p-books.com
The War in the Air; Vol. 1 - The Part played in the Great War by the Royal Air Force
by Walter Raleigh
Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse

* * * * *

For many months after this the Flying Man was the chief topic of conversation in the town. Even in the previous year reports of the French ascents had produced a fever of excitement in London. 'Balloons', said Horace Walpole, writing in December 1783, 'occupy senators, philosophers, ladies, everybody.' All other interests yielded precedence. Miss Burney's Cecilia was the novel of the season, but it had to give way. 'Next to the balloon,' said Mrs. Barbauld, in a letter written in January 1784, 'Miss Burney is the object of public curiosity.' A few weeks earlier, Dr. Johnson passed the day with three friends, and boasted to Mrs. Thrale that no mention had been made by any of them of the air balloon, 'which has taken full possession, with a very good claim, of every philosophical mind and mouth'. Some days after Lunardi's first ascent Johnson wrote to a friend, 'I had this day in three letters three histories of the flying man in the great Ballon. I am glad that we do as well as our neighbours.' Three letters were enough, and on the same day Johnson wrote to Sir Joshua Reynolds, 'Do not write about the balloon, whatever else you may think proper to say'. On the 29th of September 1784 Lunardi's balloon caught fire by accident, and was burnt on the ground. Johnson's quiet and sensible comment is conveyed in a letter to his friend Dr. Brocklesby, on the 6th of October: 'The fate of the balloon I do not much lament: to make new balloons is to repeat the jest again. We now know a method of mounting into the air, and, I think, are not likely to know more. The vehicles can serve no use till we can guide them; and they can gratify no curiosity till we mount with them to greater heights than we can reach without; till we rise above the tops of the highest mountains, which we have yet not done. We know the state of the air in all its regions, to the top of Teneriffe, and therefore, learn nothing from those who navigate a balloon below the clouds. The first experiment, however, was bold, and deserved applause and reward.'

Johnson died in December of that same year; the balloon had made its appearance just in time for his comments. Another critic, Horace Walpole, was in two minds about balloons. Sometimes they seemed to him 'philosophic playthings'. He was growing old, and did not care to spend his time in 'divining with what airy vehicles the atmosphere will be peopled hereafter, or how much more expeditiously the east, west, or south will be ravaged and butchered, than they have been by the old clumsy method of navigation'. Yet in spite of his elegant indifference, he could not help being interested; and some of his divinations come very near to the truth. He pictures Salisbury Plain, Newmarket Heath, and all downs, arising into dockyards for aerial vessels; and he professes himself willing to go to Paris by air, 'if there is no air sickness'. The best defence of the new invention was spoken by Benjamin Franklin, who when he was asked in Paris, 'What is the use of balloons?' replied by another question—'What is the use of a newborn infant?'

The infancy of the balloon lasted long; indeed, if lack of self-control be the mark of infancy, the balloon was an infant during the whole of the nineteenth century. In the early days, new achievements, in distance or height, kept public expectation alive. Jean Pierre Blanchard, a French aeronaut, and rival of Lunardi, succeeded, on the 7th of January 1785, in crossing the English Channel from Dover. Thereafter ascents became so numerous that it is impossible to keep count of them. Glaisher, writing about 1870, says that the most remarkable ascent of the century was that fitted out by Robert Hollond, Esq., M.P. The balloonist was Charles Green, and they were accompanied by Mr. Monck Mason, who published an account of the voyage. In Mr. Green's balloon, afterwards called the Great Nassau, they left Vauxhall Gardens on the afternoon of Monday, the 7th of November 1836, with provisions to last a fortnight. They were soon lost in the clouds, and after crossing the sea, had no very clear idea of what country they were over. After eighteen hours' journey, fearing that they had reached Poland or Russia, they came to earth, and found that they had travelled five hundred miles, to the neighbourhood of the town of Weilburg, in the duchy of Nassau. Charles Green was the most experienced aeronaut of his time; he was the first to use coal-gas in place of hydrogen, and he was the inventor of the guide-rope, which is dropped from a balloon to allow her to be secured by a landing party, or is trailed on the ground to reduce her speed and to assist in maintaining a steady height.

The dangers of the balloon were diminished by the labours of scientific men, but its disabilities remained. No one who travelled in a balloon could choose his destination. The view of the earth, and of the clouds, obtainable from a height, was beautiful and unfamiliar, but in the absence of any specific utility the thing became a popular toy. In public gardens a balloon could be counted on to attract a crowd, and the showman soon gave it its place, as a miracle of nature, by the side of the giant and the dwarf, the living skeleton, and the fat woman. A horse is not seen to advantage in the car of a balloon, but it is a marvel that a horse should be seen there at all, and equestrian ascents became one of the attractions of the Cremorne Gardens in 1821.

It was not until 1859 that an organized attempt was made to reclaim the balloon for the purposes of science. In that year a committee, appointed by the British Association to make observations on the higher strata of the atmosphere, met at Wolverhampton. Volunteers were lacking until, in 1862, James Glaisher, one of the members of the committee, declared his willingness to prepare the apparatus and to make the observations from a balloon. Glaisher had spent many years on meteorological observation, in Ireland, at Cambridge University, and at the Royal Observatory, Greenwich. He proposed to investigate the effect of different elevations on the temperature of the dew-point; on the composition and electrical condition of the atmosphere, and on the rate and direction of the wind currents in it; on the earth's magnetism, and the solar spectrum; on sound, and on solar radiation. From 1862 to 1866 he made twenty-eight ascents, with Henry Coxwell as his balloonist. The most famous of these was from Wolverhampton on the 5th of September 1862, when Glaisher claimed to have reached a height of fully seven miles. After recording a height of 29,000 feet Glaisher swooned; Coxwell lost the use of his limbs, but succeeded in pulling the cord of the valve with his teeth. When Glaisher swooned the balloon was ascending rapidly; when he came to, thirteen minutes later, it was descending rapidly, and the height that he claimed was an inference, supported by the reading of a minimum thermometer. Critics have pointed out that his calculations made no allowance for the slackening of the upward pace of the balloon as it neared its limit, nor for the time it would take, with the valve feebly pulled, to change its direction and acquire speed in its descent. They are inclined to allow him a height of about six miles, which is a sufficiently remarkable achievement.

All these ascents, though they proved that the balloon had a certain utility for the exploration of the upper reaches of the atmosphere, did little or nothing for aerial navigation. The great vogue of the balloon distracted attention from the real problem of flight. That problem was not abandoned; a number of men, working independently, without any sort of public recognition, made steady advance during the whole course of the nineteenth century. By the end of the century, three years before flight was achieved, those who were most deeply concerned in the attempt knew that success was near. The great difficulty of scientific research lies in choosing the right questions to ask of nature. Every lawyer knows that it is easy to put a question so full of false assumptions that no true answer to it is possible; and many a laborious man of science has spent his life in framing such questions, and in looking for an answer to them. The contribution of the nineteenth century to the science of flight was that it got hold of the right questions, and formulated them more or less exactly, so that the answers, when once they were supplied by continued observation and experiment, were things of value.

The earliest of these pioneers was Sir George Cayley, a country gentleman with estates in Yorkshire and Lincolnshire, who devoted his life to scientific pursuits. He was born in 1773, and the balloons which excited the world during his boyhood directed his mind to the subject of aerial navigation. He invented many mechanical contrivances, and he laid great and just stress on the importance of motive power for successful flight. In 1809 he published, in Nicholson's Journal, a paper on Aerial Navigation, which has since become a classic, for although it stops short of a complete exposition, it is true so far as it goes, and contains no nonsense and no fantasy. He endeavoured, in the first year of Queen Victoria's reign, to establish an aeronautical society, but the ill repute of the balloon and the bad company it kept deprived him of influential support. He did his duty by his county, as a Whig magnate, and amused his leisure with science, till his death in 1857.

Cayley's work is difficult to assess. He had all the right ideas, though the means of putting them into practice did not lie ready to his hand. If he had been a poor man, he might have gone farther. He designed, so to say, both an airship and an aeroplane; there was no one to execute his designs, and the scheme fell through. He more than once anticipated later inventions, but he put nothing on the market. His mind was fertile in mechanical devices, so that if one proved troublesome, he could always turn his attention to another. He is content to enunciate a truth, and to call it probable. 'Probably', he says, in discussing engines of small weight and high power, 'a much cheaper engine of this sort might be produced by a gas-light apparatus and by firing the inflammable air generated with a due portion of common air under a piston.' This is an exact forecast of the engine used to-day in all flying machines. He has some good remarks on the shape that offers least resistance to the air in passing through it, that is, on the doctrine of the streamline. He knew that the shape of the hinder part of a solid body which travels through the air is of as much importance as the shape of the fore-part in diminishing resistance. He does not seem to have known that it is of more importance. He knew that the resistance of the air acting on concave wings, or planes, at a small angle of incidence was resolved chiefly into lift, and he suspected that the amount of the lift was greater than the mathematical theory of his day allowed. Above all, his treatise is stimulating, and suggests further inquiry and experiment along lines which have since proved to be the right lines.

Cayley's ideas were developed in practice by John Stringfellow, a manufacturer of lace machinery at Chard, in Somersetshire, and by his friend W. S. Henson, a young engineer. They constructed a light steam-engine, and designed an aeroplane, of which they entertained such high hopes that they took out a patent, and applied to Parliament for an Act to incorporate an Aerial Steam Transit Company. The reaction of public opinion on their proposals took the form of drag rather than lift, and they were thrown back on their own resources. In 1847 they made a model aeroplane, twenty feet in span, driven by two four-bladed airscrews, three feet in diameter, and they experimented with it on Bala Down, near Chard. It did not fly. Henson, completely discouraged, married and went to America; Stringfellow persisted, and in 1848 made a smaller model, ten feet in span, with airscrews sixteen inches in diameter. This machine, which had wings slightly cambered, with a rigid leading edge and a flexible trailing edge, made several successful flights, first in a long covered room at Chard, and later, before a number of witnesses, at Cremorne Gardens. After this success Stringfellow did no more for many years, until the foundation of the Aeronautical Society of Great Britain in 1866 roused him again to activity. At the society's exhibition of 1868, held in the Crystal Palace, he produced a model triplane, which ran along suspended from a wire, and, when its engine was in action, lifted itself as it ran.

The foundation of the Aeronautical Society, with the Duke of Argyll as president and with a council of men of science, attracted fresh minds to the study of flight, and gave the subject a respectable standing. Mr. Wenham's paper, read to the society on the 27th of June 1866, proved that the effective sustaining area of a wing is limited to a narrow portion behind the leading edge; that, in order to increase this area, the planes of a flying machine might advantageously be placed one above another—an idea which was borrowed and put into practice by Mr. Stringfellow in his triplane—and that a heavy body, supported on planes, requires less power to drive it through the air at a high speed than to maintain it in flight at a low speed. For some years the society flourished; then its energies declined, and it fell into a state of suspended animation. At its second exhibition, in 1885, there were only sixteen exhibits as against seventy-eight at the exhibition of 1868. The prospects of practical success seemed remoter than ever. At last, thirty years after its foundation, it sprang into renewed activity, and, with Major B. F. S. Baden-Powell as secretary, did an immense work, from 1897 onwards, in directing and furthering the study of aviation. The Aeronautical Journal, which was published quarterly by the revived society, is a record of the years of progress and triumph.

The cause of this sudden revival is to be sought in the extraordinary fermentation which had been going on under the surface, both in Europe and America. The public was careless and sceptical; inventors who were seeking practical success were shy of premature publicity; papers read to learned societies were more concerned with theory than with practice; but there was hope in the air, and hundreds of minds were independently at work on the problem of flight. Some idea of the variety of suggestions and devices may be gathered from Mr. Octave Chanute's Progress in Flying Machines, a reprint of a series of articles by him, which appeared, from 1891 onwards, in The Railroad and Engineering Journal of New York City. It was said in the ancient world that there is nothing so absurd but some philosopher has believed it; there is no imaginable way of flight that has not engaged the time and effort of some inventor. Yet among the multitude of attempts it is not difficult to trace the ancestry of the modern flying machine. Wing-flapping machines left no issue. Machines supported in the air by helicopters, that is, by horizontal revolving blades, can be made to rise from the ground, but cannot easily be made to travel. The way to success was by imitation of soaring birds; and it is worthy of note that some of the best minds were, from the first, fascinated by this method of flight, and were never tired of observing it. Cayley remarks that the swift, though it is a powerful flyer, is not able to elevate itself from level ground. Wenham records how an eagle, sitting in solitary state in the midst of the Egyptian plain, was fired at with a shotgun, and had to run full twenty yards, digging its talons into the soil, before it could raise itself into the air. M. Mouillard, of Cairo, spent more than thirty years in watching the flight of soaring birds, and devoted the whole of his book, L'Empire de l'Air (1881), to the investigation of soaring flight. The pelican, the turkey-buzzard, the vulture, the condor, have all had their students and disciples. M. Mouillard, indeed, maintains that if there be a moderate wind, a bird can remain a whole day soaring in the air, with no expenditure of power whatever. To those who have watched seagulls this may perhaps seem credible; but air is invisible, and soaring birds are skilful to choose a place, in the wake of a ship or in the neighbourhood of a cliff, where there is an up-current of air, so that when they glide by their own weight, though they are losing height in relation to the air, they are losing none in relation to the surface of the earth.

The parents of the modern flying machine were the gliders, that is, the men who launched themselves into the air on wings or planes of their own devising. The scientific investigators, who experimented with machines embodying the same principle, did much to assist the gliders, but in justice they must take a second place. The men who staked their lives were the men who, after many losses, were rewarded with the conquest of the air. There are stories of a certain Captain Lebris, how in 1854, near Douarnenez in Brittany, he constructed an artificial albatross, and tying it by a slip rope to a cart which was driven against the wind, mounted in it to a height of three hundred feet. But the first glider of whom we have any full knowledge is Otto Lilienthal of Berlin. He devoted his whole life to the study of aviation at a time when in Germany people looked upon such a pursuit as little better than lunacy. The principal professor of mathematics at the Berlin Gewerbe Academie, on hearing that Lilienthal was experimenting with aeronautics, advised him to spend no money on such things—a piece of advice which, Lilienthal remarks, was unhappily quite superfluous. In 1889 he completed, with the help of his brother, a series of experiments on the carrying capacity of arched, or cambered, wings, and published the results in a book entitled Bird Flight as the Basis of Aviation. In his youth every crow that flew by presented him with a problem to solve in its slowly moving wings. Prolonged study led him to the conclusion that the slight fore-and-aft curvature of the wing was the secret of flying. But he knew too much to suppose that this conclusion solved the problem. A dozen other difficulties, including the difficulty of balance, remained to be mastered. When German societies for the advancement of aerial navigation began to be formed, he at first held aloof from them, for the balloon, which he regarded as the chief obstacle to the development of flight, monopolized their entire attention. His insistence on the cambered wing did not convince others, who went on experimenting with flat planes. German and Austrian aviators, it is true, were induced by his book to put aside flat surfaces and introduce arched wings. 'However,' he remarks, 'as this was done mainly on paper, in projects, and in aeronautical papers and discussions, I felt impelled myself to carry out my theory in practice.' So, in the summer of 1891, on a pair of bird-like wings, with eighty-six square feet of supporting surface, stabilized by a horizontal tail and a vertical fin aft, he began his gliding experiments. His whole apparatus, made of peeled willow sticks, covered with cotton shirting, weighed less than forty pounds. He was supported in it wholly on his forearms, which passed through padded tubes, while his hands grasped a cross-bar. He guided the machine and preserved its balance by shifting his weight, backwards or forwards or sideways. In this apparatus, altered and improved from time to time, Lilienthal, during the next five years, made more than two thousand successful glides. At first he used to jump off a spring-board; then he practised on some hills in the suburbs of Berlin; then, in the spring of 1894, he built a conical hill at Gross-Lichterfelde to serve him as a starting-ground. Later on, he moved to the Rhinow hills. His best glides were made against a light breeze at a gradient of about 1 in 10; and he could easily travel a hundred yards through the air. 'Regulating the centre of gravity', he says, 'becomes a second nature, like balancing on a bicycle; it is entirely a matter of practice and experience.' His most alarming experiences were from gusts of wind which would suddenly raise him many metres in the air and suspend him in a stationary position. But his skill was so great that he always succeeded in resuming his flight and alighting safely. He continued to improve and develop his machine. He made a double-surface glider, on the biplane principle, and flew on it. He experimented with engines, intended to flap the extremities of the wings—first a steam-engine of two horse-power, weighing forty-four pounds, then a simpler and lighter type, worked by compressed carbonic acid gas. But he explains that these can be safely introduced only if they do not impair the gliding efficiency of the machine, and he does not seem to have made much progress with them. His last improvement was a movable horizontal tail, or elevator, worked by a line attached to his head, to control the fore-and-aft balance of the machine. This fresh complexity was perhaps the cause of his death. On the 9th of August 1896 he started on a long glide from a hill about a hundred feet high; a sudden gust of wind caught him, and it is supposed that the involuntary movements of his head in the effort to regain his balance made matters worse; the machine plunged to the ground, and he was fatally injured.

Lilienthal was a good mathematician, a careful recorder of the results of his experiments, and a disinterested student of nature. Complete success was denied to him, but his work informed and stimulated others. The Wright brothers, when they first took up the problem of flight, had the advantage of acquaintance with Professor S. P. Langley's aeronautical researches, but their gliding experiments were shaped and inspired by what they had read of Lilienthal's achievements.

The other pioneer, who has earned a place beside Lilienthal, is Percy Pilcher. In 1893, at the age of twenty-seven, he became assistant lecturer in naval architecture and marine engineering at Glasgow University. He devoted all his spare time to aeronautics, and in 1895 built his first glider, which he named 'The Bat'. The machine was built, with the help of his sister, in the sitting-room of their lodging in Kersland street, Glasgow, and was tested on the banks of the Clyde, near Cardross. Some defects were revealed by the tests; when these were remedied, and the glider was towed by a rope, Pilcher rose to a height of twenty feet, and remained in the air for nearly one minute. Thereafter he built, in rapid succession, three new gliders, all of different design, which he called 'The Beetle', 'The Gull', and 'The Hawk'. The professor of naval architecture at Glasgow, Sir John Biles, says of him, 'He was one of the few men I have met who had no sense of fear.... I was deterred from helping him as much as I ought to have done by a fear of the risks that he ran. He at one time talked to Lord Kelvin about helping him: Lord Kelvin spoke to me about it, and said that on no account would he help him, nor should I, as he would certainly break his neck. This was unfortunately too true a prophecy.' The Hawk was the best of his gliders; at Eynsford in Kent, on the 19th of June 1897, he made a perfectly balanced glide of 250 yards across a deep valley, towed only by a thin fishing line, 'which one could break with one's hands'. After this, Pilcher began to make plans for fitting an engine to his glider. Since the first appearance of the Otto engine in 1876, and of the Daimler engine eight years later, the oil-engine had steadily developed in lightness and power, but no engine exactly suitable for his purpose was on the market, so he resolved to build one. An engine of four horse-power, weighing forty pounds, with a wooden airscrew five feet in diameter, was, by his calculations, amply sufficient to maintain his glider in horizontal flight. The light engine has now been so enormously improved, that it comes near to developing one horse-power for every pound of weight. The violent have taken the kingdom of the air by force: in Pilcher's day the problem was more delicate. He worked at his engine in his leisure time, and, leaving the firm of Maxim & Nordenfeldt, by whom he had been employed from 1896 onwards, made, in 1898, his own firm of Wilson & Pilcher. In the spring of 1899 he was much impressed by Mr. Laurence Hargrave's soaring kites, exhibited by the inventor at a meeting of the Aeronautical Society, and it seems that he embodied some of Mr. Hargrave's ideas in his latest built machine, a triplane. He intended to fly this machine at Stanford Hall, Market Harborough, where he was staying with Lord Braye, but on the day appointed, the 30th of September 1899, the weather proved too wet. Nevertheless Pilcher consented to give some demonstrations on The Hawk, towed by a light line; during the second of these, while he was soaring at a height of thirty feet, one of the guy-wires of the tail broke, and the machine turned over and crashed. Pilcher never recovered consciousness, and died two days later. His name will always be remembered in the history of flight. If he had survived his risks for a year or two more, it seems not unlikely that he would have been the first man to navigate the air on a power-driven machine. He left behind him his gallant example, and some advances in design, for he improved the balance of the machine by raising its centre of gravity, and he provided it with wheels, fitted on shock-absorbers, for taking off and alighting.

Lilienthal and Pilcher are pre-eminent among the early gliders, for their efforts were scientific, continuous, and progressive. But there were others; and it is difficult, if not impossible, to determine the comparative value of experiments carried on, many of them in private, by inventors of all countries. Professor J. J. Montgomery, of California, carried out some successful glides, on machines of his own devising, as early as 1884; and Mr. Octave Chanute, the best historian of all these early efforts, having secured the services of Mr. A. M. Herring, a much younger man who had already learned to use a Lilienthal machine, made a series of experiments, with gliders of old and new types, on the shores of Lake Michigan, during the summer of 1896. About the same time some power-driven machines, attached to prepared tracks, were successfully flown. In 1893 Horatio Phillips flew a model, with many planes arranged one above another like a Venetian blind, on a circular track at Harrow; and in the same year Sir Hiram Maxim's large machine, with four thousand feet of supporting surface, was built at Baldwin's Park in Kent, and, when it was tested, developed so great a lift that it broke the guide rails placed to restrain it. Clement Ader, a French electrical engineer, worked at the problem of flight for many years, and, having obtained the support of the French Government, constructed a large bat-like machine, driven by a steam-engine of forty horse-power. In 1897 this machine was secretly tried, at the military camp of Satory, near Paris, and was reported on by a Government commission; all that was known thereafter was that the Government had refused to advance further funds, and that Ader had abandoned his attempts. When the Wrights had made their successful flights, a legend of earlier flights by Ader grew up in France; a heated controversy ensued, and the friends of M. Santos Dumont, who claimed that he was the first to fly over French soil, at length induced the French Government to publish the report on the trial of Ader's machine. The report proved that the machine had not left the ground.

It is not in mortals to command success; but those who study the record of the ingenious, persevering, and helpful work done for a quarter of a century by Mr. Laurence Hargrave, of Sydney, New South Wales, will agree with Mr. Chanute that this man deserved success. His earliest important paper was read to the Royal Society of New South Wales in 1884. In the course of the next ten years he made with his own hands eighteen different flying machines, of increasing size, all of which flew. His earlier machines were not much larger than toys, and were supplied with power by the pull of stretched india-rubber. On this scale he was successful with a machine driven by an airscrew and with a machine driven by the flapping of wings. As his machines grew in size he turned his attention to engines. He was successful with compressed air; he made many experiments with explosion motors; and he succeeded in producing a steam-engine which weighed seven pounds and developed almost two-thirds of one horse-power. In 1893 he invented the box-kite, which is a true biplane, with the vertical sides of the kite doing the work of a stabilizing fin. This kite had a marked influence on the design of some early flying machines. He also invented the soaring kite. His hope that man would fly was more than hope; he refused to argue the question with objectors, for 'I know', he said, 'that success is dead sure to come'. Moreover he put all his researches at the disposal of others. He refused to take out any patents. He did all he could to induce workers to follow his example and communicate their ideas freely, so that progress might be quickened. His own ideas, his own inventions, and his own carefully recorded experiments were a solid step in that staircase of knowledge from which at last man launched himself into the air, and flew.

In America the pioneer who did most to further the science of human flight was Professor Samuel Pierpont Langley, of the Smithsonian Institute, in Washington. He was well known as an astronomer before ever he took up with aeronautics. From 1866 to 1887 he was professor of astronomy at the Western University of Pennsylvania, at Pittsburg. During his later years there he built a laboratory for aerial investigations, and carried out his famous experiments. His whirling table, with an arm about thirty feet long, which could be moved at all speeds up to seventy miles an hour, was devised to measure the lifting power of air resistance on brass plates suspended to the arm. In 1891 he published his Experiments in Aerodynamics, which embodied the definite mathematical results obtained by years of careful research. It would be difficult to exaggerate the importance of this work. The law which governs the reaction of the air on planes travelling at various speeds and various angles of incidence had been guessed at, or seen in glimpses, by earlier investigators; but here were ascertained numerical values offered to students and inventors. The main result is best stated in Professor Langley's own words: 'When the arm was put in motion I found that the faster it went the less weight the plates registered on the scales, until at great speed they almost floated in the air.... I found that only one-twentieth of the force before supposed to be required to support bodies under such conditions was needed, and what before had seemed impossible began to look possible.... Some mathematicians, reasoning from false data, had concluded that if it took a certain amount of power to keep a thing from falling, it would take much additional power to make it advance. My experiment showed just the reverse ... that the faster the speed the less the force required to sustain the planes, and that it would cost less to transport such planes through the air at a high rate of speed than at a low one. I found further that one horse-power could carry brass plates weighing two hundred pounds at the rate of more than forty miles an hour in horizontal flight.'

When these researches were known and understood, their effect upon the practical handling of the problem of flight was immediate and decisive. The aeroplane, or gliding machine, had many rivals; they were all killed by Professor Langley's researches, which showed that the cheapest and best way to raise a plane in the air is to drive it forward at a small upward inclination; and that its weight can be best countered not by applying power to raise it vertically, but by driving it fast. In the statistical tables that he prepared he called the upward pressure of the air Lift; the pressure which retards horizontal motion he called Drift. The words make a happy pair, but the word Drift is badly needed to describe the leeway of an aeroplane in a cross-wind, so that in England another pair of words, Lift and Drag, has been authoritatively substituted.

From this time onward Langley devoted himself to those other problems, especially the problems of balance, of mechanical power, and of safety in taking off and alighting, which had to be solved if he was to make a machine that should fly. He was much influenced, he says, by a mechanical toy, produced as early as 1871 by an ingenious Frenchman called Penaud, and named by its inventor the 'planophore'. This toy, which weighed only a little over half an ounce, was supported on wings, and was driven forward by an airscrew made of two feathers. The motive power was supplied by twisted strands of rubber which, as they untwisted, turned the airscrew. The wings were set at a dihedral angle, that is, they were bent upwards at the tips; and fore-and-aft stability was secured by a smaller pair of wings just in front of the airscrew. 'Simple as this toy looked,' says Professor Langley, 'it was the father of a future flying machine, and France ought to have the credit of it.' His own steam-driven flying machine was produced and successfully flown in 1896. It had two wings and a tail, with a supporting surface in all of seventy square feet; its total weight was seventy-two pounds; the engine, constructed by himself, weighed only seven pounds and developed one horse-power, which served to drive two airscrews, revolving in opposite directions. The best flight of this machine was more than three-quarters of a mile, and was made over the Potomac river. When, on its first flight, it had flown for a minute, 'I felt', says Professor Langley, 'that something had been accomplished at last, for never in any part of the world or in any period had any machine of man's construction sustained itself in the air before for even half of this brief time'. His flying machines were called by Langley 'aerodromes', and the word 'aeroplane' was used by him, as it is used in the New English Dictionary of 1888, only in the sense of a single plane surface used for aerial experiments. But no usage, however authoritative, can withstand the tide of popular fashion; the machine is now an aeroplane, while aerodrome is the name given to the flying-ground from which it starts.

The success of his machine became widely known, and in 1898 the War Department of the United States, having ascertained that Langley was willing to devote all his spare time to the work, allotted fifty thousand dollars for the development, construction, and test of a large 'aerodrome', big enough to carry a man. The construction was long delayed by the difficulty of finding a suitable engine. This difficulty hampered all early attempts at flight. The internal-combustion engine was by this time pretty well understood, and, with the will to do it, might have been made light enough for the purpose. But it was almost an axiom with engineering firms that a very light engine could not wear well and was untrustworthy in other ways. One horse-power to the hundredweight was what they regarded as the standard of solid merit. Further, they were prejudiced against that extremely rapid movement of the parts which is necessary if the crank-shaft is to revolve more than a thousand times a minute. They were asked to depart from all their cherished canons and to risk failure and break-down in order that man should achieve what many of them regarded as an impossibility. It was with Langley as it was with Pilcher and the Wrights; he had to make his own engine. By 1901 he had completed with the aid of his assistants an engine of fifty-two horse-power, weighing, with all its appurtenances, less than five pounds to the horse-power. A year and a half more was spent in adapting and co-ordinating the frame and appliances, and in carrying out the shop tests. At last, on the 7th of October 1903, from a house-boat moored in the Potomac river, about forty miles below Washington, the first trial was made. The machine caught in the launching mechanism, and fell into the river, where it broke. It was repaired, and a second trial was made on the 8th of December 1903. Again the machine failed to clear the launching car, and plunged headlong into the river, where the frame was broken by zealous efforts to salve it in the dark. Nine days after this final failure the Wrights made their first successful power-driven flight, at Kitty Hawk, on the coast of North Carolina.

Langley was almost seventy years old when his last and most ambitious machine failed. He lived for two years more. If his contributions to the science of flight, which are his chief title to fame, were ruled out of the account, he would still be remembered as something more than a good astronomer—a man of many sciences, who cared little for his own advancement, and much for the advancement of knowledge.

From what has been said it is now possible to conceive how things stood when the brothers, Wilbur and Orville Wright, first attacked the problem of flying in the air. Men had flown, or rather had glided through the air, without engines to support and drive them. Machines had flown, without men to control and guide them. If the two achievements could be combined in one, the problem was solved; but the combination, besides bringing together both sets of difficulties and dangers, added new dangers and difficulties, greater than either. Plainly, there were two ways, and only two, of going about the business. Professor Langley held that in order to learn to fly, you must have a flying machine to begin with. Wilbur Wright, whose views on the point never varied from first to last, held that you must have a man to begin with. The brothers were impatient of 'the wasteful extravagance of mounting delicate and costly machinery on wings which no one knew how to manage'. When they began their experiments they had already reached the conclusion that the problem of constructing wings to carry the machine, and the problem of constructing a motor to drive it, presented no serious difficulty; but that the problem of equilibrium had been the real stumbling-block, and that this problem of equilibrium was the problem of flight itself. 'It seemed to us', says Wilbur Wright, 'that the main reason why the problem had remained so long unsolved was that no one had been able to obtain any adequate practice. We figured that Lilienthal in five years of time had spent only about five hours in actual gliding through the air. The wonder was not that he had done so little, but that he had accomplished so much. It would not be considered at all safe for a bicycle rider to attempt to ride through a crowded city street after only five hours' practice, spread out in bits of ten seconds each over a period of five years; yet Lilienthal with this brief practice was remarkably successful in meeting the fluctuations and eddies of wind gusts. We thought that if some method could be found by which it would be possible to practise by the hour instead of by the second there would be hope of advancing the solution of a very difficult problem.'

When this was written, in 1901, it was a forecast; it is now the history of a triumph. By prolonged scientific practice, undertaken with every possible regard to safety, on soaring and gliding machines, the Wrights became master pilots and conquerors of the air. Their success had in it no element of luck; it was earned, as an acrobat earns his skill. So confident did they become that to the end their machines were all machines of an unstable equilibrium, dependent for their safety on the skill and quickness of the pilot. Their triumph was a triumph of mind and character. Other men had more than their advantages, and failed, where these men succeeded. Great things have sometimes been done by a happy chance; it was not so with the Wrights. They planned great things, and measured themselves against them, and were equal to them.

Wilbur and Orville Wright were the sons of Milton Wright, of Dayton, Ohio. They came of New England stock. One of their ancestors emigrated from Essex in 1636, and settled at Springfield, Massachusetts; a later ancestor moved west, to Dayton. Wilbur was born in 1867, and Orville in 1871. They had two elder brothers and one younger sister; but Wilbur and Orville were so closely united in their lives and in their thoughts, that it is not easy to speak of them apart. Mr. Griffith Brewer, who knew them both, was often asked which of the two was the originator, and would reply, 'I think it was mostly Wilbur'; but would add, 'The thing could not have been done without Orville'. Wilbur, being four years the elder, no doubt took the lead; but all their ideas and experiments were shared, so that their very thought became a duet. Wilbur, who died in 1912, was a man of a steady mind and of a dominant character, hard-knit, quiet, intense. He has left some writings which reflect his nature; they have a certain grim humour, and they mean business; they push aside all irrelevance, and go straight to the point. After adventures in printing and journalism the two brothers set up at Dayton as cycle manufacturers. The death of Lilienthal, reported in the newspapers in 1896, first called their attention to flight, and they began to read all available books on the subject. They found that an immense amount of time and money had been spent on the problem of human flight—all to no effect. Makers of machines had abandoned their efforts. As for gliders, after the death of Lilienthal, Mr. Chanute had discontinued his experiments, and, a little later, Mr. Pilcher fell and was killed. When knowledge of these things came to the brothers, it appealed to them like a challenge. From 1899 onwards they turned all their thoughts to the problem. They watched the flight of birds to see if they could surprise the secret of balance. They studied gliding machines, and resolved to construct a machine of their own, more or less on the model of Mr. Chanute's most successful glider, which was a biplane, or 'double-decker'. When their machine was partly built, they wrote to the weather bureau at Washington, and learned that the strongest and most constant winds were to be found on the coast of North Carolina. They then wrote to the postmaster of Kitty Hawk, who testified that the sand-hills of that place were round and soft, well fitted for boys playing with flying machines. They took the parts of their machine to Kitty Hawk, assembled and completed it in a tent, and forthwith began their long years of continuous and progressive experiment. Their chief helper was Mr. Chanute. 'In the summer of 1901', they said, 'we became personally acquainted with Mr. Chanute. When he learned that we were interested in flying as a sport and not with any expectation of recovering the money we were expending on it, he gave us much encouragement. At our invitation he spent several weeks with us at our camp at Kill Devil Hill, four miles south of Kitty Hawk, during our experiments of that and the two succeeding years.'

The first two summers, 1900 and 1901, brought them some familiarity in the handling of their first two gliders, which they navigated lying face downward on the lower plane. In all their gliding experiments they studied safety first. They knew that the business they had embarked on was of necessity a long and dangerous one; that they were bound to encounter many dangers, and that each of them had only one life. They took no avoidable risks. Gliding seemed to them, at first, to have been discredited by the deaths of Lilienthal and Pilcher, so they planned to try their machine by tethering it with a rope and letting it float a few feet from the ground, while they practised manipulation. The wind proved to be not strong enough to sustain the weighted machine, and they were compelled to take to gliding. All their early glides were made as near the ground as possible. The machine had no vertical rudder, but they fitted it, in front, with what they called a horizontal rudder, that is, an elevator. By the use of this they could bring it to the ground at once when the wind was tricky and their balance was threatened. The lateral balance they attempted to control by warping the wings, but with no satisfactory results. They made glides longer than any on record, but while the problem of stability was still unsolved, there could be no real progress. At the end of 1901, Wilbur Wright made the prediction that men would some time fly, but that it would not be in their lifetime.

They returned to Dayton, and spent the winter in experiment and research. They had taken up aeronautics partly as a sport; they were now drawn deeper and deeper into the scientific study of it. They made a wind-tunnel, sixteen inches square and about six feet long, and tested in it the lift and drag of model wings, made in various sizes and with various aspect ratios. The tables which they compiled from these experiments were continually used by them thereafter, and superseded the tables of Lilienthal and Langley, which took no account of the aspect ratio. When they returned to Kitty Hawk, in the autumn of 1902, they took with them a greatly improved glider. The aspect ratio of the planes was six to one, instead of about three to one, as in their second glider. Further, while preserving the horizontal vane, or elevator, at the front of the machine, they added a vertical vane, or rudder, at the rear. It was their failure to control the lateral balance in the experiments of 1901 that suggested this device to them. From the first they had discarded the method, practised by Lilienthal and Pilcher, of adjusting the lateral balance by shifting the weight of the operator's body. This method seemed to them 'incapable of expansion to meet large conditions, because the weight to be moved and the distance of possible motion were limited, while the disturbing forces steadily increased, both with wing area and with wing velocity'. Accordingly they invented a method of warping the wings, to present them to the wind at different angles on the right and left sides. Thus the force of the wind was used to restore the balance which the wind itself had disturbed. But in their early gliders this warping process acted in an unexpected way. The wing which, in order to raise that side of the machine, was presented to the wind at the greater angle of incidence often proved to be the wing which lagged and sank. The decrease in speed, due to the extra drag, more than counterbalanced the effect of the larger angle. When they attempted to remedy this by introducing a fixed vertical vane in the rear, 'it increased the trouble and made the machine 'absolutely dangerous'. Any side-slip became irrecoverable by causing the vertical fixed vane to strike the wind on the side toward the low wing, instead of on the side toward the high wing, as it should have done to correct the balance. 'It was some time', the brothers remark, 'before a remedy was discovered. This consisted of movable rudders working in conjunction with the twisting of the wings.' So that now three different parts of the machine had to be controlled by wires, worked swiftly and correctly by the operator, to preserve the balance. There were the wing tips which had to be warped. There was the horizontal vane in front which had to be adjusted, to keep the machine in level flight or to bring it to the ground. There was the vertical vane behind which had to be moved this way and that to secure the desired effect from the warping of the wings. 'For the sake of simplicity,' says Wilbur Wright, 'we decided to attach the wires controlling the vertical tail to the wires warping the wings, so that the operator, instead of having to control three things at once, would have to attend to only the forward horizontal rudder and the wing warping mechanism; and only the latter would be needed for controlling lateral balance.'

The thing was done. They had built an aeroplane that could fly; and the later introduction of an engine was as simple a matter as the harnessing of a horse to a carriage. 'With this apparatus', says Wilbur Wright, speaking of the glider of 1902, 'we made nearly seven hundred glides in the two or three weeks following. We flew it in calms and we flew it in winds as high as thirty-five miles an hour. We steered it to right and left, and performed all the evolutions necessary for flight. This was the first time in the history of the world that a movable vertical tail had been used in controlling the direction or the balance of a flying machine. It was also the first time that a movable vertical tail had been used, in combination with wings adjustable to different angles of incidence, in controlling the balance and direction of an aeroplane. We were the first to functionally employ a movable vertical tail in a flying aeroplane. We were the first to employ wings adjustable to respectively different angles of incidence in a flying aeroplane. We were the first to use the two in combination in a flying aeroplane.'

It is a large claim, and every word of it is true. New inventions are commonly the work of many minds, and it would be easy to name at least half a dozen men to whose work the Wrights were indebted. But these were tributaries; the main achievement belongs wholly to the Wrights. Their quiet perseverance, through long years, in the face of every kind of difficulty, is only a part of their distinction; the alertness and humility of mind which refused all traffic with fixed ideas, and made dangers and disappointments the material of education, is what stamps them with greatness. They put themselves to school to the winds. They knew that there is no cheap or easy way to master nature, and that only the human spirit, at its best and highest, can win through in that long struggle. Their patience never failed. 'Skill', says Wilbur Wright, 'comes by the constant repetition of familiar feats rather than by a few overbold attempts at feats for which the performer is yet hardly prepared.' Man must learn to fly as he learns to walk. 'Before trying to rise to any dangerous height a man ought to know that in an emergency his mind and muscles will work by instinct rather than by conscious effort. There is no time to think.'

The machine of 1902, which might be called the victory machine, deserves a full description. It was a double-decked machine, with two planes fixed by struts one above the other about five feet apart. The planes were thirty-two feet in span, and five feet in chord. The total area of their supporting surfaces was about three hundred and five square feet. The operator lay on his face in the middle of the lower plane. The horizontal rudder in front had a supporting surface of fifteen square feet. The vertical tail, as they called it, which was the true rudder, was reduced after trial to six square feet. The machine was supported on the ground by skids, and was very strongly built. It weighed a hundred and sixteen and a half pounds, to which must be added about a hundred and forty pounds for the weight of the operator. It performed about a thousand glides, with only one injury, though it made many hard landings at full speed on uneven ground. The longest glide was 622-1/2 feet, traversed in twenty-six seconds. The glides were made from the Kill Devil sand-hills, near Kitty Hawk—mounds of sand heaped up by the wind, the biggest having a height of a hundred feet.

The time had now come to invite an engine to bear a part in the proceedings. In the autumn of 1903 the brothers returned to Kitty Hawk for their fourth season of experiment. They had built in the winter a machine weighing six hundred pounds, including the operator and an eight horse-power motor. Finding that the motor gave more power than had been estimated, they added a hundred and fifty pounds of weight in strengthening the wings and other parts. The airscrews, built from their own calculations, gave in useful work two-thirds of the power expended. Before trying this machine, however, they continued their practice with the old glider, and made a number of flights in which they remained in the air for over a minute, often soaring for a considerable time in one spot, without any descent at all.

It was late in the season, the 17th of December 1903, when they first tried the power machine. A general invitation to be present at the trial had been given to the people living within five or six miles, but 'not many were willing to face the rigours of a cold December wind in order to see, as they no doubt thought, another flying machine not fly'. Five persons besides the brothers were present. Mr. Orville Wright's narrative, written for the Aeronautical Society of Great Britain, must be given in his own words:

'On the morning of December 17th, between the hours of 10.30 o'clock and noon, four flights were made, two by Mr. Orville Wright, and two by Mr. Wilbur Wright. The starts were all made from a point on the levels, and about 200 feet west of our camp, which is located about a quarter of a mile north of the Kill Devil Sand Hill, in Dare County, North Carolina. The wind at the time of the flights had a velocity of twenty-seven miles an hour at 10 o'clock, and 24 miles an hour at noon, as recorded by the anemometer at the Kitty Hawk weather bureau station. This anemometer is 30 feet from the ground. Our own measurements, made with a hand-anemometer at a height of four feet from the ground, showed a velocity of about 22 miles when the first flight was made, and 20-1/2 miles at the time of the last one. The flights were directly against the wind. Each time the machine started from the level ground by its own power alone, with no assistance from gravity or any other sources whatever. After a run of about 40 feet along a mono-rail track, which held the machine eight inches from the ground, it rose from the track and, under the direction of the operator, climbed upward on an inclined course till a height of 8 or 10 feet from the ground was reached, after which the course was kept as near horizontal as the wind gusts and the limited skill of the operator would permit. Into the teeth of a December gale the Flyer made its way forward with a speed of 10 miles an hour over the ground, and 30 to 35 miles an hour through the air. It had previously been decided that, for reasons of personal safety, these first trials should be made as close to the ground as possible. The height chosen was scarcely sufficient for manoeuvring in so gusty a wind and with no previous acquaintance with the conduct of the machine and its controlling mechanisms. Consequently the first flight was short. The succeeding flights rapidly increased in length and at the fourth trial a flight of 59 seconds was made, in which time the machine flew a little more than a half-mile through the air and a distance of 852 feet over the ground. The landing was due to a slight error of judgement on the part of the operator. After passing over a little hummock of sand, in attempting to bring the machine down to the desired height the operator turned the rudder too far, and the machine turned downward more quickly than had been expected. The reverse movement of the rudder was a fraction of a second too late to prevent the machine from touching the ground and thus ending the flight. The whole occurrence occupied little, if any, more than one second of time.

'Only those who are acquainted with practical aeronautics can appreciate the difficulties of attempting the first trials of a flying machine in a 25-mile gale. As winter was already well set in, we should have postponed our trials to a more favourable season, but for the fact that we were determined, before returning home, to know whether the machine possessed sufficient power to fly, sufficient strength to withstand the shock of landings, and sufficient capacity of control to make flight safe in boisterous winds, as well as in calm air. When these points had been definitely established, we at once packed our goods and returned home, knowing that the age of the flying machine had come at last.'



CHAPTER II

THE AEROPLANE AND THE AIRSHIP

The age of the flying machine had come at last. A power-driven aeroplane had been built, and had been flown under the control of its pilot. What remained to do was to practise with it and test it; to improve it, and perfect it, and put it on the market. The time allowed for all this was not long; in less than eleven years, if only the world had known it, the world would be at war, and would be calling for aeroplanes by the thousand.

Romance, for all that it is inspired by real events, is never quite like real life. It makes much of prominent dates and crises, and passes lightly and carelessly over the intervening shallows and flats. Yet these shallows and flats are the place where human endurance and purpose are most severely tested. The problem of flight had been solved; the people of the world, it might be expected, springing to attention, would salute the new invention, and welcome the new era. Nothing of the kind happened. America, which is more famous for journalistic activity than any other country on earth, remained profoundly inattentive. The Wrights returned to their home at Dayton, and there continued their experiments.

A legend has grown up that these experiments were conducted under a close-drawn veil of secrecy. On the contrary, the proceedings of the brothers were singularly public—indeed, for the preservation of their title to their own invention, almost dangerously public. 'In the spring of 1904,' says Wilbur Wright, through the kindness of Mr. Torrence Huffman, of Dayton, Ohio, we were permitted to erect a shed, and to continue experiments, on what is known as the Huffman Prairie, at Simms Station, eight miles east of Dayton. The new machine was heavier and stronger, but similar to the one flown at Kill Devil Hill. When it was ready for its first trial every newspaper in Dayton was notified, and about a dozen representatives of the Press were present. Our only request was that no pictures be taken, and that the reports be unsensational, so as not to attract crowds to our experiment grounds. There were probably fifty persons altogether on the ground. When preparations had been completed a wind of only three or four miles was blowing—insufficient for starting on so short a track—but since many had come a long way to see the machine in action, an attempt was made. To add to the other difficulty, the engine refused to work properly. The machine, after running the length of the track, slid off the end without rising into the air at all. Several of the newspaper men returned again the next day, but were again disappointed. The engine performed badly, and after a glide of only sixty feet the machine came to the ground. Further trial was postponed till the motor could be put in better running condition. The reporters had now, no doubt, lost confidence in the machine, though their reports, in kindness, concealed it. Later, when they heard that we were making flights of several minutes' duration, knowing that longer flights had been made with airships, and not knowing any essential difference between airships and flying machines, they were but little interested.'

The indifference and scepticism of the public and the press provided a very effective veil of secrecy, and the brothers prosecuted their researches undisturbed. In 1904 they made more than a hundred flights, practising turning movements and complete circles, and learning how to handle the machine so as to prevent it from 'stalling', that is, from losing flying speed and falling to earth out of control when the air resistance caused by its manoeuvring reduced its speed. In 1905 they built another machine and resumed their experiments in the same field. They did not want to attract a crowd. The cars on the electric line adjoining the field ran every thirty minutes, and they timed their flights between the runs. The farmers living near by saw the flying, but their business was with the earth, not the air, and after looking on for two years they lost what little interest they had. On the 5th of October 1905 one of them, from a neighbouring field, saw the great white form rushing round on its circular course in the air. 'Well,' he remarked, 'the boys are at it again'; and he kept on cutting corn. The season's work is summarized by Mr. Orville Wright in a letter dated the 17th of November 1905, and communicated to the Aeronautical Society of Great Britain:

'Up to September 6 we had the machine on but eight different days, testing a number of changes which we had made since 1904.... During the month of September we gradually improved in our practice, and on the 26th made a flight of a little over eleven miles. On the 30th we increased this to twelve and one-fifth miles, on October 3 to fifteen and one-third miles, on October 4 to twenty and three-fourth miles, and on the 5th to twenty-four and one-fourth miles. All of these flights were made at about thirty-eight miles an hour, the flight of the 5th occupying thirty minutes three seconds.... We had intended to place the record above the hour, but the attention these flights were beginning to attract compelled us suddenly to discontinue our experiments in order to prevent the construction of the machine from becoming public.

'The machine passed through all of these flights without the slightest damage. In each of these flights we returned frequently to the starting-point, passing high over the heads of the spectators.'

A young druggist called Foust, a friend of the Wrights, was present at the flight of the 5th of October. He was told not to divulge what he had seen, but his enthusiasm would not be restrained, and he talked to such effect that next day the field was crowded with sightseers and the fences were lined with photographers. Very reluctantly the brothers ended their work for the year. They took apart their flyer, and brought it back to the city.

From this time on, for a period of almost three years, the brothers disappear from view. The secrets which it had cost them so much time and effort to discover might, by a single photograph, be made into public property. They were bound to do what they could to assert their claim to their own invention. Their first task was to secure patent rights in their machine; and, after that, to negotiate with the American, French, and British Governments for its purchase. The bringer of so great a gift as flight is worthy of his reward; but the attitude of the brothers to their hard-won possession was not selfish or commercial. They thought more of their responsibilities than of their profits; and in attempting to dispose of their machine they handled the matter as if it were a public trust. These years were full of disappointment, much unlike the earlier years of progress and open-air holiday and happiness. No one, except a few intimates and disciples, believed in the Wrights' achievements. The American Government would not touch their invention. When it was thrice offered to the British Government, between the years 1906 and 1908, it was thrice refused, twice by the War Office and once by the Admiralty. At an earlier period the French Government, more active than the other two, sent Captain Ferber, who had made many gliding experiments of his own, to report after viewing the machine at Dayton. The Wrights refused to show it to him, but their account of what they had done impressed him by its truthfulness, and he reported in their favour, though he told them that there was not a man in all France who believed that they had done what they claimed. The French Government would not buy; and things were at a standstill, until Mr. Hart O. Berg, a good man of business who had helped the Wrights to secure their patents, urged on them the necessity of putting in an appearance in Europe and showing what they could do. By this time they had made various improvements, especially in their engine, and had supplied themselves with two machines. With one of these, in the summer of 1908, Wilbur Wright came to France; with the other Orville Wright was to attempt to secure the contract in America for an army aeroplane. A French syndicate had agreed to buy the Wright patents and a certain number of machines on condition that two flights of not less than fifty kilometres each should be made in a single week, the machines to carry a passenger or an equivalent weight, and the flights to be made in a wind of not less than eleven metres a second, that is, about twenty-five miles an hour. The conditions for the American army contract were no less severe. The machine was to remain in continuous flight for at least an hour; it was to be steered in all directions; and was to land, without damage, at its starting-point. The place chosen for the French tests was the Hunaudieres racecourse, near Le Mans. There Wilbur Wright set up his shed, and, from the 8th of August onward, made many little flights, showing his complete control of his machine by the elaborate manoeuvres which he performed in the air. On the 9th of September there came the news that Orville Wright had flown for over an hour at Fort Myer in America. This liberated Wilbur Wright, who had been holding back in order to give America the precedence, and on the 21st of September he flew for more than an hour and a half, covering a distance of over sixty miles. About three weeks later he fulfilled the conditions of his test by successive passenger-carrying flights. Encouraged by his example, two distinguished French pioneers, Henri Farman and Leon Delagrange, soon began to make long flights on French machines, and from this time onwards the progress of flying was rapid and immense. A great industry came into being, and, after a short time, ceased to pay any tribute whatever to the inventors. Merely to secure recognition of their priority, it became necessary for the Wrights to bring actions at law against the infringers of their patents. The tedious and distasteful business of these law-suits troubled and shortened the days of Wilbur Wright, who died at Dayton on the 30th of May 1912. In 1913, by arrangement between the parties, a test action was begun against the British Government. When the war broke out, and the trial of this action was still pending, the supporters of the Wrights hastily met, and offered to forgo all their claims for fifteen thousand pounds, a sum substantial enough to establish the Wrights' priority, yet merely nominal as a payment for the benefits conferred. So the matter was settled. The last thoughts of Wilbur Wright were given, not to financial profits, but to further developments of the art of flight. He was constantly meditating on the possibility of soaring flight, which should take advantage of the wind currents, and maintain the machine in the air with but little expenditure of power. In a letter written not many days before he died, and addressed to a German aviator at the Johannisthal flying camp, he says, 'There must be a method whereby human beings can remain in the air once they really find themselves aloft.... The birds can do it. Why shouldn't men?' The coming of the war, with its peremptory demand for power and yet more power, did much to develop strong flight, but postponed experiment on this delicate and fascinating problem.

The name of the Wrights is so much the greatest name in the history of flying that it is only fair to give their achievements a separate place. In 1905 they were in possession of a practical flying machine. In 1908 they proved their powers and established their claims in the sight of the world. During these three years events had not stood still; European inventors were busy with experiments. There were rumours of the American success, but the rumours were disbelieved, and the problem was attacked again from the beginning. Long after the Wrights had circled in the air, at their own free will, over the Huffman Prairie, European inventors were establishing records, as they believed, by hopping off the ground for a few yards in machines of their own construction.

The earliest of these European pioneers was Mr. I. C. H. Ellehammer, a Danish engineer, who had built motor-cycles and light cars. In 1904 he built a flying machine, and having prepared a ground in the small Danish island of Lindholm, suspended the machine by a wire attached to a central mast, and tested its lifting power. In the course of his experiments he increased his engine-power, and added to the first bird-like pair of wings a second pair placed above them. With this improved machine he claims to have made, on the 12th of September 1906, the first free flight in Europe, travelling in the air for forty-two metres at a height of a metre and a half. With later machines he had some successes, but the rapid progress of French aviation left him behind, and his latest invention was an application to the aeroplane of a helicopter, to raise it vertically in the air. The helicopter idea continues to fascinate some inventors, and it would be rash to condemn it, but the most it seems to promise is a flight like that of the lark—an almost vertical ascent and a glide to earth again. A machine of this kind might conceivably, at some future time, become a substitute, in war, for the kite balloon; it is not likely to supersede the aeroplane.

Of all European countries France was the most intelligent and the most alert in taking up the problem of flight. The enduring rivalry between the airship and the flying machine is well illustrated in the history of French effort. Long before the first true flying machine was built and flown balloons of a fish-like shape had been driven through the air by mechanical airscrews. A bird is much heavier than the air it displaces; a fish is about the same weight as the water it displaces; and the question which of the two examples is better for aircraft, whether flying or swimming is the better mode, remained an open question, dividing opinion and distracting effort. The debate is not yet concluded. It is now not very hazardous to say that both methods are good, and that the partisans of the one side and the other were right in their faith and wrong in their heresy-hunting. National rivalry certainly quickened the competition between the two modes; the early progress of aviation in France gave a great impulse to the development of the Zeppelin in Germany. But the two modes are so entirely distinct that they are better treated separately. None of the chief nations of the world has dared wholly to neglect either; from the very beginning the two have grown up side by side, and interest has been concentrated now on the one and now on the other. When, in 1912, Great Britain took in hand the creation of an air force, military and naval, France was already furnished with a very large number of aeroplanes, organized for service with the army, and Germany was provided with airships of unprecedented power and range. France also had some airships, and Germany, alarmed by the progress of French aviation, had begun to turn her attention to aeroplanes, but the pride of Germany was in her airships, and the pride of France was in her aeroplanes. These were the conditions with which Great Britain had to reckon; they had grown up rapidly in the course of a few years; and it will be convenient to speak first of the airship, which, invented by France, was adopted and improved by Germany; and then of the aeroplane, which was made by France into so formidable a military engine that Germany had no choice but to imitate again. Meantime Great Britain, during the earlier years of these developments, entrusted her aerial fortunes to a few balloons, which were operated by the Royal Engineers and were not very favourably regarded by the chiefs of the army. The unpreparedness of Great Britain in all national crises is a time-honoured theme. The Englishman, if he does not wholly distrust science, at least distrusts theory. Facts excite him, and rouse him to exertion. In an address delivered in 1910, Mr. R. B. Haldane, who consistently did all that he could to promote and encourage science, uttered a prophecy which deserves record. 'When a new invention,' he said, 'like the submarine or the motor, comes to light, the Englishman is usually behind. Give him a few years and he has not only taken care of himself in the meantime, but is generally leading. As it was with these inventions, so I suspect it will prove to be with aircraft.'

The airship, like the balloon, was a French invention. When the balloon first came into vogue many attempts were made to deflect or guide its course by the use of oars. Those who made these attempts were almost unanimous in declaring that the use of oars enabled them to alter the course of a balloon by several points of the compass. Another method of steering employed sails, held up to the wind by the drag of a guide-rope on the ground. The control to be obtained by means like these was pathetically small, and the real problem was soon seen to be the problem of a motor. The spherical balloon is obviously unsuited for power-navigation; in 1784, only a year after the invention of the balloon, General Meusnier, of the French army, made designs for an egg-shaped power-balloon to be driven by three airscrews, supported on the rigging between the car and the balloon. To keep the balloon fully inflated and stiff, in order to drive it against the wind, he planned a double envelope, the inner space to contain hydrogen, the outer space to be pumped full of air. He may thus be said to have invented the ballonet, or air-chamber of the balloon, and to be the father of later successful airships. His designs were mere descriptions; they could not be carried out; there was at that time no light engine in existence, and his own suggestion that the airscrews should be worked by manual labour may be called a design for an engine that weighs something over half a ton for every horse-power of energy exerted. In 1798 the French author Beaumarchais recommended the construction of airships in the long shape of a fish. As the years passed, models were made on this plan. In 1834 Mr. Monck Mason exhibited at the Lowther Arcade in London a model airship, thirteen and a half feet long, and six and a half feet in diameter; its airscrew was operated by a spring; it was fitted with horizontal planes for setting its course; and in its very short flights it attained a speed of something over five miles an hour. A larger model, with two airscrews driven by clockwork, was exhibited in 1850 by M. Jullien, a clockmaker of Paris, and flew successfully against a slight breeze. The first successful man-carrying airship was built in 1852 by Henry Giffard, the French engineer, and was flown at Paris on the 24th of September in that year. It was spindle-shaped, with a capacity of 87,000 cubic feet, and a length of 144 feet. The airscrew, ten feet in diameter, was driven by a steam-engine of three horse-power, and the speed attained was about six miles an hour. It would take long to record all the unsuccessful or partially successful experiments in the history of the airship—the elaborately constructed ships which never rose from the ground, the carefully thought out devices which did not work. Progress was very slow and gradual, a mere residue in a history of failures. The first use of the gas-engine was in an Austrian dirigible, which made a single captive ascent at Brunn in 1872, and developed a speed of three miles an hour. After 1870 the reconstituted French Government showed itself willing to encourage aeronautics, and in 1872, at the cost of the State, a large dirigible was built by Dupuy de Lome, the inventor of the ironclad. This ship, with an airscrew driven by manpower, attained a speed of five and a half miles an hour. The first really successful power-driven airship, that is, the first airship to return to its starting-point at the end of a successful voyage, was built in 1884 for the French army by Captain Krebs and Captain Charles Renard, who subsequently became director of the French department of military aeronautics. This dirigible, named La France, was fish-shaped; its length was a hundred and sixty-five feet; its greatest diameter, near the bows, was twenty-seven and a half feet, or one-sixth of its length; it was fitted with an electric motor of eight and a half horse-power which operated an airscrew of twenty-three feet in diameter, situated in front of the car; it was steered by vertical and horizontal rudders, and made several ascents in the neighbourhood of Meudon. It was the progenitor and type of all later non-rigid dirigibles.

The success of La France brought Germany into the field. Towards the close of the century a German engineer called Woelfert constructed a dirigible rather smaller than the French airship, with a slightly more powerful engine, and two airscrews of twelve feet in diameter. This was in one respect a forerunner of the most famous of the German airships, for the car, instead of hanging loose, was rigidly connected to the envelope by means of struts. The trials took place in 1896 at Tempelhof, near Berlin; the airship was held captive by ropes; it answered well to its rudders, and attained a speed of about nine miles an hour. Encouraged by this experiment, Dr. Woelfert in the following year built a second smaller dirigible, fitted with a Daimler benzine motor, and made a free ascent in it on the 14th of June 1897, near Berlin. As soon as it was well in the air, the ship caught fire and fell flaming to the ground, killing Dr. Woelfert and his assistant. Later in the same year the first completely rigid dirigible was built by a German called David Schwarz; it was made of thin aluminium sheeting, internally braced by steel wires, and was driven by a twelve horse-power Daimler motor which worked twin airscrews, one on either side. It took the air near Berlin on the 3rd of November 1897, but something went wrong with the airscrew belts, and it was seriously damaged in its hasty descent. Thereupon the crowd of people who had assembled to applaud it fell upon it, and wrecked it. The behaviour of the crowd deserves a passing mention in any history of flight; it was not the least of the ordeals of the early aeronaut. The aeroplane or airship pilot who disappointed the expectations of his public found no better treatment than Christian and Faithful met with in Bunyan's Vanity Fair. There is here no question of national weaknesses; in France and Germany, in England and America, the thing has happened again and again. If an ascent was announced, and was put off because the weather was bad, the crowd jeered, and hooted, and threw stones. On more than one occasion a pilot has been driven by the taunts of the crowd to attempt an impossible ascent; and has met his death. If a damaged machine fell to earth, the crowd often wreaked their vengeance on it, as deer fall upon a wounded comrade. The men who made up the crowd were most of them kind and trustworthy in their private relations, and in matters that they understood were not unreasonable or inconsiderate. But aerial navigation was a new thing, and their attitude to it was wholly spectacular. They came to see it because they craved excitement, and under the influence of that cruel passion they were capable of the worst excesses of the Roman populace at a gladiatorial show.

In the years that joined the centuries, that is, from 1898 to 1903, aviation seemed a forlorn hope, but there was great activity in the construction of airships, and something like a race for supremacy between France and Germany. In 1898 the Brazilian, Alberto Santos Dumont, made his first gallant appearance in an airship of his own construction. Born in 1873, the son of a prosperous coffee-planter of San Paulo in Brazil, Santos Dumont was a young and wealthy amateur, gifted with mechanical genius, and insensible to danger. The accidents and perils that he survived in his many aerial adventures would have killed a cat. One of his airships collapsed and fell with him on to the roofs of Paris. Another collapsed and fell with him into the Mediterranean. A third caught fire in the air, and he beat out the flames with his Panama hat. He survived these and other mishaps, unhurt, and after making more than a hundred ascents in airships, turned his attention to aeroplanes, and was the first man to rise from French soil in a flying machine. From his boyhood mechanisms had attracted him; he was well acquainted with all the machines on his father's plantation, and he records an observation that he made there—the only bad machine on the plantation, he says, was an agitating sieve; the good machines all worked on the rotary principle. He became a champion of the wheel, and of the rotary principle. There was something of the fierceness of theological dispute in the controversies of these early days. The wheel, it was pointed out, is not in nature; it is a pedantic invention of man. Birds do not employ it to fly with, nor fish to swim with. The naturalist school of aeronauts declared against it. In 1892 M. A. le Compagnon made experiments, not very successfully, in Paris, with a captive dirigible balloon driven by a pair of oscillating wings. As late as 1904 Mr. Thomas Moy, in a paper read to the Aeronautical Society of Great Britain, maintained that the greatest hindrances to the solution of the problem of mechanical flight have always been the balloon and the airscrew. Mr. William Cochrane, in a paper read a few months earlier, laid it down that the airscrew must give place to a more efficient form of propulsion. Utterances like these help to explain the fervour with which Santos Dumont, in the book called My Airships (1904), defends the rotary principle, which is the life of machines. Like the Wrights, he believed in practice, and was a skilled and experienced balloonist before he attempted to navigate an airship. His first airship was almost absurdly small; it had little more than six thousand feet of cubic capacity, was cigar-shaped, and was driven by a three and a half horse-power petrol motor. The others followed in rapid succession. M. Deutsch de la Meurthe had offered a prize of a hundred thousand francs for the first airship that should rise from the Aero Club ground at St. Cloud and voyage round the Eiffel Tower, returning within half an hour to its starting-point. On the 19th of October 1901 the prize was won by Santos Dumont in the sixth of his airships. The ship had over twenty-two thousand feet of cubic capacity; its length was more than five times its diameter; and it was driven by a twelve horse-power petrol motor. It travelled six and three-quarter miles within the half-hour, part of the journey being accomplished against a wind of about twelve miles an hour. This achievement quickened interest in airships and gained a European fame for Santos Dumont. His later airships were modelled on the egg rather than the cigar; the smallest of these was so perfectly under control that he was able, he says, to navigate it by night through the streets of Paris.

The development of the airship continued for many years to pay toll in wreckage and loss of life. In 1902 three notable airships were built and flown in France; two of these were destroyed in the air above Paris, within a few minutes of their first ascent. Senhor Augusto Severo, a Brazilian, made a spindle-shaped airship, ninety-eight feet long, driven by two airscrews, placed one at each end of a framework which formed the longitudinal axis of the airship. It ascended on the 12th of May, and when it had reached a height of thirteen hundred feet, exploded in flames. Senhor Severo and his assistant perished in it. The other ship was designed by Baron Bradsky, secretary to the German Embassy in Paris; its total weight was made exactly equivalent to the weight of the air that it displaced, and it was to be raised by the operation of an airscrew rotating horizontally under the car. By the action of this screw the car itself began to rotate, and to drag the ship round with it; the resistance of the air on the body of the ship put too great a strain on the steel wires by which the car was suspended; they broke, and from a height of many hundred feet Baron Bradsky and his engineer, M. Morin, fell to earth with the car, and were killed. This second disaster happened on the 13th of October 1902, at Stains, near Paris. Twelve days later, on the 25th of October, a much more fortunate airship, the dirigible built for the brothers Lebaudy, made its first ascent at Moisson. This vessel was more successful than any of its predecessors, and became the model for airships of the semi-rigid type. It was fish-shaped, with a capacity of more than eighty thousand cubic feet, and was driven by a forty horse-power Daimler petrol motor, which worked two airscrews, eight feet in diameter, at a rate exceeding a thousand revolutions a minute. The lower part of the envelope was flat, and secured to a rigid metal framework; six steel tubes, attached to this framework, supported the car below, and, besides distributing the load, conveyed the thrust of the airscrew to the ship above. In the course of a year the ship made twenty-eight return journeys, covering distances up to twenty-two miles. In November 1903 it broke all records, first by making the longest voyage that had ever been made by a navigable balloon, that is, from Moisson to Paris, a distance of about forty miles, and next, a week later, by successfully combating a wind of more than twenty miles an hour. 'Aerial navigation', said Colonel Renard, who witnessed this trial, 'is no longer a Utopia.' After a time the ship was taken over by the French army, and its immediate Lebaudy successors, La Patrie of 1906 and La Republique of 1908, also became military airships. Both were wrecked after a short career, but the military airship had made good its promise, and three new airship-building firms were established in France. In 1902 the Astra Company, in 1909 and 1910 the Zodiac Company and the Clement-Bayard Company, began to build airships, some for the French army and some for foreign powers.

Meanwhile, at the time when Santos Dumont was gaining credit for the smallest airship ever known, the largest known airship had been designed and launched in Germany. On the 2nd of July 1900 the first Zeppelin made its trial trip from the floating shed at Manzell, near Friedrichshafen, on Lake Constance. When the Great War shall be only a faded memory, when the sufferings of millions of men and women shall be condensed into matter for handbooks, and their sacrifices shall be expressed only in arithmetical figures, certain incidents and names, because they caught the popular imagination, will still be narrated and repeated. The names that will live are the names that symbolize the causes for which they stood. Edith Cavell will never be forgotten; when she persevered in her work of mercy, and calmly faced the ultimate cruelties of a monstrous system, all that was best in the war seemed to find expression in that lonely passion. She was brought home to England in a warship, and was carried to her grave on a gun-carriage, under the Union Jack, because her cause was her country's cause, and England claimed a title in her sacrifice. It is a far cry from Edith Cavell to the old soldier who gave Germany the giant airship, but the Zeppelin will also be remembered, because the popular imagination, which is often both just and fanciful, found a symbol of Germany's cause in this engine of terror, so carefully and admirably planned down to the minutest detail, so impressive by its bulk, so indiscriminate in its destructive action, and so frail. Its inventor was Count Ferdinand von Zeppelin, a Lieutenant-General in the German army. His first balloon ascent had been made during the American Civil War, in one of the military balloons of the Federal army. Later on, in the Franco-Prussian War, he distinguished himself by his daring cavalry reconnaissances in Alsace. At about that time there was in Alsace a Frenchman named Spiess, who had drawn a design for a rigid airship not unlike the later Zeppelin, and had endeavoured, without success, to patent it. The suggestion has been made, but with no proof, that Count Zeppelin may have seen Spiess's plans, and borrowed from them. If so, the borrowed idea took long in maturing. It was not until 1898 that the Count went to work on a large scale, and formed a company with a capital of a million marks. It was not until 1908, after ten years of struggle and disaster, that the German Government made him a grant for the continuance of his experiments, and the German people, impressed by his pertinacity and courage in misfortune, raised for him a subscription of three hundred thousand pounds, to enable him to build the great airship works at Friedrichshafen. From this time the Zeppelin was a national ship. Sheds to harbour airships were built at strategic points on the western and eastern fronts, and plans were set on foot to house naval Zeppelins at Heligoland, Emden, and Kiel. With characteristic German thoroughness a network of weather stations on German soil, and, it is believed, of secret weather reports from other countries, was provided for the guidance of airship pilots. All this was a monument to the perseverance, which might almost be called obstinacy, of the indomitable Count. He built enormous and costly airships, one after another; one after another they were wrecked or burnt, and then he built more. The German people watched him as King Robert the Bruce watched the spider, with a scepticism that was gradually turned into wonder, till, in the end, when disaster after disaster found him willing patiently to begin again, they resolved to make him their teacher and to take a lesson from him.

Count Zeppelin was about sixty years old when he began to make airships; he had been long studying the problem and preparing his plans; so that his many airships do not much differ among themselves in general design, and a description of the first gives a fair enough idea of its successors. It was a pencil-shaped rigid structure, about four hundred and twenty feet long, with a diameter almost exactly one-eleventh part of its length. The framework, built of aluminium, consisted of sixteen hoops, connected by longitudinal pieces, and kept rigid by diagonal wire stays. Before it was covered it resembled a vast bird-cage, and looked as frail as a cobweb, but was stronger and stiffer than it looked. It was divided by aluminium bulkheads into seventeen compartments; of these all but the two end compartments contained separate balloons or gas-bags. Two or three of these might collapse without completely destroying the buoyancy of the ship. The whole structure was covered with a fabric of rubberized cotton. A triangular latticed aluminium keel ran along below, to give strength to the ship, and to furnish a passage-way from end to end. At points about a third of the way from either end of the ship spaces in the keel were made for the two cars, in each of which was a sixteen horse-power Daimler motor driving two small high velocity airscrews, one on each side of the ship. The lateral steering was done by a large vertical rudder, placed aft. The longitudinal balance was controlled in several ways. In the first ship a heavy sliding weight in the keel was moved at will, fore and aft. This was supplemented or superseded in later ships by four sets of elevating planes, two sets in the fore-part and two sets aft. An advantage of the rigid ship is that she can tilt herself without danger from the pressure of the gas on the higher end. Moreover, she can be driven at a very high speed, and the gas-bags, being housed in the compartments and protected from the outer air, are less liable to sudden contraction and expansion caused by variations of temperature.

The great disadvantage of the rigid type has hitherto been that in bad weather the airship cannot land. A non-rigid airship in a nasty wind can land and deflate itself at once by ripping the panel in the envelope, at no greater price than the loss of its gas, and probably some damage to its car. To land in a rigid ship is at best a ticklish business; indeed, the rigid airship is in exactly the same case as a large sea-going vessel; its chief dangers are from the land, which it cannot touch with impunity. Its troubles have been greatly diminished, since the war, by the development of the mooring-mast, which does away with the necessity of housing the ship after every flight. The prevailing type of weather in this country is unsettled, and the changes in the force and direction of the wind are rapid and numerous. The landing and housing of an airship demands hundreds of men for its performance, and is not safely to be undertaken in a wind that blows more than eighteen miles an hour. A staff of from eight to ten men is sufficient to anchor a large airship to a mooring-mast, where it has been proved by experiment that she can safely ride out a wind that blows fifty miles an hour. At Pulham, our largest airship station, which was taken over from the Royal Air Force by the Controller-General of Civil Aviation in December 1920, a number of valuable experiments have since been carried out with an improvised mooring-mast, and it has been shown that with a properly designed and constructed mast, fitted with adequate receiving gear and hauling apparatus, there will be no difficulty in landing the largest rigid airships in a wind of from thirty-five to forty miles an hour. This spells an immense advance. Sheds will still be necessary for overhauls and repairs, as a dry dock is necessary for sea-going vessels. But an airship on service may be moored to the mast, as a sea-going vessel is moored to a quay, and can take on board or discharge cargo, passengers, and fuel.

The trial trip of the first Zeppelin was short, because of accidents to the steering-gear, but on the whole was not unsuccessful. The ship was perfectly stable, and in its voyage of three and a half miles proved that it could make headway against a wind of sixteen miles an hour. A second ascent, lasting for an hour and twenty minutes, was made on the 17th of October 1900. These trials were of value in discovering the faults of the ship; in the following year it was broken up, and Count Zeppelin went to work again. In his second ship of 1905 the power of each engine was increased to eighty-five horse-power, and other improvements were made. This ship suffered many minor mishaps. At last, in January 1906, it ascended over Lake Constance to a height of 1,800 feet; then the motors failed, the helm jammed; when the ship attempted to descend the ground was frozen and the anchors would not hold, it was driven against some trees, and a high wind arising in the night made it a total wreck.

* * * * *

The following list shows the number of Zeppelin airships built up to the outbreak of the war, and the fate of each of them:

Zeppelin Year of No. Completion Name Remarks

1 1900 L.Z.I Broken up after experiments spring 1901. 2 1905 L.Z. II Wrecked January 1906. 3 1906 Z. I Taken over by the army. Broken up February 1913. 4 1908 L.Z. IV Burnt August 1908. 5 1909 Z. II Taken over by the army. Wrecked April 1910. 6 1909 L.Z. VI Burnt September 1910. 7 1910 Deutschland Wrecked June 1910. 8 1911 Ersatz Wrecked May 1911. Deutschland 9 1911 Ersatz Taken over by the army. Broken Z. II up summer 1914. 10 1911 Schwaben Wrecked June 1912. 11 1912 Viktoria Wrecked June 1915. Luise 12 1912 Z. III Taken over by the army. Broken up summer 1914. 13 1912 Hansa Broken up summer 1916. 14 1912 L. I Taken over by the navy. Wrecked September 1913. 15 1913 Ersatz Taken over by the army. Wrecked Z. I March 1913. 16 1913 Z. IV Taken over by the army. Broken up spring 1916. 17 1913 Sachsen Broken up spring 1916. 18 1913 L. 2 Taken over by the navy. Burnt October 1913. 19 1913 Ersatz Taken over by the army. Wrecked E.Z. I June 1914. 20 1913 Z. V Taken over by the army. Crashed after damage by gunfire in Poland, August 1914. 21 1913 Z. VI Taken over by the army. Crashed at Cologne after damage by gunfire over Liege, 6th August 1914. 22 1914 Z. VII Taken over by the army. Crashed in the Argonne after damage by gunfire, August 1914. 23 1914 Z. VIII Taken over by the army. Brought down by gunfire at Badonvillers, 23rd August 1914. 24 1914 L. 3 Taken over by the navy. Wrecked off Fanoe, 17th February 1915. 25 1914 Z. IX Taken over by the army. Dismantled August 1914.

The list is full of wreckage; what it does not show is the immense progress made in a few years. As early as 1907 Count Zeppelin made a voyage of eight hours in his third airship, covering 211 miles. In 1909 he voyaged, in stages, from Friedrichshafen to Berlin, landing at Tegel in the presence of the Emperor on the 29th of August, and returning safely to Friedrichshafen by the 2nd of September. But the growing efficiency of the Zeppelin and the growing confidence of the German public are best seen in the records of passenger-carrying flights. The Zeppelin Company, being founded and supported by national enterprise, did not sell any ships to foreign powers. For passenger-carrying purposes it supplied ships to the subsidiary company usually called the Delag (that is, the Deutsche Luftschiffahrt Aktien-Gesellschaft), which had its headquarters at Frankfort-on-the-Main. The Delag acquired six Zeppelin airships, which, unlike the military and naval ships, bore names. A record of the voyages made by the Viktoria Luise, the Hansa, and the Sachsen will show how rapidly the German people were familiarized with the Zeppelin, and how safe air-travel became, when safety was essential, as it is in all passenger-carrying enterprises. The Viktoria Luise made her first trip on the 4th of March 1912, with twenty-three passengers on board, from Friedrichshafen to Frankfort-on-the-Main—a distance of about two hundred miles, which she covered in seven and a half hours. She made her hundredth trip on the 23rd of June 1912; her two-hundredth on the 21st of October in the same year; in the following year her three-hundredth trip was made on the 30th of June, and her four-hundredth on the 26th of November. In these four hundred trips she carried 8,551 persons and travelled 29,430 miles. Some of them were made over the sea; on the 27th of June, for instance, she left Hamburg in the morning, and reached Cuxhaven in about two hours. There she picked up with a Hamburg-America liner starting for New York, and accompanied the steamer for some distance; then she steered for Heligoland, and flying round the island very low was greeted with cheers by the inhabitants. Part of her return journey was made against a head-wind of sixteen miles an hour, and she reached Hamburg after a voyage of eight hours, during which she had covered a distance of about two hundred and fifty miles. The Hansa, beginning in July 1912, by the end of 1913 had made two hundred and seventy-five trips, carrying 5,697 persons and travelling 22,319 miles. The Sachsen, beginning in May 1913, before the end of the year had made two hundred and six trips, carrying 4,857 persons and travelling about 13,700 miles. A wrecked Zeppelin is such a picture of destruction, such a vast display of twisted metal and rags lying wreathed across a landscape, that those who see it are apt to get an exaggerated idea of the dangers of airship travel. With all his misfortunes, it was Count Zeppelin's luck for many years that no life was lost among those who travelled in his ships.

Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse