p-books.com
Time and Change
by John Burroughs
Previous Part     1  2  3  4  5     Next Part
Home - Random Browse

Some of the smaller rivers in the plateau region flow in very deep but very narrow canons. The rocks being harder and more homogeneous, the weathering has been slight. The meteoric forces have not taken a hand in the game. Thus the Parunuweap Canon is only twenty to thirty feet wide, but from six hundred to fifteen hundred feet deep.

I suppose the slow, inappreciable erosion to which the old guide alluded would have cut the canon since Middle Tertiary times. The river, eating downward at the rate of one sixteenth of an inch a year, would do it in about one million years. At half that rate it would do it in double that time. In the earlier part of its history, when the rainfall was doubtless greater, and the river fuller, the erosion must have been much more rapid than it is at present. The widening of the canon was doubtless a slower process than the downward cutting. But, as I have said, the downward cutting would tend to check itself from age to age, while the widening process would go steadily forward. Hence, when we look into the great abyss, we have only to remember the enormous length of time that the aerial and subaerial forces have been at work to account for it.

Two forces, or kinds of forces, have worked together in excavating the canon: the river, which is the primary factor, and the meteoric forces, which may be called the secondary, as they follow in the wake of the former. The river starts the gash downward, then the aerial forces begin to eat into the sides. Acting alone, the river would cut a trench its own width, and were the rocks through which it saws one homogeneous mass, or of uniform texture and hardness, the width of the trench would probably have been very uniform and much less than it is now. The condition that has contributed to its great width is the heterogeneity of the different formations—some hard and some soft. The softer bands, of course, introduce the element of weakness. They decay and crumble the more rapidly, and thus undermine the harder bands overlying them, which, by reason of their vertical fractures, break off and fall to the bottom, where they are exposed to the action of floods and are sooner or later ground up in the river's powerful maw. Hence the recession of the banks of the canon has gone steadily on with the downward cutting of the river. Where the rock is homogeneous, as it is in the inner chasm of the dark gneiss, the widening process seems to have gone on much more slowly. Geologists account for the great width of the main chasm when compared with the depth, on the theory that the forces that work laterally have been more continuously active than has the force that cuts downward. There is convincing evidence that the whole region has been many times lifted up since the cutting began, so that the river has had its active and passive stages. As its channel approached the sea level, its current would be much less rapid, and the downward cutting would practically cease, till the section was elevated again. But all the time the forces working laterally would be at work without interruption, and would thus gain on their checked brethren of the river bottom.

There is probably another explanation of what we see here. Apart from the mechanical weathering of the rocks as a result of the arid climate, wherein rapid and often extreme changes of temperature take place, causing the surface of the rocks to flake or scale off, there has doubtless been unusual chemical weathering, and this has been largely brought about by the element of iron that all these rocks possess. Their many brilliant colors are imparted to them by the various compounds of iron which enter into their composition. And iron, though the symbol of hardness and strength, is an element of weakness in rocks, as it causes them to oxidize or disintegrate more rapidly. In the marble canon, where apparently the rock contains no iron, the lateral erosion has been very little, though the river has cut a trench as deep as it has in other parts of its course.

How often I thought during those days at the canon of the geology of my native hills amid the Catskills, which show the effects of denudation as much older than that shown here as this is older than the washout in the road by this morning's shower! The old red sandstone in which I hoed corn as a farm-boy dates back to Middle Palaeozoic time, or to the spring of the great geologic year, while the canon is of the late autumn. Could my native hills have replied to my mute questionings, they would have said: "We were old, old, and had passed through the canon stage long before the Grand Canon was born. We have had all that experience, and have forgotten it ages ago. No vestiges of our canons remain. They have all been worn down and obliterated by the strokes of a hand as gentle as that of a passing cloud. Where they were, are now broad, fertile valleys, with rounded knolls and gentle slopes, and the sound of peaceful husbandry. The great ice sheet rubbed us and ploughed us, but our contours were gentle and rounded aeons before that event. When the Grand Canon is as old as we are, all its superb architectural features will have long since disappeared, its gigantic walls will have crumbled, and rolling plains and gentle valleys will have taken its place." All of which seems quite probable. With time enough, the gentle forces of air and water will surely change the whole aspect of this tremendous chasm.

On the second day we made the descent into the canon on mule-back. There is always satisfaction in going to the bottom of things. Then we wanted to get on more intimate terms with the great abyss, to wrestle with it, if need be, and to feel its power, as well as to behold it. It is not best always to dwell upon the rim of things or to look down upon them from afar. The summits are good, but the valleys have their charm, also; even the valley of humiliation has its lessons. At any rate, four of us were unanimous in our desire to sound that vast profound on mule-back, trusting that the return trip would satisfy our "climbing" aspirations, as it did.

It is quite worth while to go down into the canon on mule-back, if only to fall in love with a mule, and to learn what a sure-footed, careful, and docile creature, when he is on his good behavior, a mule can be. My mule was named "Johnny," and there was soon a good understanding between us. I quickly learned to turn the whole problem of that perilous descent over to him. He knew how to take the sharp turns and narrow shelves of that steep zigzag much better than I did. I do not fancy that the thought of my safety was "Johnny's" guiding star; his solicitude struck nearer home than that. There was much ice and snow on the upper part of the trail, and only those slender little legs of "Johnny's" stood between me and a tumble of two or three thousand feet. How cautiously he felt his way with his round little feet, as, with lowered head, he seemed to be scanning the trail critically! Only when he swung around the sharp elbows of the trail did his forefeet come near the edge of the brink. Only once or twice at such times, as we hung for a breath above the terrible incline, did I feel a slight shudder. One of my companions, who had never before been upon an animal's back, so fell in love with her "Sandy" that she longed for a trunk big enough in which to take him home with her.

It was more than worth while to make the descent to traverse that Cambrian plateau, which from the rim is seen to flow out from the base of the enormous cliffs to the brink of the inner chasm, looking like some soft, lavender-colored carpet or rug. I had never seen the Cambrian rocks, the lowest of the stratified formations, nor set my foot upon Cambrian soil. Hence a new experience was promised me. Rocky layers probably two or three miles thick had been worn away from the old Cambrian foundations, and when I looked down upon that gently undulating plateau, the thought of the eternity of time which it represented tended quite as much to make me dizzy as did the drop of nearly four thousand feet. We found it gravelly and desert-like, covered with cacti, low sagebrush, and other growths. The dim trail led us to its edge, where we could look down into the twelve-hundred-foot V-shaped gash which the river had cut into the dark, crude-looking Archaean rock. How distinctly it looked like a new day in creation where the horizontal, yellowish-gray beds of the Cambrian were laid down upon the dark, amorphous, and twisted older granite! How carefully the level strata had been fitted to the shapeless mass beneath it! It all looked like the work of a master mason; apparently you could put the point of your knife where one ended and the other began. The older rock suggested chaos and turmoil; the other suggested order and plan, as if the builder had said, "Now upon this foundation we will build our house." It is an interesting fact, the full geologic significance of which I suppose I do not appreciate, that the different formations are usually marked off from one another in just this sharp way, as if each one was, indeed, the work of a separate day of creation. Nature appears at long intervals to turn over a new leaf and start a new chapter in her great book. The transition from one geologic age to another appears to be abrupt: new colors, new constituents, new qualities appear in the rocks with a suddenness hard to reconcile with Lyell's doctrine of uniformitarianism, just as new species appear in the life of the globe with an abruptness hard to reconcile with Darwin's slow process of natural selection. Is sudden mutation, after all, the key to all these phenomena?

We ate our lunch on the old Cambrian table, placed there for us so long ago, and gazed down upon the turbulent river hiding and reappearing in its labyrinthian channel so far below us. It is worth while to make the descent in order to look upon the river which has been the chief quarryman in excavating the canon, and to find how inadequate it looks for the work ascribed to it. Viewed from where we sat, I judged it to be forty or fifty feet broad, but I was assured that it was between two and three hundred feet. Water and sand are ever symbols of instability and inconstancy, but let them work together, and they saw through mountains, and undermine the foundations of the hills.

It is always worth while to sit or kneel at the feet of grandeur, to look up into the placid faces of the earth gods and feel their power, and the tourist who goes down into the canon certainly has this privilege. We did not bring back in our hands, or in our hats, the glory that had lured us from the top, but we seemed to have been nearer its sources, and to have brought back a deepened sense of the magnitude of the forms, and of the depth of the chasm which we had heretofore gazed upon from a distance. Also we had plucked the flower of safety from the nettle danger, always an exhilarating enterprise.

In climbing back, my eye, now sharpened by my geologic reading, dwelt frequently and long upon the horizon where that cross-bedded Carboniferous sandstone joins the Carboniferous limestone above it. How much older the sandstone looked! I could not avoid the impression that its surface must have formed a plane of erosion ages and ages before the limestone had been laid down upon it.

We had left plenty of ice and snow at the top, but in the bottom we found the early spring flowers blooming, and a settler at what is called the Indian Gardens was planting his garden. Here I heard the song of the canon wren, a new and very pleasing bird-song to me. I think our dreams were somewhat disturbed that night by the impressions of the day, but our day-dreams since that time have at least been sweeter and more comforting, and I am sure that the remainder of our lives will be the richer for our having seen the Grand Canon.



III

THE SPELL OF THE YOSEMITE

I



Yosemite won my heart at once, as it seems to win the hearts of all who visit it. In my case many things helped to do it, but I am sure a robin, the first I had seen since leaving home, did his part. He struck the right note, he brought the scene home to me, he supplied the link of association. There he was, running over the grass or perching on the fence, or singing from a tree-top in the old familiar way. Where the robin is at home, there at home am I. But many other things helped to win my heart to the Yosemite—the whole character of the scene, not only its beauty and sublimity, but the air of peace and protection, and of homelike seclusion that pervades it; the charm of a nook, a retreat, combined with the power and grandeur of nature in her sternest moods.

After passing from the hotel at El Portal along the foaming and roaring Merced River, and amid the tumbled confusion of enormous granite boulders shaken down from the cliffs above, you cross the threshold of the great valley as into some vast house or hall carved out of the mountains, and at once feel the spell of the brooding calm and sheltered seclusion that pervades it. You pass suddenly from the tumultuous, the chaotic, into the ordered, the tranquil, the restful, which seems enhanced by the power and grandeur that encompass them about. You can hardly be prepared for the hush that suddenly falls upon the river and for the gentle rural and sylvan character of much that surrounds you; the peace of the fields, the seclusion of the woods, the privacy of sunny glades, the enchantment of falls and lucid waters, with a touch of human occupancy here and there—all this, set in that enormous granite frame, three or four thousand feet high, ornamented with domes and spires and peaks still higher,—it is all this that wins your heart and fills your imagination in the Yosemite.

As you ride or walk along the winding road up the level valley amid the noble pines and spruces and oaks, and past the groves and bits of meadow and the camps of many tents, and the huge mossy granite boulders here and there reposing in the shade of the trees, with the full, clear, silent river winding through the plain near you, you are all the time aware of those huge vertical walls, their faces scarred and niched, streaked with color, or glistening with moisture, and animated with waterfalls, rising up on either hand, thousands of feet high, not architectural, or like something builded, but like the sides and the four corners of the globe itself. What an impression of mass and of power and of grandeur in repose filters into you as you walk along! El Capitan stands there showing its simple sweeping lines through the trees as you approach, like one of the veritable pillars of the firmament. How long we are nearing it and passing it! It is so colossal that it seems near while it is yet far off. It is so simple that the eye takes in its naked grandeur at a glance. It demands of you a new standard of size which you cannot at once produce. It is as clean and smooth as the flank of a horse, and as poised and calm as a Greek statue. It curves out toward the base as if planted there to resist the pressure of worlds—probably the most majestic single granite column or mountain buttress on the earth. Its summit is over three thousand feet above you. Across the valley, nearly opposite, rise the Cathedral Rocks to nearly the same height, while farther along, beyond El Capitan, the Three Brothers shoulder the sky at about the same dizzy height. Near the head of the great valley, North Dome, perfect in outline as if turned in a lathe, and its brother, the Half Dome (or shall we say half-brother?) across the valley, look down upon Mirror Lake from an altitude of over four thousand feet. These domes suggest enormous granite bubbles if such were possible pushed up from below and retaining their forms through the vast geologic ages. Of course they must have weathered enormously, but as the rock seems to peel off in concentric sheets, their forms are preserved.



II



One warm, bright Sunday near the end of April, six of us walked up from the hotel to Vernal and Nevada Falls, or as near to them as we could get, and took our fill of the tumult of foaming waters struggling with the wreck of huge granite cliffs: so impassive and immobile the rocks, so impetuous and reckless and determined the onset of the waters, till the falls are reached, when the obstructed river seems to find the escape and the freedom it was so eagerly seeking. Better to be completely changed into foam and spray by one single leap of six hundred feet into empty space, the river seems to say, than be forever baffled and tortured and torn on this rack of merciless boulders.

We followed the zigzagging trail up the steep side of the valley, touching melting snow-banks in its upper courses, passing huge granite rocks also melting in the slow heat of the geologic ages, pausing to take in the rugged, shaggy spruces and pines that sentineled the mountain-sides here and there, or resting our eyes upon Liberty Cap, which carries its suggestive form a thousand feet or more above the Nevada Fall. What beauty, what grandeur attended us that day! the wild tumult of waters, the snow-white falls, the motionless avalanches of granite rocks, and the naked granite shaft, Liberty Cap, dominating all!

And that night, too, when we sat around a big camp-fire near our tents in the valley, and saw the full moon come up and look down upon us from behind Sentinel Rock, and heard the intermittent booming of Yosemite Falls sifting through the spruce trees that towered around us, and felt the tender, brooding spirit of the great valley, itself touched to lyric intensity by the grandeurs on every hand, steal in upon us, and possess our souls—surely that was a night none of us can ever forget. As Yosemite can stand the broad, searching light of midday and not be cheapened, so its enchantments can stand the light of the moon and the stars and not be rendered too vague and impalpable.



III



Going from the Grand Canon to Yosemite is going from one sublimity to another of a different order. The canon is the more strange, unearthly, apocryphal, appeals more to the imagination, and is the more overwhelming in its size, its wealth of color, and its multitude of suggestive forms. But for quiet majesty and beauty, with a touch of the sylvan and pastoral, too, Yosemite stands alone. One could live with Yosemite, camp in it, tramp in it, winter and summer in it, and find nature in her tender and human, almost domestic moods, as well as in her grand and austere. But I do not think one could ever feel at home in or near the Grand Canon; it is too unlike anything we have ever known upon the earth; it is like a vision of some strange colossal city uncovered from the depth of geologic time. You may have come to it, as we did, from the Petrified Forests, where you saw the silicified trunks of thousands of gigantic trees or tree ferns, that grew millions of years ago, most of them uncovered, but many of them protruding from banks of clay and gravel, and in their interiors rich in all the colors of the rainbow, and you wonder if you may not now be gazing upon some petrified antediluvian city of temples and holy places exhumed by mysterious hands and opened up to the vulgar gaze of to-day. You look into it from above and from another world and you descend into it at your peril. Yosemite you enter as into a gigantic hall and make your own; the canon you gaze down upon, and are an alien, whether you enter it or not. Yosemite is carved out of the most majestic and enduring of all rocks, granite; the Grand Canon is carved out of one of the most beautiful, but perishable, red Carboniferous sandstone and limestone. There is a maze of beautiful and intricate lines in the latter, a wilderness of temple-like forms and monumental remains, and noble architectural profiles that delight while they bewilder the eye. Yosemite has much greater simplicity, and is much nearer the classic standard of beauty. Its grand and austere features predominate, of course, but underneath these and adorning them are many touches of the idyllic and the picturesque. Its many waterfalls fluttering like white lace against its vertical granite walls, its smooth, level floor, its noble pines and oaks, its open glades, its sheltering groves, its bright, clear, winding river, its soft voice of many waters, its flowers, its birds, its grass, its verdure, even its orchards of blooming apple trees, all inclosed in this tremendous granite frame—what an unforgettable picture it all makes, what a blending of the sublime and the homelike and familiar it all is! It is the waterfalls that make the granite alive, and bursting into bloom as it were. What a touch they give! how they enliven the scene! What music they evoke from these harps of stone!

The first leap of Yosemite Falls is sixteen hundred feet—sixteen hundred feet of a compact mass of snowy rockets shooting downward and bursting into spray around which rainbows flit and hover. The next leap is four hundred feet, and the last six hundred. We tried to get near the foot and inspect the hidden recess in which this airy spirit again took on a more tangible form of still, running water, but the spray over a large area fell like a summer shower, drenching the trees and the rocks, and holding the inquisitive tourist off at a safe distance. We had to beat a retreat with dripping garments before we had got within fifty yards of the foot of the fall. At first I was surprised at the volume of water that came hurrying out of the hidden recess of dripping rocks and trees—a swiftly flowing stream, thirty or forty feet wide, and four or five feet deep. How could that comparatively narrow curtain of white spray up there give birth to such a full robust stream? But I saw that in making the tremendous leap from the top of the precipice, the stream was suddenly drawn out, as we stretch a rubber band in our hands, and that the solid and massive current below was like the rubber again relaxed. The strain was over, and the united waters deepened and slowed up over their rocky bed.

Yosemite for a home or a camp, the Grand Canon for a spectacle. I have spoken of the robin I saw in Yosemite Valley. Think how forlorn and out of place a robin would seem in the Grand Canon! What would he do there? There is no turf for him to inspect, and there are no trees for him to perch on. I should as soon expect to find him amid the pyramids of Egypt, or amid the ruins of Karnak. The bluebird was in the Yosemite also, and the water-ouzel haunted the lucid waters.

I noticed a peculiarity of the oak in Yosemite that I never saw elsewhere [Footnote: I have since observed the same trait in the oaks in Georgia—probably a characteristic of this tree in southern latitudes.]—a fluid or outflowing condition of the growth aboveground, such as one usually sees in the roots of trees—so that it tended to envelop and swallow, as it were, any solid object with which it came in contact. If its trunk touched a point of rock, it would put out great oaken lips several inches in extent as if to draw the rock into its maw. If a dry limb was cut or broken off, a foot from the trunk, these thin oaken lips would slowly creep out and envelop it—a sort of Western omnivorous trait appearing in the trees.

Whitman refers to "the slumbering and liquid trees." These Yosemite oaks recall his expression more surely than any of our Eastern trees.

The reader may create for himself a good image of Yosemite by thinking of a section of seven or eight miles of the Hudson River, midway of its course, as emptied of its water and deepened three thousand feet or more, having the sides nearly vertical, with snow-white waterfalls fluttering against them here and there, the famous spires and domes planted along the rim, and the landscape of groves and glades, with its still, clear winding river, occupying the bottom.



IV



One cannot look upon Yosemite or walk beneath its towering walls without the question arising in his mind, How did all this happen? What were the agents that brought it about? There has been a great geologic drama enacted here; who or what were the star actors? There are two other valleys in this part of the Sierra, Hetch-Hetchy and King's River, that are almost identical in their main features, though the Merced Yosemite is the widest of the three. Each of them is a tremendous chasm in the granite rock, with nearly vertical walls, domes, El Capitans, and Sentinel and Cathedral Rocks, and waterfalls—all modeled on the same general plan. I believe there is nothing just like this trio of Yosemites anywhere else on the globe.

Guided by one's ordinary sense or judgment alone, one's judgment as developed and disciplined by the everyday affairs of life and the everyday course of nature, one would say on beholding Yosemite that here is the work of exceptional and extraordinary agents or world-building forces. It is as surprising and exceptional as would be a cathedral in a village street, or a gigantic sequoia in a grove of our balsam firs. The approach to it up the Merced River does not prepare one for any such astonishing spectacle as awaits one. The rushing, foaming water amid the tumbled confusion of huge granite rocks and the open V-shaped valley, are nothing very remarkable or unusual. Then suddenly you are on the threshold of this hall of the elder gods. Demons and furies might lurk in the valley below, but here is the abode of the serene, beneficent Olympian deities. All is so calm, so hushed, so friendly, yet so towering, so stupendous, so unspeakably beautiful. You are in a mansion carved out of the granite foundations of the earth, with walls two or three thousand feet high, hung here and there with snow-white waterfalls, and supporting the blue sky on domes and pinnacles still higher. Oh, the calmness and majesty of the scene! the evidence of such tremendous activity of some force, some agent, and now so tranquil, so sheltering, so beneficent!

That there should be two or three Yosemites in the Sierra not very far apart, all with the main features singularly alike, is very significant—as if this kind of valley was latent in the granite of that region—some peculiarity of rock structure that lends itself readily to these formations. The Sierra lies beyond the southern limit of the great continental ice-sheet of late Tertiary times, but it nursed and reared many local glaciers, and to the eroding power of these its Yosemites are partly due. But water was at work here long before the ice—eating down into the granite and laying open the mountain for the ice to begin its work. Ice may come, and ice may go, says the river, but I go on forever. Water tends to make a V-shaped valley, ice a U-shaped one, though in the Hawaiian Islands, where water erosion alone has taken place, the prevailing form of the valleys is that of the U-shaped. Yosemite approximates to this shape, and ice has certainly played a part in its formation. But the glacier seems to have stopped at the outlet of the great valley; it did not travel beyond the gigantic hall it had helped to excavate. The valley of the Merced from the mouth of Yosemite downward is an open valley strewn with huge angular granite rocks and shows no signs of glaciation whatever. The reason of this abruptness is quite beyond my ken. It is to me a plausible theory that when the granite that forms the Sierra was lifted or squeezed up by the shrinking of the earth, large fissures and crevasses may have occurred, and that Yosemite and kindred valleys may be the result of the action of water and ice in enlarging these original chasms. Little wonder that the earlier geologists, such as Whitney, were led to attribute the exceptional character of these valleys to exceptional and extraordinary agents—to sudden faulting or dislocation of the earth's crust. But geologists are becoming more and more loath to call in the cataclysmal to explain any feature of the topography of the land. Not to the thunder or the lightning, to earthquake or volcano, to the forces of upheaval or dislocation, but to the still, small voice of the rain and the winds, of the frost and the snow,—the gentle forces now and here active all about us, carving the valleys and reducing the mountains, and changing the courses of rivers,—to these, as Lyell taught us, we are to look in nine cases out of ten, yes, in ninety-nine out of a hundred, to account for the configuration of the continents.

The geologists of our day, while not agreeing as to the amount of work done respectively by ice and water, yet agree that to the latter the larger proportion of the excavation is to be ascribed. At any rate between them both they have turned out one of the most beautiful and stupendous pieces of mountain carving to be found upon the earth.



IV

THROUGH THE EYES OF THE GEOLOGIST

I



How habitually we go about over the surface of the earth, delving it or cultivating it or leveling it, without thinking that it has not always been as we now find it, that the mountains were not always mountains, nor the valleys always valleys, nor the plains always plains, nor the sand always sand, nor the clay always clay. Our experience goes but a little way in such matters. Such a thought takes us from human time to God's time, from the horizon of place and years to the horizon of geologic ages. We go about our little affairs in the world, sowing and reaping and building and journeying, like children playing through the halls of their ancestors, without pausing to ask how these things all came about. We do not reflect upon the age of our fields any more than we do upon the size of the globe under our feet: when we become curious about such matters and look upon the mountains as either old or young, or as the subjects of birth, growth, and decay, then we are unconscious geologists. It is to our interest in such things that geology appeals and it is this interest that it stimulates and guides.

What an astonishing revelation, for instance, that the soil was born of the rocks, and is still born of the rocks; that every particle of it was once locked up in the primitive granite and was unlocked by the slow action of the rain and the dews and the snows; that the rocky ribs of the earth were clothed with this fertile soil out of which we came and to which we return by their own decay; that the pulling-down of the inorganic meant the building-up of the organic; that the death of the crystal meant the birth of the cell, and indirectly of you and me and of all that lives upon the earth.

Had there been no soil, had the rocks not decayed, there had been no you and me. Such considerations have long made me feel a keen interest in geology, and especially of late years have stimulated my desire to try to see the earth as the geologist sees it. I have always had a good opinion of the ground underfoot, out of which we all come, and to which we all return; and the story the geologists tell us about it is calculated to enhance greatly that good opinion.

I think that if I could be persuaded, as my fathers were, that the world was made in six days, by the fiat of a supernatural power, I should soon lose my interest in it. Such an account of it takes it out of the realm of human interest, because it takes it out of the realm of natural causation, and places it in the realm of the arbitrary, and non-natural. But to know that it was not made at all, in the mechanical sense, but that it grew—that it is an evolution as much as the life upon the surface, that it has an almost infinite past, that it has been developing and ripening for millions upon millions of years, a veritable apple upon the great sidereal tree, ameliorating from cycle to cycle, mellowing, coloring, sweetening—why, such a revelation adds immensely to our interest in it.

As with nearly everything else, the wonder of the world grows the more we grasp its history. The wonder of life grows the more we consider the chaos of fire and death out of which it came; the wonder of man grows the more we peer into the abyss of geologic time and of low bestial life out of which he came.

Not a tree, not a shrub, not a flower, not a green thing growing, not an insect of an hour, but has a background of a vast aeon of geologic and astronomic time, out of which the forces that shaped it have emerged, and over which the powers of chaos and darkness have failed to prevail.

The modern geologist affords us one of the best illustrations of the uses of the scientific imagination that we can turn to. The scientific imagination seems to be about the latest phase of the evolution of the human mind. This power of interpretation of concrete facts, this Miltonic flight into time and space, into the heavens above, and into the bowels of the earth beneath, and bodying forth a veritable history, a warring of the powers of light and darkness, with the triumph of the angels of light and life, makes Milton's picture seem hollow and unreal. The creative and poetic imagination has undoubtedly already reached its high-water mark. We shall probably never see the great imaginative works of the past surpassed or even equaled. But in the world of scientific discovery and interpretation, we see the imagination working in new fields and under new conditions, and achieving triumphs that mark a new epoch in the history of the race. Nature, which once terrified man and made a coward of him, now inspires him and fills him with love and enthusiasm.

The geologist is the interpreter of the records of the rocks. From a bit of strata here, and a bit there, he re-creates the earth as it was in successive geologic periods, as Cuvier reconstructed his extinct animals from fragments of their bones; and the same interpretative power of the imagination is called into play in both cases, only the palaeontologist has a much narrower field to work in, and the background of his re-creations must be supplied by the geologist.

Everything connected with the history of the earth is on such a vast scale—such a scale of time, such a scale of power, such a scale of movement—that in trying to measure it by our human standards and experience we are like the proverbial child with his cup on the seashore. Looked at from our point of view, the great geological processes often seem engaged in world-destruction rather than in world-building. Those oft-repeated invasions of the continents by the ocean, which have gone on from Archaean times, and during which vast areas which had been dry land for ages were engulfed, seem like world-wide catastrophes. And no doubt they were such to myriads of plants and animals of those times. But this is the way the continents grew. All the forces of the invading waters were engaged in making more land.

The geologist is bold; he is made so by the facts and processes with which he deals; his daring affirmations are inspired by a study of the features of the earth about him; his time is not our time, his horizons are not our horizons; he escapes from our human experiences and standards into the vast out-of-doors of the geologic forces and geologic ages. The text he deciphers is written large, written across the face of the continent, written in mountain-chains and ocean depths, and in the piled strata of the globe. We untrained observers cannot spell out these texts, because they are written large; our vision is adjusted to smaller print; we are like the school-boy who finds on the map the name of a town or a river, but does not see the name of the state or the continent printed across it. If the geologist did not tell us, how should we ever suspect that probably where we now stand two or more miles of strata have been worn away by the winds and rains; that the soil of our garden, our farm, represents the ashes of mountains burned up in the slow fires of the geologic ages.

Geology first gives us an adequate conception of time. The limitations which shut our fathers into the narrow close of six thousand years are taken down by this great science and we are turned out into the open of unnumbered millions of years. Upon the background of geologic time our chronological time shows no more than a speck upon the sky. The whole of human history is but a mere fraction of a degree of this mighty arc. The Christian era would make but a few seconds of the vast cycle of the earth's history. Geologic time! The words seem to ring down through the rocky strata of the earth's crust; they reverberate under the mountains, and make them rise and fall like the waves of the sea; they open up vistas through which we behold the continents and the oceans changing places, and the climates of the globe shifting like clouds in the sky; whole races and tribes of animal forms disappear and new ones come upon the scene. Such a past! the imagination can barely skirt the edge of it. As the pool in the field is to the sea that wraps the earth, so is the time of our histories to the cycle of ages in which the geologist reckons the events of the earth's history.

Through the eyes of the geologist one may look upon his native hills and see them as they were incalculable ages ago, and as they probably will be incalculable ages ahead; those hills, so unchanging during his lifetime, and during a thousand lifetimes, he may see as flitting as the cloud shadows upon the landscape. Out of the dark abyss of geologic time there come stalking the ghosts of lost mountains and lost hills and valleys and plains, or lost rivers and lakes, yea, of lost continents; we see a procession of the phantoms of strange and monstrous beasts, many of them colossal in size and fearful in form, and among the minor forms of this fearful troop of spectres we see the ones that carried safely forward, through the vicissitudes of those ages, the precious impulse that was to eventuate in the human race.

Only the geologist knows the part played by erosion in shaping the earth's surface as we see it. He sees, I repeat, the phantoms of vanished hills and mountains all about us. He sees their shadow forms wherever he looks. He follows out the lines of the flexed or folded strata where they come to the surface, and thus sketches in the air the elevation that has disappeared. In some places he finds that the valleys have become hills and the hills have become valleys, or that the anticlines and synclines, as he calls them, have changed places—as a result of the unequal hardness of the rocks. Over all the older parts of the country the original features have been so changed by erosion that, could they be suddenly restored, one would be lost on his home farm. The rocks have melted into soil, as the snow-banks in spring melt into water. The rocks that remain are like fragments of snow or ice that have so far withstood the weather. Geologists tell us that the great Appalachian chain has been in the course of the ages reduced almost to a base level or peneplain, and then reelevated and its hills and mountains carved out anew.

We change the surface of the earth a little with our engineering, drain a marsh, level a hill, sweep away a forest, or bore a mountain, but what are these compared with the changes that have gone on there before our race was heard of? In my native mountains, the Catskills, all those peaceful pastoral valleys, with their farms and homesteads, lie two or three thousand feet below the original surface of the land. Could the land be restored again to its first condition in Devonian times, probably the fields where I hoed corn and potatoes as a boy would be buried one or two miles beneath the rocks.

The Catskills are residual mountains, or what Agassiz calls "denudation mountains." When we look at them with the eye of the geologist we see the great plateau of tableland of Devonian times out of which they were carved by the slow action of the sub-aerial forces. They are like the little ridges and mounds of soil that remain of your garden-patch after the waters of a cloudburst have swept over it. They are immeasurably old, but they do not look it, except to the eye of the geologist. There is nothing decrepit in their appearance, nothing broken, or angular, or gaunt, or rawboned. Their long, easy, flowing lines, their broad, smooth backs, their deep, wide, gently sloping valleys, all help to give them a look of repose and serenity, as if the fret and fever of life were long since passed with them. Compared with the newer mountains of uplift in the West, they are like cattle lying down and ruminating in the field beside alert wild steers with rigid limbs and tossing horns. They sleep and dream with bowed heads upon the landscape. Their great flanks and backs are covered with a deep soil that nourishes a very even growth of beech, birch, and maple forests. Though so old, their tranquillity never seems to have been disturbed; no storm-and-stress period has left its mark upon them. Their strata all lie horizontal just as they were laid down in the old seas, and nothing but the slow gentle passage of the hand of time shows in their contours. Mountains of peace and repose, hills and valleys with the flowing lines of youth, coming down to us from the fore- world of Palaeozoic time, yet only rounded and mellowed by the aeons they have passed through. Old, oh, so old, but young with verdure and limpid streams, and the pastoral spirit of to-day!

To the geologist most mountains are short-lived. When he finds great sturdy ranges, like the Alps, the Andes, the Himalayas, he knows they are young,—mere boys. When they get old, they will be cut down, and their pride and glory gone. A few more of these geologic years and they will be reduced to a peneplain,—only their stumps left. This seems to hold truer of mountains that are wrinkles in the earth's crust—squeezed up and crumpled stratified rock, such as most of the great mountain-systems are—than of mountains of erosion like the Catskills, or of upheaval like the Adirondacks. The crushed and folded and dislocated strata are laid open to the weather as the horizontal strata, and as the upheaved masses of Archaean rock are not. Moreover, strata of unequal hardness are exposed, and this condition favors rapid erosion.

In imagination the geologist is present at the birth of whole mountain-ranges. He sees them gestating in the womb of their mother, the sea. Where our great Appalachian range now stands, he sees, in the great interior sea of Palaeozoic time, what he calls a "geosyncline," a vast trough, or cradle, being slowly filled with sediment brought down by the rivers from the adjoining shores. These sediments accumulate to the enormous depth of twenty-five thousand feet, and harden into rock. Then in the course of time they are squeezed together and forced up by the contraction of the earth's crust, and thus the Appalachians are born. When Mother Earth takes a new hitch in her belt, her rocky garment takes on new wrinkles. Just why the earth's crust should wrinkle along lines of rock of such enormous thickness is not a little puzzling. But we are told it is because this heavy mass of sediment presses the sea-bottom down till the rocks are fused by the internal heat of the earth and thus a line of weakness is established. In any case the earth's forces act as a whole, and the earth's crust at the thickest points is so comparatively thin—probably not much more than a heavy sheet of cardboard over a six-inch globe—that these forces seem to go their own way regardless of such minor differences.

The Alps and the Himalayas, much younger than our Appalachians, were also begotten and nursed in the cradle of a vast geosyncline in the Tertiary seas. We speak of the birth of a mountain-range in terms of a common human occurrence, or as if it were an event that might be witnessed, measurable in human years or days, whereas it is an event measurable only in geologic periods, and geologic periods are marked off only on the dial-face of eternity. The old Hebrew writer gave but a faint image of it when he said that with the Lord a thousand years are as one day; it is hardly one hour of the slow beat of that clock whose hours mark the periods of the earth's development.

The whole long period during which the race of man has been rushing about, tickling and scratching and gashing the surface of the globe, would make but a small fraction of one of the days that make up the periods with which the geologist deals. And the span of human life, how it dwindles to a point in the face of the records of the rocks! Doubtless the birth of some of the mountain-systems of the globe is still going on, and we suspect it not; an elevation of one foot in a century would lift up the Sierra or the Rocky Mountains in a comparatively short geologic period.



II



It was the geologist that emboldened Tennyson to sing,—

"The hills are shadows and they flow From form to form and nothing stands, They melt like mists, the solid lands, Like clouds they shape themselves and go."

But some hills flow much faster than others. Hills made up of the latest or newest formations seem to take to themselves wings the fastest.

The Archaean hills and mountains, how slowly they melt away! In the Adirondacks, in northern New England, in the Highlands of the Hudson, they still hold their heads high and have something of the vigor of their prime.

The most enduring rocks are the oldest; and the most perishable are, as a rule, the youngest. It takes time to season and harden the rocks, as it does men. Then the earlier rocks seem to have had better stuff in them. They are nearer the paternal granite; and the primordial seas that mothered them were, no doubt, richer in the various mineral solutions that knitted and compacted the sedimentary deposits. The Cretaceous formations melt away almost like snow. I fancy that the ocean now, compared with the earlier condition when it must have been so saturated with mineral elements, is like thrice-skimmed milk.

The geologist is not stinted for time. He deals with big figures. It is refreshing to see him dealing out his years so liberally. Do you want a million or two to account for this or that? You shall have it for the asking. He has an enormous balance in the bank of Time, and he draws upon it to suit his purpose. In human history a thousand years is a long time. Ten thousand years wipe out human history completely. Ten thousand more, and we are probably among the rude cave-men or river-drift men. One hundred thousand, and we are—where? Probably among the simian ancestors of man. A million years, and we are probably in Eocene or Miocene times, among the huge and often grotesque mammals, and our ancestor, a little creature, probably of the marsupial kind, is skulking about and hiding from the great carnivorous beasts that would devour him.

"Little man, least of all, Among the legs of his guardians tall, Walked about with puzzled look. Him by the hand dear Nature took, Dearest Nature, strong and kind, Whispered, 'Darling, never mind! To-morrow they will wear another face, The founder thou; these are thy race!'"

I fancy Emerson would be surprised and probably displeased at the use I have made of his lines. I remember once hearing him say that his teacher in such matters as I am here touching upon was Agassiz, and not Darwin. Yet did he not write that audacious line about "the worm striving to be man"? And Nature certainly took his "little man" by the hand and led him forward, and on the morrow the rest of the animal creation "wore another face."



III



In my geological studies I have had a good deal of trouble with the sedimentary rocks, trying to trace their genealogy and getting them properly fathered and mothered. I do not think the geologists fully appreciate what a difficult problem the origin of these rocks presents to the lay mind. They bulk so large, while the mass of original crystalline rocks from which they are supposed to have been derived is so small in comparison. In the case of our own continent we have, to begin with, about two million of square miles of Archaean rocks in detached lines and masses, rising here and there above the primordial ocean; a large triangular mass in Canada, and two broken lines of smaller masses running south from it on each side of the continent, inclosing a vast interior sea between them. To end with, we have the finished continent of eight million or more square miles, of an average height of two thousand feet above the sea, built up or developed from and around these granite centres very much as the body is built up and around the bones, and of such prodigious weight that some of our later geologists seek to account for the continental submarine shelf that surrounds the continent on the theory that the land has slowly crept out into the sea under the pressure of its own weight. And all this,—to say nothing of the vast amount of rock, in some places a mile or two in thickness, that has been eroded from the land surfaces of the globe in later geological time, and now lies buried in the seas and lakes,—we are told, is the contribution of those detached portions of Archaean rock that first rose above the primordial seas. It is a greater miracle than that of the loaves and the fishes. We have vastly more to end with than we had to begin with. The more the rocks have been destroyed, the more they have increased; the more the waters have devoured them, the more they have multiplied and waxed strong.

Either the geologists have greatly underestimated the amount of Archaean rock above the waters at the start, or else there are factors in the problem that have not been taken into the account. Lyell seems to have appreciated the difficulties of the problem, and, to account for the forty thousand feet of sediment deposited in Palaeozoic times in the region of the Appalachians, he presupposes a neighboring continent to the east, probably formed of Laurentian rocks, where now rolls the Atlantic. But if such a continent once existed, would not some vestige of it still remain? The fact that no trace of it as been found, it seems to me, invalidates Lyell's theory.

Archaean time in geologic history answers to pre-historic time in human history; all is dark and uncertain, though we are probably safe in assuming that there was more strife and turmoil among the earth-building forces than there has ever been since. The body of unstratified rock within the limits of North America may have been much greater than is supposed, but it seems to me impossible that it could have been anything like as massive as the continent now is. If this had been the case there would have been no great interior sea, and no wide sea-margins in which the sediments of the stratified rocks could have been deposited. More than four fifths of the continent is of secondary origin and shows that vast geologic eras went to the making of it.

It is equally hard to believe that the primary or igneous rocks, where they did appear, were sufficiently elevated to have furnished through erosion the all but incalculable amount of material that went to the making of our vast land areas. But the geologists give me the impression that this is what we are to believe.

Chamberlin and Salisbury, in their recent college geology, teach that each new formation implies the destruction of an equivalent amount of older rock—every system being entirely built up out of the older one beneath it. Lyell and Dana teach the same thing. If this were true, could there have been any continental growth at all? Could a city grow by the process of pulling down the old buildings for material to build the new? If the geology is correct, I fail to see how there would be any more land surface to-day then there was in Archaean times. Each new formation would only have replaced the old from which it came. The Silurian would only have made good the waste of the Cambrian, and the Devonian made good the waste of the Silurian, and so on to the top of the series, and in the end we should still have been at the foot of the stairs. That vast interior sea that in Archaean times stretched from the rudimentary Appalachian Mountains to the rudimentary Rocky Mountains, and which is now the heart of the continent, would still have been a part of the primordial ocean. But instead of that, this sea is filled and piled up with sedimentary rocks thousands of feet thick, that have given birth on their surfaces to thousands of square miles of as fertile soil as the earth holds.

That the original crystalline rocks played the major part in the genealogy of the subsequent stratified rocks, it would be folly to deny. But it seems to me that chemical and cosmic processes, working through the air and the water, have contributed more than they have been credited with.

It looks as if in all cases when the soil is carried to the seabottom as sediment, and again, during the course of ages, consolidated into rocks, the rocks thus formed have exceeded in bulk the rocks that gave them birth. Something analogous to vital growth takes place. It seems as if the original granite centres set the world-building forces at work. They served as nuclei around which the materials gathered. These rocks bred other rocks, and these still others, and yet others, till the framework of the land was fairly established. They were like the pioneer settlers who plant homes here and there in the wilderness, and then in due time all the land is peopled.

The granite is the Adam rock, and through a long line of descent the major part of all the other rocks directly or indirectly may be traced. Thus the granite begot the Algonquin, the Algonquin begot the Cambrian, the Cambrian begot the Silurian, the Silurian begot the Devonian, and so on up through the Carboniferous, the Permian, the Mesozoic rocks, the Tertiary rocks, to the latest Quaternary deposit.

But the curious thing about it all is the enormous progeny from so small a beginning; the rocks seem really to have grown and multiplied like organic beings; the seed of the granite seems to have fertilized the whole world of waters, and in due time they brought forth this huge family of stratified rocks. There stands the Archaean Adam, his head and chest in Canada, his two unequal legs running, one down the Pacific coast, and one down the Atlantic Coast, and from his loins, we are told, all the progeny of rocks and soils that make up the continent have sprung, one generation succeeding another in regular order. His latest offspring is in the South and Southwest, and in the interior. These are the new countries, geologically speaking, as well as humanly speaking.

The great interior sea, epicontinental, the geologists call it, seems to have been fermenting and laboring for untold aeons in building up these parts of the continent. In the older Eastern States we find the sons and grandsons of the old Adam granite; but in the South and West we find his offspring of the twentieth or twenty-fifth generation, and so unlike their forebears; the Permian rocks, for instance, and the Cretaceous rocks, are soft and unenduring, for the most part. The later slates, too, are degenerates, and much of the sandstones have the hearts of prodigals. In the Bad Lands of Arizona I could have cut my way into some of the Eocene formations with my pocket-knife. Apparently the farther away we get from the parent granite, the more easily is the rock eroded. Nearly all the wonderful and beautiful sculpturing of the rocks in the West and Southwest is in rocks of comparatively recent date.

Can we say that all the organic matter of our time is from preexisting organic matter? one organism torn down to build up another? that the beginning of the series was as great as the end? There may have been as much matter in a state of vital organization in Carboniferous or in Cretaceous times as in our own, but there is certainly more now than in early Palaeozoic times. Yet every grain of this matter has existed somewhere in some form for all time. Or we might ask if all the wealth of our day is from preexisting wealth—one fortune pulled down to build up another,—too often the case, it is true,—thus passing the accumulated wealth along from one generation to another. On the contrary, has there not been a steady gain of that we call wealth through the ingenuity and the industry of man directed towards the latent wealth of the earth? In a parallel manner has there been a gain in the bulk of the secondary rocks through the action of the world-building forces directed to the sea, the air, and the preexisting rocks. Had there been no gain, the fact would suggest the ill luck of a man investing his capital in business and turning it over and over, and having no more money at the end than he had in the beginning.

Nothing is in the sedimentary rock that was not at one time in the original granite, or in the primordial seas, or in the primordial atmosphere, or in the heavens above, or in the interior of the earth beneath. We must sweep the heavens, strain the seas, and leach the air, to obtain all this material. Evidently the growth of these rocks has been mainly a chemical process—a chemical organization of preexisting material, as much so as the growth of a plant or a tree or an animal. The color and texture and volume of each formation differ so radically from those of the one immediately before it as to suggest something more than a mere mechanical derivation of one from the other. New factors, new sources, are implied. "The farther we recede from the present time," says Lyell, "and the higher the antiquity of the formations which we examine, the greater are the changes which the sedimentary deposits have undergone." Above all have chemical processes produced changes. This constant passage of the mineral elements of the rocks through the cycle of erosion, sedimentation, and reinduration has exposed them to the action of the air, the light, the sea, and has thus undoubtedly brought about a steady growth in their volume and a constant change in their color and texture. Marl and clay and green sand and salt and gypsum and shale, all have their genesis, all came down to us in some way or in some degree, from the aboriginal crystalline rocks; but what transformations and transmutations they have undergone! They have passed through Nature's laboratory and taken on new forms and characteristics.

"All sediments deposited in the sea," says my geology, "undergo more or less chemical change," and many chemical changes involve notable changes in volume of the mineral matter concerned. It has been estimated that the conversion of granite rock into soil increases its volume eighty-eight per cent, largely as the result of hydration, or the taking up of water in the chemical union. The processes of oxidation and carbonation are also expansive processes. Whether any of this gain in volume is lost in the process of sedimentation and reconsolidation, I do not know. Probably all the elements that water takes from the rocks by solution, it returns to them when the disintegrated parts, in the form of sediment in the sea, is again converted into strata. It is in this cycle of rock disintegration and rock re-formation that the processes of life go on. Without the decay of the rock there could be no life on the land. Water and air are always the go-betweens of the organic and inorganic. After the rains have depleted the rocks of their soluble parts and carried them to the sea, they come back and aid vegetable life to unlock and appropriate other soluble parts, and thus build up the vegetable and, indirectly, the animal world.

That the growth of the continents owes much to the denudation of the sea-bottom, brought about by the tides and the ocean-currents, which were probably much more powerful in early than in late geologic times, and to submarine mineral springs and volcanic eruptions of ashes and mud, admits of little doubt. That it owes much to extra-terrestrial sources—to meteorites and meteoric dust—also admits of little doubt.

It seems reasonable that earlier in the history of the evolution of our solar system there should have been much more meteoric matter drifting through the interplanetary spaces than during the later ages, and that a large amount of this matter should have found its way to the earth, in the form either of solids or of gases. Probably much more material has been contributed by volcanic eruptions than there is any evidence of apparent. The amount of mineral matter held in solution by the primordial seas must have been enormous. The amount of rock laid down in Palaeozoic times is estimated at fifty thousand feet, and of this thirteen thousand feet were limestone; while the amount laid down in Mesozoic times, for aught we know a period quite as long, amounts to eight thousand feet, indicating, it seems to me, that the deposition of sediment went on much more rapidly in early geologic times. We are nearer the beginning of things. All chemical processes in the earth's crust were probably more rapid. Doubtless the rainfall was more, but the land areas must have been less. The greater amount of carbon dioxide in the air during Palaeozoic times would have favored more rapid carbonation. When granite is dissolved by weathering, carbon unites with the potash, the soda, the lime, the magnesia, and the iron, and turns them into carbonates and swells their bulk. The one thing that is passed along from formation to formation unchanged is the quartz sand. Quartz is tough, and the sand we find to-day is practically the same that was dissolved out of the first crystalline rocks.

Take out of the soil and out of the rocks all that they owe to the air,—the oxygen and the carbon,—and how would they dwindle! The limestone rocks would practically disappear.

Probably not less that one fourth of all the sedimentary rocks are limestone, which is of animal origin. How much of the lime of which these rocks were built was leached out of the land-areas, and how much was held in solution by the original sea-water, is of course a question. But all the carbon they hold came out of the air. The waters of the primordial ocean were probably highly charged with mineral matter, with various chlorides and sulphates and carbonates, such as the sulphate of soda, the sulphate of lime, the sulphate of magnesia, the chloride of sodium, and the like. The chloride of sodium, or salt, remains, while most of the other compounds have been precipitated through the agency of minute forms of life, and now form parts of the soil and of the stratified rocks beneath it.

If the original granite is the father of the rocks, the sea is the mother. In her womb they were gestated and formed. Had not this seesaw of land and ocean taken place, there could have been no continental growth. Every time the land took a bath in the sea, it came up enriched and augmented. Each new layer of rocky strata taken on showed a marked change in color and texture. It was a kind of evolution from that which preceded it. Whether the land always went down, or whether the sea at times came up, by reason of some disturbance of the ocean floors in its abysmal depths, we have no means of knowing. In any case, most of the land has taken a sea bath many times, not all taking the plunge at the same time, but different parts going down in successive geologic ages. The original granite upheavals in British America, and in New York and New England, seem never to have taken this plunge, except an area about Lake Superior which geologists say has gone down four or five times. The Laurentian and Adirondack ranges have never been in pickle in the sea since they first saw the light. In most other parts of the continent, the seesaw between the sea and the land has gone on steadily from the first, and has been the chief means of the upbuilding of the land.

To the slow and oft-repeated labor-throes of the sea we owe the continents. But the sea devours her children. Large areas, probably continental in extent, have gone down and have not yet come up, if they ever will. The great Mississippi Valley was under water and above water time after time during the Palaeozoic period. The last great invasion of the land by the sea, and probably the greatest of all, seems to have been in Cretaceous times, at the end of the Mesozoic period. There were many minor invasions during Tertiary times, but none on so large a scale as this Cretaceous invasion. At this time a large part of North and South America, and of Europe, and parts of Asia and Australia went under the ocean. It was as if the earth had exhaled her breath and let her abdomen fall. The sea united the Gulf of Mexico with the Arctic Ocean, and covered the Prairie and the Gulf States and came up over New Jersey to the foot of the Archaean Highlands. This great marine inundation probably took place several million years ago. It was this visitation of the sea that added the vast chalk beds to England and France. In parts of this country limestone beds five or six thousand feet thick were laid down, as well as extensive chalk beds. The earth seems to have taken another hitch in her girdle during this era. As the land went down, the mountains came up. Most of the great Western mountain-chains were formed during this movement, and the mountains of Mexico were pushed up. The Alps were still under the sea, but the Sierra and the Alleghanies were again lifted.

It is very interesting to me to know that in Colorado charred wood, and even charcoal, have been found in Cretaceous deposits. The fact seems to give a human touch to that long-gone time. It was, of course, long ages before the evolution of man, as man, had taken place, yet such is the power of association, that those charred sticks instantly call him to mind, as if we had come upon the place of his last campfire. At any rate, it is something to know that man, when he did come, did not have to discover or invent fire, but that this element, which has played such a large part in his development and civilization, was here before him, waiting, like so many other things in nature, to be his servant and friend. As Vulcan was everywhere rampant during this age, throwing out enough lava in India alone to put a lava blanket four or five feet thick over the whole surface of the globe, it was probably this fire that charred the wood. It would be interesting to know if these enormous lava-flows always followed the subsidence of some part of the earth's crust. In Cretaceous times both the subsidence and the lava- flows seem to have been worldwide.



IV



We seem to think that the earth has sown all her wild oats, that her riotous youth is far behind her, and that she is now passing into a serene old age. Had we lived during any of the great periods of the past, we might have had the same impression, so tranquil, for the most part, has been the earth's history, so slow and rhythmical have been the beats of the great clock of time. We see this in the homogeneity of the stratified rocks, layer upon layer for thousands of feet as uniform in texture and quality as the goods a modern factory turns out, every yard of it like every other yard. No hitch or break anywhere. The bedding-planes of many kinds of rock occur at as regular intervals as if they had been determined by some kind of machinery. Here, on the formation where I live, there are alternate layers of slate and sandstone, three or four inches thick, for thousands of feet in extent; they succeed each other as regularly as the bricks and mortar in a brick wall, and are quite as homogeneous. What does this mean but that for an incalculable period the processes of erosion and deposition went on as tranquilly as a summer day? There was no strike among the workmen, and no change in the plan of the building, or in the material.

The Silurian limestone, the old red sandstone, the Hamilton flag, the Oneida conglomerate, where I have known them, are as homogeneous as a snowbank, or as the ice on a mountain lake; grain upon grain, all from the same source in each case, and sifted and sorted by the same agents, and the finished product as uniform in color and quality as the output of some great mill.

Then, after a vast interval, there comes a break: something like an end and a new beginning, as if one day of creation were finished and a new one begun. The different formations lie unconformably upon each other, which means revolution of some sort. There has been a strike or a riot in the great mill, or it has lain idle for a long period, and when it has resumed, a different product is the result. Something happened between each two layers. What?

Though in remote geological ages the earth-building and earth-shaping forces were undoubtedly more active than they are now, and periods of deformation and upheaval were more frequent, yet had we lived in any of those periods we should probably have found the course of nature, certainly when measured by human generations, as even and tranquil as we find it to-day. The great movements are so slow and gentle, for the most part, that we should not have been aware of them had we been on the spot. Once in a million or a half-million years there may have been terrific earthquakes and volcanic eruptions, such as seem to have taken place in Tertiary time, and at the end of the Palaeozoic period. Yet the vast stretches of time between were evidently times of tranquillity.

It is probable that the great glacial winter of Pleistocene times came on as gradually as our own winter, or through a long period of slowly falling temperature, and as it seems to have been many hundred thousand times as long, this preceding period, or great fall, was probably equally long—so long that the whole of recorded human history would form but a small fraction of it. It may easily be, I think, that we are now living in the spring of the great cycle of geologic seasons. The great ice-sheet has withdrawn into the Far North like snowbanks that linger in our wood in late spring, where it still covers Greenland as it once covered this country. When the season of summer is reached, some hundreds of thousands of years hence, it may be that tropical life, both animal and vegetable, will again flourish on the shores of the Arctic Ocean, as it did in Tertiary times. And all this change will come about so quietly and so slowly that nobody will suspect it.

That the crust of the earth is becoming more and more stable seems a natural conclusion, but that all folding and shearing and disruption of the strata are at an end, is a conclusion we cannot reach in the face of the theory that the earth is shrinking as it cools.

The earth cools and contracts with almost infinite slowness, and the great crustal changes that take place go on, for the most part, so quietly and gently that we should not suspect them were we present on the spot, and long generations would not suspect them. Elevations have taken place across the beds of rivers without deflecting the course of the river; the process was so slow that the river sawed down through the rock as fast as it came up. Nearly all the great cosmic and terrestrial changes and revolutions are veiled from us by this immeasurable lapse of time.

Any prediction about the permanence of the land as we know it, or as the race has known it, or of our immunity from earthquakes or volcanic eruptions, or of a change of climate, or of any cosmic catastrophe, based on human experience, is vain and worthless. What is or has been in man's time is no criterion as to what will be in God's time. The periods of great upheaval and deformation in the earth's crust appear to be separated by millions of years. Away back in pre-Cambrian times, there appear to have been immense periods during which the peace and repose of the globe were as profound as in our own time. Then at the end of Palaeozoic time—how many millions of years is only conjectural—the truce of aeons was broken, and the dogs of war let loose; it was a period of revolution which resulted in the making of one of our greatest mountain-systems, the Appalachian, and in an unprecedented extinction of species. Later eras have witnessed similar revolutions. Why may they not come again? The shrinking of the cooling globe must still go on, and this shrinking must give rise to surface disturbances and dislocations, maybe in the uplift of new mountain-ranges from the sea-bottom, now undreamed of, and in volcanic eruptions as great as any in the past. Such a shrinkage and eruption made the Hawaiian Islands, probably in Tertiary times; such a shrinkage may make other islands and other continents before another period of equal time has elapsed.

Of course the periods and eras into which the geologists divide geologic time are as arbitrary as the months and seasons into which we divide our year, and they fade out into each other in much the same way; but they are really as marked as our seasonal divisions. Not in their climates—for the climate of the globe seems to have been uniformly warm from pole to pole, without climatic zones, throughout the vast stretch of Palaeozoic and Mesozoic times—but in the succession of animal and vegetable life which they show. The rocks are the cemeteries of the different forms of life that have appeared upon the globe, and here the geologist reads their succession in time, and assigns them to his geologic horizons accordingly. The same or allied forms appeared upon all parts of the earth at approximately the same time, so that he can trace his different formations around the world by the fossils they hold. Each period had its dominant forms. The Silurian was the great age of trilobites; the Devonian, the age of fishes; Mesozoic times swarm with the gigantic reptiles; and in Tertiary times the mammals are dominant. Each period and era has its root in that which preceded it. There were rude, half-defined fishes in the Silurian, and probably the beginning of amphibians in the Devonian, and some small mammalian forms in the Mesozoic time, and doubtless rude studies of the genus Homo in Tertiary times. Nature works up her higher forms Jike a human inventor from rude beginnings. Her first models barely suggest her later achievements.

In the vegetable world it has been the same; from the first simple algae in the Cambrian seas up to the forests of our own times, the gradation is easily traced. Step by step has vegetable life mounted. The great majority of the plants and animals of one period fail to pass over into the next, just as our spring flowers fail to pass over into summer, and our summer flowers into fall. But the law of evolution is at work, and life always rises on stepping-stones of its dead self to higher things.



V

HOLIDAYS IN HAWAII

I



On the edge of the world my islands lie," sings Mrs. Frear in her little lyric on the Hawaiian Islands.

"On the edge of the world my islands lie, Under the sun-steeped sky; And their waving palms Are bounteous alms To the soul-spent passer-by.

"On the edge of the world my islands sleep In a slumber soft and deep. What should they know Of a world of woe, And myriad men that weep?"

On the rim of the world my fancy seemed to see them that May day when we went aboard the huge Pacific steamship in San Francisco Harbor, and she pointed her prow westward toward the vast wilderness of the Pacific—on the edge of the world, looking out and down across the vast water toward Asia and Australia. I wondered if the great iron ship could find them, and if we should realize or visualize the geography or the astronomy when we got there, and see ourselves on the huge rotundity of the globe not far above her equatorial girdle.

Yes, on the rim of the world they lie to the traveler steaming toward them, and on the rim of the world they lie in his memory after his return, basking there in that tropical sunlight, forever fanned by those cooling trade winds, and encompassed by that morning-glory sea. With my mind's eye I behold them rising from that enormous abyss of the Pacific, fire-born and rain-carved, vast volcanic mountains miles deep under the sea, and in some cases miles high above it, clothed with verdure and teeming with life, the scene of long-gone cosmic strife and destruction, now the abode of rural and civic peace and plenty.

The Pacific treated me so much better than the Atlantic ever had that I am probably inclined to overestimate everything I saw on the voyage. It was the first trip at sea that ever gave me any pleasure. The huge vessels are in themselves a great comfort, and in the placid waters and the sliding down the rotund side of the great globe under warmer and warmer skies one gains a very agreeable experience. The first day's run must have carried us out and over that huge Pacific abyss, the Tuscarora Deep, where there were nearly four miles of water under us. Some of our aeroplanes have gone up half that distance and disappeared from sight. I fancy that our ship, more than six hundred feet long, would have appeared a very small object, floating across this briny firmament, could one have looked up at it from the bottom of that sea.

The Hawaiian Islands rise from the border of that vast deep, and one can fancy how that huge pot must have boiled back in Tertiary times, when the red-hot lava of which they are mainly built up was poured from the interior of the globe.

Softer and more balmy grew the air every day, more and more placid and richly tinted grew the sea, till, on the morning of the sixth day, we saw ahead of us, low on the horizon, the dim outlines of the mountains of Molokai. The island of Oahu, upon which Honolulu is situated, was soon in sight. It was not long before we saw Diamond Head, a vast crater bowl, eight hundred feet high on its ocean side, and half a mile across, sitting there upon the shore like some huge, strange work of man's hand, running back through the hills with a level rim, and seaward with a sloping base, brown and ribbed, and in every way unique and striking.

We were approaching a land the child of tropic seas and volcanic lava, and many of the features were new and strange to us. The mountains looked familiar in outline, but the colors of the landscape, the soft lilacs, greens, and browns, and the whole atmosphere of the scene, were unlike anything we had ever before seen. And Diamond Head, what a feature it was! Had it only had a head, one could easily have seen in it a suggestion of a couchant lion, bony, huge, and tawny, looking seaward, and guarding the harbor of Honolulu which lies just behind it. Into this harbor, in the soft morning air, our ship soon found its way, and the monotony of the vast, unpeopled sea was quickly succeeded by human scenes of the most varied and animated character, not the least novel of which were the swarms of half-amphibious native boys who surrounded the vessel as she lay at the wharf, and with brown, upturned faces and beckoning hands tempted the passengers to toss dimes into the water. As the coins struck the surface they would dive with the ease and quickness of seals, and seize the silver apparently before it had gone a yard toward the bottom. Holding the coins up to view between the thumb and finger, they would slip them into their mouths and solicit more.

On shore we were greeted with the music of the Royal Hawaiian Band, and a motley crowd of Hawaiians, Japanese, Chinese, Portuguese, and Americans, bearing colored leis, or wreaths of flowers, which they waved at friends on board, and with which they bedecked them as soon as they came off the gangplank. It was a Babel of tongues in which the strange, vowel-choked language of the Hawaiians was conspicuous.

Honolulu is a beautiful city, clean, bright, well ordered, and well appointed,—electric lights, good streets, electric cars, fine hotels and clubs, excellent fire protection, mountain water, libraries, parks, handsome buildings, attractive homes,—in fact, all that we boast of in our home cities. Embosomed in palms, with mangoes, and other tropical trees, with a profusion of gorgeously colored vines and hedges, with spacious, well-kept grounds about the large and comfortable houses in the residential portion—these features, with the ready hospitality of the people, made our hearts warm towards it at once.

Volcanic heights on all the land side look down upon the city. Mount Tantalus, rising four thousand feet above the sea, is just back of it, with its long slopes of volcanic ash and sand now clothed by forests and fertile fields, and a huge ancient crater called the Punch Bowl, born probably on the selfsame day, the geologists think, as Diamond Head, dominates the city in the immediate foreground. If the Punch Bowl were again to overflow with the fiery liquid, the city would soon go up in smoke. But its bowl-like interior is now covered with grass and trees, and presents a scene of the most peaceful, rural character.

The Orient and the Occident meet in Honolulu. There Asia and America join hands. The main features of the city are decidedly American, but the people seen upon the street and at work indoors and out are more than half Oriental. The native population cuts only a small figure. The real workers—carpenters, masons, field hands, and house servants—are mostly Japanese. Virtually all the work of the immense sugar plantations is done by the little brown men and women, while China supplies some of the merchants in the city and the sailors and stewards on the ocean steamers. What admirable servants the Chinese make, so respectful, so prompt, so silent, so quick to comprehend! The Japanese house servants on the islands also give efficient and gracious service.

I had gone to Honolulu reluctantly, but tarried there joyfully. The fine climate, with its even temperature of about eighty degrees Fahrenheit, and with all that is enervating or oppressive in that degree of heat winnowed out of it by the ceaseless trade winds; the almost unbroken sunshine, perfumed now and then by a sprinkle of sunlit rain from the mountains; the wonderful sea laving the shores on the one hand and the cool, cloud-capped, and rain-drenched heights within easy reach on the other; the green, cozy valleys; the broad sweep of plain; the new, strange nature on every side; the novel and delicious fruits; the pepsin-charged papaya, or tree melon, which tickles the palate while it heals and renews the whole digestive system; the mangoes (oh, the mangoes!); the cordiality of the people; the inviting bungalows; the clean streets; the good service everywhere—all made me feel how mistaken was my reluctance.

Most of the Americans one meets there are descendants of the missionaries who went out from New England and New York early in the last century, and one feels at home with them at once. Many of the residents there have been educated in the States. The Governor, Mr. Frear, is a graduate of Yale; his wife is a graduate of Wellesley. One day a charming Southern woman, president of the College Club, invited us to meet the college women of the city. The gathering took place under the trees upon the lawn of one of the older homesteads. There were forty college women present, many of them teachers, from Vassar, Wellesley, Smith, Bryn Mawr, and Barnard. Among them were two girls who had visited me at my cabin, "Slabsides," while they were at Vassar.

Wide as is the world, the traveler is pretty sure to strike threads of relation with his home country wherever he goes. I made the acquaintance in Honolulu of a man from my own county; another, who showed us great kindness, was from an adjoining county; while one day upon the street I was called by name by a man whom I had known as a boy in the town where I now live.

One Saturday a walking-club, largely made up of men and women teachers, whose native Hawaiian name meant "Walkers in Unfrequented Places," asked us to join them in a walk up Palola Valley to the site of an extinct crater well up in the mountains. These walkers in unfrequented places proved to be real walkers, and gave us all and more than we had bargained for—more mud and wet and slippery trails through clinging vines and rank lantana scrub than was good for our shoes and garments or for the bodies inside them. It was a long pull of many miles, at first up the valley over a fair highway, then into the woods on the mountain-side along a trail that was muddy and slippery from the recent showers, and most of the time was buried out of sight beneath the high, coarse stag-horn fern and a thick growth of lantana that met above it as high as our shoulders. A more discouraging mountain climb I never undertook. The vegetation was all novel, but it had that barbaric rankness of all tropical woods, with nothing of the sylvan sweetness and simplicity of our home woods. There were no fine, towering trees, but low, gnarled, and tortuous ones, which, with their hanging vines, like the broken ropes of a ship's rigging, and their parasitic growths, presented a riotous, disheveled appearance.

Nature in the tropics, left to herself, is harsh, aggressive, savage; looks as though she wanted to hang you with her dangling ropes, or impale you on her thorns, or engulf you in her ranks of gigantic ferns. Her mood is never as placid and sane as in the North. There is a tree in the Hawaiian woods that suggests a tree gone mad. It is called the hau-tree. It lies down, squirms, and wriggles all over the ground like a wounded snake; it gets up, and then takes to earth again. Now it wants to be a vine, now it wants to be a tree. It throws somersaults, it makes itself into loops and rings, it rolls, it reaches, it doubles upon itself. Altogether it is the craziest vegetable growth I ever saw. Where you can get it up off the ground and let it perform its antics on a broad skeleton framework, it makes a cover that no sunbeam can penetrate, and forms a living roof to the most charming verandas—or lanais, as they are called in the islands—that one can wish to see.

But I saw and heard one thing on this walk that struck a different note: it was one of the native birds, the Oahu thrush. The moment I heard it I was reminded of our brown thrasher, though the song, or whistle, was much finer and richer in tone than that of our bird. The glimpse I got of the bird showed it to be of about the size and shape of our thrasher, but much brighter in color. It seems as though the two species must have had a common origin some time, somewhere. I was attracted by no other native bird on this walk. In the valley below we had seen and heard the Chinese workmen going about their rice-fields making strange sounds to drive away the rice-birds, a small, brown species that has been introduced from India.

When we reached the mountain-top, we found it enveloped in fog and mist, and the scene was cold and cheerless. We looked down through a screen of foliage into a deep valley that seemed almost beneath us, and which is supposed to have been an ancient crater. There, on the brink, the walkers had a rude cabin, where we ate our lunch beside a fire and tried to dry our bedraggled garments.

From this point some of the party continued their walk, looking for more unfrequented places, but some of us had longings the other way, and retraced our steps toward the sunlight and the drier winds we had left. We reached town footsore and bedraggled, and the little Japanese who cleaned and pressed my suit of clothes, and made them look as good as new for seventy-five cents, well earned his money.

The walk of eight or ten miles which we took two weeks later with Governor Frear and his wife, up the new Castle trail to the mountain-top behind Tantalus, had some features in common with the first walk,—the increasing mist and coolness as we entered the mountains, the dripping bushes, and the slippery paths,—but we got finer views, and found a better-kept trail. Our walk ended on the top of a narrow ridge of the mountain, where we ate our lunch in a cold, driving mist and were a bit uncomfortable. I was interested in the character of the ridge upon which we sat. It was not more than six feet wide, a screen of volcanic rock worn almost to an edge, and separated two valleys six or seven hundred feet deep. The Governor said he could take me where the dividing ridge between the two valleys was so narrow that one could literally sit astride of it, so that one leg would point to one valley and the other to the other. This is a feature of a new country geologically; the rains and other agents of erosion have whittled the mountains to sharp edges, but have not yet rounded or leveled them.

Previous Part     1  2  3  4  5     Next Part
Home - Random Browse