in the sense the clergyman had in mind, any message that is likely to be specially comforting to the average orthodox religious person. I suppose the parson wished me to tell his flock what I had found in Nature that was a strength or a solace to myself.

What had all my many years of journeyings to Nature yielded me that would supplement or reinforce the gospel he was preaching? Had the birds taught me any valuable lessons? Had the four-footed beasts? Had the insects? Had the flowers, the trees, the soil, the coming and the going of the seasons? Had I really found sermons in stones, books in running brooks and good in everything? Had the lilies of the field, that neither toil nor spin, and yet are more royally clad than Solomon in all his glory, helped me in any way to clothe myself with humility, with justice, with truthfulness?

It is not easy for one to say just what he owes to all these things. Natural influences work indirectly as well as directly; they work upon the subconscious, as well as upon the conscious, self. That I am a saner, healthier, more contented man, with truer standards of life, for all my loiterings in the fields and woods, I am fully convinced.

That I am less social, less interested in my neighbors and in the body politic, more inclined to shirk civic and social responsibilities and to stop my ears against the brawling of the reformers, is perhaps equally true.

One thing is certain, in a hygienic way I owe much to my excursions to Nature. They have helped to clothe me with health, if not with humility; they have helped sharpen and attune all my senses; they have kept my eyes in such good trim that they have not failed me for one moment during all the seventy-five years I have had them; they have made my sense of smell so keen that I have much pleasure in the wild, open-air perfumes, especially in the spring—the delicate breath of the blooming elms and maples and willows, the breath of the woods, of the pastures, of the shore. This keen, healthy sense of smell has made me abhor tobacco and flee from close rooms, and put the stench of cities behind me. I fancy that this whole world of wild, natural perfumes is lost to the tobacco-user and to the city- dweller. Senses trained in the open air are in tune with open-air objects; they are quick, delicate, and discriminating. When I go to town, my ear suffers as well as my nose: the impact of the city upon my senses is hard and dissonant; the ear is stunned, the nose is outraged, and the eye is confused. When I come back, I go to Nature to be soothed and healed, and to have my senses put in tune once more. I know that, as a rule, country or farming folk are not remarkable for the delicacy of their senses, but this is owing mainly to the benumbing and brutalizing effect of continued hard labor. It is their minds more than their bodies that suffer.

When I have dwelt in cities the country was always near by, and I used to get a bite of country soil at least once a week to keep my system normal.

Emerson says that "the day does not seem wholly profane in which we have given heed to some natural object." If Emerson had stopped to qualify his remark, he would have added, if we give heed to it in the right spirit, if we give heed to it as a nature-lover and truth-seeker. Nature love as Emerson knew it, and as Wordsworth knew it, and as any of the choicer spirits of our time have known it, has distinctly a religious value. It does not come to a man or a woman who is wholly absorbed in selfish or worldly or material ends. Except ye become in a measure as little children, ye cannot enter the kingdom of Nature—as Audubon entered it, as Thoreau entered it, as Bryant and Amiel entered it, and as all those enter it who make it a resource in their lives and an instrument of their culture. The forms and creeds of religion change, but the sentiment of religion—the wonder and reverence and love we feel in the presence of the inscrutable universe—persists. Indeed, these seem to be renewing their life to-day in this growing love for all natural objects and in this increasing tenderness toward all forms of life. If we do not go to church so much as did our fathers, we go to the woods much more, and are much more inclined to make a temple of them than they were.

We now use the word Nature very much as our fathers used the word God, and, I suppose, back of it all we mean the power that is everywhere present and active, and in whose lap the visible universe is held and nourished. It is a power that we can see and touch and hear, and realize every moment of our lives how absolutely we are dependent upon it. There are no atheists or skeptics in regard to this power. All men see how literally we are its children, and all men learn how swift and sure is the penalty of disobedience to its commands.

Our associations with Nature vulgarize it and rob it of its divinity. When we come to see that the celestial and the terrestrial are one, that time and eternity are one, that mind and matter are one, that death and life are one, that there is and can be nothing not inherent in Nature, then we no longer look for or expect a far-off, unknown God.

Nature teaches more than she preaches. There are no sermons in stones. It is easier to get a spark out of a stone than a moral. Even when it contains a fossil, it teaches history rather than morals. It comes down from the fore-world an undigested bit that has resisted the tooth and maw of time, and can tell you many things if you have the eye to read them. The soil upon which it lies or in which it is imbedded was rock, too, back in geologic time, but the mill that ground it up passed the fragment of stone through without entirely reducing it. Very likely it is made up of the minute remains of innumerable tiny creatures that lived and died in the ancient seas. Very likely it was torn from its parent rock and brought to the place where it now lies by the great ice-flood that many tens of thousands of years ago crept slowly but irresistibly down out of the North over the greater part of all the northern continents.

But all this appeals to the intellect, and contains no lesson for the moral nature. If we are to find sermons in stones, we are to look for them in the relations of the stones to other things—when they are out of place, when they press down the grass or the flowers, or impede the plow, or dull the scythe, or usurp the soil, or shelter vermin, as do old institutions and old usages that have had their day. A stone that is much knocked about gets its sharp angles worn off, as do men. "A rolling stone gathers no moss," which is not bad for the stone, as moss hastens decay. "Killing two birds with one stone" is a bad saying, because it reminds boys to stone the birds, which is bad for both boys and birds. But "People who live in glass houses should not throw stones" is on the right side of the account, as it discourages stone-throwing and reminds us that we are no better than our neighbors.

The lesson in running brooks is that motion is a great purifier and health-producer. When the brook ceases to run, it soon stagnates. It keeps in touch with the great vital currents when it is in motion, and unites with other brooks to help make the river. In motion it soon leaves all mud and sediment behind. Do not proper work and the exercise of will power have the same effect upon our lives?

The other day in my walk I came upon a sap-bucket that had been left standing by the maple tree all the spring and summer. What a bucketful of corruption was that, a mixture of sap and rainwater that had rotted, and smelled to heaven. Mice and birds and insects had been drowned in it, and added to its unsavory character. It was a bit of Nature cut off from the vitalizing and purifying chem- istry of the whole. With what satisfaction I emptied it upon the ground while I held my nose and saw it filter into the turf, where I knew it was dying to go and where I knew every particle of the reeking, fetid fluid would soon be made sweet and wholesome again by the chemistry of the soil!



II



I am not always in sympathy with nature-study as pursued in the schools, as if this kingdom could be carried by assault. Such study is too cold, too special, too mechanical; it is likely to rub the bloom off Nature. It lacks soul and emotion; it misses the accessories of the open air and its exhilarations, the sky, the clouds, the landscape, and the currents of life that pulse everywhere.

I myself have never made a dead set at studying Nature with note-book and field-glass in hand. I have rather visited with her. We have walked together or sat down together, and our intimacy grows with the seasons. What I have learned about her ways I have learned easily, almost unconsciously, while fishing or camping or idling about. My desultory habits have their disadvantages, no doubt, but they have their advantages also. A too strenuous pursuit defeats itself. In the fields and woods more than anywhere else all things come to those who wait, because all things are on the move, and are sure sooner or later to come your way.

To absorb a thing is better than to learn it, and we absorb what we enjoy. We learn things at school, we absorb them in the fields and woods and on the farm. When we look upon Nature with fondness and appreciation she meets us halfway and takes a deeper hold upon us than when studiously conned. Hence I say the way of knowledge of Nature is the way of love and enjoyment, and is more surely found in the open air than in the school-room or the laboratory. The other day I saw a lot of college girls dissecting cats and making diagrams of the circulation and muscle-attachments, and I thought it pretty poor business unless the girls were taking a course in comparative anatomy with a view to some occupation in life. What is the moral and intellectual value of this kind of knowledge to those girls? Biology is, no doubt, a great science in the hands of great men, but it is not for all. I myself have got along very well without it. I am sure I can learn more of what I want to know from a kitten on my knee than from the carcass of a cat in the laboratory. Darwin spent eight years dissecting barnacles; but he was Darwin, and did not stop at barnacles, as these college girls are pretty sure to stop at cats. He dissected and put together again in his mental laboratory the whole system of animal life, and the upshot of his work was a tremendous gain to our understanding of the universe.

I would rather see the girls in the fields and woods studying and enjoying living nature, training their eyes to see correctly and their hearts to respond intelligently. What is knowledge without enjoyment, without love? It is sympathy, appreciation, emotional experience, which refine and elevate and breathe into exact knowledge the breath of life. My own interest is in living nature as it moves and flourishes about me winter and summer.

I know it is one thing to go forth as a nature-lover, and quite another to go forth in a spirit of cold, calculating, exact science. I call myself a nature-lover and not a scientific naturalist. All that science has to tell me is welcome, is, indeed, eagerly sought for. I must know as well as feel. I am not merely contented, like Wordsworth's poet, to enjoy what others understand. I must understand also; but above all things I must enjoy. How much of my enjoyment springs from my knowledge I do not know. The joy of knowing is very great; the delight of picking up the threads of meaning here and there, and following them through the maze of confusing facts, I know well. When I hear the woodpecker drumming on a dry limb in spring or the grouse drumming in the woods, and know what it is all for, why, that knowledge, I suppose, is part of my enjoyment. The other part is the associations that those sounds call up as voicing the arrival of spring: they are the drums that lead the joyous procession.

To enjoy understandingly, that, I fancy, is the great thing to be desired. When I see the large ichneumon-fly, Thalessa, making a loop over her back with her long ovipositor and drilling a hole in the trunk of a tree, I do not fully appreciate the spectacle till I know she is feeling for the burrow of a tree-borer, Tremex, upon the larvae of which her own young feed. She must survey her territory like an oil-digger and calculate where she is likely to strike oil, which in her case is the burrow of her host Tremex. There is a vast series of facts in natural history like this that are of little interest until we understand them. They are like the outside of a book which may attract us, but which can mean little to us until we have opened and perused its pages.

The nature-lover is not looking for mere facts, but for meanings, for something he can translate into the terms of his own life. He wants facts, but significant facts—luminous facts that throw light upon the ways of animate and inanimate nature. A bird picking up crumbs from my window-sill does not mean much to me. It is a pleasing sight and touches a tender cord, but it does not add much to my knowledge of bird-life. But when I see a bird pecking and fluttering angrily at my window-pane, as I now and then do in spring, apparently under violent pressure to get in, I am witnessing a significant comedy in bird-life, one that illustrates the limits of animal instinct. The bird takes its own reflected image in the glass for a hated rival, and is bent on demolishing it. Let the assaulting bird get a glimpse of the inside of the empty room through a broken pane, and it is none the wiser; it returns to the assault as vigorously as ever.

The fossils in the rocks did not mean much to the earlier geologists. They looked upon them as freaks of Nature, whims of the creative energy, or vestiges of Noah's flood. You see they were blinded by the preconceived notions of the six-day theory of creation.



III



I do not know that the bird has taught me any valuable lesson. Indeed, I do not go to Nature to be taught. I go for enjoyment and companionship. I go to bathe in her as in a sea; I go to give my eyes and ears and all my senses a free, clean field and to tone up my spirits by her "primal sanities." If the bird has not preached to me, it has added to the resources of my life, it has widened the field of my interests, it has afforded me another beautiful object to love, and has helped make me feel more at home in this world. To take the birds out of my life would be like lopping off so many branches from the tree: there is so much less surface of leafage to absorb the sunlight and bring my spirits in contact with the vital currents. We cannot pursue any natural study with love and enthusiasm without the object of it becoming a part of our lives. The birds, the flowers, the trees, the rocks, all become linked with our lives and hold the key to our thoughts and emotions.

Not till the bird becomes a part of your life can its coming and its going mean much to you. And it becomes a part of your life when you have taken heed of it with interest and affection, when you have established associations with it, when it voices the spring or the summer to you, when it calls up the spirit of the woods or the fields or the shore. When year after year you have heard the veery in the beech and birch woods along the trout streams, or the wood thrush May after May in the groves where you have walked or sat, and the bobolink summer after summer in the home meadows, or the vesper sparrow in the upland pastures where you have loitered as a boy or mused as a man, these birds will really be woven into the texture of your life.

What lessons the birds have taught me I cannot recall; what a joy they have been to me I know well. In a new place, amid strange scenes, theirs are the voices and the faces of old friends. In Bermuda the bluebirds and the catbirds and the cardinals seemed to make American territory of it. Our birds had annexed the island despite the Britishers.

For many years I have in late April seen the red-poll warbler, perhaps for only a single day, flitting about as I walked or worked. It is usually my first warbler, and my associations with it are very pleasing. But I really did not know how pleasing until, one March day, when I was convalescing from a serious illness in one of our sea-coast towns, I chanced to spy the little traveler in a vacant lot along the street, now upon the ground, now upon a bush, nervous and hurried as usual, uttering its sharp chip, and showing the white in its tail. The sight gave me a real home feeling. It did me more good than the medicine I was taking. It instantly made a living link with many past springs. Anything that calls up a happy past, how it warms the present! There, too, that same day I saw my first meadowlark of the season in a vacant lot, flashing out the white quills in her tail, and walking over the turf in the old, erect, alert manner. The sight was as good as a letter from home, and better: it had a flavor of the wild and of my boyhood days on the old farm that no letter could ever have.

The spring birds always awaken a thrill wherever I am. The first bobolink I hear flying over northward and bursting out in song now and then, full of anticipation of those broad meadows where he will soon be with his mate; or the first swallow twittering joyously overhead, borne on a warm southern breeze; or the first high-hole sounding out his long, iterated call from the orchard or field—how all these things send a wave of emotion over me!

Pleasures of another kind are to find a new bird, and to see an old bird in a new place, as I did recently in the old sugar-bush where I used to help gather and boil sap as a boy. It was the logcock, or pileated woodpecker, a rare bird anywhere, and one I had never seen before on the old farm. I heard his loud cackle in a maple tree, saw him flit from branch to branch for a few moments, and then launch out and fly toward a distant wood. But he left an impression with me that I should be sorry to have missed.

Nature stimulates our aesthetic and our intellectual life and to a certain extent our religious emotions, but I fear we cannot find much support for our ethical system in the ways of wild Nature. I know our artist naturalist, Ernest Thompson Seton, claims to find what we may call the biological value of the Ten Commandments in the lives of the wild animals; but I cannot make his reasoning hold water, at least not much of it. Of course the Ten Commandments are not arbitrary laws. They are largely founded upon the needs of the social organism; but whether they have the same foundation in the needs of animal life apart from man, apart from the world of moral obligation, is another question. The animals are neither moral nor immoral: they are unmoral; their needs are all physical. It is true that the command against murder is pretty well kept by the higher animals. They rarely kill their own kind: hawks do not prey upon hawks, nor foxes prey upon foxes, nor weasels upon weasels; but lower down this does not hold. Trout eat trout, and pickerel eat pickerel, and among the insects young spiders eat one another, and the female spider eats her mate, if she can get him. There is but little, if any, neighborly love among even the higher animals. They treat one another as rivals, or associate for mutual protection. One cow will lick and comb another in the most affectionate manner, and the next moment savagely gore her. Hate and cruelty for the most part rule in the animal world. A few of the higher animals are monogamous, but by far the greater number of species are polygamous or promiscuous. There is no mating or pairing in the great bovine tribe, and none among the rodents that I know of, or among the bear family, or the cat family, or among the seals. When we come to the birds, we find mating, and occasional pairing for life, as with the ostrich and perhaps the eagle.

As for the rights of property among the animals, I do not see how we can know just how far those rights are respected among individuals of the same species. We know that bees will rob bees, and that ants will rob ants; but whether or not one chipmunk or one flying squirrel or one wood mouse will plunder the stores of another I do not know. Probably not, as the owner of such stores is usually on hand to protect them. Moreover, these provident little creatures all lay up stores in the autumn, before the season of scarcity sets in, and so have no need to plunder one another. In case the stores of one squirrel were destroyed by some means, and it were able to dispossess another of its hoard, would it not in that case be a survival of the fittest, and so conducive to the well-being of the race of squirrels?

I have never known any of our wild birds to steal the nesting-material of another bird of the same kind, but I have known birds to try to carry off the material belonging to other species.

But usually the rule of might is the rule of right among the animals. As to most of the other commandments,—of coveting, of bearing false witness, of honoring the father and the mother, and so forth,—how can these apply to the animals or have any biological value to them? Parental obedience among them is not a very definite thing. There is neither obedience nor disobedience, because there are no commands. The alarm-cries of the parents are quickly understood by the young, and their actions imitated in the presence of danger, all of which of course has a biological value.

The instances which Mr. Seton cites of animals fleeing to man for protection from their enemies prove to my mind only how the greater fear drives out the lesser. The hotly pursued animal sees a possible cover in a group of men and horses or in an unoccupied house, and rushes there to hide. What else could the act mean? So a hunted deer or sheep will leap from a precipice which, under ordinary circumstances, it would avoid. So would a man. Fear makes bold in such cases.

I certainly have found "good in everything,"—in all natural processes and products,—not the "good" of the Sunday-school books, but the good of natural law and order, the good of that system of things out of which we came and which is the source of our health and strength. It is good that fire should burn, even if it consumes your house; it is good that force should crush, even if it crushes you; it is good that rain should fall, even if it destroys your crops or floods your land. Plagues and pestilences attest the constancy of natural law. They set us to cleaning our streets and houses and to readjusting our relations to outward nature. Only in a live universe could disease and death prevail. Death is a phase of life, a redistributing of the type. Decay is another kind of growth.

Yes, good in everything, because law in everything, truth in everything, the sequence of cause and effect in everything, and it may all be good to me if on the right principles I relate my life to it. I can make the heat and the cold serve me, the winds and the floods, gravity and all the chemical and dynamical forces, serve me, if I take hold of them by the right handle. The bad in things arises from our abuse or misuse of them or from our wrong relations to them. A thing is good or bad according as it stands related to my constitution. We say the order of nature is rational; but is it not because our reason is the outcome of that order? Our well-being consists in learning it and in adjusting our lives to it. When we cross it or seek to contravene it, we are destroyed. But Nature in her universal procedures is not rational, as I am rational when I weed my garden, prune my trees, select my seed or my stock, or arm myself with tools or weapons. In such matters I take a short cut to that which Nature reaches by a slow, roundabout, and wasteful process. How does she weed her garden? By the survival of the fittest. How does she select her breeding-stock? By the law of battle; the strongest rules. Hers, I repeat, is a slow and wasteful process. She fertilizes the soil by plowing in the crop. She cannot take a short cut. She assorts and arranges her goods by the law of the winds and the tides. She builds up with one hand and pulls down with the other. Man changes the conditions to suit the things. Nature changes the things to suit the conditions. She adapts the plant or the animal to its environment. She does not drain her marshes; she fills them up. Hers is the larger reason—the reason of the All. Man's reason introduces a new method; it cuts across, modifies, or abridges the order of Nature. I do not see design in Nature in the old ideological sense; but I see everything working to its own proper end, and that end is foretold in the means. Things are not designed; things are begotten. It is as if the final plan of a man's house, after he had begun to build it, should be determined by the winds and the rains and the shape of the ground upon which it stands. The eye is begotten by those vibrations in the ether called light, the ear by those vibrations in the air called sound, the sense of smell by those emanations called odors. There are probably other vibrations and emanations that we have no senses for because our well-being does not demand them.

Previous Part     1  2  3  4  5     Next Part
Home - Random Browse