p-books.com
The War in the Air; Vol. 1 - The Part played in the Great War by the Royal Air Force
by Walter Raleigh
Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse

Captain Eustace Broke Loraine had served with the Grenadier Guards in the South African War. His great-grandfather was the famous British admiral, Sir Philip Broke, who in 1813 commanded H.M.S. Shannon, and after a fifteen minutes' battle outside the port of New York compelled the surrender of the United States frigate Chesapeake. That battle, it has been truly said, was won before it was fought; the Shannon had been many years cruising at sea; she was in perfect fighting trim, her men were disciplined and her gunners practised. The men of the Chesapeake were fresh from the shore, strangers to each other and to their officers, so that the heavier armament of the Chesapeake was of no avail. When Captain Loraine joined the Flying Corps he applied his great-grandfather's methods, and set himself by study, care, discipline, and skill to prepare the materials of victory. He was a highly skilled pilot, perhaps overbold. The machine he was flying on the 5th of July was the fast two-seater Nieuport monoplane on which Lieutenant Barrington-Kennett had achieved some records. It seems that he attempted too sharp a turn, lost flying speed, side-slipped, and nose-dived. He was only a few hundred feet up, and there was no time to save the crash. Those who knew him believe that he would have done much for the Flying Corps. He spared no pains to understand his business, and to make theory and practice help each other. Staff-Sergeant Wilson, who was killed with him, was the senior technical non-commissioned officer of No. 3 Squadron, a first-class man, and a heavy loss.

Other fatalities were to follow. On the 6th of September Captain Patrick Hamilton and Lieutenant A. Wyness-Stuart, flying a hundred horse-power Deperdussin monoplane on reconnaissance duties connected with the cavalry divisional training, crashed and were killed at Graveley, near Hitchin. Four days later Lieutenant E. Hotchkiss and Lieutenant C. A. Bettington, flying an eighty horse-power Bristol monoplane from Larkhill to Cambridge, crashed and were killed at Wolvercote, near Oxford. A committee was appointed to investigate these accidents, and in the meantime an order was issued by the War Office forbidding the use of monoplanes in the Royal Flying Corps. This order altered the scheme for the army manoeuvres, where it had been intended to allot a squadron of monoplanes to one force and a squadron of biplanes to the other, in order to compare results. No. 3 Squadron, nevertheless, assembled near Cambridge in such strength as it could muster; there were Major Brooke-Popham, Captain Fox, and Second Lieutenant G. de Havilland of the squadron; these were joined by Mr. Cody, who came as a civilian with his own machine, and by officers of the Naval Air Service, who flew Short biplanes.

The ban on monoplanes, it may be remarked in passing, was a heavy blow to one of the earliest pioneers of aviation in this country. Mr. L. Howard Flanders, who had worked with Mr. A. V. Roe at Lea Marshes, and had designed the 'Pup' monoplane for Mr. J. V. Neale at Brooklands, had subsequently formed a company for the building of aeroplanes, with works at Richmond. He obtained a War Office contract for four monoplanes, but when, after trial, he was engaged in reconstructing the under-carriages, the use of the monoplane was forbidden to army pilots. This and other disappointments put an end to Mr. Flanders's building activities, but his name deserves record among the pioneers.

When Lieutenant B. H. Barrington-Kennett of the Grenadier Guards became adjutant of the Military Wing of the Royal Flying Corps he made a vow that the corps should combine the smartness of the Guards with the efficiency of the Sappers. In spite of difficulties and disasters, the corps went far, in the first two years of its existence, towards attaining that ideal. In the summer of 1912 the Central Flying School at Upavon got to work, and thenceforward supplied a steady stream of trained reinforcements for the corps. There was inevitable delay at first; but as soon as some of the new wooden buildings were nearing completion they were taken over, and on the 19th of June the school was opened. The plan was that there should be three courses every year, each of them lasting three months and passing on its graduates for further training either with the military squadrons or at the naval school. The first course began on the 17th of August 1912, and was not completed until the end of December, but the subsequent courses were punctually completed in the time prescribed. The delay in the first course was due chiefly to a shortage of machines. The use of monoplanes was forbidden, and the nineteen pupils who presented themselves in August had to be instructed on the only four available biplanes, which were soon damaged by the maiden efforts of the learners. For a short time the pupils were sent on leave, and the school was closed; then new machines and new recruits began to arrive, and the work of education went forward. Besides the main business of flying, the pupils were instructed and examined in map-reading and signalling, the management of the internal-combustion engine, and the theoretical aspects of the art of reconnaissance. Of a total of thirty-four pupils who were examined at the end of the course, only two failed to pass. During the next year and a half, up to the very eve of the war, the work of the school went on steadily, with improving material and increasing efficiency. There were three fatal accidents: on the 3rd of October 1913 Major G. C. Merrick was killed on a Short biplane; on the 10th of March 1914 Captain C. P. Downer, on a B.E. biplane; and on the 19th of March 1914 Lieutenant H. F. Treeby, on a Maurice Farman biplane. On an average about thirty officers passed out from the school, into one branch or another of the service, at the end of each course. Most of these were army officers, but there was also a fair number of naval officers, marine officers, and naval volunteer and civilian reservists. The school was run on army lines, so that a good deal of adjustment and tact were called for in dealing with the navy pupils, who were accustomed to a more generous scale of allowances and a different system of discipline. But the resolve to make a success of the new air force prevailed over lesser difficulties, and harmony was maintained.

The steady flow of recruits from Upavon soon enabled the Military Wing of the Royal Flying Corps to form new squadrons. These squadrons all started in the same fashion; they hived off, so to say, from the earlier squadrons. As early as September 1912, a part of Major Burke's squadron, stationed at Farnborough, was detached, and became the basis of No. 4 Squadron, commanded by Major G. H. Raleigh, of the Essex Regiment, who had joined the Air Battalion just before the birth of the Royal Flying Corps. In August 1913 a single flight of Major Brooke-Popham's squadron became the basis of No. 5 Squadron, under Major J. F. A. Higgins. In January 1914 No. 6 Squadron, under Captain J. H. W. Becke, of the Notts. and Derby Regiment, and in May 1914 No. 7 Squadron, which was commanded later by Major J. M. Salmond, began to be formed at Farnborough.

The history of the Military Wing of the Royal Flying Corps before the war may be best illustrated by a more detailed account of the doings of the two earliest squadrons, commanded by Major Brooke-Popham and Major Burke. These showed the way to the others. There was no generally recognized orthodox method of training flying men for the purposes of war. Most of the work of the early squadrons was, in the strictest sense of the word, experimental. There was at first a vague idea, expressed in the Army Estimates of 1912, that the Royal Aircraft Factory was responsible for experiments, and that the squadrons had only to apply methods and use machinery already tested and approved by others. But it was soon found that the problems of the air could not be effectively anticipated in the laboratory. They were many of them soldiers' problems. The man who is to meet the enemy in the air, and to be shot at, has a quick imagination in dealing with such matters as the protective colouring of aircraft, their defences against enemy bullets, or the designing of them so as to give a good field of fire to any weapon that they carry; and he takes a lively personal interest in such questions as stability, speed, rate of climbing, and ease in handling. The ultimate appeal on the various devices, for the use by aircraft of musketry, gunnery, photography, wireless telegraphy, bomb-dropping, and signalling, must in the long run be made to the pilot. If he is prejudiced, and sometimes prefers a known evil to an unknown good, his hourly experiences and dangers are a wonderful solvent of that prejudice. It is not in the laboratory that the Derby is won, or the manoeuvres and tactics of the air worked out.

Major Brooke-Popham's squadron on Salisbury Plain was the first to get to work. In its origin, as has been told, it was the old aeroplane company of the Air Battalion, so that it was free from some of the difficulties which attend the creation of a new unit. It had at its disposal about ten machines of various types, and, for transport, one Mercedes car belonging to Captain Eustace Loraine and another belonging to the Government. Besides instructional flights and practice in reconnaissance, which were of course a regular part of the business of the squadron, it devoted its attention at once to co-operation with other arms, and especially to the observation of artillery fire. It was fortunate in getting the whole-hearted support of Colonel the Hon. F. Bingham, who was at that time commandant of the school at Shoeburyness, and chief instructor of the artillery practice camp at Larkhill. The great difficulty was to devise a sufficient method of signalling to the guns. Wireless telegraphy, which was destined to provide the solution of this problem, was then at an early stage of its development, and the apparatus was too cumbrous and heavy to be carried on the machines. Experiments were made with flags, with written messages carried back and dropped to the gunners, and finally with coloured Very lights. Progress was slow. Only a small amount of ammunition was allowed to the gunners. On windy days flying was far from safe; on calm days there was sometimes fog, or, if the weather was hot, the air became dangerously bumpy. Nevertheless the squadron flew in strong winds, and took every opportunity of demonstrating to the troops on the plain that it was worth their while to cultivate relations with the new arm. Towards the end of May there was a big field day, and though the wind was almost a gale, four machines went up, flown by Major Brooke-Popham, Captain Fox, Captain Hamilton, and by Major Burke, who had come over from Farnborough on purpose. The important thing at this time, and for long after, was to show the infantry what aeroplanes could do for them. At a later time, during the war, it became necessary to teach the infantry what aeroplanes could not do for them—that they could not, for instance, supply them with a complete defence against enemy aircraft.

At the beginning of August 1912 Military Aeroplane Trials took place on Salisbury Plain. These trials were competitions, arranged by the War Office, to determine the type of aeroplane best suited to the requirements of the army. One competition, with a first prize of L4,000, was open to the world; the other, with a first prize of L1,000, was limited to aeroplanes manufactured wholly, except for the engines, in the United Kingdom. The judges were Brigadier-General Henderson, Captain Godfrey Paine, Mr. Mervyn O'Gorman, and Major Sykes. The tests imposed and the award of the prizes showed clearly enough that what the military authorities were seeking was a strong, fairly fast machine, a good climber, able to take off and alight on uneven ground and to pull up within a short distance after alighting. Further, a high value was attached to range of speed, that is, to the power of flying both fast and slow, and to a free and open view from the seat of the observer. Both the first prizes were won by Mr. Cody on his own biplane, which was of the 'canard', or tail-first type, and was fitted with an Austro-Daimler engine of a hundred and twenty horse-power. The winning machine did not in the end prove to be suitable for army purposes, and only a few were ordered, but the trials gave timely and needed encouragement to the aeroplane industry. The army machines and the army pilots were, of course, not eligible for these competitions, but the factory machine B.E. 2 made a great impression on those who saw it fly. It was in this machine that Mr. G. de Havilland, with Major Sykes as passenger, created a British record by rising to a height of 9,500 feet in one hour and twenty minutes. A few years later, when the war had quickened invention, a good two-seater machine could rise to that height in less than ten minutes. The only engine of British manufacture which completed all the trials was a sixty horse-power Green engine, fitted in an Avro machine.

Certainly the British public did not know what was being done for them, against the real day of trial, by the handful of officers who foresaw that that day would soon come, and who strove unceasingly to be prepared for it. About two hundred members of Parliament came down to Salisbury Plain on the 8th of August to witness the competition of the aeroplanes in the Military Trials. The wind was judged to be too tempestuous for flying, and the flights were limited to a few short circuits round the aerodrome in the afternoon. On the morning of that same day a brigade of territorials, training at Wareham, asked for a couple of military machines to co-operate with them. Major Brooke-Popham and Lieutenant G. T. Porter started off in an Avro, and, a little later, Captain Hamilton followed in his Deperdussin. The wind was so strong that Captain Hamilton could make no headway, and was obliged to turn back. Major Brooke-Popham and Lieutenant Porter battled their way to Wareham, but could not get farther to co-operate with the troops, and flew back to the plain in the afternoon. On their arrival there they found that the wind had abated a little, and that flying had just begun in the trials. The next day the newspapers published long accounts of the exhibition flying over the aerodrome, with a single line at the end recording that 'military airmen also flew'.

In the early days of September No. 3 Squadron co-operated in the cavalry divisional training, but without much success. The weather was bad, and the cavalry, being preoccupied with their own work, had not much attention to spare for the aeroplanes. In France, a year earlier, aeroplanes had been systematically practised with cavalry, sometimes to direct a forced march, sometimes to detect dummy field works, prepared to deceive the cavalry and to lead them into a trap.

But if their co-operation with the cavalry was imperfect and disappointing, the work done by aeroplanes a few days later, during the army manoeuvres, was a complete vindication of the Flying Corps. There were two divisions on each side; the attacking force, under Sir Douglas Haig, advanced from the east; the defending force was commanded by General Grierson. The services rendered to the defence by the airship Gamma have already been described. The fatal accidents of the summer and the consequent prohibition of monoplanes diminished the available force of aeroplanes, but a squadron of seven was allotted to each side. Major Burke's squadron, with its headquarters at Thetford, operated with the attacking force; Major Brooke-Popham was with the defence at Cambridge. Operations started at six o'clock on the morning of Monday, the 16th of September. At a conference on Sunday afternoon, General Briggs, who commanded the cavalry on the side of the defence, told General Grierson that the forces were far apart, and he could not hope to bring in any definite information till Tuesday. General Grierson was then reminded by his chief staff officer that he had some aeroplanes. 'Do you think the aeroplanes could do anything?' he asked of Major Brooke-Popham, and on hearing that they could, ordered them to get out, 'and if you see anything, let us know.' Monday morning was fine and clear; the aeroplanes started at six o'clock; soon after nine o'clock they supplied General Grierson with complete, accurate, and detailed information concerning the disposition of all the enemy troops. During the rest of the manoeuvres he based his plans on information from the air. On his left flank there were only two roads by which the enemy could advance; he left this flank entirely unguarded, keeping one aeroplane in continual observation above the two roads, and so was able to concentrate the whole of his forces at the decisive point. In the course of a few days the aeroplanes rose into such esteem that they were asked to verify information which had been brought in by the cavalry.

Air Commodore C. A. H. Longcroft, who flew in Major Burke's squadron on the attacking side, has kindly set down some of his memories of this time. The work of the Flying Corps, he says, was impeded by the enormous crowds which used to collect round the hangars. But the weather was good, and it was soon found that no considerable body of troops could move without being seen from the air. To avoid observation the troops moved on either side of the road, under the hedges. They even practised a primitive sort of camouflage, covering wagons and guns with branches of trees, which, while they were on the road, made them more conspicuous than ever. This first experience of moving warfare taught many lessons. The difficulty of communication between pilot and observer when the voice is drowned in the noise of the engine was met by devising a code of signals, and many of these signals continued in use throughout the war, after speaking-tubes had been fitted to machines. The selection of landing grounds when moving camp, the methods of parking aeroplanes in the open, and the means of providing a regular supply of fuel, were all studied and improved.

In another way these manoeuvres, which were witnessed by General Foch, were a date in the progress of army aviation. No weapon, however good, can be of much use in the hands of those who have not learned to trust it. The progress of the aeroplane was so rapid that the education of commanding officers in its use became a thing of the first importance. Some of them, even when war broke out, had had but few opportunities of testing the powers of aeroplanes.

After the manoeuvres No. 3 Squadron returned to Larkhill, to do battle all the winter with the old difficulties. The officers were accommodated at an inn called the 'Bustard', about two and a half miles to the west of the Larkhill sheds; the men were at Bulford camp, three miles to the east of the sheds. After a time the men were shifted to the cavalry school at Netheravon, which, though it was a little farther off, gave better quarters. Meantime a new aerodrome was being made, with sheds complete, at Netheravon, for the use of the squadron. The winter was passed in the old exercise of co-operation with the artillery and in new experiments. At Easter a 'fly past' of aeroplanes took place at a review of a territorial brigade on Perham Down. General Smith-Dorrien, who reviewed the troops, took the salute from the aeroplanes. There was a cross-wind, so that the symmetry of the spectacle was a little marred by the crab-like motion of the aeroplanes, which had to keep their noses some points into the wind to allow for drift.

Several officers joined during the winter, and the squadron began to be better supplied with machines. For the manoeuvres of 1913 it was made up to war strength both in aeroplanes and transport. These manoeuvres, however, did not give much opportunity to aeroplanes; the idea was that four divisions, and with them No. 3 Squadron, should operate against a skeleton army. The squadron had next to nothing to observe; the other side had plenty to observe, but could not get full value out of their skeleton force. The tactics of the air had hardly reached the point at which a theoretic trial of this kind might have been of value. Yet a good deal was learnt by the Flying Corps from these manoeuvres. Major Brooke-Popham drew up a very full report on them, and in the following winter Lieutenant Barrington-Kennett, under the title 'What I learnt on Manoeuvres, 1913', brought together the information he had obtained as adjutant from the talk and written statements of those who took part in them. Both reports show a relentless attention to detail, and an unfailing imagination for the realities of war. The squadron had twelve machines at work during the manoeuvres. Of these one was wrecked. Two had to be brought home by road, one for lack of spare parts, the other because it had been taken over with a damaged engine—both avoidable accidents. The one wrecked machine, Major Brooke-Popham remarks, does not represent the loss that would have occurred on a campaign. Four machines had to land, and would have been captured in war. That is to say, the loss amounted, to five machines in four days, or one-tenth of the force every day.

One of the lessons learnt at the manoeuvres was that accurate observations could be made from a height of at least six thousand feet. This was one of those many things which, having been habitually ridiculed by theorists, are at once established by those who make the experiment. So high flying came into fashion, and brought with it a new set of problems concerning the effect of atmospheric height on the human body and on the aeroplane engine.

The total mileage covered by the machines on divisional and army manoeuvres was 4,545 miles on reconnaissance and 3,310 miles on other flights. Among the many suggestions made by Major Brooke-Popham for improving the efficiency of the corps, some of the most important have been vindicated by the subsequent experience of the war. It is necessary, he says, that the Flying Corps should be taken seriously by commanders and their staffs. The work of the flying officers involves strain and danger; it is not enough that they should be praised for skill and daring; they must feel that their information is wanted, that an accurate report will be used, and that failure to obtain information from the air will be treated as worthy of censure. If a squadron commander finds that no one cares for the information he brings, he will keep his machines on the ground in rough weather. On divisional manoeuvres the Flying Corps were not always made to feel that they were wanted.

No great stress, perhaps, should be laid on this complaint; it belongs to the early days of military flying, and its date is past. A new invention is often slow in gaining recognition. When its utility is as great as the utility of flying a little experience soon converts objectors. What was important was that the experience should be gained before the war. Observers in the early months of the war sometimes found it difficult to convince the military command that their reports were true.

The value of information, says Major Brooke-Popham, depends also upon the rapidity with which it is handed in to the proper quarters. 'More than once movements of a hostile cavalry brigade were seen within a few miles of our own troops. The information was not of great value to the Commander-in-Chief, but was of great importance to the advanced guard or cavalry commander, yet by the time it had got out to him from headquarters probably two hours or more had elapsed.' This delay was sometimes avoided on manoeuvres by dropping messages from the air, but the whole large question of the relations of the Flying Corps to the various army commands and the organization of the machinery of report was left until the pressure of war compelled an answer. Then, during the first winter of the war, when the growth of the Flying Corps allowed of more complex arrangements, the machinery was decentralized, and subordinate commanders were furnished directly with the information most needed by them.

Lieutenant Barrington-Kennett's essay well illustrates his keenness and foresight in preparing the corps for their ordeal of 1914. He was a great disciplinarian, he knew every officer and man individually, he was universally liked, and he did more perhaps than any one else to hold the corps together and to train it in an efficient routine. He knew—no one better—that the corps, though it did its work in the air, had to live on the ground, and that its efficiency depended on a hundred important details. Here are some of his suggestions:

Landing-grounds should be chosen, if possible, from the air, to avoid the employment of numerous parties of officers touring the country in cars. The drivers of lorries and cars should be trained in map-reading. Semaphore signalling should be taught to all ranks, to save the employment of messengers. There should be oil lorries for the distribution of petrol, and leather tool-bags to be carried on motor-bicycles to the scene of an engine break-down. Acetylene and petrol are better illuminants than paraffin for working on machines by night. Experiments should be made in towing aeroplanes, swinging freely on their own wheels, behind a motor-lorry; they are often damaged when they are carried on lorries. Recruits for the motor transport should be taught system in packing and unloading, and should be trained in march discipline. All recruits should be drilled in the routine of pitching and striking camp. All ranks should know something of field cookery. The main lessons of the manoeuvres, the writer says, are first, that subsidiary training in the business of soldiering is of enormous importance; and, second, that responsibility must be regularly distributed, and duties allotted, so that when the strain of war comes, the whole burden shall not crush the few devoted officers who have been eager to shoulder it in time of peace. The work of the pilots and mechanics of the British air service, he remarks in conclusion, is second to none; if only this work can be fitted into a solid framework of systematic administration and sound military discipline, the British Flying Corps will lead the world.

These are not the matters that a lover of romance looks for in a history of the war in the air. But they are the essentials of success; without them the brilliancy of individual courage is of no avail. War is a tedious kind of scholarship. When Sir Henry Savile was Provost of Eton in the reign of Elizabeth, and a young scholar was recommended to him for a good wit, 'Out upon him,' he would say, 'I'll have nothing to do with him; give me the plodding student. If I would look for wits, I would go to Newgate; there be the wits.' It was by the energy and forethought of the plodding student that the Flying Corps, when it took the field with the little British Expeditionary Force, was enabled to bear a part in saving the British army, and perhaps the civilization of free men, from the blind onrush of the German tide.

The work of Major Brooke-Popham's squadron, during these years of preparation, included a great diversity of experiment. With the progress of flight it began to be realized that fighting in the air was, sooner or later, inevitable, and in the winter of 1913 a series of experiments was carried out at Hythe, by a single flight of No. 3 Squadron, under Captain P. L. W. Herbert, to determine the most suitable kind of machine-gun for use in aeroplanes. A large number of types were tested, and the Lewis gun was at last chosen, with the proviso that it should go through a series of tests on the ground. These took a long time, and it was not till September 1914 that the first machines fitted with Lewis guns reached the Flying Corps in France.

From the beginning of 1914 onwards, No. 3 Squadron also began a whole series of experiments in photography; Government funds were scanty, and the officers bought their own cameras. There was no skilled photographer among them, but they set themselves to learn. They devised the type of camera which was used in the air service until 1915, when Messrs. J. T. C. Moore-Brabazon and C. D. M. Campbell brought out their first camera. They would develop negatives in the air, and, after a reconnaissance would land with the negatives ready to print. In one day, at a height of five thousand feet and over, they took a complete series of photographs of the defences of the Isle of Wight and the Solent.

From time to time there were a good many adventures by members of the squadron outside the daily routine. The first night flight made by any officer of the Military Wing was made on the 16th of April, 1913, by Lieutenant Cholmondeley, who flew a Maurice Farman machine by moonlight from the camp at Larkhill to the Central Flying School at Upavon, and back again. Later in the year Commander Samson, of the Naval Wing, successfully practised night flying, without any lights on the machine or the aerodrome; but as a regular business night flying was not taken in hand by the squadrons until well on in the war. During the month of July 1913 Lieutenants R. Cholmondeley and G. I. Carmichael became evangelists for the Flying Corps; they went on a recruiting tour to Colchester, and gave free passenger trips to all likely converts among the officers of the garrison there. Long before this, in 1912, the squadron had begun to train non-commissioned officers to fly. The first of these to get his certificate was Sergeant F. Ridd. He had originally been a bricklayer, but after joining the Air Battalion had developed an extraordinary talent for rigging, and became an all-round accomplished airman. Others who were taught to fly soon after were W. T. J. McCudden, the eldest of the four brothers of that name, and W. V. Strugnell, who, later on, became a flight commander in France. The most famous of the McCuddens, James Byford McCudden, V.C., who brought down over fifty enemy aeroplanes, joined the squadron as a mechanic in 1913, and became a pilot in the second year of the war. In his book, Five Years with the Royal Flying Corps (1918), he says, 'I often look back and think what a splendid Squadron No. 3 was. We had a magnificent set of officers, and the N.C.O.'s and men were as one family.'

The other of the two pioneer aeroplane squadrons was formed at Farnborough in May 1912, and was put under the command of Major Charles James Burke, of the Royal Irish Regiment. Major Burke rendered enormous service to the cause of military flying. He took it up because he fully realized the importance of the part it was destined to play in war. He had served in the ranks in the South African War, and at the close of the war was commissioned in the Royal Irish Regiment, becoming captain in September 1909. In 1910 he learned in France to fly a Farman biplane, and obtained the aviation certificate of the French Aero Club. Thereafter he was employed at the balloon school, and in 1911 was attached to the newly-formed Air Battalion. He was something of a missionary, and in that same year contributed two papers to the Royal United Service Institution, one on Aeroplanes of To-day and their Use in War, the other on The Airship as an aid to the solution of existing strategical problems. On the formation of the Royal Flying Corps he was given command of No. 2 Squadron, which, after a time at Farnborough, was stationed as a complete unit at Montrose on the east coast of Scotland. He brought his squadron to a high state of efficiency, and on the outbreak of war flew with it to France. There he did good service, till he was invalided home in the summer of 1915 and became temporary commandant of the Central Flying School. In 1916 he was again in France. The war was taking a huge toll, and he rejoined his old regiment, which was in straits for officers. In the previous year Major Barrington-Kennett, under the same pressure, had returned to duty with the Grenadier Guards, and had been killed in action near Festubert. Colonel Burke rejoined the Royal Irish Regiment in the summer of 1916, and was killed on the 9th of April 1917, on the first day of the Arras offensive.

He impressed those who knew him by his character. He was not a good pilot, and was almost famous for his crashes. He was not a popular officer. He was not what would be called a clever man. But he was single-minded, and utterly brave and determined, careless alike of danger and of ridicule. There is often granted to singleness of purpose a kind of second sight which is denied to mere intelligence. Major Burke (to give him his earlier title) knew many things about military aviation and the handling of a squadron which it was left for the war to prove, and which, even with the experience of war to teach them, some commanding officers were slow to learn. A paper of 'Maxims' which he jotted down as early as 1912 contains many wise and practical remarks. Some of them are of general application, as, for instance, these:

When things are going well, the man in charge can give play to his fears.

Nothing is ever as good or as bad as it seems.

If you know what you want, you can do your part, and get others to do theirs. Most people don't know what they want.

But by far the greater number of them deal with aviation and its problems. Here are some worthy of remembrance:

Time in the air is needed to make a pilot.

In training pilots, no machine should go out without knowing what it is to do, do that and that alone, then land.

No young pilot should be allowed out in 'bumps' until he has done fifteen hours' piloting.

An aeroplane will live in any wind and a lifeboat in any sea, but they both want good and experienced men at the tiller.

When on the ground every one overrates his capacity for air work.

A squadron commander should want a good squadron, and not to be able to break records.

Waiting about on an aerodrome has spoilt more pilots than everything else put together.

This last truth will come home to all pilots who have flown on the war front. To have discovered it shows an instinct for command. Flying is a nervous business; there is no wear and tear harder on a war pilot than to be kept in attendance on an aerodrome, with the nerves at a high degree of tension, and perhaps to be dismissed in the end. A skilful and imaginative commander will use all possible devices to avoid or diminish these periods of strain.

Any account of Major Burke would be incomplete if it contained no mention of his famous machine, the first B.E. This machine was familiarly known to the officers of the early Flying Corps, most of whom—Sykes, Brancker, Brooke-Popham, Raleigh, Carden, Ashmore, Longcroft, and many others—had occasionally flown it. It was an experimental two-seater tractor biplane, designed as early as 1911 at the factory. At that time no funds were available for constructing aeroplanes of factory design. This difficulty was overcome by an expedient well known to all students of law. There was no money for construction, but there was money for repairs and overhaul. The first B.E. was created by the drastic repair and reconstruction of another machine. A Voisin pusher with a sixty horse-power Wolseley engine had been presented to the army by the Duke of Westminster, and was sent to the factory for repair. When it emerged, like the phoenix, from the process of reconstruction, only the engine remained to testify to its previous existence, and even that was replaced, a little later, by a sixty horse-power Renault engine. It was now the B.E. tractor, and in March 1912, some two months before the formation of the Royal Flying Corps, it was handed over to the Air Battalion, and was assigned to Captain Burke. It had a long and adventurous career, and was often flown at Farnborough for the testing of experimental devices. When at last it was wrecked, beyond hope of repair, in January 1915, it had seen almost three years of service, and had perhaps known more crashes than any aeroplane before or since. It was frequently returned to the factory for the replacement of the undercarriage and for other repairs. The first machine of its type, it outlived generations of its successors, and before it yielded to fate had become the revered grandfather of the whole brood of factory aeroplanes.

Many of the records of the early work of No. 2 Squadron, commanded by Major Burke, are missing. This was the first squadron sent out from Farnborough to occupy a new station, and to carry on its work as an independent unit. It may safely be presumed that a great part of the time spent at Farnborough was devoted to organization, and to preparation for the new venture. The shortage of machines was the main obstacle to early training. In May 1912 Captain G. H. Raleigh and Lieutenants C. A. H. Longcroft and C. T. Carfrae were sent for a month to Douai in France, to pick up what knowledge they could at the workshop where Breguet machines were being constructed for the Flying Corps. They then returned to Farnborough, where they began to practise cross-country flying. Much initial training was necessary before the squadron could be fitted for independence. In January 1913 it began to move north, by air and road and rail; by the end of February it was installed in its new quarters at Montrose. Five of the officers flew all the way: Captain J. H. W. Becke and Lieutenant Longcroft on B.E. machines, Captains G. W. P. Dawes and P. L. W. Herbert, Lieutenant F. F. Waldron on Maurice Farmans. The first stage of the flight was to Towcester on the 17th of February. One machine, piloted by Captain Becke, arrived at its destination that night. The others were stranded by engine failure, loss of direction, and the like. Lieutenant Longcroft had a forced landing at Littlemore, near Oxford, and spent the night in the Littlemore lunatic asylum. By the 20th all five machines had reached Towcester, and started on their next stages—to Newark and York. At Knavesmire racecourse, near York, part of a morning was spent in writing autographs for boys, some of whom, perhaps, may have become pilots in the later years of the war. On the 22nd the squadron moved off for Newcastle. It was a day of fog and haze; only two of the pilots found the landing-ground at Gosforth Park that night, and these two had to land many times to get their bearings. The directions given them would have been helpful to foot-travellers; but turnings in the road and well-known public-houses are not easy to recognize from the air. On the 25th the squadron moved to Edinburgh, and on the following morning to Montrose. At both places they were tumultuously received and liberally entertained. The mechanics in charge of the machines and transport did their business so well, often working at night, in the rain, with no sort of shelter, that both the transport lorries and the machines arrived at Montrose in perfect order.

At their new quarters training in flight and reconnaissance was strenuously carried on, and the squadron flew on an average about a thousand miles a week. Many non-commissioned officers and warrant officers were instructed in aviation. Some thirty miles south of Montrose, across the Firth of Tay, there is a three miles stretch of level sand at St. Andrews, and this was used for instruction in aviation—not without trouble and difficulty from the irresponsible and wandering habits of spectators. The more skilled of the pilots gained much experience in long-distance flying. All deliveries of new machines were made by air. Inspecting officers and other visitors to the camp were commonly met at Edinburgh in the morning, were then flown to Montrose to spend the day, and back again to Edinburgh in time to catch the night mail for the south.

In August 1913 Captain Longcroft, with Lieutenant-Colonel Sykes as passenger, flew from Farnborough to Montrose in one day, landing only once on the way, at Alnmouth. The machine was a B.E. fitted with a special auxiliary tank under the passenger's seat, and the time in the air for the whole journey was seven hours and forty minutes. In September 1913 six machines of the squadron took part in the Irish Command manoeuvres. The outward and homeward journeys by air, of about four hundred miles each way in distance, including the crossing of the Irish Sea, were the severest part of the test. The manoeuvre area was bad for aviation owing to the scarcity of good landing-grounds and the prevalence of mist and rain. Moreover, the opposing armies were separated by too small a distance to give full scope to the aeroplanes. The principal battle took place in a mountain defile. Each of the machines flew on an average about two thousand miles, that is to say, about a thousand miles in reconnaissance, and about a thousand in the journey to and fro. There was no case of engine failure, and no one landed in hostile territory. A statistical account of the work of the squadron from May 1913 to June 1914 shows that, during that time, of eighteen machines in constant use and subject to great exposure only three were wrecked. This fact speaks volumes for the efficiency of the squadron. They flew in all weathers, sometimes even when the wind was faster than the machines. More than once 'tortoise races' on Maurice Farmans were organized; the winner of these races was the machine that was blown back fastest over a given course.

The longest flight of all was made by Captain Longcroft in November 1913. In the front seat of a B.E. machine First-Class Air Mechanic H. C. S. Bullock fitted a petrol tank of his own design, estimated to give at least eight hours' fuel for the seventy horse-power Renault engine. On the 22nd of November Captain Longcroft started on this machine, and flew from Montrose to Portsmouth and back again to Farnborough in seven hours twenty minutes, without once landing.

Major Burke has left a diary for 1914; some of the entries in it go far to explain the causes of the efficiency of the squadron. No detail was too small for his attention; the discipline that he taught was the discipline of war. 'In practice,' he says, 'a man cannot always be on the job that will be given him on active service, but he should be trained with that in view, and every other employment must be regarded as temporary and a side issue. Further, though barracks must be kept spotlessly clean, this work must be done by the minimum number of men, in order to swell the numbers of those available for technical work and instruction.'

The importance of the main issue was ever present to his mind. In another entry he records how he reproved a young lieutenant, telling him that 'he must take his work seriously and make himself older in character'. Map-reading, signalling, propeller-swinging, car-starting, military training, technical training, the safety of the public, the prompt payment of small tradesmen ('which defeats accusation of Army unbusinesslike methods'); these and a hundred other cares are the matter of the diary. That they were all subordinate to the main issue appears in the orders which he gave to some of the pilots of No. 6 Squadron, at Dover, in the summer of 1914. Any pilot who met a Zeppelin, and failed to bring it down by firing at it, would be expected, he said, to take other measures, that is to say, to charge it. Not a few of the early war pilots were prepared to carry out these instructions.

The work done by the other early squadrons was similar in kind. No. 4 Squadron was formed at Farnborough in the autumn of 1912 under Major G. H. Raleigh, of the Essex Regiment, who had served with distinction in the South African War. After completing its establishment it moved to Netheravon, where it carried on practice in reconnaissance, co-operation with artillery, cross-country flying, night flying, and all the business of an active unit. The record of miles flown during 1913 by No. 4 Squadron hardly falls short of the record of the two senior squadrons; all three flew more than fifty thousand miles. When No. 5 Squadron was formed under Major Higgins a part of it was stationed for a time at Dover, and the squadron moved to new quarters at Fort Grange, Gosport, on the 6th of July, 1914, a month before the war. No. 6 Squadron was nearly complete when the war came, but No. 7 Squadron was very much under strength. Thus in August of that year four aeroplane squadrons were ready for war, another was almost ready, and another was no more than a nucleus. The rest of the magnificent array which served the country on the battle fronts was yet to make.

The month of June in 1914 was given up to a Concentration Camp at Netheravon. The idea of bringing the squadrons together in this camp seems to have originated with Colonel Sykes, whose arrangements were admirable in their detailed forethought and completeness. The mornings were devoted to trials and experiments, the afternoons to lectures and discussion on those innumerable problems which confront an air force. Tactical exercises, the reconnaissance of stated areas in the search for parties of men or lorries, photography, handling balloons, practice in changing landing-grounds, and the like, were followed by discussions of the day's work. Lieutenant D. S. Lewis and Lieutenant B. T. James took every possible opportunity, during the discussions, to urge the development of wireless telegraphy. In the speed and climbing tests the greatest success was achieved by a B.E. machine fitted with a seventy horse-power Renault engine. Much attention was paid to reconnaissance and to co-operation with other arms. There was a natural rivalry among the squadrons. Major Burke's squadron was reputed to have the best pilots, while the Netheravon squadrons had had more training in co-operation with other arms, and in the diverse uses of aeroplanes in war. But the unknown dangers which all had to share were a strong bond, and the spirit of comradeship prevailed. The officers and men of the Royal Flying Corps were makers, not inheritors, of that tradition of unity and gallantry which is the soul of a regiment, and which carries it with unbroken spirit through the trials and losses of war.

The single use in war for which the machines of the Military Wing of the Royal Flying Corps were designed and the men trained was (let it be repeated) reconnaissance. There had been many experiments in other uses, but though these had already reached the stage of practical application, it was the stress of the war which first compelled their adoption on a wide scale. The Military Wing was small—much smaller than the military air forces of the French or the Germans—it was designed to operate with an expeditionary force and to furnish that force with eyes. Its later developments, which added the work of hands to the work of eyes, were imposed on it by the necessities of war. Even artillery observation, which is the work of eyes, was at first no regular part of its duty. When the Germans were driven back from the Marne, and the long line of the battle front was defined and fixed, the business of helping the artillery became a matter of the first importance.

Many of the functions brilliantly performed during the course of the war by aeroplanes had been claimed, during the early days of aviation, as the proper province of the airship. A wireless installation for receiving and sending messages was too heavy for an aeroplane; it must be carried by an airship. No sufficient weight of bombs could be carried by an aeroplane; the airship was the predestined bombing machine. Machine-guns were difficult to work from an aeroplane; they were the natural weapon of the airship. Photography was a hope worthy of experiment, but even photography was thought to be best suited to the airship, and internal accommodation for a camera was not asked for or provided in an aeroplane. At the back of all this lay the strongest argument of all: the value of reconnaissance to the army was so great, and our military aeroplanes were so few, that it was impossible to spare any of them for less essential work. As the Flying Corps grew in numbers and skill it found breathing space to look around and to claim the duties that had been judged to be outside its scope.

As a nation we distrust theory. We learn very quickly from experience, and are almost obstinately unwilling to learn in any other way. Experience is a costly school, but it teaches nothing false. A nation which attends experience could never be hurried into disaster, as the Germans were hurried by a debauch of political and military theory, subtly appealing to the national vanity. To insure themselves against so foolish a fate the British are willing to pay a heavy price. They have an instinctive dislike, which often seems to be unreasonable in its strength, for all that is novel and showy. They are ready enough to take pleasure in a spectacle, but they are prejudiced against taking the theatre as a guide for life. This is well seen in the disfavour with which the practical military authorities regarded the more spectacular developments of aviation, which yet, in the event, were found to have practical uses. Looping the loop, and other kinds of what are now called 'aerobatics', were habitually disparaged as idle spectacles. Yet the 'Immelmann turn', so called, whereby a machine, after performing half a loop, falls rapidly away on one wing, was a manoeuvre which, when first used by the enemy, proved fatal to many of our pilots. The spin, at the outbreak of the war, was regarded as a fault in an aeroplane, due chiefly to bad construction; later on Dr. F. A. Lindemann, by his researches and courageous experiments at the Royal Aircraft Factory, proved that any aeroplane can spin, and that any pilot who understands the spin can get out of it if there is height to spare. During the war the spin was freely used by pilots to break off a fight, to simulate defeat, or to descend in a vertical path. Similarly, little stress was laid, at the beginning, on speed, for speed was not helpful to reconnaissance, or on climb and height, for it was believed that at three thousand feet from the ground a machine would be practically immune from gunfire, and that reconnaissance, to be effective, must be carried on below the level of the clouds. These misconceptions were soon to be corrected by experience. Another, more costly in its consequences, was that a machine-gun, when carried in an aeroplane, must have a large arc, or cone, of fire, so that the gun might be fired in any direction, up, down, or across. To secure this end guns had to be carried in the front of a pusher machine, which is slower and more clumsy than a tractor. But the difficulty of accurate firing from a flying platform at an object moving with unknown speed on an undetermined course was found to be very great. The problem was much simplified by the introduction of devices for firing a fixed machine-gun through the tractor screw, so that the pilot could aim his gun by aiming his aeroplane, or gun-platform, which responds delicately and quickly to his control.

When the war began we were not inferior in aerodynamical knowledge to the Germans or even to the French. Speaking at the Aeronautical Society in February 1914, Brigadier-General Henderson said, 'If any one wants to know which country has the fastest aeroplane in the world—it is Great Britain'. This was the S.E. 4, a forerunner of the more famous S.E. 5. If more powerful engines had been installed in the British machines of 1914, they would have given us a speed that the enemy could not touch. But we were preoccupied with the needs of reconnaissance, and we cared little about speed. In the early part of the war we hampered our aeroplanes with fitments, cameras, and instruments, which were attached as protuberances to the streamlined body of the aeroplane and made speed impossible. In the Flying Corps itself an aeroplane thus fitted was commonly called a Christmas tree. We thought too little of power in the engine, a mistake not quickly remedied, seeing that the time which must elapse between the ordering of an engine and its production in quantity is, even under pressure, a period of about twelve months. The engines available at the outbreak of the war for British military aircraft were the seventy horse-power Renault and the eighty horse-power Gnome. In Germany airship engines of two hundred horse-power and more, easily modified for use in aeroplanes, were available in quantity some time before the war. For military machines we were satisfied with smaller engines, which worked well, and enabled our aeroplanes to accomplish all that at that time seemed likely to be asked of them. If we were wrong we were content to wait for experience to correct us.

The problems presented to the Naval Wing of the Royal Flying Corps were widely different from those which engrossed the attention of the soldiers. The difference, to put it briefly, was the difference between defence and attack. The British army does not fight at home, and this privilege it enjoys by virtue of the constant vigilance of the British navy. The ultimate business of the British navy, though it visits all the seas of the world, is home defence. Yet that defence cannot be effectively carried out at home, and when we are at war our frontiers are the enemy coasts and our best defence is attack. This old established doctrine of naval warfare is the orthodox doctrine also of aerial warfare. A mobile force confined to one place by losing its mobility loses most of its virtue. The fencer who does nothing but parry can never win a bout, and in the end will fail to parry. The recognition of this doctrine in relation to aerial warfare was gradual. When the Royal Flying Corps was established and the question of the defence of our coasts by aircraft first came under discussion, our available airships, aeroplanes, and seaplanes, though their development had been amazingly rapid, were weapons without much power of offence. The main thing was to give them a chance of proving and increasing their utility. In October 1912 the Admiralty decided to establish a chain of seaplane and airship stations on the east coast of Great Britain. The earliest of these stations, after Eastchurch, was the seaplane station of the Isle of Grain, commissioned in December 1912, with Lieutenant J. W. Seddon as officer in command. This was followed, in the first half of 1913, by the establishment of similar stations at Calshot, Felixstowe, Yarmouth, and Cromarty. H.M.S. Hermes, in succession to H.M.S. Actaeon, was commissioned on the 7th of May 1913 as headquarters of the Naval Wing, and her commanding officer, Captain G. W. Vivian, R.N., was given charge of all coastal air stations. For airships a station at Hoo on the Medway was established with two double sheds of the largest size; it was called Kingsnorth, and was completed in April 1914, by which time all military airships had been handed over to the Admiralty. All the seaplane stations were in a sense offshoots of Eastchurch, which continued to be the principal naval flying school. Except for some valuable experimental work, not very much was done before the war at the seaplane coast stations. The supply of machines was small, and when the bare needs of Eastchurch and Grain had been met, not enough remained for the outfit of the other stations. Nevertheless the zeal of the naval pilots, encouraged and supported by the First Lord of the Admiralty (Mr. Winston Churchill) and by the Director of the Air Department (Captain Murray Sueter), wrought good progress in a short time. The first successful seaplane was produced at Eastchurch, as has been told, in March 1912. Just before the war, the Naval Wing of the Royal Flying Corps had in its possession fifty-two seaplanes, of which twenty-six were in flying condition, and further, had forty-six seaplanes on order. Those who know how difficult it is to get new things done will easily recognize that this measure of progress, though perhaps not very impressive numerically, could never have been achieved save by indomitable perseverance and effort. Sailors are accustomed to work hard and cheerfully under adverse conditions.

In the naval manoeuvres of July 1913 the Hermes, carrying two seaplanes, which were flown from its launching platform, operated with the fleet. Four seaplanes and one aeroplane from Yarmouth, three seaplanes from Leven, and three from Cromarty, also bore a part. The weather was not good, and the manoeuvres proved that the smaller type of seaplane was useless for work in the North Sea. Any attempt to get these machines off the water in a North Sea 'lop' infallibly led to their destruction. Further, it was found necessary for the safety of pilots that every machine should be fitted with wireless telegraphy. A machine fitted with folding wings was flown from the Hermes by Commander Samson, and was found to be the best and most manageable type.

In a minute dated the 26th of October 1913 the First Lord of the Admiralty sketches a policy and a programme for the ensuing years. Aeroplanes and seaplanes, he remarks, are needed by the navy for oversea work and for home work. He recommends three new types of machine: first, an oversea fighting seaplane, to operate from a ship as base; next, a scouting seaplane, to work with the fleet at sea; and last, a home-service fighting aeroplane, to repel enemy aircraft when they attack the vulnerable points of our island, and to carry out patrol duties along the coast. The events of the war have given historic interest to all forecasts prepared before the war. Mr. Churchill's minute is naturally much concerned with the Zeppelin, which should be attacked, he says, by an aeroplane descending on it obliquely from above, and discharging a series of small bombs or fireballs, at rapid intervals, so that a string of them, more than a hundred yards in length, would be drawn like a whiplash across the gas-bag. This is a near anticipation of the method by which Flight Sub-Lieutenant R. A. J. Warneford brought down a Zeppelin in flames between Ghent and Brussels on the 7th of June 1915. The immense improvements in construction which were wrought by the war may be measured by Mr. Churchill's specifications for the rate of climb of the two-seater aeroplanes and seaplanes—namely, three thousand feet in twenty minutes. When he drafted his scheme that was a good rate of climb; before the war ended there were machines on the flying fronts which could climb three thousand feet in two minutes.

Under the direction of the Air Department much attention was paid by pilots in the Naval Air Service to experimental work and the diverse uses of aeroplanes. So early as January 1912 Lieutenant H. A. Williamson, R.N., a submarine officer who had gained the Royal Aero Club certificate, submitted to the Admiralty a paper which anticipated some later successes. He advocated the use of aeroplanes operating from a parent ship for the detection of submarines, and showed how bombs exploding twenty feet below the surface might be used to destroy these craft. The practical introduction of depth charges was delayed for years by the difficulty of devising the delicate and accurate mechanism which uses the pressure of the water to explode the bomb at a given depth. But before the war ended the detection of submarines from the air and the use by surface craft of depth charges for destroying them had been brought to such a degree of efficiency that the submarine menace was countered and held. The submarine learned to fear aircraft as the birds of the thicket fear the hawk. It would be tedious to attempt to describe the long series of experiments by which this result was at last attained. The earliest attempts to detect submarines from the air were made with seaplanes at Harwich in June 1912, and at Rosyth in September of the same year. The shallow tidal waters were found to be very opaque, but in clear weather a periscope could be seen from a considerable distance, and in misty weather the seaplane, when it sighted a submarine in diving trim on the surface, could swoop down and drop a bomb before the submarine could dive.

Progress in bomb-dropping was not less. Nothing is easier than to drop a detonating bomb, with good intentions, over the side of an aeroplane; the difficulty of hitting the mark lay in determining the flight of the bomb and in devising an efficient dropping gear. To drop a weight from a rapidly moving aeroplane so that it shall hit a particular spot on the surface of the earth is not an easy affair; the pace and direction of the machine, its height from the ground, the shape and air resistance of the bomb, must all be accurately known. They cannot be calculated in the air; success in bomb-dropping depends on the designing of a gear for dropping and sighting which shall perform these calculations automatically. Very early in the history of aviation dummy bombs had been dropped, for spectacular purposes, at targets marked on the ground. The designing of an efficient dropping gear and the study of the flight of bombs were taken up by the Air Department of the Admiralty from the very first. Under their direction a very valuable series of experiments was carried out at Eastchurch, at first by Commander Samson, and later by Lieutenant R. H. Clark Hall, a naval gunnery lieutenant, who had learnt to fly, and was appointed in March 1913 for armament duties with the Royal Naval Air Service.

The whole subject was new. No one could tell exactly how the flight of an aeroplane would be affected when the weight of the machine should be suddenly lightened by the release of a large bomb; no one could be sure that a powerful explosion on the surface of the sea would not affect the machine flying at a moderate height above it. In 1912 a dummy hundred-pound bomb was dropped from a Short pusher biplane flown by Commander Samson, who was surprised and pleased to find that the effect on the flight of the machine was hardly noticeable. In December 1913 experiments were carried out to determine the lowest height at which bombs could be safely dropped from an aeroplane. No heavy bombs were available, but floating charges of various weights, from 2-1/4 pounds to 40 pounds, were fired electrically from a destroyer, while Maurice Farman seaplanes flew at various heights directly above the explosion. Again the effect upon the machines was less than had been anticipated. The general conclusion was that an aeroplane flying at a height of 350 feet or more could drop a hundred-pound bomb, containing forty pounds of high explosive, without danger from the air disturbance caused by the explosion.

A good war machine aims at combining the safety of the operator with a high degree of danger to the victim. The second of these requirements was the more difficult of fulfilment, and was the subject of many experiments. Until the war took the measure of their powers, the German Zeppelins preoccupied attention, and were regarded as the most important targets for aerial attack. The towing of an explosive grapnel, which, suspended from an aeroplane, should make contact with the side of an airship, was the subject of experiments at Eastchurch. This idea, though nothing occurred to prove it impracticable, was soon abandoned in favour of simpler methods—the dropping, for instance, of a series of light bombs with sensitive fuses, or the firing of Hales grenades from an ordinary service rifle. To make these effective, it was essential that they should detonate on contact with ordinary balloon fabric, and preliminary experiments were carried out at the Cotton Powder Company's works at Faversham in October 1913.

When two sheets of fabric, stitched on frames to represent the two skins of a rigid airship, were hit by a grenade of the naval type with a four-ounce charge, it was found that the front sheet was blown to shreds and the rear sheet had a hole about half a foot in diameter blown in it. Later experiments at Farnborough against balloons filled with hydrogen, and made to resemble as nearly as possible a section of a rigid airship, were completely successful. Firing at floating targets, and at small target balloons released from the aeroplanes, was practised at Eastchurch. It was found that, with no burst or splash to indicate where the shot hit, this practice was unprofitable. The effective use of small-bore fire-arms against aircraft was made possible by two inventions, produced under the stress of the war itself, that is to say, of the tracer bullet, which leaves behind it in the air a visible track of its flight, and of the incendiary bullet, which sets fire to anything inflammable that it hits.

At the outbreak of war the only effective weapon for attacking the Zeppelin from the air was the Hales grenade. Of two hundred of these which had been manufactured for the use of the Naval Wing many had been used in experiment; the remainder were hastily distributed by Lieutenant Clark Hall among the seaplane stations on the East Coast.

The Naval Air Service experimented also with the mounting of machine-guns on aeroplanes. On this matter Lieutenant Clark Hall, early in 1914, reported as follows:

'Machine-gun aeroplanes are (or will be) required to drive off enemy machines approaching our ports with the intention of obtaining information or attacking with bombs our magazines, oil tanks, or dockyards.... I do not think the present state of foreign seaplanes for attack or scouting over our home ports is such as to make the question extremely urgent, but I would strongly advocate having by the end of 1914 at each of our home ports and important bases at least two aeroplanes mounting machine-guns for the sole purpose of beating off or destroying attacking or scouting enemy aeroplanes.'

From what has been said it is evident that the Naval Wing of the Royal Flying Corps paid more attention than was paid by the Military Wing to the use of the aeroplane as a fighting machine. This difference naturally followed from the diverse tasks to be performed by the two branches of the air service. The Military Wing, small as it was, knew that it would be entrusted with the immense task of scouting for the expeditionary force, and that its business would be rather to avoid than to seek battle in the air. The Naval Wing, being entrusted first of all with the defence of the coast, aimed at doing something more than observing the movements of an attacking enemy. Thus in bomb-dropping and in machine-gunnery the Naval Wing was more advanced than the Military Wing. Both wings were active and alive with experiment, so that after a while experimental work which had originally been assigned to the factory and the Central Flying School was transferred to the Wing Headquarters. During the year 1913 wireless experiments were discontinued at the Central Flying School, and were concentrated at the Military Wing. There was a valuable measure of co-operation between the two wings. This co-operation was conspicuous, as has been seen, in wireless telegraphy, which was first applied to aircraft at Farnborough. The lighter-than-air craft, which belonged first to the army and then to the navy, were a valuable link between the two wings. Each wing was ready to learn from the other. In January 1914, by permission of the Admiralty, officers of the Military Wing witnessed the experiments made by the Naval Wing with bomb-dropping gear. If the Naval Wing in some respects made more material progress, it should be remembered that they received more material support. They were encouraged by the indefatigable Director of the Air Department, and received from the Admiralty larger grants of money than came to the Military Wing. No doubt a certain spirit of rivalry made itself felt. Service loyalty is a strong passion, and the main tendency, before the war, was for the two branches of the air service to drift apart, and to attach themselves closely, the one to the army, the other to the navy.

At the end of 1913 H.M.S. Hermes was paid off, and the headquarters of the Naval Wing was transferred to the Central Air Office, Sheerness. All ranks and ratings hitherto borne on the books of the Hermes were transferred to the books of this newly created office, and Captain F. R. Scarlett, R.N., late second in command of the Hermes, was placed in charge, with the title of Inspecting Captain of Aircraft. He was responsible to the Director of the Air Department, and, in regard to aircraft carried on ships afloat, or operating with the fleet, was also directly responsible to the Commander-in-Chief of the Home Fleets. In some respects the progress made by the Naval Wing of the Royal Flying Corps during 1913 had been continuous and satisfactory. Training had been carried on regularly at the Central Flying School, at Eastchurch, and, for airship work, at Farnborough. By the end of the year there were about a hundred trained pilots. Stations for guarding the coast had been established in five places other than Eastchurch, and arrangements were in hand for doubling this number. The record of miles flown during the year by naval aeroplanes and seaplanes was no less than 131,081 miles. Wireless telegraphy had made a great advance; transmitting sets were in course of being fitted to all seaplanes, and the reception of messages in aeroplanes had been experimentally obtained. Systematic bomb-dropping had been practised with growing accuracy and success. A system for transmitting meteorological charts from the Admiralty, so that air stations and aircraft in the air should receive frequent statements of the weather conditions, had been brought into working order.

On the other hand, all these advances were experimental in character, and no attempt had been made to equip the force completely for the needs of war. In this matter there is perhaps something to be said on both sides. Where munitions are improving every year, too soon is almost as bad as too late. In fact, at the beginning of the war the Naval Air Service had only two aeroplanes and one airship fitted with machine-guns. Of the aeroplanes, one carried a Maxim gun, another a Lewis gun, loaned to the Admiralty by Colonel Lucas, C.B., of Hobland Hall, Yarmouth. No. 3 Airship (the Astra-Torres) was fitted with a Hotchkiss gun. The offensive weapon carried by other machines was a rifle. The various air stations were not liberally supplied with munitions of war. The Isle of Grain had four Hales hand-grenades. Hendon (the station for the defence of London) and Felixstowe had twelve each. The other stations were supplied in a like proportion, except Eastchurch, which had a hundred and fifty hand-grenades, forty-two rifle grenades, twenty-six twenty-pound bombs, and a Maxim gun. When the war broke out, a number of six-inch shells were fitted with tail vanes and converted into bombs.

On the 1st of July 1914 the separate existence of the naval air force was officially recognized. The Naval Wing of the Royal Flying Corps became the Royal Naval Air Service, with a constitution of its own. The naval flying school at Eastchurch and the naval air stations on the coast, together with all aircraft employed for naval purposes, were grouped under the administration of the Air Department of the Admiralty and the Central Air Office. So, for a time, the national air force was broken in two. The army and the navy had been willing enough to co-operate, but the habits of life and thought of a soldier and a sailor are incurably different. Moreover, the tasks of the two wings, as has been said, were distinct, and neither wing was very well able to appreciate the business of the other. The Naval Wing had not the transport or equipment to operate at a distance from the sea, and, on the other hand, was inclined to insist that all military aeroplanes, when used for coast defence, should be placed under naval command. The Military Wing was preoccupied with continental geography and with strategical problems. The two attitudes and two methods lent a certain richness and diversity to our air operations in the war. When Commander Samson established himself at Dunkirk during the first year of the war, his variegated activities bore very little resemblance to the operations of the military squadrons on the battle-front.

The review of the fleet by the King, at Spithead, from the 18th to the 22nd of July 1914, gave to the Royal Naval Air Service an opportunity to demonstrate its use in connexion with naval operations. Most of the available naval aircraft were concentrated at Portsmouth, Weymouth, and Calshot to take part in the review. On the 20th of July an organized flight of seventeen seaplanes, and two flights of aeroplanes in formation headed by Commander Samson, manoeuvred over the fleet. This formation flying had been practised at Eastchurch before the review. Three airships from Farnborough and one from Kingsnorth also took part in the demonstration. Within a few weeks all were to take part in the operations of war. The aeroplanes and seaplanes flew low over the fleet. Some naval officers, who had previously seen little of aircraft, expressed the opinion that the planes flew low because they could not fly high, and that their performance was an acrobatic exhibition, useless for the purposes of war. These and other doubters were soon converted by the war.

When the review was over, the seaplanes and airships returned to their several bases. The flights of aeroplanes, under Commander Samson, went on tour, first to Dorchester, where they stayed four or five days, and thence to the Central Flying School. They had been there only a few hours when they received urgent orders to return to Eastchurch, where they arrived on the 27th of July. On the same day seaplanes from other stations were assembled at Grain Island, Felixstowe, and Yarmouth, to be ready to patrol the coast in the event of war. These precautionary orders, and the orders given by the Admiralty on the previous day, arresting the dispersal of the British fleet, were among the first orders of the war. On the 29th of July instructions were issued to the Naval Air Service that the duties of scouting and patrol were to be secondary to the protection of the country against hostile aircraft. All machines were to be kept tuned up and ready for action. On the 30th of July the Army Council agreed to send No. 4 Squadron of aeroplanes to reinforce the naval machines at Eastchurch. Eastchurch, during the months before the war, had been active in rehearsal; fighting in the air had been practised, and trial raids, over Chatham and the neighbouring magazines, had been carried out, two aeroplanes attacking and six or eight forming a defensive screen. Work of this kind had knit together the Eastchurch unit and had fitted it for active service abroad. In the meantime, at the outbreak of the war, attacks by German aircraft were expected on points of military and naval importance.

Germany was known to possess eleven rigid airships, and was believed to have others under construction. Our most authoritative knowledge of the state of German aviation was derived from a series of competitions held in Germany from the 17th to the 25th of May 1914, and called 'The Prince Henry Circuit'. These were witnessed by Captain W. Henderson, R.N., as naval attache, and by Lieutenant-Colonel the Hon. A. Russell, as military attache. The witnesses pay tribute to the skill and dash of the German flying officers and to the spirit of the flying battalions. The officers they found to be fine-drawn, lean, determined-looking youngsters, unlike the well-known heavy Teutonic type. Owing partly to the monotony of German regimental life there was great competition, they were told, to enter the flying service, eight hundred candidates having presented themselves for forty vacancies. In 'The Prince Henry Circuit', a cross-country flight of more than a thousand miles, to be completed in six days, twenty-six aeroplanes started. The weather was stormy, and there were many accidents; one pilot and three observers were killed. These were regarded as having lost their lives in action, and there was no interruption of the programme. Among the best of the many machines that competed were the military L.V.G. (or Luft-Verkehrs-Gesellschaft) biplane, which won the chief prizes, the A.E.G. (or Allgemeine Elektrizitaets-Gesellschaft) biplane, the Albatross, and the Aviatik. On the whole, said our witnesses, the Germans had not progressed fast or far in aviation. They were still learning to fly; they were seeking for the best type of machine; and had given no serious attention, as yet, to the question of battle in the air. The test that was to compare the British and German air forces was now at hand.



CHAPTER VI

THE WAR: THE ROYAL FLYING CORPS FROM MONS TO YPRES

The German war of the twentieth century, like the German wars of the eighteenth and nineteenth centuries, was carefully planned and prepared by the military rulers of Prussia. To elucidate its origins and causes will be the work of many long years. Yet enough is known to make it certain that this last and greatest war conforms to the old design. The Prussians have always been proud of their doctrine of war, and have explained it to the world with perfect frankness. War has always been regarded by them as the great engine of national progress. By war they united the peoples of Germany; by war they hoped to gain for the peoples of Germany an acknowledged supremacy in the civilized world. These peoples had received unity at the hands of Prussia, and though they did not like Prussia, they believed enthusiastically in Prussian strength and Prussian wisdom. If Prussia led them to war, they were encouraged to think that the war would be unerringly designed to increase their power and prosperity. Yet many of them would have shrunk from naked assault and robbery; and Prussia, to conciliate these, invented the fable of the war of defence. That a sudden attack on her neighbours, delivered by Germany in time of peace, is a strictly defensive act has often been explained by German military and political writers, never perhaps more clearly than in a secret official report, drawn up at Berlin in the spring of 1913, on the strengthening of the German army. A copy of this report fell into the hands of the French.

'The people,' it says, 'must be accustomed to think that an offensive war on our part is a necessity.... We must act with prudence in order to arouse no suspicion.'

The fable of the war of defence was helped out with the fable of encirclement. Germany, being situated in the midst of Europe, had many neighbours, most of whom had more reason to fear her than to like her. Any exhibition of goodwill between these neighbours was treated by German statesmen, for years before the war, as a covert act of hostility to Germany, amply justifying reprisals. The treaty between France and Russia, wholly defensive in character, the expression of goodwill between France and England, inspired in part by fears of the restless ambitions of Germany, though both were intended to guarantee the existing state of things, were odious to Berlin. The peace of Europe hung by a thread.

On Sunday, the 28th of June 1914, the Archduke Francis Ferdinand, heir to the throne of Austria, and his wife, the Duchess of Hohenberg, paid a visit to Serajevo, the capital of Bosnia, and were there murdered by Bosnian assassins. It has not been proved that Germany had any part in the murder, but she was quite willing to take advantage of it. The Kiel canal, joining the Baltic with the North Sea had just been widened to admit the largest battleships, and the German army had just been raised to an unexampled strength. The gun was loaded and pointed; if it was allowed to be fired by accident the military rulers of Germany were much to blame. They were not in the habit of trusting any part of their plans to accident. But the excitement caused by the Archduke's murder was allowed to die away, and an uneasy calm succeeded. On the 23rd of July the Austrian Government, alleging that the Serajevo assassinations had been planned in Belgrade, presented to Serbia, with the declared approval of Germany, an ultimatum, containing demands of so extreme a character that the acceptance of them would have meant the abandonment by Serbia of her national independence. Serbia appealed to Russia, and, acting on Russia's advice, accepted all the demands except two. These two, which involved the appointment of Austro-Hungarian delegates to assist in administering the internal affairs of Serbia, were not bluntly rejected; Serbia asked that they should be referred to the Hague Tribunal. Austria replied by withdrawing her minister, declaring war upon Serbia, and bombarding Belgrade. This action was bound to involve Russia, who could not stand by and see the Slavonic States of southern Europe destroyed and annexed. But the Russian Government, along with the Governments of France, Great Britain, and Italy, did their utmost to preserve the peace. They suggested mediation and a conference of the Powers. Germany alone refused. Alleging that Russia had already mobilized her army, she decreed a state of war, and on Saturday, the 1st of August, declared war upon Russia. France by her treaty with Russia would shortly have become involved; but the German Government would not wait for her. They judged it all-important to gain a military success at the very start of the war, and to this everything had to give way. They declared war on France, and massed armies along the frontier between Liege and Luxembourg, with the intention of forcing a passage through Belgium. England, who was one of the guarantors of the integrity of Belgium, was thus involved. At 11.0 p.m. on the 4th of August, Great Britain declared war on Germany, and the World War had begun.

The events of the twelve days from the 23rd of July to the 4th of August, when they shall be set forth in detail, will furnish volumes of history. Those who study them minutely are in some danger of failing to see the wood for the trees. The attitude of the nations was made clear enough during these days. When Austria issued her ultimatum, many people in England thought of it as a portent of renewed distant trouble in the Balkans, to be quickly begun and soon ended. It was not so regarded in Germany. The people of Germany, though they were not in the confidence of their Government, were sufficiently familiar with its mode of operation to recognize the challenge to Serbia for what it was, Germany's chosen occasion for her great war. The citizens not only of Berlin, but of the Rhineland, and of little northern towns on the Kiel canal, went mad with joy; there was shouting and song and public festivity. Meantime in England, as the truth dawned, there were hushed voices and an intense solemnity. The day had come, and no one doubted the severity of the ordeal. Yet neither did any one, except an unhappy few who had been nursed in folly and illusion, doubt the necessity of taking up the challenge. The country was united. Not only was the safety and existence of the British Commonwealth involved, but the great principle of civilization, difficult to name, but perhaps best called by the appealing name of decency, which bids man remember that he is frail and that it behoves him to be considerate and pitiful and sincere, had been flouted by the arrogant military rulers of Germany. Great Britain had a navy; her army and her air force, for the purposes of a great European war, were yet to make. The motive that was to supply her with millions of volunteers was not only patriotism, though patriotism was strong, but a sense that her cause, in this war, was the cause of humanity. There are many who will gladly fight to raise their country and people in power and prosperity above other countries and other peoples. There are many also among English-speaking peoples who are unwilling to fight for any such end. But they are fighters, and they will fight to protect the weak and to assert the right. They are a reserve worth enlisting in any army; it was by their help that the opponents of Germany attained to a conquering strength. The systematic cruelties of Germany, inflicted by order on the helpless populations of Serbia and Belgium and northern France, are not matter of controversy; they have been proved by many extant military documents and by the testimony of many living witnesses. They were designed to reduce whole peoples to a state of impotent terror, beneath the level of humanity. The apology made for them, that by shortening resistance to the inevitable they were in effect merciful, is a blasphemous apology, which puts Germany in the place of the Almighty. The effect anticipated did not follow. The system of terrorism hardened and prolonged resistance; it launched against Germany the chivalry of the world; it created for use against Germany the chivalry of the air; and it left Germany unhonoured in her ultimate downfall.

The German plan of campaign, it was rightly believed, was a swift invasion and disablement of France, to be followed by more prolonged operations against Russia. By this plan the German army was to reach Paris on the fortieth day after mobilization. There was no promise that Great Britain would help France, but the attitude of Germany had long been so threatening that the General Staffs of the two countries had taken counsel with each other concerning the best manner of employing the British forces in the event of common resistance to German aggression. It had been provisionally agreed that the British army should be concentrated on the left flank of the French army, in the area between Avesnes and Le Cateau, but this agreement was based on the assumption that the two armies would be mobilized simultaneously. When the principal British Ministers and the leading members of the naval and military staffs assembled at Downing street on the 5th and 6th of August, we were already behindhand, and the whole question of the employment and disposition of the expeditionary force had to be reopened. It was expected by some soldiers and some civilians that the little British army would be landed at a point on the coast of France or Belgium whence it could strike at the flank of the German invaders. The strategic advantages of that idea had to yield to the enormous importance of giving moral and material support to our Allies by fighting at their side; moreover, there could be no assurance that the coast of Belgium would not fall into the hands of the Germans at a very early stage in the campaign. Accordingly, it was agreed to ship our army to France, and to leave the manner of its employment to be settled in concert with the French.

The original British Expeditionary Force, under the command of Field-Marshal Sir John French, began to embark on the 9th of August; by the 20th its concentration in a pear-shaped area between Maubeuge and Le Cateau was complete. It consisted of the First Army Corps, under Lieutenant-General Sir Douglas Haig; the Second Army Corps, under Lieutenant-General Sir James Grierson, who died soon after landing in France and was succeeded by General Sir Horace Smith-Dorrien; and the Cavalry Division, under Major-General E. H. H. Allenby. The Germans made no attempt to interfere with the transport of the expeditionary force from England to France. They had many other things to think of, and there is evidence to show that they viewed with satisfaction the placing of that admirable little force in a situation where they hoped that they could cut it off and annihilate it. That they were disappointed in this hope was due not a little to the activity and efficiency of the newest arm, numbering about a thousand, all told, the Royal Flying Corps.

The Royal Flying Corps took the field under the command of Brigadier-General Sir David Henderson. It consisted of Headquarters, Aeroplane Squadrons Nos. 2, 3, 4, and 5, and an Aircraft Park. Fairly complete arrangements, thought out in detail, had been made some months earlier for its mobilization. Each squadron was to mobilize at its peace station, and was to be ready to move on the fourth day. On that day the aeroplanes were to move, by air, first to Dover, and thence, on the sixth day, to the field base in the theatre of war. The horses, horse-vehicles, and motor-bicycles, together with a certain amount of baggage and supplies, were to travel by rail, and the mechanical transport and trailers by road, to the appointed port of embarkation, there to be shipped for the overseas base. The Aircraft Park, numbering twelve officers and a hundred and sixty-two other ranks, with four motor-cycles and twenty-four aeroplanes in cases, were to leave Farnborough for Avonmouth on the seventh day. Instructions were issued naming the hour and place of departure of the various trains, with detailed orders as to machines, personnel, transport, and petrol. On the second day of mobilization a detachment from No. 6 Squadron was to proceed to Dover, there to make ready a landing-ground for the other squadrons, and to provide for replenishment of fuel and minor repairs to aircraft. Squadron commanders were urged to work out all necessary arrangements for the journey. How carefully they did this is shown by some of the entries in the squadron diaries. In the diary of No. 2 Squadron (Major C. J. Burke's) a list is given of the articles that were to be carried on each of the machines flying over to France. Besides revolvers, glasses, a spare pair of goggles, and a roll of tools, pilots were ordered to carry with them a water-bottle containing boiled water, a small stove, and, in the haversack, biscuits, cold meat, a piece of chocolate, and a packet of soup-making material.

The programme for mobilization was, in the main, successfully carried out. The headquarters of the Royal Flying Corps left Farnborough for Southampton on the night of the 11th of August, their motor transport having gone before. They embarked at Southampton, with their horses, and reached Amiens on the morning of the 13th. The movements of the Aircraft Park, though it was the last unit to leave England, may be next recorded, because it was in effect the travelling base of the squadrons. The personnel and equipment were entrained at Farnborough during the evening of Saturday, the 15th of August, and travelled to Avonmouth. Of the twenty machines allotted to them only four, all Sopwith Tabloids, were actually taken over in cases. Of the other sixteen (nine B.E. 2's, one B.E. 2 c, three B.E. 8's, and three Henri Farmans) about half were used to bring the squadrons up to establishment; the remainder were flown over to Amiens by the personnel of the Aircraft Park, or by the spare pilots who accompanied the squadrons. The Aircraft Park embarked at Avonmouth very early on the morning of the 17th, arriving at Boulogne on the night of the 18th. They disembarked, an unfamiliar apparition, on the following morning. The landing officer had no precedent to guide him in dealing with them. Wing Commander W. D. Beatty tells how a wire was dispatched to General Headquarters: 'An unnumbered unit without aeroplanes which calls itself an Aircraft Park has arrived. What are we to do with it?' If the question was not promptly answered at Boulogne it was answered later on. The original Aircraft Park was the nucleus of that vast system of supply and repair which supported the squadrons operating on the western front and kept them in fighting trim.

On the 21st of August the Aircraft Park moved up to Amiens, to make an advanced base for the squadrons, which were already at Maubeuge. Three days were spent at Amiens in unloading, unpacking, and setting up workshops. Then, on the 25th, they received orders to retire to Le Havre. The retreat from Mons had begun, and Boulogne was being evacuated by the British troops. How far the wave of invasion would flow could not be certainly known; on the 30th of August, at the request of the French admiral who commanded at Le Havre, the machines belonging to the Aircraft Park were employed to carry out reconnaissances along the coast roads; on the following day German cavalry entered Amiens. There was a real danger that stores and machines landed in northern France for the use of the Royal Flying Corps might fall into the hands of the Germans; accordingly a base was established, for the reception of stores from England, at St.-Nazaire, on the Loire. The advanced base of the Aircraft Park moved up, by successive stages, as the prospects of the Allies improved, first from Le Havre to Le Mans, then, at the end of September, to Juvisy, near Paris; lastly, in mid-October, the port base was moved from St.-Nazaire to Rouen, and at the end of October the advanced base left Juvisy for St.-Omer, which became its permanent station during the earlier part of the war.

The squadrons flew to France. No. 2 Squadron, at Montrose, had the hardest task. Its pilots started on their southward flight to Farnborough as early as the 3rd of August; after some accidents they all reached Dover. Their transport left Montrose by rail on the morning of the 8th of August and arrived the same evening at Prince's Dock, Govan, near Glasgow, where the lorries and stores were loaded on S.S. Dogra for Boulogne. No. 3 Squadron was at Netheravon when war broke out; on the 12th of August the machines flew to Dover and the transport moved off by road to Southampton, where it was embarked for Boulogne. The squadron suffered a loss at Netheravon. Second Lieutenant R. R. Skene, a skilful pilot, with Air Mechanic R. K. Barlow as passenger, crashed his machine soon after taking off; both pilot and passenger were killed. No. 4 Squadron on the 31st of July had been sent to Eastchurch, to assist the navy in preparations for home defence and to be ready for mobilization. From Eastchurch the machines flew to Dover and the transport proceeded to Southampton. By the evening of the 12th of August the machines of Nos. 2, 3, and 4 Squadrons were at Dover. At midnight Lieutenant-Colonel F. H. Sykes arrived, and orders were given for all machines to be ready to fly over at 6.0 a.m. the following morning, the 13th of August.

The first machine of No. 2 Squadron to start left at 6.25 a.m., and the first to arrive landed at Amiens at 8.20 a.m. This machine was flown by Lieutenant H. D. Harvey-Kelly, one of the lightest hearted and highest spirited of the young pilots who gave their lives in the war. The machines of No. 3 Squadron arrived safely at Amiens, with the exception of one piloted by Second Lieutenant E. N. Fuller, who with his mechanic did not rejoin his squadron until five days later at Maubeuge. One flight of No. 4 Squadron remained at Dover to carry out patrol duties, but a wireless flight, consisting of three officers who had made a study of wireless telegraphy, was attached to the squadron, and was taken overseas with it. Some of the aeroplanes of No. 4 Squadron were damaged on the way over by following their leader, Captain F. J. L. Cogan, who was forced by engine failure to land in a ploughed field in France.

No. 5 Squadron moved a little later than the other three. It was delayed by a shortage of shipping and a series of accidents to the machines. When the Concentration Camp broke up, this squadron had gone to occupy its new station at Gosport. On the 14th, when starting out for Dover, Captain G. I. Carmichael wrecked his machine at Gosport; on the same day Lieutenant R. O. Abercromby and Lieutenant H. F. Glanville damaged their machines at Shoreham, and Lieutenant H. le M. Brock damaged his at Salmer. The squadron flew from Dover to France on the 15th of August; Captain Carmichael, having obtained a new machine, flew over on that same day; Lieutenant Brock rejoined the squadron at Maubeuge on the 20th; Lieutenants Abercromby and Glanville on the 22nd. Lieutenant R. M. Vaughan, who had flown over with the squadron, also rejoined it on the 22nd; he had made a forced landing near Boulogne, had been arrested by the French, and was imprisoned for nearly a week.

The transport of the squadrons, which proceeded by way of Southampton, was largely made up from the motor-cars and commercial vans collected at Regent's Park in London during the first few days of the war. The ammunition and bomb lorry of No. 5 Squadron had belonged to the proprietors of a famous sauce: it was a brilliant scarlet, with the legend painted in gold letters on its side—The World's Appetiser. It could be seen from some height in the air, and it helped the pilots of the squadron, during the retreat from Mons, to identify their own transport.

Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse