|
We will now consider the means by which acclimatisation may be effected, namely, through the spontaneous appearance of varieties having a different constitution, and through the effects of use or habit. In regard to the first process, there is no evidence that a change in the constitution of the {312} offspring necessarily stands in any direct relation with the nature of the climate inhabited by the parents. On the contrary, it is certain that hardy and tender varieties of the same species appear in the same country. New varieties thus spontaneously arising become fitted to slightly different climates in two different ways; firstly, they may have the power, either as seedlings or when full-grown, of resisting intense cold, as with the Moscow pear, or of resisting intense heat, as with some kinds of Pelargonium, or the flowers may withstand severe frost, as with the Forelle pear. Secondly, plants may become adapted to climates widely different from their own, from flowering and fruiting either earlier or later in the season. In both these cases the power of acclimatisation by man consists simply in the selection and preservation of new varieties. But without any direct intention on his part of securing a hardier variety, acclimatisation may be unconsciously effected by merely raising tender plants from seed, and by occasionally attempting their cultivation further and further northwards, as in the case of maize, the orange, and the peach.
How much influence ought to be attributed to inherited habit or custom in the acclimatisation of animals and plants is a much more difficult question. In many cases natural selection can hardly have failed to have come into play and complicated the result. It is notorious that mountain sheep resist severe weather and storms of snow which would destroy lowland breeds; but then mountain sheep have been thus exposed from time immemorial, and all delicate individuals will have been destroyed, and the hardiest preserved. So with the Arrindy silk-moths of China and India; who can tell how far natural selection may have taken a share in the formation of the two races, which are now fitted for such widely different climates? It seems at first probable that the many fruit-trees, which are so well fitted for the hot summers and cold winters of North America, in contrast with their poor success under our climate, have become adapted through habit; but when we reflect on the multitude of seedlings annually raised in that country, and that none would succeed unless born with a fitting constitution, it is possible that mere habit may have done nothing towards their acclimatisation. On the other hand, when we {313} hear that Merino sheep, bred during no great number of generations at the Cape of Good Hope—that some European plants raised during only a few generations in the cooler parts of India, withstand the hotter parts of that country much better than the sheep or seeds imported directly from England, we must attribute some influence to habit. We are led to the same conclusion when we hear from Naudin[793] that the races of melons, squashes, and gourds, which have long been cultivated in Northern Europe, are comparatively more precocious, and need much less heat for maturing their fruit, than the varieties of the same species recently brought from tropical regions. In the reciprocal conversion of summer and winter wheat, barley, and vetches into each other, habit produces a marked effect in the course of a very few generations. The same thing apparently occurs with the varieties of maize, which, when carried from the Southern to the Northern States of America, or into Germany, soon become accustomed to their new homes. With vine-plants taken to the West Indies from Madeira, which are said to succeed better than plants brought directly from France, we have some degree of acclimatisation in the individual, independently of the production of new varieties by seed.
The common experience of agriculturists is of some value, and they often advise persons to be cautious in trying in one country the productions of another. The ancient agricultural writers of China recommend the preservation and cultivation of the varieties peculiar to each country. During the classical period, Columella wrote, "Vernaculum pecus peregrino longe praestantius est."[794]
I am aware that the attempt to acclimatise either animals or plants has been called a vain chimaera. No doubt the attempt in most cases deserves to be thus called, if made independently of the production of new varieties endowed with a different constitution. Habit, however much prolonged, rarely produces any effect on a plant propagated by buds; it apparently acts only through successive seminal generations. {314} The laurel, bay, laurestinus, &c., and the Jerusalem artichoke, which are propagated by cuttings or tubers, are probably now as tender in England as when first introduced; and this appears to be the case with the potato, which until recently was seldom multiplied by seed. With plants propagated by seed, and with animals, there will be little or no acclimatisation unless the hardier individuals are either intentionally or unconsciously preserved. The kidney-bean has often been advanced as an instance of a plant which has not become hardier since its first introduction into Britain. We hear, however, on excellent authority,[795] that some very fine seed, imported from abroad, produced plants "which blossomed most profusely, but were nearly all but abortive, whilst plants grown alongside from English seed podded abundantly;" and this apparently shows some degree of acclimatisation in our English plants. We have also seen that seedlings of the kidney-bean occasionally appear with a marked power of resisting frost; but no one, as far as I can hear, has ever separated such hardy seedlings, so as to prevent accidental crossing, and then gathered their seed, and repeated the process year after year. It may, however, be objected with truth that natural selection ought to have had a decided effect on the hardiness of our kidney-beans; for the tenderest individuals must have been killed during every severe spring, and the hardier preserved. But it should be borne in mind that the result of increased hardiness would simply be that gardeners, who are always anxious for as early a crop as possible, would sow their seed a few days earlier than formerly. Now, as the period of sowing depends much on the soil and elevation of each district, and varies with the season; and as new varieties have often been imported from abroad, can we feel sure that our kidney-beans are not somewhat hardier? I have not been able, by searching old horticultural works, to answer this question satisfactorily.
On the whole the facts now given show that, though habit does something towards acclimatisation, yet that the spontaneous appearance of constitutionally different individuals is a far more effective agent. As no single instance has been recorded, either with animals or plants, of hardier individuals {315} having been long and steadily selected, though such selection is admitted to be indispensable for the improvement of any other character, it is not surprising that man has done little in the acclimatisation of domesticated animals and cultivated plants. We need not, however, doubt that under nature new races and new species would become adapted to widely different climates, by spontaneous variation, aided by habit, and regulated by natural selection.
Arrests of Development: Rudimentary and Aborted Organs.
These subjects are here introduced because there is reason to believe that rudimentary organs are in many cases the result of disuse. Modifications of structure from arrested development, so great or so serious as to deserve to be called monstrosities, are of common occurrence, but, as they differ much from any normal structure, they require here only a passing notice. When a part or organ is arrested during its embryonic growth, a rudiment is generally left. Thus the whole head may be represented by a soft nipple-like projection, and the limbs by mere papillae. These rudiments of limbs are sometimes inherited, as has been observed in a dog.[796]
Many lesser anomalies in our domesticated animals appear to be due to arrested development. What the cause of the arrest may be, we seldom know, except in the case of direct injury to the embryo within the egg or womb. That the cause does not generally act at a very early embryonic period we may infer from the affected organ seldom being wholly aborted,—a rudiment being generally preserved. The external ears are represented by mere vestiges in a Chinese breed of sheep; and in another breed, the tail is reduced "to a little button, suffocated, in a manner, by fat."[797] In tailless dogs and cats a stump is left; but I do not know whether it includes at an early embryonic age rudiments of all the caudal vertebrae. In certain breeds of fowls the comb and wattles are reduced to rudiments; in the Cochin-China breed scarcely more than rudiments of spurs exist. With polled Suffolk cattle, "rudiments of horns can often be felt at an early age;"[798] and with species in a state of nature, the relatively greater development of rudimentary organs at an early period of life is highly characteristic of such organs. With hornless breeds of cattle and sheep; another and singular kind of rudiment has been observed, namely, minute dangling horns attached to the skin alone, and which are often shed and grow again. With hornless goats, according to Desmarest,[799] {316} the bony protuberances which properly support the horns exist as mere rudiments.
With cultivated plants it is far from rare to find the petals, stamens, and pistils represented by rudiments, like those observed in natural species. So it is with the whole seed in many fruits; thus near Astrakhan there is a grape with mere traces of seeds, "so small and lying so near the stalk that they are not perceived in eating the grape."[800] In certain varieties of the gourd, the tendrils, according to Naudin, are represented by rudiments or by various monstrous growths. In the broccoli and cauliflower the greater number of the flowers are incapable of expansion, and include rudimentary organs. In the Feather hyacinth (Muscari comosum) the upper and central flowers are brightly coloured but rudimentary; under cultivation the tendency to abortion travels downwards and outwards, and all the flowers become rudimentary; but the abortive stamens and pistils are not so small in the lower as in the upper flowers. In the Viburnum opulus, on the other hand, the outer flowers naturally have their organs of fructification in a rudimentary state, and the corolla is of large size; under cultivation, the change spreads to the centre, and all the flowers become affected; thus the well-known Snow-ball bush is produced. In the Compositae, the so-called doubling of the flowers consists in the greater development of the corolla of the central florets, generally accompanied with some degree of sterility; and it has been observed[801] that the progressive doubling invariably spreads from the circumference to the centre,—that is, from the ray florets, which so often include rudimentary organs, to those of the disc. I may add, as bearing on this subject, that, with Asters, seeds taken from the florets of the circumference have been found to yield the greatest number of double flowers.[802] In these several cases we have a natural tendency in certain parts to become rudimentary, and this under culture spreads either to, or from, the axis of the plant. It deserves notice, as showing how the same laws govern the changes which natural species and artificial varieties undergo, that in a series of species in the genus Carthamus, one of the Compositae, a tendency in the seeds to the abortion of the pappus may be traced extending from the circumference to the centre of the disc: thus, according to A. de Jussieu,[803] the abortion is only partial in Carthamus creticus, but more extended in C. lanatus; for in this species two or three alone of the central seeds are furnished with a pappus, the surrounding seeds being either quite naked or furnished with a few hairs; and lastly, in C. tinctorius, even the central seeds are destitute of pappus, and the abortion is complete.
With animals and plants under domestication, when an organ disappears, leaving only a rudiment, the loss has generally been sudden, as with hornless and tailless breeds; and such cases may be ranked as inherited monstrosities. But in some few cases the loss has been gradual, and {317} has been partly effected by selection, as with the rudimentary combs and wattles of certain fowls. We have also seen that the wings of some domesticated birds have been slightly reduced by disuse, and the great reduction of the wings in certain silk-moths, with mere rudiments left, has probably been aided by disuse.
With species in a state of nature, rudimentary organs are so extremely common that scarcely one can be named which is wholly free from a blemish of this nature. Such organs are generally variable, as several naturalists have observed; for, being useless, they are not regulated by natural selection, and they are more or less liable to reversion. The same rule certainly holds good with parts which have become rudimentary under domestication. We do not know through what steps under nature rudimentary organs have passed in being reduced to their present condition; but we so incessantly see in species of the same group the finest gradations between an organ in a rudimentary and perfect state, that we are led to believe that the passage must have been extremely gradual. It may be doubted whether a change of structure so abrupt as the sudden loss of an organ would ever be of service to a species in a state of nature; for the conditions to which all organisms are closely adapted usually change very slowly. Even if an organ did suddenly disappear in some one individual by an arrest of development, intercrossing with the other individuals of the same species would cause it to reappear in a more or less perfect manner, so that its final reduction could only be effected by the slow process of continued disuse or natural selection. It is much more probable that, from changed habits of life, organs first become of less and less use, and ultimately superfluous; or their place may be supplied by some other organ; and then disuse, acting on the offspring through inheritance at corresponding periods of life, would go on reducing the organ; but as most organs could be of no use at an early embryonic period, they would not be affected by disuse; consequently they would be preserved at this stage of growth, and would remain as rudiments. In addition to the effects of disuse, the principle of economy of growth, already alluded to in this chapter, would lead to the still further reduction of all superfluous parts. With respect to the final and total suppression or abortion of any organ, another and distinct principle, which will be discussed in the chapter on pangenesis, probably takes a share in the work.
With animals and plants reared by man there is no severe or recurrent struggle for existence, and the principle of economy will not come into action. So far, indeed, is this from being the case, that in some instances organs, which are naturally rudimentary in the parent-species, become partially redeveloped in the domesticated descendants. Thus cows, like most other ruminants, properly have four active and two rudimentary mammae; but in our domesticated animals, the latter occasionally become considerably developed and yield milk. The atrophied mammae, which, in male domesticated animals, including man, have in some rare cases grown to full size and secreted milk, perhaps offer an analogous case. The hind feet of dogs include rudiments of a fifth toe, and in certain large breeds these toes, though still rudimentary, become considerably developed {318} and are furnished with claws. In the common Hen, the spurs and comb are rudimentary, but in certain breeds these become, independently of age or disease of the ovaria, well developed. The stallion has canine teeth, but the mare has only traces of the alveoli, which, as I am informed by the eminent veterinary Mr. G. T. Brown, frequently contain minute irregular nodules of bone. These nodules, however, sometimes become developed into imperfect teeth, protruding through the gums and coated with enamel; and occasionally they grow to a third or even a fourth of the length of the canines in the stallion. With plants I do not know whether the redevelopment of rudimentary organs occurs more frequently under culture than under nature. Perhaps the pear-tree may be a case in point, for when wild it bears thorns, which though useful as a protection are formed of branches in a rudimentary condition, but, when the tree is cultivated, the thorns are reconverted into branches.
Finally, though organs which must be classed as rudimentary frequently occur in our domesticated animals and cultivated plants, these have generally been formed suddenly, through an arrest of development. They usually differ in appearance from the rudiments which so frequently characterise natural species. In the latter, rudimentary organs have been slowly formed through continued disuse, acting by inheritance at a corresponding age, aided by the principle of the economy of growth, all under the control of natural selection. With domesticated animals, on the other hand, the principle of economy is far from coming into action, and their organs, although often slightly reduced by disuse, are not thus almost obliterated with mere rudiments left.
* * * * *
{319}
CHAPTER XXV.
LAWS OF VARIATION, continued—CORRELATED VARIABILITY.
EXPLANATION OF TERM—CORRELATION AS CONNECTED WITH DEVELOPMENT—MODIFICATIONS CORRELATED WITH THE INCREASED OR DECREASED SIZE OF PARTS—CORRELATED VARIATION OF HOMOLOGOUS PARTS—FEATHERED FEET IN BIRDS ASSUMING THE STRUCTURE OF THE WINGS—CORRELATION BETWEEN THE HEAD AND THE EXTREMITIES—BETWEEN THE SKIN AND DERMAL APPENDAGES—BETWEEN THE ORGANS OF SIGHT AND HEARING—CORRELATED MODIFICATIONS IN THE ORGANS OF PLANTS—CORRELATED MONSTROSITIES—CORRELATION BETWEEN THE SKULL AND EARS—SKULL AND CREST OF FEATHERS—SKULL AND HORNS—CORRELATION OF GROWTH COMPLICATED BY THE ACCUMULATED EFFECTS OF NATURAL SELECTION—COLOUR AS CORRELATED WITH CONSTITUTIONAL PECULIARITIES.
All the parts of the organisation are to a certain extent connected or correlated together; but the connexion may be so slight that it hardly exists, as with compound animals or the buds on the same tree. Even in the higher animals various parts are not at all closely related; for one part may be wholly suppressed or rendered monstrous without any other part of the body being affected. But in some cases, when one part varies, certain other parts always, or nearly always, simultaneously vary; they are then subject to the law of correlated variation. Formerly I used the somewhat vague expression of correlation of growth, which may be applied to many large classes of facts. Thus, all the parts of the body are admirably coordinated for the peculiar habits of life of each organic being, and they may be said, as the Duke of Argyll insists in his 'Reign of Law,' to be correlated for this purpose. Again, in large groups of animals certain structures always co-exist; for instance, a peculiar form of stomach with teeth of peculiar form, and such structures may in one sense be said to be correlated. But these cases have no necessary connexion with the law to be discussed in the present chapter; for we do not know that {320} the initial or primary variations of the several parts were in any way related; slight modifications or individual differences may have been preserved, first in one and then in another part, until the final and perfectly co-adapted structure was acquired; but to this subject I shall presently recur. Again, in many groups of animals the males alone are furnished with weapons, or are ornamented with gay colours; and these characters manifestly stand in some sort of correlation with the male reproductive organs, for when the latter are destroyed these characters disappear. But it was shown in the twelfth chapter that the very same peculiarity may become attached at any age to either sex, and afterwards be exclusively transmitted by the same sex at a corresponding age. In these cases we have inheritance limited by, or correlated with, both sex and age; but we have no reason for supposing that the original cause of the variation was necessarily connected with the reproductive organs, or with the age of the affected being.
In cases of true correlated variation, we are sometimes able to see the nature of the connexion; but in most cases the bond is hidden from us, and certainly differs in different cases. We can seldom say which of two correlated parts first varies, and induces a change in the other; or whether the two are simultaneously produced by some distinct cause. Correlated variation is an important subject for us; for when one part is modified through continued selection, either by man or under nature, other parts of the organisation will be unavoidably modified. From this correlation it apparently follows that, with our domesticated animals and plants, varieties rarely or never differ from each other by some single character alone.
One of the simplest cases of correlation is that a modification which arises during an early stage of growth tends to influence the subsequent development of the same part, as well as of other and intimately connected parts. Isidore Geoffroy St. Hilaire states[804] that this may constantly be observed with monstrosities {321} in the animal kingdom; and Moquin-Tandon[805] remarks, that, as with plants the axis cannot become monstrous without in some way affecting the organs subsequently produced from it, so axial anomalies are almost always accompanied by deviations of structure in the appended parts. We shall presently see that with short-muzzled races of the dog certain histological changes in the basal elements of the bones arrest their development and shorten them, and this affects the position of the subsequently developed molar teeth. It is probable that certain modifications in the larvae of insects would affect the structure of the mature insects. But we must be very careful not to extend this view too far, for, during the normal course of development, certain members in the same group of animals are known to pass through an extraordinary course of change, whilst other and closely allied members arrive at maturity with little change of structure.
Another simple case of correlation is that with the increased or decreased dimensions of the whole body, or of any particular part, certain organs are increased or diminished in number, or are otherwise modified. Thus pigeon-fanciers have gone on selecting pouters for length of body, and we have seen that their vertebrae are generally increased in number, and their ribs in breadth. Tumblers have been selected for their small bodies, and their ribs and primary wing-feathers are generally lessened in number. Fantails have been selected for their large, widely-expanded tails, with numerous tail-feathers, and the caudal vertebrae are increased in size and number. Carriers have been selected for length of beak, and their tongues have become longer, but not in strict accordance with the length of beak. In this latter breed and in others having large feet, the number of the scutellae on the toes is greater than in the breeds with small feet. Many similar cases could be given. In Germany it has been observed that the period of gestation is longer in large-sized than in small-sized breeds of cattle. With our highly-improved animals of all kinds the period of maturity has advanced, both with respect to the full growth of the body and the period of reproduction; and, in correspondence with this, the teeth are now developed earlier than formerly, so that, {322} to the surprise of agriculturists, the ancient rules for judging the age of an animal by the state of its teeth are no longer trustworthy.[806]
Correlated Variation of Homologous Parts.—Parts which are homologous tend to vary in the same manner; and this is what might have been expected, for such parts are identical in form and structure during an early period of embryonic development, and are exposed in the egg or womb to similar conditions. The symmetry, in most kinds of animals, of the corresponding or homologous organs on the right and left sides of the body, is the simplest case in point; but this symmetry sometimes fails, as with rabbits having only one ear, or stags with one horn, or with many-horned sheep which sometimes carry an additional horn on one side of their heads. With flowers which have regular corollas, the petals generally vary in the same manner, as we see in the same complicated and elegant pattern, on the flowers of the Chinese pink; but with irregular flowers, though the petals are of course homologous, this symmetry often fails, as with the varieties of the Antirrhinum or snapdragon, or that variety of the kidney-bean (Phaseolus multiflorus) which has a white standard-petal.
In the vertebrata the front and hind limbs are homologous, and they tend to vary in the same manner, as we see in long and short-legged, or in thick and thin-legged races of the horse and dog. Isidore Geoffroy[807] has remarked on the tendency of supernumerary digits in man to appear, not only on the right and left sides, but on the upper and lower extremities. Meckel has insisted[808] that, when the muscles of the arm depart in number or arrangement from their proper type, they almost always imitate those of the leg; and so conversely the varying muscles of the leg imitate the normal muscles of the arm.
In several distinct breeds of the pigeon and fowl, the legs and the two outer toes are heavily feathered, so that in the trumpeter pigeon they appear like little wings. In the feather-legged bantam the "boots" or feathers, which grow from the outside of the leg and generally from the two outer toes, have, {323} according to the excellent authority of Mr. Hewitt,[809] been seen to exceed the wing-feathers in length, and in one case were actually nine and a half inches in length! As Mr. Blyth has remarked to me, these leg-feathers resemble the primary wing-feathers, and are totally unlike the fine down which naturally grows on the legs of some birds, such as grouse and owls. Hence it may be suspected that excess of food has first given redundancy to the plumage, and then that the law of homologous variation has led to the development of feathers on the legs, in a position corresponding with those on the wing, namely, on the outside of the tarsi and toes. I am strengthened in this belief by the following curious case of correlation, which for a long time seemed to me utterly inexplicable, namely, that in pigeons of any breed, if the legs are feathered, the two outer toes are partially connected by skin. These two outer toes correspond with our third and fourth toes. Now, in the wing of the pigeon or any other bird, the first and fifth digits are wholly aborted; the second is rudimentary and carries the so-called "bastard-wing;" whilst the third and fourth digits are completely united and enclosed by skin, together forming the extremity of the wing. So that in feather-footed pigeons, not only does the exterior surface support a row of long feathers, like wing-feathers, but the very same digits which in the wing are completely united by skin become partially united by skin in the feet; and thus by the law of the correlated variation of homologous parts we can understand the curious connection of feathered legs and membrane between the two outer toes.
Andrew Knight[810] has remarked that the face or head and the limbs vary together in general proportions. Compare, for instance, the head and limbs of a dray and race-horse, or of a greyhound and mastiff. What a monster a greyhound would appear with the head of a mastiff! The modern bulldog, however, has fine limbs, but this is a recently-selected character. From the measurements given in the sixth chapter, we clearly see that in all the breeds of the pigeon the length of the beak and the size of the feet are correlated. The view which, as before explained, seems the most probable is, that disuse in all cases tends {324} to diminish the feet, the beak becoming at the same time through correlation shorter; but that in those few breeds in which length of beak has been a selected point, the feet, notwithstanding disuse, have through correlation increased in size.
With the increased length of the beak in pigeons, not only the tongue increases in length, but likewise the orifice of the nostrils. But the increased length of the orifice of the nostrils perhaps stands in closer correlation with the development of the corrugated skin or wattle at the base of the beak; for when there is much wattle round the eyes, the eyelids are greatly increased or even doubled in length.
There is apparently some correlation even in colour between the head and the extremities. Thus with horses a large white star or blaze on the forehead is generally accompanied by white feet.[811] With white rabbits and cattle, dark marks often co-exist on the tips of the ears and on the feet. In black and tan dogs of different breeds, tan-coloured spots over the eyes and tan-coloured feet almost invariably go together. These latter cases of connected colouring may be due either to reversion or to analogous variation,—subjects to which we shall hereafter return,—but this does not necessarily determine the question of their original correlation. If those naturalists are correct who maintain that the jaw-bones are homologous with the limb-bones, then we can understand why the head and limbs tend to vary together in shape and even in colour; but several highly competent judges dispute the correctness of this view.
The lopping forwards and downwards of the immense ears of fancy rabbits is in part due to the disuse of the muscles, and in part to the weight and length of the ears, which have been increased by selection during many generations. Now, with the increased size and changed direction of the ears, not only has the bony auditory meatus become changed in outline, direction, and greatly in size, but the whole skull has been slightly modified. This could be clearly seen in "half-lops"—that is, in rabbits with one ear alone lopping forward—for the opposite sides of their skulls were not strictly symmetrical. This seems to me a curious instance of correlation, between hard {325} bones and organs so soft and flexible, as well as so unimportant under a physiological point of view, as the external ears. The result no doubt is largely due to mere mechanical action, that is, to the weight of the ears, on the same principle that the skull of a human infant is easily modified by pressure.
The skin and the appendages of hair, feathers, hoofs, horns, and teeth, are homologous over the whole body. Every one knows that the colour of the skin and that of the hair usually vary together; so that Virgil advises the shepherd to look whether the mouth and tongue of the ram are black, lest the lambs should not be purely white. With poultry and certain ducks we have seen that the colour of the plumage stands in some connexion with the colour of the shell of the egg,—that is, with the mucous membrane which secretes the shell. The colour of the skin and hair, and the odour emitted by the glands of the skin, are said[812] to be connected, even in the same race of men. Generally the hair varies in the same way all over the body in length, fineness, and curliness. The same rule holds good with feathers, as we see with the laced and frizzled breeds both of fowls and pigeons. In the common cock the feathers on the neck and loins are always of a particular shape, called hackles: now in the Polish breed, both sexes are characterised by a tuft of feathers on the head; but through correlation these feathers in the male always assume the form of hackles. The wing and tail-feathers, though arising from parts not homologous, vary in length together; so that long or short winged pigeons generally have long or short tails. The case of the Jacobin-pigeon is more curious, for the wing and tail feathers are remarkably long; and this apparently has arisen in correlation with the elongated and reversed feathers on the back of the neck, which form the hood.
The hoofs and hair are homologous appendages; and a careful observer, namely Azara,[813] states that in Paraguay horses of various colours are often born with their hair curled and twisted like that on the head of a negro. This peculiarity is strongly inherited. But what is remarkable is that the hoofs of these horses "are absolutely like those of a mule." The hair also of the mane and tail is invariably much shorter than usual, being only from four {326} to twelve inches in length; so that curliness and shortness of the hair are here, as with the negro, apparently correlated.
With respect to the horns of sheep, Youatt[814] remarks that "multiplicity of horns is not found in any breed of much value: it is generally accompanied by great length and coarseness of the fleece." Several tropical breeds of sheep, which are clothed with hair instead of wool, have horns almost like those of a goat. Sturm[815] expressly declares that in different races the more the wool is curled the more the horns are spirally twisted. We have seen in the third chapter, where other analogous facts have been given, that the parent of the Mauchamp breed, so famous for its fleece, had peculiarly shaped horns. The inhabitants of Angora assert[816] that "only the white goats which have horns wear the fleece in the long curly locks that are so much admired; those which are not horned having a comparatively close coat." From these cases we may conclude that the hair or wool and the horns vary in a correlated manner. Those who have tried hydropathy are aware that the frequent application of cold water stimulates the skin; and whatever stimulates the skin tends to increase the growth of the hair, as is well shown in the abnormal growth of hair near old inflamed surfaces. Now, Professor Low[817] is convinced that with the different races of British cattle thick skin and long hair depend on the humidity of the climate which they inhabit. We can thus see how a humid climate might act on the horns—in the first place directly on the skin and hair, and secondly by correlation on the horns. The presence or absence of horns, moreover, both in the case of sheep and cattle, acts, as will presently be shown, by some sort of correlation on the skull.
With respect to hair and teeth, Mr. Yarrell[818] found many of the teeth deficient in three hairless "Aegyptian" dogs, and in a hairless terrier. The incisors, canines, and premolars suffered most, but in one case all the teeth, except the large tubercular molar on each side, were deficient. With man several striking cases have been recorded[819] of inherited baldness with {327} inherited deficiency, either complete or partial, of the teeth. We see the same connexion in those rare cases in which the hair has been renewed in old age, for this has "usually been accompanied by a renewal of the teeth." I have remarked in a former part of this volume that the great reduction in the size of the tusks in domestic boars probably stands in close relation with their diminished bristles, due to a certain amount of protection; and that the reappearance of the tusks in boars, which have become feral and are fully exposed to the weather, probably depends on the reappearance of the bristles. I may add, though not strictly connected with our present point, that an agriculturist[820] asserts that "pigs with little hair on their bodies are most liable to lose their tails, showing a weakness of the tegumental structure. It may be prevented by crossing with a more hairy breed."
In the previous cases deficient hair, and teeth deficient in number or size, are apparently connected. In the following cases abnormally redundant hair, and teeth either deficient or redundant, are likewise connected. Mr. Crawfurd[821] saw at the Burmese Court a man, thirty years old, with his whole body, except the hands and feet, covered with straight silky hair, which on the shoulders and spine was five inches in length. At birth the ears alone were covered. He did not arrive at puberty, or shed his milk teeth, until twenty years old; and at this period he acquired five teeth in the upper jaw, namely four incisors and one canine, and four incisor teeth in the lower jaw; all the teeth were small. This man had a daughter, who was born with hair within her ears; and the hair soon extended over her body. When Captain Yule[822] visited the Court, he found this girl grown up; and she presented a strange appearance with even her nose densely covered with soft hair. Like her father, she was furnished with incisor teeth alone. The King had with difficulty bribed a man to marry her, and of her two children, one, a boy fourteen months old, had hair growing out of his ears, with a beard and moustache. This strange peculiarity had, therefore, been inherited for three generations, with the molar teeth deficient in the grandfather and mother; whether {328} these teeth would likewise fail in the infant could not be told. Here is another case communicated to me by Mr. Wallace on the authority of Dr. Purland, a dentist: Julia Pastrana, a Spanish dancer, was a remarkably fine woman, but she had a thick masculine beard and a hairy forehead; she was photographed, and her stuffed skin was exhibited as a show; but what concerns us is, that she had in both the upper and lower jaw an irregular double set of teeth, one row being placed within the other, of which Dr. Purland took a cast. From the redundancy of the teeth her mouth projected, and her face had a gorilla-like appearance. These cases and those of the hairless dogs forcibly call to mind the fact, that the two orders of mammals—namely, the Edentata and Cetacea—which are the most abnormal in their dermal covering, are likewise the most abnormal either by deficiency or redundancy of teeth.
The organs of sight and hearing are generally admitted to be homologous, both with each other and with the various dermal appendages; hence these parts are liable to be abnormally affected in conjunction. Mr. White Cowper says "that in all cases of double microphthalmia brought under his notice he has at the same time met with defective development of the dental system." Certain forms of blindness seem to be associated with the colour of the hair; a man with black hair and a woman with light-coloured hair, both of sound constitution, married and had nine children, all of whom were born blind; of these children, five "with dark hair and brown iris were afflicted with amaurosis; the four others, with light-coloured hair and blue iris, had amaurosis and cataract conjoined." Several cases could be given, showing that some relation exists between various affections of the eyes and ears; thus Liebreich states that out of 241 deaf-mutes in Berlin, no less than fourteen suffered from the rare disease called pigmentary retinitis. Mr. White Cowper and Dr. Earle have remarked that inability to distinguish different colours, or colour-blindness, "is often associated with a corresponding inability to distinguish musical sounds."[823]
{329}
Here is a more curious case: white cats, if they have blue eyes, are almost always deaf. I formerly thought that the rule was invariable, but I have heard of a few authentic exceptions. The first two notices were published in 1829, and relate to English and Persian cats: of the latter, the Rev. W. T. Bree possessed a female, and he states "that of the offspring produced at one and the same birth, such as, like the mother, were entirely white (with blue eyes) were, like her, invariably deaf; while those that had the least speck of colour on their fur, as invariably possessed the usual faculty of hearing."[824] The Rev. W. Darwin Fox informs me that he has seen more than a dozen instances of this correlation in English, Persian, and Danish cats; but he adds "that, if one eye, as I have several times observed, be not blue, the cat hears. On the other hand, I have never seen a white cat with eyes of the common colour that was deaf." In France Dr. Sichel[825] has observed during twenty years similar facts; he adds the remarkable case of the iris beginning, at the end of four months, to grow dark-coloured, and then the cat first began to hear.
This case of correlation in cats has struck many persons as marvellous. There is nothing unusual in the relation between blue eyes and white fur; and we have already seen that the organs of sight and hearing are often simultaneously affected. In the present instance the cause probably lies in a slight arrest of development in the nervous system in connection with the sense-organs. Kittens during the first nine days, whilst their eyes are closed, appear to be completely deaf; I have made a great clanging noise with a poker and shovel close to their heads, both when they were asleep and awake, without producing any effect. The trial must not be made by shouting close to their ears, for they are, even when asleep, extremely sensitive to a breath of air. Now, as long as the eyes continue closed, the iris is no doubt blue, for in all the kittens which I have seen this colour remains for some time after the eyelids open. Hence, if we suppose the development of the organs of sight and hearing to be arrested at the stage of the closed eyelids, the eyes would {330} remain permanently blue and the ears would be incapable of perceiving sound; and we should thus understand this curious case. As, however, the colour of the fur is determined long before birth, and as the blueness of the eyes and the whiteness of the fur are obviously connected, we must believe that some primary cause acts at an early period.
The instances of correlated variability hitherto given have been chiefly drawn from the animal kingdom, and we will now turn to plants. Leaves, sepals, petals, stamens, and pistils are all homologous. In double flowers we see that the stamens and pistils vary in the same manner, and assume the form and colour of the petals. In the double columbine (Aquilegia vulgaris), the successive whorls of stamens are converted into cornucopias, which are enclosed within each other and resemble the petals. In hose-and-hose flowers the sepals mock the petals. In some cases the flowers and leaves vary together in tint: in all the varieties of the common pea, which have purple flowers, a purple mark may be seen on the stipules. In other cases the leaves and fruit and seeds vary together in colour, as in a curious pale-leaved variety of the sycamore, which has recently been described in France,[826] and as in the purple-leaved hazel, in which the leaves, the husk of the nut, and the pellicle round the kernel are all coloured purple.[827] Pomologists can predict to a certain extent, from the size and appearance of the leaves of their seedlings, the probable nature of the fruit; for, as Van Mons remarks,[828] variations in the leaves are generally accompanied by some modification in the flower, and consequently in the fruit. In the Serpent melon, which has a narrow tortuous fruit above a yard in length, the stem of the plant, the peduncle of the female flower, and the middle lobe of the leaf, are all elongated in a remarkable manner. On the other hand, several varieties of Cucurbita, which have dwarfed stems, all produce, as Naudin remarks with surprise, leaves of the same peculiar shape. Mr. G. Maw informs me that all the varieties of the scarlet Pelargoniums which have contracted or imperfect leaves have contracted flowers: the difference between {331} "Brilliant" and its parent "Tom Thumb" is a good instance of this. It may be suspected that the curious case described by Risso,[829] of a variety of the Orange which produces on the young shoots rounded leaves with winged petioles, and afterwards elongated leaves on long but wingless petioles, is connected with the remarkable change in form and nature which the fruit undergoes during its development.
In the following instance we have the colour and form of the petals apparently correlated, and both dependent on the nature of the season. An observer, skilled in the subject, writes,[830] "I noticed, during the year 1842, that every Dahlia, of which the colour had any tendency to scarlet, was deeply notched—indeed to so great an extent as to give the petals the appearance of a saw; the indentures were, in some instances, more than a quarter of an inch deep." Again, Dahlias which have their petals tipped with a different colour from the rest are very inconstant, and during certain years some, or even all the flowers, become uniformly coloured; and it has been observed with several varieties,[831] that when this happens the petals grow much elongated and lose their proper shape. This, however, may be due to reversion, both in colour and form, to the aboriginal species.
* * * * *
In this discussion on correlation, we have hitherto treated of cases in which we can partly understand the bond of connexion; but I will now give cases in which we cannot even conjecture, or can only very obscurely see, what is the nature of the bond. Isidore Geoffroy St. Hilaire, in his work on Monstrosities, insists,[832] "que certaines anomalies coexistent rarement entr'elles, d'autres frequemment, d'autres enfin presque constamment, malgre la difference tres-grande de leur nature, et quoiqu'elles puissent paraitre completement independantes les unes des autres." We see something analogous in certain diseases: thus I hear from Mr. Paget that in a rare affection of the {332} renal capsules (of which the functions are unknown), the skin becomes bronzed; and in hereditary syphilis, both the milk and the second teeth assume a peculiar and characteristic form. Professor Rolleston, also, informs me that the incisor teeth are sometimes furnished with a vascular rim in correlation with intra-pulmonary deposition of tubercles. In other cases of phthisis and of cyanosis the nails and finger-ends become clubbed like acorns. I believe that no explanation has been offered of these and of many other cases of correlated disease.
What can be more curious and less intelligible than the fact previously given, on the authority of Mr. Tegetmeier, that young pigeons of all breeds, which when mature have white, yellow, silver-blue, or dun-coloured plumage, come out of the egg almost naked; whereas pigeons of other colours when first born are clothed with plenty of down? White Pea-fowls, as has been observed both in England and France,[833] and as I have myself seen, are inferior in size to the common coloured kind; and this cannot be accounted for by the belief that albinism is always accompanied by constitutional weakness; for white or albino moles are generally larger than the common kind.
To turn to more important characters: the niata cattle of the Pampas are remarkable from their short foreheads, upturned muzzles, and curved lower jaws. In the skull the nasal and premaxillary bones are much shortened, the maxillaries are excluded from any junction with the nasals, and all the bones are slightly modified, even to the plane of the occiput. From the analogical case of the dog, hereafter to be given, it is probable that the shortening of the nasal and adjoining bones is the proximate cause of the other modifications in the skull, including the upward curvature of the lower jaw, though we cannot follow out the steps by which these changes have been effected.
Polish fowls have a large tuft of feathers on their heads; and their skulls are perforated by numerous holes, so that a pin can be driven into the brain without touching any bone. That this deficiency of bone is in some way connected with the tuft of feathers is clear from tufted ducks and geese likewise having {333} perforated skulls. The case would probably be considered by some authors as one of balancement or compensation. In the chapter on Fowls, I have shown that with Polish fowls the tuft of feathers was probably at first small; by continued selection it became larger, and then rested on a fleshy or fibrous mass; and finally, as it became still larger, the skull itself became more and more protuberant until it acquired its present extraordinary structure. Through correlation with the protuberance of the skull, the shape and even the relative connexion of the premaxillary and nasal bones, the shape of the orifice of the nostrils, the breadth of the frontal bone, the shape of the post-lateral processes of the frontal and squamosal bones, and the direction of the bony cavity of the ear, have all been modified. The internal configuration of the skull and the whole shape of the brain have likewise been altered in a truly marvellous manner.
After this case of the Polish fowl it would be superfluous to do more than refer to the details previously given on the manner in which the changed form of the comb, in various breeds of the fowl, has affected the skull, causing by correlation crests, protuberances, and depressions on its surface.
With our cattle and sheep the horns stand in close connexion with the size of the skull, and with the shape of the frontal bones; thus Cline[834] found that the skull of a horned ram weighed five times as much as that of a hornless ram of the same age. When cattle become hornless, the frontal bones are "materially diminished in breadth towards the poll;" and the cavities between the bony plates "are not so deep, nor do they extend beyond the frontals."[835]
* * * * *
It may be well here to pause and observe how the effects of correlated variability, of the increased use of parts, and of the accumulation through natural selection of so-called spontaneous variations, are in many cases inextricably commingled. We may borrow an illustration from Mr. Herbert Spencer, who remarks that, when the Irish elk acquired its gigantic horns, weighing above one hundred pounds, numerous co-ordinated {334} changes of structure would have been indispensable,—namely, a thickened skull to carry the horns; strengthened cervical vertebrae, with strengthened ligaments; enlarged dorsal vertebrae to support the neck, with powerful fore-legs and feet; all these parts being supplied with proper muscles, blood-vessels, and nerves. How then could these admirably co-ordinated modifications of structure have been acquired? According to the doctrine which I maintain, the horns of the male elk were slowly gained through sexual selection,—that is, by the best-armed males conquering the worse-armed, and leaving a greater number of descendants. But it is not at all necessary that the several parts of the body should have simultaneously varied. Each stag presents individual differences, and in the same district those which had slightly heavier horns, or stronger necks, or stronger bodies, or were the most courageous, would secure the greater number of does, and consequently leave a greater number of offspring. The offspring would inherit, in a greater or less degree, these same qualities, would occasionally intercross with each other, or with other individuals varying in some favourable manner; and of their offspring, those which were the best endowed in any respect would continue multiplying; and so onwards, always progressing, sometimes in one direction, and sometimes in another, towards the present excellently co-ordinated structure of the male elk. To make this clear, let us reflect on the probable steps, as shown in the twentieth chapter, by which our race and dray-horses have arrived at their present state of excellence; if we could view the whole series of intermediate forms between one of these animals and an early unimproved progenitor, we should behold a vast number of animals, not equally improved in each generation throughout their entire structure, but sometimes a little more in one point, and sometimes in another, yet on the whole gradually approaching in character to our present race or dray-horses, which are so admirably fitted in the one case for fleetness and in the other for draught.
Although natural selection would thus[836] tend to give to the {335} male elk its present structure, yet it is probable that the inherited influence of use has played an equal or more important part. As the horns gradually increased in weight, the muscles of the neck, with the bones to which they are attached, would increase in size and strength; and these parts would react on the body and legs. Nor must we overlook the fact that certain parts of the skull and the extremities would, judging by analogy, tend from the first to vary in a correlated manner. The increased weight of the horns would also act directly on the skull, in the same manner as, when one bone is removed in the leg of a dog, the other bone, which has to carry the whole weight of the body, increases in thickness. But from the facts given with respect to horned and hornless cattle, it is probable that the horns and skull would immediately act on each other through the principle of correlation. Lastly, the growth and subsequent wear and tear of the augmented muscles and bones would require an increased supply of blood, and consequently an increased supply of food; and this again would require increased powers of mastication, digestion, respiration, and excretion.
Colour as Correlated with Constitutional Peculiarities.
It is an old belief that with man there is a connexion between complexion and constitution; and I find that some of the best authorities believe in this to the present day.[837] Thus Dr. Beddoe by his tables shows[838] that a relation exists between liability to consumption and the colour of the hair, eyes, and skin. It has been affirmed[839] that, in the French army which invaded Russia, soldiers having a dark complexion, from the {336} southern parts of Europe, withstood the intense cold better than those with lighter complexions from the north; but no doubt such statements are liable to error.
In the second chapter on Selection I have given several cases proving that with animals and plants differences in colour are correlated with constitutional differences, as shown by greater or less immunity from certain diseases, from the attacks of parasitic plants and animals, from burning by the sun, and from the action of certain poisons. When all the individuals of any one variety possess an immunity of this nature, we cannot feel sure that it stands in any sort of correlation with their colour; but when several varieties of the same species, which are similarly coloured, are thus characterised, whilst other coloured varieties are not thus favoured, we must believe in the existence of a correlation of this kind. Thus in the United States purple-fruited plums of many kinds are far more affected by a certain disease than green or yellow-fruited varieties. On the other hand, yellow-fleshed peaches of various kinds suffer from another disease much more than the white-fleshed varieties. In the Mauritius red sugar-canes are much less affected by a particular disease than the white canes. White onions and verbenas are the most liable to mildew; and in Spain the green-fruited grapes suffered from the vine-disease more than other coloured varieties. Dark-coloured pelargoniums and verbenas are more scorched by the sun than varieties of other colours. Red wheats are believed to be hardier than white; whilst red-flowered hyacinths were more injured during one particular winter in Holland than other coloured varieties. With animals, white terriers suffer most from the distemper, white chickens from a parasitic worm in their tracheae, white pigs from scorching by the sun, and white cattle from flies; but the caterpillars of the silk-moth which yield white cocoons suffered in France less from the deadly parasitic fungus than those producing yellow silk.
The cases of immunity from the action of certain vegetable poisons, in connexion with colour, are more interesting, and are at present wholly inexplicable. I have already given a remarkable instance, on the authority of Professor Wyman, of all the hogs, excepting those of a black colour, suffering severely in Virginia from eating the root of the Lachnanthes tinctoria. {337} According to Spinola and others,[840] buckwheat (Polygonum fagopyrum), when in flower, is highly injurious to white or white-spotted pigs, if they are exposed to the heat of the sun, but is quite innocuous to black pigs. By two accounts, the Hypericum crispum in Sicily is poisonous to white sheep alone; their heads swell, their wool falls off, and they often die; but this plant, according to Lecce, is poisonous only when it grows in swamps; nor is this improbable, as we know how readily the poisonous principle in plants is influenced by the conditions under which they grow.
Three accounts have been published in Eastern Prussia, of white and white-spotted horses being greatly injured by eating mildewed and honeydewed vetches; every spot of skin bearing white hairs becoming inflamed and gangrenous. The Rev. J. Rodwell informs me that his father turned out about fifteen cart-horses into a field of tares which in parts swarmed with black aphides, and which no doubt were honeydewed, and probably mildewed; the horses, with two exceptions, were chesnuts and bays with white marks on their faces and pasterns, and the white parts alone swelled and became angry scabs. The two bay horses with no white marks entirely escaped all injury. In Guernsey, when horses eat fools' parsley (Aethusa cynapium) they are sometimes violently purged; and this plant "has a peculiar effect on the nose and lips, causing deep cracks and ulcers, particularly on horses with white muzzles."[841] With cattle, independently of the action of any poison, cases have been published by Youatt and Erdt of cutaneous diseases with much constitutional disturbance (in one instance after exposure to a hot sun) affecting every single point which bore a white hair, but completely passing over other parts of the body. Similar cases have been observed with horses.[842]
We thus see that not only do those parts of the skin which bear white hair differ in a remarkable manner from those bearing {338} hair of any other colour, but that in addition some great, constitutional difference must stand in correlation with the colour of the hair; for in the above-mentioned cases, vegetable poisons caused fever, swelling of the head, as well as other symptoms, and even death, to all the white or white-spotted animals.
* * * * *
{339}
CHAPTER XXVI.
LAWS OF VARIATION, continued—SUMMARY.
ON THE AFFINITY AND COHESION OF HOMOLOGOUS PARTS—ON THE VARIABILITY OF MULTIPLE AND HOMOLOGOUS PARTS—COMPENSATION OF GROWTH—MECHANICAL PRESSURE—RELATIVE POSITION OF FLOWERS WITH RESPECT TO THE AXIS OF THE PLANT, AND OF SEEDS IN THE CAPSULE, AS INDUCING VARIATION—ANALOGOUS OR PARALLEL VARIETIES—SUMMARY OF THE THREE LAST CHAPTERS.
On the Affinity of Homologous Parts.—This law was first generalised by Geoffroy Saint Hilaire, under the expression of La loi de l'affinite de soi pour soi. It has been fully discussed and illustrated by his son, Isidore Geoffroy, with respect to monsters in the animal kingdom,[843] and by Moquin-Tandon, with respect to monstrous plants. When similar or homologous parts, whether belonging to the same embryo or to two distinct embryos, are brought during an early stage of development into contact, they often blend into a single part or organ; and this complete fusion indicates some mutual affinity between the parts, otherwise they would simply cohere. Whether any power exists which tends to bring homologous parts into contact seems more doubtful. The tendency to complete fusion is not a rare or exceptional fact. It is exhibited in the most striking manner by double monsters. Nothing can be more extraordinary than the manner, as shown in various published plates, in which the corresponding parts of two embryos become intimately fused together. This is perhaps best seen in monsters with two heads, which are united, summit to summit, or face to face, or, Janus-like, back to back, or obliquely side to side. In one instance of two heads united almost face to face, but a little obliquely, four ears were developed, and on one side a perfect face, which was manifestly formed by the union of two {340} half-faces. Whenever two bodies or two heads are united, each bone, muscle, vessel, and nerve on the line of junction seems to seek out its fellow, and becomes completely fused with it. Lereboullet,[844] who carefully studied the development of double monsters in fishes, observed in fifteen instances the steps by which two heads gradually became fused into one. In this and other such cases, no one, I presume, supposes that the two already formed heads actually blend together, but that the corresponding parts of each head grow into one during the further progress of development, accompanied as it always is with incessant absorption and renovation. Double monsters were formerly thought to be formed by the union of two originally distinct embryos developed upon distinct vitelli; but now it is admitted that "their production is due to the spontaneous divarication of the embryonic mass into two halves;"[845] this, however, is effected by different methods. But the belief that double monsters originate from the division of one germ, does not necessarily affect the question of subsequent fusion, or render less true the law of the affinity of homologous parts.
The cautious and sagacious J. Mueller,[846] when speaking of Janus-like monsters, says, that "without the supposition that some kind of affinity or attraction is exerted between corresponding parts, unions of this kind are inexplicable." On the other hand, Vrolik, and he is followed by others, disputes this conclusion, and argues from the existence of a whole series of monstrosities, graduating from a perfectly double monster to a mere rudiment of an additional digit, that "an excess of formative power" is the cause and origin of every monstrous duplicity. That there are two distinct classes of cases, and that parts may be doubled independently of the existence of two embryos, is certain; for a single embryo, or even a single adult animal, may produce doubled organs. Thus Valentin, as quoted by Vrolik, injured the caudal extremity of an embryo, and three days afterwards it produced rudiments of a double pelvis and of double hind limbs. {341} Hunter and others have observed lizards with their tails reproduced and doubled. When Bonnet divided longitudinally the foot of the salamander, several additional digits were occasionally formed. But neither these cases, nor the perfect series from a double monster to an additional digit, seem to me opposed to the belief that corresponding parts have a mutual affinity, and consequently tend to fuse together. A part may be doubled and remain in this state, or the two parts thus formed may afterwards through the law of affinity become blended; or two homologous parts in two separate embryos may, through the same principle, unite and form a single part.
The law of the affinity and fusion of similar parts applies to the homologous organs of the same individual animal, as well as to double monsters. Isidore Geoffroy gives a number of instances of two or more digits, of two whole legs, of two kidneys, and of several teeth becoming symmetrically fused together in a more or less perfect manner. Even the two eyes have been known to unite into a single eye, forming a cyclopean monster, as have the two ears, though naturally standing so far apart. As Geoffroy remarks, these facts illustrate in an admirable manner the normal fusion of various organs which during an early embryonic period are double, but which afterwards always unite into a single median organ. Organs of this nature are generally found in a permanently double condition in other members of the same class. These cases of normal fusion appear to me to afford the strongest support in favour of the present law. Adjoining parts which are not homologous sometimes cohere; but this cohesion appears to result from mere juxtaposition, and not from mutual affinity.
In the vegetable kingdom Moquin-Tandon[847] gives a long list of cases, showing how frequently homologous parts, such as leaves, petals, stamens, and pistils, as well as aggregates of homologous parts, such as buds, flowers, and fruit, become blended into each other with perfect symmetry. It is interesting to examine a compound flower of this nature, formed of exactly double the proper number of sepals, petals, stamens, and pistils, with each whorl of organs circular, and with no trace left of the {342} process of fusion. The tendency in homologous parts to unite during their early development, Moquin-Tandon considers as one of the most striking laws governing the production of monsters. It apparently explains a multitude of cases, both in the animal and vegetable kingdoms; it throws a clear light on many normal structures which have evidently been formed by the union of originally distinct parts, and it possesses, as we shall see in a future chapter, much theoretical interest.
* * * * *
On the Variability of Multiple and Homologous Parts.—Isidore Geoffroy[848] insists that, when any part or organ is repeated many times in the same animal, it is particularly liable to vary both in number and structure. With respect to number, the proposition may, I think, be considered as fully established; but the evidence is chiefly derived from organic beings living under their natural conditions, with which we are not here concerned. When the vertebrae, or teeth, or rays in the fins of fishes, or feathers in the tails of birds, or petals, stamens, pistils, and seeds in plants, are very numerous, the number is generally variable. The explanation of this simple fact is by no means obvious. With respect to the variability in structure of multiple parts, the evidence is not so decisive; but the fact, as far as it may be trusted, probably depends on multiple parts being of less physiological importance than single parts; consequently their perfect standard of structure has been less rigorously enforced by natural selection.
* * * * *
Compensation of Growth, or Balancement.—This law, as applied to natural species, was propounded by Goethe and Geoffroy St. Hilaire at nearly the same time. It implies that, when much organised matter is used in building up some one part, other parts are starved and become reduced. Several authors, especially botanists, believe in this law; others reject it. As far as I can judge, it occasionally holds good; but its importance has probably been exaggerated. It is scarcely possible to distinguish between the supposed effects of such compensation of growth, and the effects of long-continued selection, which {343} may at the same time lead to the augmentation of one part and the diminution of another. There can be no doubt that an organ may be greatly increased without any corresponding diminution in the adjoining parts. To recur to our former illustration of the Irish elk, it may be asked what part has suffered in consequence of the immense development of the horns?
It has already been observed that the struggle for existence does not bear hard on our domesticated productions; consequently the principle of economy of growth will seldom affect them, and we ought not to expect to find frequent evidence of compensation. We have, however, some such cases. Moquin-Tandon describes a monstrous bean,[849] in which the stipules were enormously developed, and the leaflets apparently in consequence completely aborted; this case is interesting, as it represents the natural condition of Lathyrus aphaca, with its stipules of great size, and its leaves reduced to mere threads, which act as tendrils. De Candolle[850] has remarked that the varieties of Raphanus sativus which have small roots yield numerous seed, valuable from containing oil, whilst those with large roots are not productive in this latter respect; and so it is with Brassica asperifolia. The varieties of the potato which produce tubers very early in the season rarely bear flowers; but Andrew Knight,[851] by checking the growth of the tubers, forced the plants to flower. The varieties of Cucurbita pepo which produce large fruit yield, according to Naudin, few in number; whilst those producing small fruit yield a vast number. Lastly, I have endeavoured to show in the eighteenth chapter that with many cultivated plants unnatural treatment checks the full and proper action of the reproductive organs, and they are thus rendered more or less sterile; consequently, in the way of compensation, the fruit becomes greatly enlarged, and, in double flowers, the petals are greatly increased in number.
With animals, it has been found difficult to produce cows which should first yield much milk, and afterwards be capable of {344} fattening well. With fowls which have large topknots and beards the comb and wattles are generally much reduced in size. Perhaps the entire absence of the oil-gland in fantail pigeons may be connected with the great development of their tails.
* * * * *
Mechanical Pressure as a Cause of Modifications.—In some few cases there is reason to believe that mere mechanical pressure has affected certain structures. Every one knows that savages alter the shape of their infants' skulls by pressure at an early age; but there is no reason to believe that the result is ever inherited. Nevertheless Vrolik and Weber[852] maintain that the shape of the human head is influenced by the shape of the mother's pelvis. The kidneys in different birds differ much in form, and St. Ange[853] believes that this is determined by the form of the pelvis, which again, no doubt, stands in close relation with their various habits of locomotion. In snakes, the viscera are curiously displaced, in comparison with their position in other vertebrates; and this has been attributed by some authors to the elongation of their bodies; but here, as in so many previous cases, it is impossible to disentangle any direct result of this kind from that consequent on natural selection. Godron has argued[854] that the normal abortion of the spur on the inner side of the flower in Corydalis, is caused by the buds being closely pressed at a very early period of growth, whilst under ground, against each other and against the stem. Some botanists believe that the singular difference in the shape both of the seed and corolla, in the interior and exterior florets in certain compositous and umbelliferous plants, is due to the pressure to which the inner florets are subjected; but this conclusion is doubtful.
The facts just given do not relate to domesticated productions, and therefore do not strictly concern us. But here is a more appropriate case: H. Mueller[855] has shown that in {345} short-faced races of the dog some of the molar teeth are placed in a slightly different position from that which they occupy in other dogs, especially in those having elongated muzzles; and as he remarks, any inherited change in the arrangement of the teeth deserves notice, considering their classificatory importance. This difference in position is due to the shortening of certain facial bones, and the consequent want of space; and the shortening results from a peculiar and abnormal state of the basal cartilages of the bones.
Relative Position of Flowers with respect to the Axis, and of Seeds in the Capsule, as inducing Variation.
In the thirteenth chapter various peloric flowers were described, and their production was shown to be due either to arrested development, or to reversion to a primordial condition. Moquin-Tandon has remarked that the flowers which stand on the summit of the main stem or of a lateral branch are more liable to become peloric than those on the sides;[856] and he adduces, amongst other instances, that of Teucrium campanulatum. In another Labiate plant grown by me, viz. the Galeobdolon luteum, the peloric flowers were always produced on the summit of the stem, where flowers are not usually borne. In Pelargonium, a single flower in the truss is frequently peloric, and when this occurs I have during several years invariably observed it to be the central flower. This is of such frequent occurrence that one observer[857] gives the names of ten varieties flowering at the same time, in every one of which the central flower was peloric. Occasionally more than one flower in the truss is peloric, and then of course the additional ones must be lateral. These flowers are interesting as showing how the whole structure is correlated. In the common Pelargonium the upper sepal is produced into a nectary which coheres with the flower-peduncle; the two upper petals differ a little in shape from the three lower ones, and are marked with dark shades of colour; the stamens are graduated in length and upturned. In the peloric flowers, the nectary aborts; all the petals become alike both in shape and colour; the stamens are generally reduced in number and become straight, so that the whole flower resembles that of the allied genus Erodium. The correlation between these changes is well shown when one of the two upper petals alone loses its dark mark, for in this case the nectary does not entirely abort, but is usually much reduced in length.[858]
{346}
Morren has described[859] a marvellous flask-shaped flower of the Calceolaria, nearly four inches in length, which was almost completely peloric; it grew on the summit of the plant, with a normal flower on each side; Prof. Westwood also has described[860] three similar peloric flowers, which all occupied a central position on the flower-branches. In the Orchideous genus, Phalaenopsis, the terminal flower has been seen to become peloric.
In a Laburnum-tree I observed that about a fourth part of the racemes produced terminal flowers which had lost their papilionaceous structure. These were produced after almost all the other flowers on the same racemes had withered. The most perfectly pelorised examples had six petals, each marked with black striae like those on the standard-petal. The keel seemed to resist the change more than the other petals. Dutrochet has described[861] an exactly similar case in France, and I believe these are the only two instances of pelorism in the laburnum which have been recorded. Dutrochet remarks that the racemes on this tree do not properly produce a terminal flower, so that, as in the case of the Galeobdolon, their position as well as their structure are both anomalies, which no doubt are in some manner related. Dr. Masters has briefly described another leguminous plant,[862] namely, a species of clover, in which the uppermost and central flowers were regular or had lost their papilionaceous structure. In some of these plants the flower-heads were also proliferous.
Lastly, Linaria produces two kinds of peloric flowers, one having simple petals, and the other having them all spurred. The two forms, as Naudin remarks,[863] not rarely occur on the same plant, but in this case the spurred form almost invariably stands on the summit of the spike.
The tendency in the terminal or central flower to become peloric more frequently than other flowers, probably results from "the bud which stands on the end of a shoot receiving the most sap; it grows out into a stronger shoot than those situated lower down."[864] I have discussed the connection between pelorism and a central position, partly because some few plants are known normally to produce a terminal flower different in structure from the lateral ones; but chiefly on account of the following case, in which we see a tendency to variability or to reversion connected with the same position. A great judge of Auriculas[865] states that when an Auricula throws up a side bloom it is pretty sure to keep its character; but that if it grows from the centre or heart of the plant, whatever the colour of the edging ought to be, "it is just as likely to come in any other class as in the one to which it properly belongs." This is so notorious a {347} fact, that some florists regularly pinch off the central trusses of flowers. Whether in the highly improved varieties the departure of the central trusses from their proper type is due to reversion, I do not know. Mr. Dombrain insists that, whatever may be the commonest kind of imperfection in each variety, this is generally exaggerated in the central truss. Thus one variety "sometimes has the fault of producing a little green floret in the centre of the flower," and in central blooms these become excessive in size. In some central blooms, sent to me by Mr. Dombrain, all the organs of the flower were rudimentary in structure, of minute size, and of a green colour, so that by a little further change all would have been converted into small leaves. In this case we clearly see a tendency to prolification—a term which, I may explain to those who have never attended to botany, means the production of a branch or flower, or head of flowers, out of another flower. Now Dr. Masters[866] states that the central or uppermost flower on a plant is generally the most liable to prolification. Thus, in the varieties of the Auricula, the loss of their proper character and a tendency to prolification, and in other plants a tendency to prolification and pelorism, are all connected together, and are due either to arrested development, or to reversion to a former condition.
The following is a more interesting case; Metzger[867] cultivated in Germany several kinds of maize brought from the hotter parts of America, and he found, as has been previously described, that in two or three generations the grains became greatly changed in form, size, and colour; and with respect to two races he expressly states that in the first generation, whilst the lower grains on each head retained their proper character, the uppermost grains already began to assume that character which in the third generation all the grains acquired. As we do not know the aboriginal parent of the maize, we cannot tell whether these changes are in any way connected with reversion.
In the two following cases, reversion, as influenced by the position of the seed in the capsule, evidently acts. The Blue Imperial pea is the offspring of the Blue Prussian, and has larger seed and broader pods than its parent. Now Mr. Masters, of Canterbury, a careful observer and a raiser of new varieties of the pea, states[868] that the Blue Imperial always has a strong tendency to revert to its parent-stock, and the reversion "occurs in this manner: the last (or uppermost) pea in the pod is frequently much smaller than the rest; and if these small peas are carefully collected and sown separately, very many more, in proportion, will revert to their origin, than those taken from the other parts of the pod." Again M. Chate[869] says that in raising seedling stocks he succeeds in getting eighty per cent. to bear double flowers, by leaving only a few of the secondary branches to seed; but in addition to this, "at the time of extracting the seeds, the upper portion of the pod is separated and {348} placed aside, because it has been ascertained that the plants coming from the seeds situated in this portion of the pod, give eighty per cent. of single flowers." Now the production of single-flowering plants from the seed of double-flowering plants is clearly a case of reversion. These latter facts, as well as the connection between a central position and pelorism and prolification, show in an interesting manner how small a difference—namely a little greater freedom in the flow of sap towards one part of the same plant—determines important changes of structure.
* * * * *
Analogous or Parallel Variation.—By this term I wish to express that similar characters occasionally make their appearance in the several varieties or races descended from the same species, and more rarely in the offspring of widely distinct species. We are here concerned, not as hitherto with the causes of variation, but with the results; but this discussion could not have been more conveniently introduced elsewhere. The cases of analogous variation, as far as their origin is concerned, may be grouped, disregarding minor subdivisions, under two main heads; firstly, those due to unknown causes having acted on organic beings with nearly the same constitution, and which consequently vary in an analogous manner; and secondly, those due to the reappearance of characters which were possessed by a more or less remote progenitor. But these two main divisions can often be only conjecturally separated, and graduate, as we shall presently see, into each other.
Under the first head of analogous variations, not due to reversion, we have the many cases of trees belonging to quite different orders which have produced pendulous and fastigate varieties. The beech, hazel, and barberry have given rise to purple-leaved varieties; and as Bernhardi has remarked,[870] a multitude of plants, as distinct as possible, have yielded varieties with deeply-cut or laciniated leaves. Varieties descended from three distinct species of Brassica have their stems, or so-called roots, enlarged into globular masses. The nectarine is the offspring of the peach; and the varieties of both these trees offer a remarkable parallelism in the fruit being white, red, or yellow fleshed—in being clingstones or freestones—in the flowers being large or small—in the leaves being serrated or crenated, furnished with globose or reniform glands, or quite destitute of glands. It should be remarked that each variety of the nectarine has not derived its character from a corresponding variety of the peach. The several varieties also of a closely allied genus, namely the apricot, differ from each other in nearly the same parallel manner. There is no reason {349} to believe that in any of these cases long-lost characters have reappeared, and in most of them this certainly has not occurred.
Three species of Cucurbita have yielded a multitude of races, which correspond so closely in character that, as Naudin insists, they may be arranged in an almost strictly parallel series. Several varieties of the melon are interesting from resembling in important characters other species, either of the same genus or of allied genera; thus, one variety has fruit so like, both externally and internally, the fruit of a perfectly distinct species, namely, the cucumber, as hardly to be distinguished from it; another has long cylindrical fruit twisting about like a serpent; in another the seeds adhere to portions of the pulp; in another the fruit, when ripe, suddenly cracks and falls into pieces; and all these highly remarkable peculiarities are characteristic of species belonging to allied genera. We can hardly account for the appearance of so many unusual characters by reversion to a single ancient form; but we must believe that all the members of the family have inherited a nearly similar constitution from an early progenitor. Our cereal and many other plants offer similar cases.
With animals we have fewer cases of analogous variation, independently of direct reversion. We see something of the kind in the resemblance between the short-muzzled races of the dog, such as the pug and bulldog; in feather-footed races of the fowl, pigeon, and canary-bird; in horses of the most different races presenting the same range of colour; in all black-and-tan dogs having tan-coloured eye-spots and feet, but in this latter case reversion may possibly have played a part. Low has remarked[871] that several breeds of cattle are "sheeted,"—that is, have a broad band of white passing round their bodies like a sheet; this character is strongly inherited and sometimes originates from a cross; it may be the first step in reversion to an original or early type, for, as was shown in the third chapter, white cattle with dark ears, feet, and tip of tail formerly existed, and now exist in a feral or semi-feral condition in several quarters of the world.
Under our second main division, namely, of analogous variations due to reversion, the best cases are afforded by animals, and by none better than by pigeons. In all the most distinct breeds sub-varieties occasionally appear coloured exactly like the parent rock-pigeon, with black wing-bars, white loins, banded tail, &c.; and no one can doubt that these characters are simply due to reversion. So with minor details; turbits properly have white tails, but occasionally a bird is born with a dark-coloured and banded tail; pouters properly have white primary wing-feathers, but not rarely a "sword-flighted" bird, that is, one with the few first primaries dark-coloured, appears; and in these cases we have characters proper to the rock-pigeon, but new to the breed, evidently appearing from reversion. In some domestic varieties the wing-bars, instead of being simply black, as in the rock-pigeon, are beautifully edged with different zones of colour, and they then present a striking analogy with the wing-bars in certain natural species of the same family, such as Phaps chalcoptera; and this may probably be accounted for by {350} all the forms descended from the same remote progenitor having a tendency to vary in the same manner. Thus also we can perhaps understand the fact of some Laugher-pigeons cooing almost like turtle-doves, and of several races having peculiarities in their flight, for certain natural species (viz. C. torquatrix and palumbus) display singular vagaries in this respect. In other cases a race, instead of imitating in character a distinct species, resembles some other race; thus certain runts tremble and slightly elevate their tails, like fantails; and turbits inflate the upper part of their oesophagus, like pouter-pigeons.
It is a common circumstance to find certain coloured marks persistently characterising all the species of a genus, but differing much in tint; and the same thing occurs with the varieties of the pigeon: thus, instead of the general plumage being blue with the wing-bars black, there are snow-white varieties with red bars, and black varieties with white bars; in other varieties the wing-bars, as we have seen, are elegantly zoned with different tints. The Spot pigeon is characterised by the whole plumage being white, excepting the tail and a spot on the forehead; but these parts may be red, yellow, or black. In the rock-pigeon and in many varieties the tail is blue, with the outer edges of the outer feathers white; but in one sub-variety of the monk-pigeon we have a reversed variation, for the tail is white, except the outer edges of the outer feathers, which are black.[872]
With some species of birds, for instance with gulls, certain coloured parts appear as if almost washed out, and I have observed exactly the same appearance in the terminal dark tail-bar in certain pigeons, and in the whole plumage of certain varieties of the duck. Analogous facts in the vegetable kingdom could be given. |
|