p-books.com
Thomas Henry Huxley; A Sketch Of His Life And Work
by P. Chalmers Mitchell
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

Huxley then proceeds to discuss the development of man.

"Is he something apart? Does he originate in a totally different way from dog, bird, frog, and fish, thus justifying those who assert him to have no place in nature, and no real affinity with the lower world of animal life? Or does he originate in a similar germ, pass through the same slow and gradually progressive modifications, depend on the same contrivances for protection and nutrition, and finally enter the world by the help of the same mechanism? The reply is not doubtful for a moment, and has not been doubtful any time these thirty years. Without question, the mode of origin, and the early stages of the development of man are identical with those of animals immediately below him in the scale; without doubt, in these respects, he is far nearer the apes than the apes are to the dog."

Then, on lines with which, by continuous repetition and expansion by authors subsequent to him, we have now become familiar, Huxley compared, stage by stage, the development of man with that of other animals, and shewed, first, its essential similarity, and then that in every case where it departed from the development of the dog it resembled more closely the development of the ape. He went on to review the anatomy of man:

"Thus, identical in the physical processes by which he originates,—identical, in the early stages of his formation—identical in the mode of his nutrition before and after birth, with the animals which lie immediately below him in the scale,—Man, if his adult and perfect structure be compared with theirs exhibits, as might be expected, a marvellous likeness of organisation. He resembles them as they resemble one another—he differs from, them as they differ from one another. And, though these differences cannot be weighed and measured, their value may be readily estimated; the scale or standard of judgment, touching that value, being afforded and expressed by the system of classification of animals now current among zooelogists."

Having explained the general system of zooelogical classification, he tried to dispel preliminary prejudice by inducing his readers or bearers to take an outside view of themselves.

"Let us endeavour for a moment to disconnect our thinking selves from the mask of humanity; let us imagine ourselves scientific Saturnians, if you will, fairly acquainted with such animals as now inhabit the earth, and employed in discussing the relations they bear to a new and singular 'erect and featherless biped,' which some enterprising traveller, overcoming the difficulties of space and gravitation, has brought from that distant planet for our inspection, well preserved, may be, in a cask of rum. We should all, at once, agree upon placing him among the mammalian vertebrates; and his lower jaw, his molars, and his brain, would leave no room for doubting the systematic position of the new genus among those mammals whose young are nourished during gestation by means of a placenta, or what are called the placental mammals.

"Further, the most superficial study would at once convince us that, among the orders of placental mammals, neither the whales, nor the hoofed creatures, nor the sloths and ant-eaters, nor the carnivorous cats, dogs, and bears, still less the rodent rats and rabbits, or the insectivorous moles and hedgehogs, or the bats, could claim our Homo as one of themselves.

"There would remain, then, but one order for comparison, that of the apes (using that word in its broadest sense), and the question for discussion would narrow itself to this—Is Man so different from any of these apes that he must form an order by himself? Or does he differ less from them than they differ from one another,—and hence must take his place in the same order with them?

"Being happily free from all real or imaginary personal interest in the results of the enquiry thus set afoot, we should proceed to weigh the arguments on one side and on the other, with as much judicial calmness as if the question related to a new opossum. We should endeavour to ascertain, without seeking either to magnify or diminish them, all the characters by which our new mammal differed from the apes; and if we found that these were of less structural value than those which distinguish certain members of the ape order from others universally admitted to be of the same order, we should undoubtedly place the newly discovered tellurian genus with them."

In pursuit of this method, and taking the gorilla as the type for immediate comparison with man, he passed in review the various anatomical structures, shewing that in every case man did not differ more from the gorilla than that differed from other anthropoids. We shall take a few examples of his method and results, reminding our readers, however, that Huxley carried his comparisons into every important part of the anatomical structure.

There is no part of the skeleton so characteristically human as the bones which form the pelvis, or bony girdle of the hips. The expanded haunch-bones form a basin-like structure which affords support to the soft internal viscera during the habitually upright position, and gives space for the attachment of the very large muscles which help man to assume and support that attitude. In the gorilla this region differs considerably from that in man. The haunch-bones are narrower and much shallower, so that they do not form so convenient a supporting basin; they have much less surface for the attachment of muscles. The gibbon, however, differs more vastly from the gorilla than that differs from man. The haunch-bones are flat and narrow, and totally devoid of any basin-like formation; the passage through the pelvis is long and narrow, and the ischia have outwardly curved prominences, which, in life, are coated by callosities on which the animal habitually rests, and which are coarse, corn-like patches of skin wholly absent in the gorilla, in the chimpanzee, in the orang, and in man.

In the characters of the hands, the feet, and the brain, certain real or supposed structural distinctions between man and the apes had been relied upon.

"Man has been defined as the only animal possessed of two hands terminating his fore-limbs, and of two feet terminating his hind-limbs, while it has been said that all the apes possess four hands; and he has been affirmed to differ fundamentally from all the apes in the characters of his brain, which alone, it has been strangely asserted and reasserted, exhibits the structures known to anatomists as the posterior lobe, the posterior cornu of the lateral ventricle, and the hippocampus minor.

"That the former proposition should have gained general acceptance is not surprising—indeed, at first sight, appearances are much in its favour; but, as for the second, one can only admire the surpassing courage of its enunciator, seeing that it is an innovation which is not only opposed to generally and justly accepted doctrines, but which is directly negatived by the testimony of all original enquirers who have specially investigated the matter; and that it has neither been, nor can be, supported by a single anatomical preparation. It would, in fact, be unworthy of serious refutation except for the general and natural belief that deliberate and reiterated assertions must have some foundation."

The last remarks referred, of course, to the statements of Owen, which had made a great impression at the time and the result of which still lingers in some of the worse-informed treatises attacking evolution. Huxley gave a lucid account of the general structure and arrangement of the brain in the vertebrate series, explaining the well-known fact that from fish up to man the general ground-plan of the brain is identical, but that there is a progressive increase in the complexity and in the size of some parts compared with others. Next, he showed that, so far from its being possible to erect any barrier in the structure of the brain between man and the apes, there exists among the mammals an almost complete series of gradations from brains a little higher than that of the rabbit to brains a little lower than that of man. He laid great stress on

"the remarkable circumstance that though, so far as our present knowledge extends, there is one structural break in the series of forms of simian brains, this hiatus does not lie between man and the man-like apes, but between the lower and the lowest simians; or, in other words, between the old-and new-world apes and monkeys, and the lemurs. Every lemur which has yet been examined, in fact, has its cerebellum partially visible from above, and its posterior lobe, with the contained posterior cornu and hippocampus minor, more or less rudimentary. Every marmoset, American monkey, old-world monkey, baboon, or man-like ape, on the contrary, has its cerebellum entirely hidden, posteriorly, by the cerebral lobes, and possesses a large posterior cornu, with a well-developed hippocampus minor." ... "So far from the posterior lobe, the posterior cornu, and the hippocampus minor being structures peculiar to, and characteristic of man, as they have over and over again been asserted to be, even after the publication of the clearest demonstration of the reverse, it is precisely these structures which are the most marked cerebral characters common to man with the apes. They are among the most distinctly simian peculiarities which the human organism exhibits." ... "Man differs from the chimpanzee or the orang, so far as cerebral structure goes, less than these do from the monkeys, and the difference between the brains of the chimpanzee and of man is almost insignificant, when compared with that between the chimpanzee brain and that of a lemur."

Although Huxley found no structural differences between the brains of man and of anthropoid apes, he was careful to lay great stress on the important difference in size and weight. A full-grown gorilla is nearly twice as heavy as a European woman, and yet the heaviest known gorilla brain probably does not exceed twenty ounces in weight, while healthy adult human brains probably never weigh less than thirty-one or thirty-two ounces. This difference is not of systematic importance; for cranial capacities shew that relatively and absolutely there is a greater difference in brain-weight between the lowest and highest human beings than there is between the highest ape and the lowest human being.

In dealing with the suggestion that man differs from the apes in being bimanous, while the apes are quadrumanous, Huxley first explained and discussed what the exact differences between hands and feet are. He shewed that in man the foot is absolutely distinguished from the hand by three structural points, although the two organs are similar in general ground-plan. These structural points are:

1. The arrangement of the tarsal bones.

2. The possession of a short flexor and short extensor muscle of the digits.

3. The possession of a muscle named peronaeus longus.

Then he described the foot of the gorilla, and shewed that although it was superficially hand-like, it possessed all the structural characters that distinguish a foot from a hand. Tracing the structure of the foot downwards through the series of anthropoids and monkeys, he established clearly that, while important differences existed in nearly every single creature, the differences between the gorilla and man were not greater than those between the gorilla and other anthropoids, and less than between the gorilla and lower monkeys.

This wonderful series of lectures ranks very high among the important works of Huxley. It is true that a considerable proportion of the work was not absolutely original, but it had all been specially verified by him. It was a task undertaken with the greatest courage, and with a care equal to the courage; and it settled conclusively for all time the impossibility of making between man and the anthropoids any anatomical barriers greater than those which exist between the different although closely related members of any of the other family groups in the animal kingdom. The advance of knowledge has only added to the details of Huxley's argument; it has not made any reconstruction of it necessary. A writer on the same subject to-day would to all certainty make use of the same general methods. The chief differences, perhaps, that would be made are two: First, greater stress would be laid on the distinction, first made by Huxley himself, between intermediate and linear types. (See p. 87). To use the popular phrase, a great deal of water has passed under the bridges since the separation of man from the ape-like progenitors common to him and to the existing anthropoids. It has already been pointed out that the gradual extinction of lower races of man is widening the apparent gap between existing man and existing apes; and evidence accumulates that many still more primitive and more ape-like races of man than the lowest existing savages have disappeared from the surface of the earth. Moreover, we know that existing anthropoids are the degenerate and scattered remnants of what was once a much more widely spread and more important group. We have some reason for believing the contrary, and no reason for believing that the surviving anthropoids represent the most man-like apes that have lived.

The second great point in which a modern writer would amend Huxley's statement of the case is more purely anatomical. One result of Darwin's work has been that anatomists attend much more closely to the slight variations of anatomical structure to be found among individuals of the same species. A comparison between an individual human body and the body of an individual gorilla is not now considered sufficient. The comparison must be made between the results of dissection of a very large number of men and of a very large number of gorillas. The anatomy of a type is not the anatomy of an individual; it is a kind of central point around which there oscillate the variations presented by the individuals belonging to the type. So far as this newer method has been applied, it has been found that the variations of the gorilla type frequently, in the case of individual organs, overlap the variations of the human type, and that the structure of man differs from the structure of any anthropoid type only in that the abstract central point of its variations is slightly different from the abstract central point of the variations presented by individual orangs, gorillas, and chimpanzees.



CHAPTER X

SCIENCE AS A BRANCH OF EDUCATION

Science-Teaching Fifty Years Ago—Huxley's Insistence on Reform—Science Primers—Physiography—Elementary Physiology—The Crayfish—Manuals of Anatomy—Modern Microscopical Methods—Practical Work in Biological Teaching—Invention of the Type System—Science in Medical Education—Science and Culture.

Less than half a century ago, there was practically no generally diffused knowledge of even the elements of science and practically no provision for teaching it. Medical students, in the course of their professional education, received some small instruction in botany, chemistry, and physiology; in the greater universities of England and the Continent there were not in all a dozen professorships of science apart from special branches of medicine; in the Scottish universities there were one or two dreamy chairs of "Natural and Civil History," the occupiers of which were supposed to dispense instruction in half a dozen sciences. There was no scientific teaching at the public schools; there were practically no books available for beginners in science, and even the idea of guides to laboratory work had not been invented. Huxley, addressing in 1854 a particularly select audience in St. Martin's Hall, London, spoke to them of the

"utter ignorance as to the simplest laws of their own animal life, which prevails among even the most highly educated persons in this country." "I am addressing," he said, "I imagine, an audience of cultivated persons; and yet I dare venture to assert that, with the exception of those of my hearers who may chance to have received a medical education, there is not one who could tell me what is the meaning and use of an act which he performs a score of times every minute, and whose suspension would involve his immediate death:—I mean the act of breathing—or who could state in precise terms why it is that a confined atmosphere is injurious to health."

The power to express the precise meaning of even a common physiological act is probably not yet possessed by all educated people: but no one can doubt that there is now a very generally diffused knowledge of and interest in the ordinary processes of living bodies. It is almost impossible for any of us to escape some amount of scientific education at school, at college, from lectures, or from books. Certainly those of us who have a natural inclination towards knowledge of that kind can hardly fail to have the opportunity of acquiring it. Every library abounds in elementary and advanced scientific books; every university and many schools have their lectures and laboratories for science, and there is scientific teaching involved in every educational curriculum. To attempt a complete account of how this radical change in the attitude of the world to science has come about would be to attempt to write the history of European civilisation in the last half-century. A thousand causes have been contributory; but among these causes two have been of extraordinary importance—an idea and a man. The idea is the conception of organic evolution, and the man was Huxley. The idea of evolution clothed the dead bones of anatomy with a fair and living flesh, and the new body left the dusty corners of museums to pervade the world, arousing the attention and interest of all. A large part of the prodigious mental activities of Huxley was devoted to compelling the world to take an interest in biological science. Had his life-work been no more than this side of it, it would have been of commanding importance. A mere enumeration of the modes in which he assisted in arousing attention to science among all classes would fill many pages. Almost before he was settled in London, in the lecture from which we quoted at the beginning of this chapter he urged the "educational value of the natural history sciences." In 1869 in a speech in Liverpool; in 1870 at University College, London; in 1874 as his Rectorial address in the University of Aberdeen; in 1876 at the opening ceremonial of the Johns Hopkins University at Baltimore; in the same year at South Kensington; in 1877 in a separate essay; in 1881 in an address to the International Medical Congress: at these different times and addressing different and important audiences he continued to urge the absolute necessity of a knowledge of nature. A well-known and eloquent passage from an address on "a liberal education" delivered to working men in 1868 contains the gist of his reiterated argument:

"Suppose it were perfectly certain that the life and fortune of every one of us would, one day or other, depend on his winning or losing a game of chess, don't you think that we should all consider it to be a primary duty to learn at least the names and the moves of the pieces; to have a notion of a gambit, and a keen eye for all the means of giving and getting out of check? Do you not think that we should look with a disapprobation amounting to scorn upon the father who allowed his son, or the state which allowed its members, to grow up without knowing a pawn from a knight?

Yet it is a very plain and elementary truth, that the life, the fortune, and the happiness of every one of us, and more or less of those who are connected with us, do depend upon our knowing something of the rules of a game infinitely more difficult and complicated than chess. It is a game which has been played for untold ages, every man and woman of us being one of the two players in a game of his or her own. The chess-board is the world, the pieces are the phenomena of the universe, the rules of the game are what we call the laws of nature. The player on the other side is hidden from us. We know that his play is always fair, just, and patient. But also we know, to our cost, that he never overlooks a mistake, or makes the smallest allowance for ignorance. To the man who plays well, the highest stakes are paid, with that sort of overflowing generosity with which the strong shows delight in strength, and one who plays ill is checkmated—without haste, but without remorse."

Huxley wished that this scientific education should begin at an early period of every child's training. In 1869 he wrote:

"Let every child be instructed in those general views of the phaenomena of nature for which we have no exact English name. The nearest approximation to a name for what I mean which we possess is physical geography; the Germans have a better, 'Erdkunde' (earth knowledge or geology in its etymological sense), that is to say, a general knowledge of the earth, and what is on it and in it and about it. If anyone who has experience of the ways of young children will call to mind their questions, he will find that so far as they can be put in any scientific category, they will come under this head of 'Erdkunde.' The child asks, 'What is the moon, and why does it shine?' 'What is this water, and where does it run?' 'What is the wind?' 'What makes these waves in the sea?' 'Where does this animal live, and what is the use of that plant?' And if not snubbed and stunted by being told not to ask foolish questions, there is no limit to the intellectual craving of a young child; nor any bounds to the slow but solid accretion of knowledge and development of the thinking faculty in this way. To all such questions, answers which are necessarily incomplete, though true as far as they go, may be given by any teacher whose ideas represent real knowledge and not mere book learning: and a panoramic view of nature, accompanied by a strong infusion of the scientific habit of mind, may thus be placed within the reach of every child of nine or ten."

In 1880 Huxley, in association with Professor Roscoe, the chemist, and Professor Balfour Stewart, the physicist, took a great practical step toward securing the widest possible extension of elementary knowledge in science. They became general editors, for the English publishing house of Macmillan, of a series of "Science Primers." These were written in simple language, suitable for those with no preliminary knowledge of science, but were the work of the chief authorities in the leading branches of science. They were published at what was then the phenomenally cheap price of a shilling, and they sold in almost incredible numbers. Huxley himself wrote the introductory volume to this great series of tracts, taking for his subject the simplest and most natural phenomena of the world and the simplest chains of cause and effect that can be observed around us. The keynote of the little book was that knowledge of nature could be gained only by observation and experiment, and that for these the ordinary things in the world around us provided ample material. A few years later he wrote a more advanced volume on the same subject. He had now found an English name for the German Erdkunde, and his book on Physiography was simply an account of the leading things and forces of nature. A traveller set down in a foreign land will at once get into difficulties unless he has provided himself with a guide to the geography, the manners and customs, and the regulations of the country in which he finds himself. Huxley's aim was to provide a similar guide to nature; an outline of elementary knowledge of the world into which we all come as strangers. He wrote of force and energy, of the forms of water, of heat and cold, of the atmosphere, of winds and tides and weather, and of the main features of the lives of plants and animals. There was nothing new in what he wrote; he simply took from the chief sciences their leading principles and elementary facts, and set them forth in plain and simple language so that all could read and understand. The novelty was that an attempt should be made to bring these facts within the reach of all. The idea proved extremely infectious; in Europe and America, in many languages and by many authors, Huxley's main lines were followed, with the result that a new branch of education, and almost of science, was created.

The body of man and the processes of life, in the earlier part of the century, were almost as unknown to most people as were the structure of the earth and the great processes of nature. What was known of human anatomy and physiology was contained in ponderous treatises, written in difficult and technical language suitable only for students of medicine and doctors. It was thought to be not only unnecessary but slightly coarse for those not in the profession to know anything of the viscera of digestion, circulation, and so forth. Huxley laid low this great superstition by his Elementary Lessons in Physiology, a little volume first published in 1866, which ran through many editions. In it he wrote primarily for teachers and learners in boys' and girls' schools, and selected from the great bulk of knowledge and opinion called human physiology only the important and well-established truths. So successful was he in his selection that, notwithstanding the immense increase in knowledge since he wrote, the book still remains an adequate and useful elementary treatise, and by this time must have given their main knowledge of the human body to hundreds and thousands of readers who otherwise would have remained ignorant.

The books of which we have been writing were addressed to the general public, but, in addition, Huxley wrote several, of which three are specially important, for those students who devote themselves specially to anatomy. The Crayfish, his famous volume in the International Scientific Series, has been called by Professor Howes, the assistant and successor of Huxley at the Royal College of Science, "probably the best biological treatise ever written." Many naturalists have written elaborate monographs on single animals: Lyonet worked for years on the willow caterpillar, Strauss Durckheim devoted an even minuter attention to the common cockchafer, and the great Bojanus investigated almost every fibre in the structure of the tortoise. The volumes produced by these anatomists were valuable and memorable, and occupy an honoured place in the library of science, but Huxley's aim was wider and greater. He showed how careful study of one of the commonest and most insignificant of animals leads, step by step, from every-day knowledge to the widest generalisations and the most difficult problems of zooelogy. He made study of a single creature an introduction to a whole science, and taught students to regard any form of life not merely as a highly complicated and deeply interesting anatomical study, but as a creature that is only one out of an innumerable host of living things, every fibre in its body, every rhythm in its functions proclaiming the degree and nature of its relationship to other animals. R. Louis Stevenson, writing of his native town, tried to give "a vision of Edinburgh, not as you see her, in the midst of a little neighbourhood, but as a boss upon the round world, with all Europe and the deep sea for her surroundings. For every place is a centre to the earth, whence highways radiate, or ships set sail for foreign ports; the limit of a parish is not more imaginary than the frontier of an empire." It is this wider sweep, this attempt to see and to teach not merely the facts about things but the relations of these facts to the similar facts in other things, that makes the difference between the new knowledge and the old. The questions to be asked and answered are not merely, What are the structures in this animal? but, How and why do they come to be what they are? Huxley was a ruthless enemy of the books and teachers which or who made the mere acquisition of details of knowledge their chief object.

"I remember," he wrote, "in my youth there were detestable books which ought to have been burned by the hands of the common hangman, for they contained questions and answers to be learned by heart, of this sort, 'What is a horse? The horse is termed Equus caballus; belongs to the class Mammalia; order, Pachydermata; family, Solidungula.' Was any human being the wiser for learning that magic formula? Was he not more foolish inasmuch as he was deluded into taking words for knowledge?"

Huxley himself admitted his difficulty in remembering apparently meaningless facts, and occasionally aided his memory by inventing for them a humorous significance. Professor Howes relates a story of this kind. While examining the papers of candidates for some examination, Huxley came across one in which the mitral or bicuspid valve of the heart was erroneously described as being placed in the right cavity. "Poor little beggar," said Huxley; "I never could get them myself until I reflected that a bishop could never be in the right." This insistence on the uselessness of formal knowledge applied only to those who were being taught or who were learning from books or lectures. Of the value and discipline of knowledge of facts gained at first hand from objects themselves either in original investigation or with the aid of books, Huxley had the highest possible opinion. By such a method of work alone he believed it possible to distinguish what we believe on authority from what we have convinced ourselves to be true, and, as we shall see later, he regarded it as the most important duty of a man to have acquired the habit of classifying the mass of ideas in his brain into those which he knew and those which he thought to be true from having read or heard or imagined them.

The two other of the three great treatises for anatomical students are the Manual of the Anatomy of Vertebrated Animals, published in 1871, and the Manual of the Anatomy of Invertebrated Animals, published in 1877. Of these two volumes it is sufficient to say that they formed the chief introduction to the study of animal zooelogy for many years, and that a large number of the best-known zooelogists of the end of this century received from them their first instruction in the science. As text-books they have been superseded lately by larger volumes in which there is found more space for some of the recent advances in knowledge, especially comparative embryology, and the more intricate knowledge of the structure of the soft parts of marine invertebrates made possible by the newer and more successful methods of preserving delicate tissues. Just before Huxley ceased his regular work as a teacher at the Royal College of Science, there arrived a series of marine embryos, beautifully preserved and prepared for microscopic work by the zooelogists at the International Zooelogical Station at Naples. Huxley is reported to have exclaimed at their beauty, and to have said: "You young men cannot realise your advantages; you have brought to you for study at your leisure in London, creatures that I had to lash my microscope to the mast to get a glimpse of." Huxley's books were written for students with fewer advantages, and, naturally, laid more stress on the harder skeletal parts and such structures as could be more easily preserved; but with this inevitable limitation they still serve as luminous and comprehensive guides to the subjects of which they treat. There is no doubt but that if he had been a younger man when the new technical methods made their appearance, he would have adopted them and their results in his volumes. One of the first great pieces of work which utilised methods more like those now used in all laboratories than those employed during the greater part of Huxley's life as a teacher was the classical investigation by Van Beneden into the changes in the egg of Ascaris which accompany the process of fertilisation. When Huxley read the memoir he exclaimed, "All this by the use of glacial acetic acid—is it possible!" At once, Professor Howes relates, he repeated the whole investigation himself, and, when satisfied, declared that the "history of the histological investigation of the future would be the history of its methods." Not only have the chemical substances used in preparing tissues for examination greatly increased since Huxley's time as an active worker, but a very important method of investigation has come into general use. In Huxley's time tissues or animals too large or too opaque to be examined microscopically as whole structures were either teased by needles or were cut with a razor by hand into comparatively thick slices. The process of cutting, however practised the operator, was tedious and uncertain, and it was almost impossible to cut a piece of tissue into a series of thin slices without losing or destroying considerable portions. Microtomes, with various accessory mechanical appliances, have now been invented, and by means of these not only are slices of great tenuity made with ease, but there is little difficulty in cutting the most delicate organism into a ribbon of consecutive slices. Such new methods have made almost a revolution in the study of zooelogy, particularly of the lower forms of life and of the embryonic stages of higher animals, and books written before these methods became common have naturally been superseded.

Huxley did far more for the teaching of science than the preparation of books, however useful these were. He was the practical inventor of the laboratory system of teaching zooelogical science, and all over the world the methods invented by him have been adopted in university laboratories and technical schools. He had always declared that since zooelogy was a physical science, the method of studying it must needs be analogous to that which is followed in other physical sciences. If a man wishes to be a chemist, it is necessary not only that he should read chemical books and attend chemical lectures, but that he should actually perform the fundamental experiments in the laboratory for himself, and thus learn exactly what the words which he reads in his books and hears from his teachers, mean. "If you want a man to be a tea-merchant, you don't tell him to read books about China or about tea, but you put him into a tea-merchant's office where he has the handling, the smelling, and the tasting of tea. Without the sort of knowledge which can be gained only in this practical way, his exploits as a tea-merchant will soon come to a bankrupt termination." The great and obvious difficulty in the practical teaching of biology appeared to be the immense number of different kinds of animals and plants in existence. A human life would not suffice for the examination of a hundredth part of these. Huxley met the difficulty by the "type" system.

"There are certainly more than 100,000 species of insects, and yet anyone who knows one insect, if a properly chosen one, will be able to have a fair conception of the structure of the whole. I do not mean to say he will know that structure thoroughly, or as well as is desirable that he should know it; but he will have enough real knowledge to enable him to understand what he reads, to have genuine images in his mind of these structures which become so variously modified in all the forms of insects he has not seen. In fact, there are such things as types of form among animals and vegetables, and for the purpose of getting a definite knowledge of what constitutes the leading modifications of animal and plant life, it is not needful to examine more than a comparatively small number of animals and plants."

The type system in itself was not absolutely new. Rolleston, the Linacre professor at Oxford, in his Forms of Animal Life had devised the method of teaching comparative anatomy by the study of a graded series of animals. But his method depended on the existence of a series of dissections and preparations made by a skilled craftsman; the tradition of teaching by authority instead of by investigation was maintained, although the authority of books and lectures was aided by museum specimens in glass bottles, the actual basis of the book being a series of dissections prepared by Mr. Charles Robertson, Rolleston's laboratory assistant, for the great International Exhibition of 1861. The authorities of Huxley's students were to be found in nature itself. The green scum from the nearest gutter, a handful of weed from a pond, a bean-plant, some fresh-water mud, a frog, and a pigeon were the ultimate authorities of his course. His students were taught how to observe them, and how to draw and record their observations. However familiar the objects, each student had to verify every fact afresh for himself. The business of the teacher was explanation of the methods of verification, insistence on the accomplishment of verification. It was a training in the immemorial attitude of the scientific mind, codified by Huxley and made an integral part in national education.

As a matter of fact it was comparatively late in his life as a teacher that Huxley had complete opportunity for putting into practice his scheme for the laboratory teaching of biology. In 1854 there was no laboratory attached to the Natural History Department of the School of Mines. Lectures alone were given, and the only opportunity the student had of any practical acquaintance with the facts was in a short interview with the professor at the lecture table after the lecture. This condition continued practically to 1872. But a few years before that Huxley and his colleagues got up a kind of pronunciamento deploring the existing state of affairs. In his evidence before the Royal Commission of 1870 Huxley said: "There is a complete want in the School of Mines, as it now exists, of any means of teaching several of the subjects practically. For example, I am set there to teach natural history without a biological laboratory and without the means of shewing a single dissection." Against strong internal opposition and at considerable pecuniary loss Huxley and some of his colleagues succeeded, in 1872, in getting the School of Mines transferred to South Kensington, where it became the Royal College of Science. For the first course of instruction given in the new buildings, Huxley obtained the aid of Prof. M. Foster, Prof. Rutherford, and Prof. Ray Lankester. The laboratory course originated by Huxley and shaped by him with these three distinguished assistants became the model of the regular courses given subsequently, and, with various slight modifications, has since been adopted almost universally. Later on, Huxley described it as follows:

"I lecture to a class of students daily for about four months and a half, and my class have, of course, their text-books; but the essential part of the whole teaching, and that which I regard as really the most important part of it, is a laboratory for practical work, which is simply a room with all the appliances needed for ordinary dissection. We have tables properly arranged in regard to light, microscopes and dissecting instruments, and we work through the structure of a certain number of plants and animals. As, for example, among the plants we take the yeast-plant, a Protococcus, a common mould, a Chara, a fern, and some flowering plant; among animals we examine such things as an Amoeba, a Vorticella, and a fresh-water polyp. We dissect a starfish, an earthworm, a snail, a squid, and a fresh-water mussel. We examine a lobster and a crayfish, and a black beetle. We go on to a common skate, a codfish, a frog, a tortoise, a pigeon, and a rabbit, and that takes us about all the time we have to give. The purpose of this course is not to make skilled dissectors, but to give every student a clear and definite conception, by means of sense images, of the characteristic structure of each of the leading modifications of the animal kingdom; and that is perfectly possible by going no further than the length of that list of forms which I have enumerated. If a man knows the structure of the animals I have mentioned, he has a clear and exact, however limited apprehension of the essential features of the organization of all those great divisions of the animal and vegetable kingdoms to which the forms I have mentioned severally belong. And it then becomes possible to him to read with profit; because every time he meets with the name of a structure, he has a definite image in his mind of what the name means in the particular creature he is reading about, and therefore the reading is not mere reading. It is not mere repetition of words; but every term employed in the description, we will say of a horse, or of an elephant, will call up the image of the things he had seen in the rabbit, and he is able to form a distinct conception of that which he has not seen, as a modification of that which he has seen."

Huxley himself was originally a medical man; all through his life he was chiefly interested in the biological sciences which underlie a scientific practice of medicine, and as teacher and examiner he had much to do with the shaping of medical education in London. Acting in various public capacities, as a member of commissions dealing with medical education, or as a witness before them, in magazine articles and in public speeches he made many contributions to the problems to be faced in medical education. Some of these related to the conditions peculiar to medical training in London. In the greatest city of the world there was during Huxley's life and there is still nothing comparable with the great universities of Europe and America, of Scotland and Ireland. Some dozen hospitals, supported partly by endowments, partly by charities, attempt each to maintain a complete, independent medical school. As the requirements of medical education in staff, laboratories, and general equipment has advanced, these hospitals have made heroic efforts to advance with them. Notwithstanding the zeal and public spirit of the staff and managers of the hospitals, this want of system has naturally resulted in a multiplication of inefficient institutions and a number of makeshift arrangements. Huxley repeatedly urged the concentration of all this diffuse effort into a few centres, but this inevitable reform has not yet become possible.

A second important consideration, and one that has a much wider application, relates to the kind of person by whom the scientific sides of medical teaching should be given. Primitively, all the instruction to medical students was given by those actually engaged in the practice of medicine. Huxley was strongly of the opinion that the teachers of anatomy, physiology, chemistry, and so forth, should be specialists devoted to these subjects for life, and not merely surgeons and physicians who engaged in teaching until their practice grew sufficiently to monopolise their attention.

"I get every year," he said, "the elaborate reports of Henle and Meissner—volumes of I suppose 400 pages altogether—and they consist merely of abstracts of the memoirs and works which have been written on Anatomy and Physiology—only abstracts of them. How is a man to keep up his acquaintance with all that is doing in the physiological world—in a world advancing with enormous strides every day and every hour—if he has to be distracted with the cares of practice?"

There would always be found men, he declared, who would make the choice between the wealth which may come by successful practice and a modest competency, when that modest competency was to be combined with a scientific career and the means of advancing knowledge. It was to those who made the latter choice that he would entrust the teaching of the sciences underlying medicine; partly because from the mere mechanical reason of time these men would be better able to keep pace with the most recent advances in knowledge, and partly because their teaching would be stimulated by their own work in advancing knowledge. In this great matter the world is rapidly advancing towards the standard of Huxley; as each new appointment is made it becomes more and more probable that the man chosen will be a teacher and investigator rather than a practitioner.

In another general question of the politics of medical education Huxley took a strong line, and the tendency of change is toward his view. One of the first results of the awakening of medical education in the middle of this century was a tendency to throw an almost intolerable burden of new subjects upon the medical student. In the revolt from the old apprenticeship system, in which the student, from the very first, gave his chief attention to practice, and was left almost to himself to pick up a scanty knowledge of the principles and theories underlying his profession, the pendulum swung too far the other way, and there was almost no branch of the biological and physical sciences in which he was not expected to go through a severe training. On the old system the greater part of his time was spent in the wards of the hospital; on the new system it was only at an advanced stage of his career that he entered the wards at all, a great part of his time and energy being spent in the purely scientific teaching of the medical college. Huxley, although he had largely aided in the overthrow of the happy-go-lucky older system, of which Mr. Bob Sawyer was no exaggerated type, was equally severe on the reckless extensions of the new system. "If I were a despot," he said, "I would cut down the theoretical branches to a very considerable extent." He would discard comparative anatomy and botany, materia medica, and chemistry and physics, except as applied to physiology, from the medical student's course. At first sight, this seems a hard saying, but it is to be remembered that at that time the normal curriculum of a medical student lasted only four years, a space of time barely sufficient for the necessary minimum of purely medical and surgical work. Huxley's view was that chemistry and physics, botany and zooelogy, should be part of the general education, not of the special medical education; he wished students to spend one or two years after their ordinary career at school in work on these elementary scientific subjects, and then to begin their medical course free from the burden of extra-professional subjects. With certain limits due to the different local conditions in different teaching centres Huxley's system is being adopted. In most cases the authorities in medical education are unable to leave the whole responsibility of the elementary education in science to the schools from which medical students come, as the conditions under which scientific subjects are still taught in schools leave much to be desired. The average length of the medical curriculum has been extended and the elementary scientific subjects are taken first, sometimes at the medical colleges, sometimes in the scientific departments of universities. The interesting general point of view is that Huxley, although himself a biologist and teacher of biology, took too broad an outlook on the general policy of education to insist upon his own subject to the detriment of the precise practical objects of the training of medical students.

In the days of Huxley's greatest activity, while by the natural force of events and by his special efforts science was becoming more and more recognised as a necessary and important branch of general education, the cry was raised against it that scientific education was not capable of giving what is called culture. A scientific man was regarded as a mere scientific specialist, and science was considered to have no place in, and in fact to be an enemy of, "liberal education." In 1880, at Birmingham, Huxley attacked this view in a speech delivered at the opening of the Mason College. Sir Josiah Mason, the benevolent founder of that great institution, had made it one of the conditions of the foundation that the College should make no provision for "mere literary instruction and education." This gave Huxley a text for raising the whole question of the relation of science to culture. He declared that he held very strongly by two convictions.

"The first is, that neither the discipline nor the subject matter of classical education is of such direct value to the student of physical science as to justify the expenditure of valuable time on either; and the second is, that for the purpose of attaining real culture, an exclusively scientific education is at least as effectual as an exclusively literary education."

He quoted from Matthew Arnold, then in the zenith of his fame as a chief apostle of culture, and shewed that there were two propositions involved in the "literary" view of culture. The first was that a "criticism of life" was the essence of culture; the second, that literature contained the materials which sufficed for the construction of such a criticism. With the first proposition he had no dispute, taking the view that culture was something quite different from learning or technical skill. "It implies the possession of an ideal, and the habit of critically estimating the value of things by comparison with a theoretic standard. Perfect culture should supply a complete theory of life, based upon a clear knowledge alike of its possibilities and its limitations." Against the second proposition he urged in the first place that it was self-evident that after having learned all that Greek, Roman, and Eastern antiquity have thought and said, and all that modern literature has to tell us, it was still necessary to have a deeper foundation for criticism of life. An acquaintance with what physical science had done, particularly in later years, was as necessary to criticism of life as any of the literary materials. Next, following the biological habit of examining anything by studying its development, he shewed how the connection between "culture" and study of classical literature had come into existence. For many centuries Latin grammar, with logic and rhetoric, studied through Latin, were the fundamentals of education. A liberal education was possible only through study of the language in which all or nearly all the materials for it were written. With the changes produced by the Renascence there came a battle between Latin and Greek, and Greek came to be part of a liberal education. Later on, there came a similar battle between the classical and modern languages, and now the modern languages have included and absorbed all the necessary material for knowledge and criticism. Those who cling to classics as the basis of culture and education are clinging to old weapons long after these have ceased to be effective, simply because at one time in history only these weapons were available in the struggle for knowledge.



CHAPTER XI

GENERAL PROBLEMS OF EDUCATION

Establishment of Compulsory Education in England—The Religious Controversy—Huxley Advocates the Bible without Theology—His Compromise on the "Cowper-Temple" Clause—Influence of the New Criticism—Science and Art Instruction—Training of Teachers—University Education—The Baltimore Address—Technical Education—So-called "Applied Science"—National Systems of Education as "Capacity-Catchers."

In the last chapter, the special relation of Huxley to scientific education was described, and, naturally enough, it is in special connection with scientific education that his influence is best known. But he was keenly interested in all the larger problems of general, university, and technical education, and he played a great part in shaping the lines upon which these problems have been solved in England.

In the years immediately before 1870, all England was wrestling with the great problem of elementary education, in the arrangements for which it was far behind not only the leading European countries but even its sister-kingdom, Scotland. In 1870 there came into operation an Act of Parliament for the regulation of elementary education under the supervision of locally elected school boards. Hitherto elementary education had been controlled by the Established Church, and by other denominational religious bodies, and the quality and quantity of the instruction provided, for financial and various other reasons, had been extremely unsatisfactory. But a long and furious battle had raged around the religious question; elementary education was now to be national, compulsory, and universal; where religious bodies maintained schools that complied with certain fixed standards of efficiency, attendance of children at these was to be regarded as satisfactory, and in addition to the ordinary subjects, such theological and religious teaching as the supporting bodies chose might be added. But in the schools for all and sundry, under the control of boards representing the whole population, and deriving that part of their income represented by the subscriptions of the religious bodies in the denominational schools from public rates, levied on the whole population, was any definite creed to be inculcated? The extreme Church party, perhaps naturally, held that the creed established by law in the land should be taught in these new schools; extreme supporters of other creeds, and a majority of ordinary people of all creeds or of no creeds, objected to a new establishment of a sectarian doctrine, even though that sectarian doctrine were the doctrine of the national religion. The final result of the dispute as codified in the Act of Parliament was what was known as the Cowper-Temple Clause: "No religious catechism or religious formulary which is distinctive of any particular denomination shall be taught in the school." The actual value of any clause, however it may appear to be a fair compromise, depends on the spirit in which it is practically interpreted, and no sooner had the Act been passed than the battle was renewed again over the interpretation of the clause. Many of the Church controversialists held that the liberal or more advanced party intended to exclude all reference to the Bible or to religion, on the plea that some sect could be found to which the most attenuated expression of religion would appear to be against the plain meaning of the clause, and Huxley, who had been in the forefront of the controversy, and who was a candidate for the first London School Board, was decried as an enemy of the Bible and of all religion and morality because he had expressed what he called a secular interpretation of the clause. In an article published in the Contemporary Review immediately after the election, Huxley explained precisely what he took the clause to mean, and, afterwards, at all events during the existence of the Board to which he was elected, succeeded in carrying out his intentions in the main.

His first general point was to deprecate the action of those extremists of both sides who tried to make the education of children a mere battle-ground of religious dogmas. He then laid down what he conceived to be the lines of most general utility upon which, under the provisions of the Act, the education of children should be conducted. In the foreground he placed physical training and drill, as of supreme importance to young children, especially in the case of the poor children of large towns.

"All the conditions of the lives of such are unfavourable to their physical well-being. They are badly lodged, badly housed, badly fed, and live from one year's end to another in bad air, without a chance of a change. They have no play-grounds; they amuse themselves with marbles and chuck-farthing, instead of cricket and hare-and-hounds; and if it were not for the wonderful instinct which leads all poor children of tender years to throw themselves under the feet of cab-horses whenever they can, I know not how they would learn to use their limbs with agility."

This, humanitarianism as it was, was not the mere emotional sentiment of the typical humanitarian; he went on to give the soundest practical reasons for physical development.

"Whatever doubts people may entertain about the efficacy of natural selection, there can be none about artificial selection; and the breeder who should attempt to make, or keep up, a fine stock of pigs, or sheep, under the conditions to which the children of the poor are exposed, would be the laughing stock even of the bucolic mind. Parliament has already done something in this direction by declining to be an accomplice in the asphyxiation of school children. It refuses to make any grant to a school in which the cubical contents of the school-room are inadequate to allow of proper respiration."

He wished to see physical training put on the same system.

The second great point upon which he laid stress was the necessity of providing training in domestic economy, cookery, and other household accomplishments, for poor girls. These demands of Huxley seem simple and obvious, now that by his efforts and the efforts of others they have been accomplished, but in England, even thirty years ago, it required more than an ordinary prevision and boldness to insist upon them.

Huxley passed next to the burning question of the time. He treated it in the broadest and least sectarian spirit.

"The boys and girls for whose education the School Boards have to provide, have not merely to discharge domestic duties, but each of them is a member of a social and political organisation of great complexity, and has, in future life, to fit himself into that organisation, or be crushed by it. To this end it is surely needful, not only that they should be made acquainted with the elementary laws of conduct, but that their affections should be trained, so as to love with all their hearts that conduct which tends to the attainment of the highest good for themselves and their fellow-men, and to hate with all their hearts that opposite course of action which is fraught with evil."

He then proceeded to point out the distinction between the affection which is called religion, and the science which is called theology, and, without entering into the question as to whether the latter were or were not a true science, he insisted on the danger of a confusion between the two.

"We are divided into two parties—the advocates of so-called 'religious' teaching on the one hand, and those of so-called 'secular' teaching on the other. And both parties seem to me to be not only hopelessly wrong, but in such a position that if either succeeded completely, it would discover, before many years were over, that it had made a great mistake and done serious evil to the cause of education. For, leaving aside the more far-seeing minority on either side, what the religious party is crying for is mere theology, under the name of religion; while the secularists have unwisely and wrongfully admitted the assumption of their opponents, and demand the abolition of all religious teaching, when they only want to be free of theology—burning your ship to get rid of the cockroaches." ... "If I were compelled to choose for one of my own children, between a school in which real religious instruction is given, and one without it, I should prefer the former, even though the child might have to take a good deal of theology with it. Nine-tenths of a dose of bark is mere half-rotten wood; but one swallows it for the sake of the particles of quinine, the beneficial effect of which may be weakened, but is not destroyed, by the wooden dilution, unless in the case of a few exceptionally tender stomachs. Hence, when the great mass of the English people declare that they want to have the children in the elementary schools taught the Bible, and when it is plain from the terms of the Act, the debates in and out of Parliament, and especially the emphatic declarations of the Vice-President of the Council that it was intended that such Bible-teaching should be permitted, unless good cause for prohibiting it could be shewn, I do not see what reason there is for opposing that wish."

He went on to explain that, although he had always been strongly in favour of secular education, by that term he meant only education without theology, and he praised the English Bible in language as noble as has ever been applied to it by the most ardent of theologians.

"The Pagan moralists lack life and colour, and even the noble Stoic, Marcus Antoninus, is too high and refined for an ordinary child. Take the Bible as a whole; make the severest deductions which fair criticism can dictate for shortcomings and positive errors; eliminate, as a sensible lay-teacher would do, if left to himself, all that is not desirable for children to occupy themselves with; and there still remains in this old literature a vast residuum of moral beauty and grandeur. And then consider the great historical fact that, for three centuries, this book has been woven into the life of all that is best and noblest in English history; that it has become the national epic of Britain, and is as familiar to noble and simple, from Land's End to John-o'-Groat's House, as Dante and Tasso once were to the Italians; that it is written in the noblest and purest English, and abounds in exquisite beauties of mere literary form; and, finally, that it forbids the veriest hind who never left his village to be ignorant of the existence of other countries and other civilisations, and of a great past, stretching back to the furthest limits of the oldest nations in the world. By the study of what other book could children be so much humanised and made to feel that each figure in that vast historical procession fills, like themselves, but a momentary space in the interval between two eternities; and earns the blessings and the curses of all time, according to its effort to do good and hate evil, even as they also are earning their payment for their work."

Lastly, he laid down the lines of the general education to be given. He pointed out that already in the existing schools a very considerable burden of work was imposed on the children in the form of catechism, lists of the kings of Israel, geography of Palestine, and that when these fantastic modes of education had been eliminated there was plenty of time and energy to be employed. The instruction in physical training was more than half play; that in the domestic subjects had an engrossing interest of its own. He proposed, first, the necessary discipline in the means for acquiring knowledge, the tools for employing it, that is to say, reading, writing, and arithmetic. After that, he believed that a certain amount of knowledge, of intellectual discipline, and of artistic training should be conveyed in the elementary schools, and for these purposes he proposed to teach some rudiments of physical science, drawing, and singing.

In most respects the progress of primary education in England has been a continuous progress along these lines suggested by Huxley, and he may be regarded as in this fashion one of the great shapers of the destinies of his race, for nothing can have a bearing more important on the character and fate of a race than the manner of training provided for the masses of individuals composing it. It is only in the matter of the religious instruction that the course of events has been widely different from the neutral exposition of the Bible as suggested by him. In 1870 a great majority of the people of England who reflected upon the matter at all, and all those who accepted current ideas without reflection, accepted the Bible as an inspired, direct, and simple authority on all great matters of faith and morality. Therefore, when Huxley, as by far the most important man among those who advocated a secular education, was an advocate and not in the least an opponent of Bible teaching, they were well content to let the matter rest. There were, it is true, a certain number of zealots who entered the boards with the avowed purpose, on the one hand, of getting as much dogmatic teaching and interpretation added as it might be possible to smuggle in, and, on the other, to reduce the simplest Bible teaching to a minimum. But the vast majority of persons were out of sympathy with these fanaticisms. Since 1870, however, a gradual change has occurred in the attitude of the majority to the Bible in England. The growth of the new criticism and of knowledge of it has produced the result that now only a small minority of reflecting people in England accept the Bible in the old simple way; the majority thinks that it requires interpretation and explanation by the authority of the Church. And so a new battle over dogma has begun; moderate Church people no longer accept the compromise of Huxley, but strive for an interpretation which must be dogmatic, and there is a new dispute as to what may be regarded as undenominational religion. When a majority of reasonable persons accepted Huxley's suggestions of simple Bible teaching they did so not because they believed, as he did, that the Bible was simply great literature, great tradition, and great morality, but because they believed it to be direct, inspired authority. It is a curious coincidence that Huxley himself did so much to spread knowledge of the new criticism, and that a first result of this diffusion was to overthrow the compromise arranged largely by his influence, and which for many years provided a middle way in which sensible persons avoided the extremes of theological and anti-theological zealots.

Early in the course of his career as a member of the London School Board, Huxley crystallised his views as to the general policy of education in a phrase which perhaps has done more than any other phrase ever invented to bring home to men's minds the ideal of a national system of education. "I conceive it to be our duty," he said, "to make a ladder from the gutter to the university along which any child may climb." We have seen the nature of his views as to the lowest rungs of this ladder; we may now turn to his work and views as to the higher stages. He expressed these views in occasional speeches and articles, and he had many important opportunities in aiding to carry them into actual practice. He was a member of a number of important Royal Commissions: Commission on the Royal College of Science for Ireland, 1866; Commission on Science and Art Instruction in Ireland, 1868; Royal Commission on Scientific Instruction and the Advancement of Science, 1870-75; Royal Commission to enquire into the Universities of Scotland, 1876-78; Royal Commission on the Medical Acts, 1881-82. From the beginning, he was closely associated with the Science and Art Department, the operations of which threw a web of education, intermediate between primary and university education, all over Britain. A number of the teachers under that department were trained by him, and as examiner to the department he took the greatest care to reduce to a minimum the evils necessarily attendant on the mode of payment by results. A certain number of teachers made it their chief effort to secure the largest possible number of grants. Huxley regarded these as poachers of the worst kind, and did all he could to foil them. He did all he could to promote systematic practical instruction in the classes, and to aid teachers who desired to learn their business more thoroughly. He insisted again and again upon the popular nature of the classes; their great advantage was that they were accessible to all who chose to avail themselves of them after working hours, and that they brought the means of instruction to the doors of the factories and workshops. The subjects which he considered of most importance were foreign languages, drawing, and elementary sciences, and he wished them to be used first of all by those who were handicraftsmen and who therefore left the elementary schools at the age of thirteen or fourteen.

In a lecture given at the formal opening of the Johns Hopkins University at Baltimore in 1876, and in a Rectorial address to the University of Aberdeen two years earlier, Huxley laid down the general lines of university education as he conceived it. He began by supposing that a good primary education had already been received.

"Such an education should enable an average boy of fifteen or sixteen to read and write his own language with ease and accuracy, and with a sense of literary excellence derived from the study of our classic writers; to have a general acquaintance with the history of his own country and with the great laws of social existence; to have acquired the rudiments of the physical and psychological sciences, and a fair knowledge of elementary arithmetic and geometry. He should have obtained an acquaintance with logic rather by example than by precept; while the acquirement of the elements of music and drawing should have been a pleasure rather than work."

He had not much to say for secondary or intermediate education, partly because at that time, in England at least, the secondary schools were in a hopeless state of incapacity, and differed from primary schools not only in their greater expense, their adaptation to the class-spirit which demanded the separation of the boys of the upper and middle classes from those in the lower ranks of society, but chiefly in the futility of the education given at the majority of them. But where intermediate schools did exist, he demanded that they should keep on the same wide track of general knowledge, not sacrificing one branch of knowledge for another. He held that the elementary instruction to which he had referred embraced all the real kinds of knowledge and mental activity possible to man. The university could add no new fields of mental activity, no new departments of knowledge. What it could do was to intensify and specialise the instruction in each department.

"Thus literature and philology, represented in the elementary school by English alone, in the university will extend over the ancient and modern languages. History, which like charity, best begins at home, but, like charity, should not end there, will ramify into anthropology, archaeology, political history, and geography, with the history of the growth of the human mind and of its products, in the shape of philosophy, science, and art, and the university will present to the student libraries, museums of antiquities, collections of coins, and the like, which will efficiently subserve these studies. Instruction in the elements of political economy, a most essential but hitherto sadly neglected part of elementary education, will develop in the university into political economy, sociology, and law. Physical science will have its great divisions, of physical geography, with geology and astronomy; physics; chemistry and biology; represented not merely by professors and their lectures, but by laboratories in which the students, under guidance of demonstrators, will work out facts for themselves and come into that direct contact with reality which constitutes the fundamental distinction of scientific education. Mathematics will soar into its highest regions; while the high peaks of philosophy may be scaled by those whose aptitude for abstract thought has been awakened by elementary logic. Finally, schools of pictorial and plastic art, of architecture, and of music will offer a thorough discipline in the principles and practice of art to those in whom lies nascent the rare faculty of aesthetic representation, or the still rarer powers of creative genius."

Early in the seventies the problems connected with what is called technical education became prominent in the minds of the most far-seeing of this nation. It became plain that England was not advancing with the same strides as some other nations in arts and manufactures, and the most obvious difference between England and the rivals whose advance was causing anxiety lay in her deficiency in education. Science or knowledge of nature lies at the root of all the arts and manufactures, and it was our relation to scientific teaching and research that required investigation. Naturally enough, Huxley took the keenest interest in this question and made large contributions to its solution, contributions which have not yet been put completely into operation. He insisted most strongly upon a point that we as a nation have not yet completely grasped. There is no difference between applied science and any other kind of science. The chemistry of manufactures, the physics of industrial machinery, the biology of agriculture and of fisheries, are not different from other chemistries and physics and biologies. They are merely special cases of the application of the same general fund of knowledge, and the same general principles of investigation. Huxley wished that the term "applied science" had never been invented, or that it could be destroyed. A man cannot study the chemistry of dyeing or make advances in it unless he be a thoroughly trained chemist in the full sense of the word. More than that, many of the greatest discoveries, using the word "great" as applied to commercial advantage rather than to abstract progress in knowledge, have been made by those who were pursuing research for its own sake rather than for any immediate commercial advantage to be derived from it. Hence he regarded it of vital importance, from the mere point of view of the prosperity of the country, that there should be a sufficiently large number of scientific men provided with the means for research in the shape of income and appliances. The most immediately utilitarian fashion for the nation to encourage science, was to encourage science in its highest and most advanced aspects. This meant the endowment of research and the support of universities and other institutions in which research might be conducted, and Huxley strove unceasingly for the benefit of all such great organisations. One of the last public occasions of his life was his appearance as leader of a deputation to urge upon the government the formation of a real university in London which should unite the scattered institutions of that great city and promote the highest spheres of the pursuit of knowledge. He held the view, strongly, that a useful combination was to be made by uniting the functions of teaching and investigation. A teacher taught better when his mind was kept fresh by the advances he himself was making, and an investigator, by having a moderate amount of teaching to do, gained from the need of forcing his mind from time to time to take broad surveys of the whole field a part of which he was engaged in tilling. The first great object, then, in promoting science so as to reap the most direct national advantage from it, was to encourage science in its highest and widest forms. It cannot be said that England has yet learned this lesson. The number of institutions in Germany where advanced investigation is continuously pursued is absolutely and relatively greater than the number in England.

The second part of technical education is that to which general attention is more commonly given. It consists of the kind of training to be given to the great army of workers in the country. In regard to this, as in regard to research work, Huxley insisted on the absence of distinction between technical or applied science and science without such a limiting prefix. So far as technical instruction meant definite teaching of a handicraft, he believed that it could be learned satisfactorily only in the workshop itself.

"The workshop is the only real school for a handicraft. The education which precedes that of the workshop should be entirely devoted to the strengthening of the body, the elevation of the moral faculties, and the cultivation of the intelligence; and, especially, to the imbuing of the mind with a broad and clear view of the laws of that natural world with the components of which the handicraftsman will have to deal. And, the earlier the period of life at which the handicraftsman has to enter into the actual practice of his craft, the more important is it that he should devote the precious hours of preliminary education to things of the mind, which have no direct and immediate bearing on his branch of industry, though they lie at the foundation of all the realities."

He compared his own handicraft as an anatomist with the handicrafts of artisans, and declared that the kind of preliminary training he would choose for himself or for his pupils was precisely the training he would provide for them. He did not wish that one who proposed to be a biologist should learn dissection during his school-days; that would come later, and, in the meantime, broader and deeper foundations had to be laid. These were the ordinary subjects of a liberal education: physical training, drawing, and a little music, French and German, the ordinary English subjects, and the elements of physical science. Against such costly schemes of education for the whole population of a nation, many objections have been urged. Of these, perhaps the chief is that the majority of human beings even in the most civilised country are not capable of profiting by or taking an interest in, or certainly of advancing far in, most subjects. Huxley met such objections in a spirit of the widest statesmanship. There were two reasons for making the general education of all what he called a liberal education. The first was that, even in a liberal education such as he advocated, no subject was pursued beyond the broad elementary stages, and that during the early years of life, while the framework and the character were forming, it was of first-rate importance not to stunt either by lack of material. The second great principle was that until any individual had had the opportunity, it was impossible to say whether or no he would profit much or little, and the gain to the whole nation by not missing any of those who were born with unusual natural capacity was more than worth the cost of affording opportunities to all.

"The great mass of mankind have neither the liking, nor the aptitude, for either literary or scientific or artistic pursuits; nor, indeed, for excellence of any sort. Their ambition is to go through life with moderate exertion and a fair share of ease, doing common things in a common way. And a great blessing and comfort it is that the majority of men are of this mind; for the majority of things to be done are common things, and are quite well enough done when commonly done. The great end of life is not knowledge but action. What men need is as much knowledge as they can assimilate and organise into a basis for action; give them more and it may become injurious. One knows people who are as heavy and stupid from undigested learning as others are from over-fulness of meat and drink. But a small percentage of the population is born with that most excellent quality, a desire for excellence, or with special aptitude of some sort or another.... Now, the most important object of all educational schemes is to catch these exceptional people, and turn them to account for the good of society. No man can say where they will crop up; like their opposites, the fools and the knaves, they appear sometimes in the palace, and sometimes in the hovel; but the great thing to be aimed at, I was almost going to say, the most important end of all social arrangements, is to keep these glorious sports of Nature from being either corrupted by luxury or starved by poverty, and to put them into the position in which they can do the work for which they are specially fitted.... I weigh my words when I say that if the nation could purchase a potential Watt or Davy or Faraday, at the cost of a hundred thousand pounds down, he would be dirt cheap at the money."

The beginning and end of the whole matter was that a national system of education was above all things a "capacity-catcher," designed to secure against the loss of the incalculable advantages to be gained by cultivating the best genius born in the land.



CHAPTER XII

CITIZEN, ORATOR, AND ESSAYIST

Huxley's Activity in Public Affairs—Official in Scientific Societies—Royal Commissions—Vivisection—Characteristics of his Public Speaking—His Method of Exposition—His Essays—Vocabulary—Phrase-Making—His Style Essentially one of Ideas.

A great body of fine work in science and literature has been produced by persons who may be described as typically academic. Such persons confine their interest in life within the boundaries of their own immediate pursuits; they are absorbed so completely by their avocations that the hurly-burly of the world seems needlessly distracting and a little vulgar. No doubt the thoughts of those who cry out most loudly against disturbance by the intruding claims of the world are, for the most part, hardly worth disturbing; the attitude to extrinsic things of those who are absorbed by their work is aped not infrequently by those who are absorbed only in themselves. None the less it is important to recognise that a genuine aversion from affairs is characteristic of many fine original investigators, and it is on such persons that the idea of the simple and childlike nature of philosophers, a simplicity often reaching real incapacity for the affairs of life, is based. There was no trace of this natural isolation in the character of Huxley. He was not only a serious student of science but a keen and zealous citizen, eagerly conscious of the great social and political movements around him, with the full sense that he was a man living in society with other men and that there was a business of life as well as a business of the laboratory. We have seen with what zeal he brought his trained intelligence to bear not only on his own province of scientific education, but on the wider problems of general education, and yet the time he gave to these was only a small part of that which he spared from abstract science for affairs. In scientific institutions as in others, there is always a considerable amount of business, involving the management of men and the management of money, and Huxley's readiness and aptitude led to his being largely occupied with these. For many years he was Dean of the Royal College of Science at South Kensington, and for a considerable time he served the Geological Society and the Royal Society as secretary. In all these posts, Huxley displayed great capacity as a leader of men and as a manager of affairs, and contributed largely to the successful working of the institutions which he served.

In England, when troublesome questions press and seem to call for new legislation, it frequently happens that the collection and sifting of evidence preliminary to legislation is a task for which the methods and routine of Parliament are unsuitable. The Queen, acting through her responsible advisers, appoints a Royal Commission, consisting of a small body of men, to which is entrusted the preliminary task of collecting and weighing evidence, or of making recommendations on evidence already collected. To such honourable posts Huxley was repeatedly called. He served on the following Commissions: 1. Royal Commission on the Operation of Acts relating to Trawling for Herrings on the Coast of Scotland, 1862. 2. Royal Commission to Enquire into the Sea Fisheries of the United Kingdom, 1864-65. 3. Commission on the Royal College of Science for Ireland, 1866. 4. Commission on Science and Art Instruction in Ireland, 1868. 5. Royal Commission on the Administration and Operation of the Contagious Diseases Acts, 1870-71. 6. Royal Commission on Scientific Instruction and the Advancement of Science, 1870-75. 7. Royal Commission on the Practice of Subjecting Live Animals to Experiments for Scientific Purposes, 1876. 8. Royal Commission to Enquire into the Universities of Scotland, 1876-78. 9. Royal Commission on the Medical Acts, 1881-82. 10. Royal Commission on Trawl, Net, and Beam-Trawl Fishing, 1884. This is a great record for any man, especially for one in whose life work of this kind was outside his habitual occupation. It was no doubt in special recognition of the important services given his country by such work, as well as in general recognition of his distinction in science, that he was sworn a member of Her Majesty's Privy Council, so attaining a distinction more coveted than the peerage.

The voluminous reports of the Commissions shew that Huxley, very far from being a silent member of them, took a large part in framing the questions which served to direct witnesses into useful lines, and that his clear and orderly habit of thought proved as useful in the elucidation of these subjects as they were in matters of scientific research. For the most part, the problems brought before the Commissions have lost their interest for readers of later years, but there are matters still unsettled on which the opinions of Huxley as expressed then remain useful. The Commission of 1876, for instance, dealt with vivisection, a matter on which the conscience of the ordinary man is not yet at rest. Although Huxley was intensely interested in the problems of physiology, and although at one time he hoped to devote his life to them, fortune directed otherwise, and the investigations for which he is famed did not in any way involve the kind of experiments known as vivisection. The greater part of his work was upon the remains of creatures dead for thousands of years or upon the lifeless skeletons of modern forms. On the other hand, he was keenly interested in the progress of physiological science, he had personal acquaintance with most of the distinguished workers in physiology of his time at home and abroad, and from this knowledge of their character and aspirations he was well able to judge of the wholesale and reckless accusations brought against them. He was a man full of the finest humanity, with an unusual devotion to animals as pets, and with knowledge of the degrees of pain involved in experimenting on living creatures. He insisted strongly on the necessity of limiting or abolishing pain, wherever it was possible; he agreed that any experiments which involved pain should not be permitted for the purpose of demonstrating known elementary facts. But, from his knowledge of the incalculable benefits which had been gained from experimental research, and from his confidence in those who conducted it, he declined to give support to the misguided fanatics who desired to make such experimental research a penal offence, even when conducted by the most skilled experts for the highest purposes.

Huxley contributed his share to the great questions which agitated the public not only by service on Commissions, but by delivering a large number of public addresses and writing a large number of essays on topics of special interest. Much of his work on scientific, educational, and general subjects took its first shape in the form of addresses given to some public audience. University audiences in England, Scotland, and America were familiar to him, and from time to time he addressed large gatherings of a mixed character. But probably his favourite audience was composed of working men, and he had the greatest respect for the intelligence and sympathy of hearers who like himself passed the greater portion of their time in hard work. Professor Howes, his pupil, friend, and successor, writes of him:

"He gave workmen of his best. The substance of Man's Place in Nature, one of the most successful and popular of his writings, and of his Crayfish, perhaps the most perfect zooelogical treatise ever published, was first communicated to them. In one of the last communications I had with him, I asked his views as to the desirability of discontinuing the workmen's lectures at Jermyn Street, since the development of workmen's colleges and institutes was regarded by some as rendering their continuance unnecessary. He replied, almost with indignation, 'With our central situation and resources we ought to be in a position to give the workmen that which they cannot get elsewhere,' adding that he would deeply deplore any such discontinuance."

Huxley had no natural facility for speech. He tells us that at first he disliked it, and that he had a firm conviction that he would break down every time he opened his mouth. The only two possible faults of a public speaker which he believed himself to be without, were "talking at random and indulging in rhetoric." With practice, he lost this earlier hesitancy, and before long became known as one of the finest speakers of his time. Certain natural gifts aided him; his well-set figure and strong features, of which the piercing eyes and firm, trap-like mouth were the most striking, riveted attention, while his voice had a wide range and was beautifully modulated. But it was above all things the matter and not the manner of his speech that commanded success. He cared little or nothing for the impression he might make—everything for the ideas which he wished to convey. He was concerned only to set forth these ideas in their clear and logical order, convinced in his own mind that, were the facts as he knew them placed before the minds of his hearers, only one possible result could follow. The facts had convinced him: they must equally convince any honest and intelligent person placed in possession of them. He had not the smallest intention of overbearing by authority or of swaying by skilfully aroused emotion. Such weapons of the orator seemed to him dishonest in the speaker and most perilous to the audience. For him, speaking on any subject was merely a branch of scientific exposition; when emotion was to be roused or enthusiasm to be kindled the inspiration was to come from the facts and not from the orator. The arts he allowed himself were those common to all forms of exposition; he would explain a novel set of ideas by comparison with simpler ideas obvious to all his listeners; and he sought to arrest attention or to drive home a conclusion by some brilliant phrase that bit into the memory. These two arts, the art of the phrase-maker and the art of explaining by vivacious and simple comparison, he brought to a high perfection. The fundamental method of his exposition was simply the method of comparative anatomy, the result of a habit of thinking which makes it impossible to have any set of ideas brought into the mind without an immediate, almost unconscious, overhauling of the memory for any other ideas at all congruous. In a strict scientific exposition Huxley would choose from the multitude of possible comparisons that most simple and most intelligible to his audience; when in a lighter vein, he gave play to a natural humour in his choice. Instances of his method of exposition by comparison abound in his published addresses. Let us take one or two. In the course of an address to a large mixed audience so early in his public career as 1854, in making plain to them the proposition, somewhat novel for those days, that the natural history sciences had an educational value, he explained that the faculties employed in that subject were simply those of the common sense of every-day life.

"The vast results obtained by Science are won by no mystical faculties, by no mental processes other than those which are practised by every one of us, in the humblest and meanest affairs of life. A detective policeman discovers a burglar from the marks made by his shoe, by a mental process identical with that by which Cuvier restored the extinct animals of Montmartre from fragments of their bones. Nor does that process of induction and deduction by which a lady, finding a stain of a peculiar kind on her dress, concludes that somebody has upset the inkstand thereon, differ in any way, in kind, from that by which Adams and Leverrier discovered a new planet."

In one of his addresses to working men on Man's Place in Nature he shewed that from time to time in the history of the world average persons of the human race have accepted some kind of answer to the insoluble riddles of existence, but that from time to time the race has outgrown the current answers, ceasing to take comfort from them.

"In a well-worn metaphor a parallel is drawn between the life of man and the metamorphosis of a caterpillar into a butterfly; but the comparison may be more just as well as more novel, if for its former term we take the mental progress of the race. History shews that the human mind, fed by constant accessions of knowledge, periodically grows too large for its theoretical coverings, and bursts them asunder to appear in new habiliments, as the feeding and growing grub, at intervals, casts its too narrow skin and assumes another, itself but temporary. Truly, the imago state of man seems to be terribly distant, but every moult is a step gained, and of such there have been many."

As another instance, the following from his address on a "Liberal Education" may be taken. He had been discussing the intellectual advantage to be derived from classical studies, and had been comparing, to the disadvantage of the latter, the intellectual discipline which might be got from a study of fossils with the discipline claimed by the ordinary experts upon education to be the results of classical training. He wished to anticipate the obvious objection to his argument: that the subject-matter of palaeontology had no direct bearing on human interests and emotions, while the classical authors were rich in the finest humanity.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse