|
The nature of the season has an especial influence on certain varieties of the Dahlia: in 1841 two varieties were pre-eminently good, and the next year these same two were pre-eminently bad. A famous amateur[659] asserts that in 1861 many varieties of the Rose came so untrue in character, "that it was hardly possible to recognise them, and the thought was not seldom entertained that the grower had lost his tally." The same amateur[660] states that in 1862 two-thirds of his Auriculas produced central trusses of flowers, and these are remarkable from not keeping true; {274} and he adds that in some seasons certain varieties of this plant all prove good, and the next season all prove bad; whilst exactly the reverse happens with other varieties. In 1845 the editor of the 'Gardener's Chronicle'[661] remarked how singular it was that this year many Calceolarias tended to assume a tubular form. With Heartsease[662] the blotched sorts do not acquire their proper character until hot weather sets in; whilst other varieties lose their beautiful marks as soon as this occurs.
Analogous facts have been observed with leaves: Mr. Beaton asserts[663] that he raised at Shrubland, during six years, twenty thousand seedlings from the Punch Pelargonium, and not one had variegated leaves; but at Surbiton, in Surrey, one-third, or even a greater proportion, of the seedlings from this same variety were more or less variegated. The soil of another district in Surrey has a strong tendency to cause variegation, as appears from information given me by Sir F. Pollock. Verlot[664] states that the variegated strawberry retains its character as long as grown in a dryish soil, but soon loses it when planted in fresh and humid soil. Mr. Salter, who is well known for his success in cultivating variegated plants, informs me that rows of strawberries were planted in his garden in 1859, in the usual way; and at various distances in one row, several plants simultaneously became variegated, and what made the case more extraordinary, all were variegated in precisely the same manner. These plants were removed, but during the three succeeding years other plants in the same row became variegated, and in no instance were the plants in any adjoining row affected.
The chemical qualities, odours, and tissues of plants are often modified by a change which seems to us slight. The Hemlock is said not to yield conicine in Scotland. The root of the Aconitum napellus becomes innocuous in frigid climates. The medicinal properties of the Digitalis are easily affected by culture. The Rhubarb flourishes in England, but does not produce the medicinal substance which makes the plant so valuable in Chinese Tartary. As the Pistacia lentiscus grows abundantly in the South of France, the climate must suit it, but it yields no mastic. The Laurus sassafras in Europe loses the odour proper to it in North America.[665] Many similar facts could be given, and they are remarkable because it might have been thought that definite chemical compounds would have been little liable to change either in quality or quantity.
The wood of the American Locust-tree (Robinia) when grown in England is nearly worthless, as is that of the Oak-tree when grown at the Cape of Good Hope.[666] Hemp and flax, as I hear from Dr. Falconer, flourish and yield plenty of seed on the plains of India, but their fibres are brittle {275} and useless. Hemp, on the other hand, fails to produce in England that resinous matter which is so largely used in India as an intoxicating drug.
The fruit of the Melon is greatly influenced by slight differences in culture and climate. Hence it is generally a better plan, according to Naudin, to improve an old kind than to introduce a new one into any locality. The seed of the Persian Melon produces near Paris fruit inferior to the poorest market kinds, but at Bordeaux yields delicious fruit.[667] Seed is annually brought from Thibet to Kashmir,[668] and produces fruit weighing from four to ten pounds, but plants raised from seed saved in Kashmir next year give fruit weighing only from two to three pounds. It is well known that American varieties of the Apple produce in their native land magnificent and brightly-coloured fruit, but in England of poor quality and a dull colour. In Hungary there are many varieties of the Kidney-bean, remarkable for the beauty of their seeds, but the Rev. M. J. Berkeley[669] found that their beauty could hardly ever be preserved in England, and in some cases the colour was greatly changed. We have seen in the ninth chapter, with respect to wheat, what a remarkable effect transportal from the North to the South of France, and reversely, produced on the weight of the grain.
When man can perceive no change in plants or animals which have been exposed to a new climate or to different treatment, insects can sometimes perceive a marked change. The same species of cactus has been carried to India from Canton, Manilla, Mauritius, and from the hot-houses of Kew, and there is likewise a so-called native kind, formerly introduced from South America; all these plants are alike in appearance, but the cochineal insect flourishes only on the native kind, on which it thrives prodigiously.[670] Humboldt remarks[671] that white men "born in the torrid zone walk barefoot with impunity in the same apartment where a European, recently landed, is exposed to the attacks of the Pulex penetrans." This insect, the too well-known chigoe, must therefore be able to distinguish what the most delicate chemical analysis fails to distinguish, namely, a difference between the blood or tissues of a European and those of a white man born in the country. But the discernment of the chigoe is not so surprising as it at first appears; for {276} according to Liebig[672] the blood of men with different complexions, though inhabiting the same country, emits a different odour.
Diseases peculiar to certain localities, heights, or climates, may be here briefly noticed, as showing the influence of external circumstances on the human body. Diseases confined to certain races of man do not concern us, for the constitution of the race may play the more important part, and this may have been determined by unknown causes. The Plica Polonica stands, in this respect, in a nearly intermediate position; for it rarely affects Germans, who inhabit the neighbourhood of the Vistula, where so many Poles are grievously affected; and on the other hand, it does not affect Russians, who are said to belong to the same original stock with the Poles.[673] The elevation of a district often governs the appearance of diseases; in Mexico the yellow fever does not extend above 924 metres; and in Peru, people are affected with the verugas only between 600 and 1600 metres above the sea; many other such cases could be given. A peculiar cutaneous complaint, called the Bouton d'Alep, affects in Aleppo and some neighbouring districts almost every native infant, and some few strangers; and it seems fairly well established that this singular complaint depends on drinking certain waters. In the healthy little island of St. Helena the scarlet-fever is dreaded like the Plague; analogous facts have been observed in Chili and Mexico.[674] Even in the different departments of France it is found that the various infirmities which render the conscript unfit for serving in the army, prevail with remarkable inequality, revealing, as Boudin observes, that many of them are endemic, which otherwise would never have been suspected.[675] Any one who will study the distribution of disease will be struck with surprise at what slight differences in the surrounding circumstances govern the nature and severity of the complaints by which man is at least temporarily affected.
The modifications as yet referred to have been extremely slight, and in most cases have been caused, as far as we can judge, by equally slight changes in the conditions. But can it be safely maintained that such changed conditions, if acting during a long series of generations, would not produce a marked effect? It is commonly believed that the people of the United States differ in appearance from the parent Anglo-Saxon race; and selection cannot have come into action within so short a period. A good observer[676] states that a general absence of fat, {277} a thin and elongated neck, stiff and lank hair, are the chief characteristics. The change in the nature of the hair is supposed to be caused by the dryness of the atmosphere. If immigration into the United States were now stopped, who can say that the character of the whole people would not be greatly modified in the course of two or three thousand years?
The direct and definite action of changed conditions, in contradistinction to the accumulation of indefinite variations, seems to me so important that I will give a large additional body of miscellaneous facts. With plants, a considerable change of climate sometimes produces a conspicuous result. I have given in detail in the ninth chapter the most remarkable case known to me, namely, that in Germany several varieties of maize brought from the hotter parts of America were transformed in the course of only two or three generations. Dr. Falconer informs me that he has seen the English Ribston-pippin apple, a Himalayan oak, Prunus and Pyrus, all assume in the hotter parts of India a fastigate or pyramidal habit; and this fact is the more interesting, as a Chinese tropical species of Pyrus naturally has this habit of growth. Although in these cases the changed manner of growth seems to have been directly caused by the great heat, we know that many fastigate trees have originated in their temperate homes. In the Botanic Gardens of Ceylon the apple-tree[677] "sends out numerous runners under ground, which continually rise into small stems, and form a growth around the parent-tree." The varieties of the cabbage which produce heads in Europe fail to do so in certain tropical countries.[678] The Rhododendron ciliatum produced at Kew flowers so much larger and paler-coloured than those which it bears on its native Himalayan mountain, that Dr. Hooker[679] would hardly have recognised the species by the flowers alone. Many similar facts with respect to the colour and size of flowers could be given.
The experiments of Vilmorin and Buckman on carrots and parsnips prove that abundant nutriment produces a definite and inheritable effect on the so-called roots, with scarcely any change in other parts of the plant. Alum directly influences the colour of the flowers of the Hydrangea.[680] Dryness seems generally to favour the hairyness or villosity of plants. Gaertner found that hybrid Verbascums became extremely woolly when grown in pots. Mr. Masters, on the other hand, states that the Opuntia leucotricha "is well clothed with beautiful white hairs when grown in a damp heat; but in a dry heat exhibits none of this peculiarity."[681] Slight variations of many kinds, not worth specifying in detail, are retained only as {278} long as plants are grown in certain soils, of which Sageret[682] gives from his own experience some instances. Odart, who insists strongly on the permanence of the varieties of the grape, admits[683] that some varieties, when grown under a different climate or treated differently, vary in an extremely slight degree, as in the tint of the fruit and in the period of ripening. Some authors have denied that grafting causes even the slightest difference in the scion; but there is sufficient evidence that the fruit is sometimes slightly affected in size and flavour, the leaves in duration, and the flowers in appearance.[684]
With animals there can be no doubt, from the facts given in the first chapter, that European dogs deteriorate in India, not only in their instincts but in structure; but the changes which they undergo are of such a nature, that they may be partly due to reversion to a primitive form, as in the case of feral animals. In parts of India the turkey becomes reduced in size, "with the pendulous appendage over the beak enormously developed."[685] We have seen how soon the wild duck, when domesticated, loses its true character, from the effects of abundant or changed food, or from taking little exercise. From the direct action of a humid climate and poor pasture the horse rapidly decreases in size in the Falkland Islands. From information which I have received, this seems likewise to be the case to a certain extent with sheep in Australia.
Climate definitely influences the hairy covering of animals; in the West Indies a great change is produced in the fleece of sheep, in about three generations. Dr. Falconer states[686] that the Thibet mastiff and goat, when brought down from the Himalaya to Kashmir, lose their fine wool. At Angora not only goats, but shepherd-dogs and cats, have fine fleecy hair, and Mr. Ainsworth[687] attributes the thickness of the fleece to the severe winters, and its silky lustre to the hot summers. Burnes states positively[688] that the Karakool sheep lose their peculiar black curled fleeces when removed into any other country. Even within the limits of England, I have been assured that with two breeds of sheep the wool was slightly changed by the flocks being pastured in different localities.[689] It has been asserted on good authority[690] that horses kept during several years in the deep coal-mines of Belgium become covered with velvety hair, almost like that on the mole. These cases probably stand in close relation to the natural change of coat in winter and summer. Naked varieties of several domestic animals have occasionally appeared; but there is no reason to {279} believe that this is in any way related to the nature of the climate to which they have been exposed.[691]
It appears at first sight probable that the increased size, the tendency to fatten, the early maturity and altered forms of our improved cattle, sheep, and pigs, have directly resulted from their abundant supply of food. This is the opinion of many competent judges, and probably is to a great extent true. But as far as form is concerned, we must not overlook the equal or more potent influence of lessened use on the limbs and lungs. We see, moreover, as far as size is concerned, that selection is apparently a more powerful agent than a large supply of food, for we can thus only account for the existence, as remarked to me by Mr. Blyth, of the largest and smallest breeds of sheep in the same country, of Cochin-China fowls and Bantams, of small Tumbler and large Runt pigeons, all kept together and supplied with abundant nourishment. Nevertheless there can be little doubt that our domesticated animals have been modified, independently of the increased or lessened use of parts, by the conditions to which they have been subjected, without the aid of selection. For instance, Prof. Ruetimeyer[692] shows that the bones of all domesticated quadrupeds can be distinguished from those of wild animals by the state of their surface and general appearance. It is scarcely possible to read Nathusius's excellent 'Vorstudien,'[693] and doubt that, with the highly improved races of the pig, abundant food has produced a conspicuous effect on the general form of the body, on the breadth of the head and face, and even on the teeth. Nathusius rests much on the case of a purely bred Berkshire pig, which when two months old became diseased in its digestive organs, and was preserved for observation until nineteen months old; at this age it had lost several characteristic features of the breed, and had acquired a long, narrow head, of large size relatively to its small body, and elongated legs. But in this case and in some others we ought not to assume that, because certain characters are lost, perhaps through reversion, under one course of treatment, therefore that they had been at first directly produced by an opposite course.
In the case of the rabbit, which has become feral on the island of Porto Santo, we are at first strongly tempted to attribute the whole change—the greatly reduced size, the altered tints of the fur, and the loss of certain characteristic marks—to the definite action of the new conditions to which it has been exposed. But in all such cases we have to consider in addition the tendency to reversion to progenitors more or less remote, and the natural selection of the finest shades of difference.
The nature of the food sometimes either definitely induces certain peculiarities, or stands in some close relation with them. Pallas long ago asserted that the fat-tailed sheep of Siberia degenerated and lost their enormous tails when removed from certain saline pastures; and recently {280} Erman[694] states that this occurs with the Kirgisian sheep when brought to Orenburgh.
It is well known that hemp-seed causes bullfinches and certain other birds to become black. Mr. Wallace has communicated to me some much more remarkable facts of the same nature. The natives of the Amazonian region feed the common green parrot (Chrysotis festiva, Linn.) with the fat of large Siluroid fishes, and the birds thus treated become beautifully variegated with red and yellow feathers. In the Malayan archipelago, the natives of Gilolo alter in an analogous manner the colours of another parrot, namely, the Lorius garrulus, Linn., and thus produce the Lori rajah or King-Lory. These parrots in the Malay Islands and South America, when fed by the natives on natural vegetable food, such as rice and plantains, retain their proper colours. Mr. Wallace has, also, recorded[695] a still more singular fact. "The Indians (of S. America) have a curious art by which they change the colours of the feathers of many birds. They pluck out those from the part they wish to paint, and inoculate the fresh wound with the milky secretion from the skin of a small toad. The feathers grow of a brilliant yellow colour, and on being plucked out, it is said, grow again of the same colour without any fresh operation."
Bechstein[696] does not entertain any doubt that seclusion from light affects, at least temporarily, the colours of cage-birds.
It is well known that the shells of land-mollusca are affected by the abundance of lime in different districts. Isidore Geoffroy St. Hilaire[697] gives the case of Helix lactea, which has recently been carried from Spain to the South of France and to the Rio Plata, and in both these countries now presents a distinct appearance, but whether this has resulted from food or climate is not known. With respect to the common oyster, Mr. F. Buckland informs me that he can generally distinguish the shells from different districts; young oysters brought from Wales and laid down in beds where "natives" are indigenous, in the short space of two months begin to assume the "native" character. M. Costa[698] has recorded a much more remarkable case of the same nature, namely, that young shells taken from the shores of England and placed in the Mediterranean, at once altered their manner of growth and formed prominent diverging rays, like those on the shells of the proper Mediterranean oyster. The same individual shell, showing both forms of growth, was exhibited before a society in Paris. Lastly, it is well known that caterpillars fed on different food sometimes either themselves acquire a different colour or produce moths different in colour.[699]
{281}
It would be travelling beyond my proper limits here to discuss how far organic beings in a state of nature are definitely modified by changed conditions. In my 'Origin of Species' I have given a brief abstract of the facts bearing on this point, and have shown the influence of light on the colours of birds, and of residence near the sea on the lurid tints of insects, and on the succulency of plants. Mr. Herbert Spencer[700] has recently discussed with much ability this whole subject on broad and general grounds. He argues, for instance, that with all animals the external and internal tissues are differently acted on by the surrounding conditions, and they invariably differ in intimate structure. So again the upper and lower surfaces of true leaves, as well as of stems and petioles, when these assume the function and occupy the position of leaves, are differently circumstanced with respect to light, &c., and apparently in consequence differ in structure. But, as Mr. Herbert Spencer admits, it is most difficult in all such cases to distinguish between the effects of the definite action of physical conditions and the accumulation through natural selection of inherited variations which are serviceable to the organism, and which have arisen independently of the definite action of these conditions.
Although we are not here concerned with organic beings in a state of nature, yet I may call attention to one case. Mr. Meehan,[701] in a remarkable paper, compares twenty-nine kinds of American trees, belonging to various orders, with their nearest European allies, all grown in close proximity in the same garden and under as nearly as possible the same conditions. In the American species Mr. Meehan finds, with the rarest exceptions, that the leaves fall earlier in the season, and assume before falling a brighter tint; that they are less deeply toothed or serrated; that the buds are smaller; that the trees are more diffuse in growth and have fewer branchlets; and, lastly, that the seeds are smaller—all in comparison with the corresponding European species. Now, considering that these trees belong to distinct orders, it is out of the question that the peculiarities just specified should have been inherited in the one continent from one progenitor, and in the other from another progenitor; and considering that the trees inhabit widely different stations, these peculiarities can hardly be supposed to be of any special {282} service to the two series in the Old and New Worlds; therefore these peculiarities cannot have been naturally selected. Hence we are led to infer that they have been definitely caused by the long-continued action of the different climate of the two continents on the trees.
Galls.—Another class of facts, not relating to cultivated plants, deserves attention. I allude to the production of galls. Every one knows the curious, bright-red, hairy productions on the wild rose-tree, and the various different galls produced by the oak. Some of the latter resemble fruit, with one face as rosy as the rosiest apple. These bright colours can be of no service either to the gall-forming insect or to the tree, and probably are the direct result of the action of the light, in the same manner as the apples of Nova Scotia or Canada are brighter coloured than English apples. The strongest upholder of the doctrine that organic beings are created beautiful to please mankind would not, I presume, extend this view to galls. According to Osten Sacken's latest revision, no less than fifty-eight kinds of galls are produced on the several species of oak, by Cynips with its sub-genera; and Mr. B. D. Walsh[702] states that he can add many others to the list. One American species of willow, the Salix humilis, bears ten distinct kinds of galls. The leaves which spring from the galls of various English willows differ completely in shape from the natural leaves. The young shoots of junipers and firs, when punctured by certain insects, yield monstrous growths like flowers and cones; and the flowers of some plants become from the same cause wholly changed in appearance. Galls are produced in every quarter of the world; of several sent to me by Mr. Thwaites from Ceylon, some were as symmetrical as a composite flower when in bud, others smooth and spherical like a berry; some protected by long spines, others clothed with yellow wool formed of long cellular hairs, others with regularly tufted hairs. In some galls the internal structure is simple, but in others it is highly complex; thus M. Lucaze-Duthiers[703] has figured in the common ink-gall no less than seven concentric layers, composed of distinct tissue, {283} namely, the epidermic, sub-epidermic, spongy, intermediate, and the hard protective layer formed of curiously thickened woody cells, and, lastly, the central mass abounding with starch-granules on which the larvae feed.
Galls are produced by insects of various orders, but the greater number by species of Cynips. It is impossible to read M. Lucaze-Duthier's discussion and doubt that the poisonous secretion of the insect causes the growth of the gall, and every one knows how virulent is the poison secreted by wasps and bees, which belong to the same order with Cynips. Galls grow with extraordinary rapidity, and it is said that they attain their full size in a few days;[704] it is certain that they are almost completely developed before the larvae are hatched. Considering that many gall-insects are extremely small, the drop of secreted poison must be excessively minute; it probably acts on one or two cells alone, which, being abnormally stimulated, rapidly increase by a process of self-division. Galls, as Mr. Walsh[705] remarks, afford good, constant, and definite characters, each kind keeping as true to form as does any independent organic being. This fact becomes still more remarkable when we hear that, for instance, seven out of the ten different kinds of galls produced on Salix humilis are formed by gall-gnats (Cecidomyidae) which, "though essentially distinct species, yet resemble one another so closely that in almost all cases it is difficult, and in some cases impossible, to distinguish the full-grown insects one from the other."[706] For in accordance with a wide-spread analogy we may safely infer that the poison secreted by insects so closely allied would not differ much in nature; yet this slight difference is sufficient to induce widely different results. In some few cases the same species of gall-gnat produces on distinct species of willows galls which cannot be distinguished; the Cynips fecundatrix, also, has been known to produce on the Turkish oak, to which it is not properly attached, exactly the same kind of gall as on the European oak.[707] These latter facts apparently prove that the nature of the poison is a much more powerful {284} agent in determining the form of the gall than the specific character of the tree which is acted on.
As the poisonous secretion of insects belonging to various orders has the special power of affecting the growth of various plants;—as a slight difference in the nature of the poison suffices to produce widely different results;—and lastly, as we know that the chemical compounds secreted by plants are eminently liable to be modified by changed conditions of life, we may believe it possible that various parts of a plant might be modified through the agency of its own altered secretions. Compare, for instance, the mossy and viscid calyx of a moss-rose, which suddenly appears through bud-variation on a Provence-rose, with the gall of red moss growing from the inoculated leaf of a wild rose, with each filament symmetrically branched like a microscopical spruce-fir, bearing a glandular tip and secreting odoriferous gummy matter.[708] Or compare, on the one hand, the fruit of the peach, with its hairy skin, fleshy covering, hard shell and kernel, and on the other hand one of the more complex galls with its epidermic, spongy, and woody layers, surrounding tissue loaded with starch granules. These normal and abnormal structures manifestly present a certain degree of resemblance. Or, again, reflect on the cases above given of parrots which have had their plumage brightly decorated through some change in their blood, caused by having been fed on certain fishes, or locally inoculated with the poison of a toad. I am far from wishing to maintain that the moss-rose or the hard shell of the peach-stone or the bright colours of birds are actually due to any chemical change in the sap or blood; but these cases of galls and of parrots are excellently adapted to show us how powerfully and singularly external agencies may affect structure. With such facts before us, we need feel no surprise at the appearance of any modification in any organic being.
I may, also, here allude to the remarkable effects which parasitic fungi sometimes produce on plants. Reissek[709] has described a Thesium, affected by an Oecidium, which was greatly modified, and assumed some of the {285} characteristic features of certain allied species, or even genera. Suppose, says Reissek, "the condition originally caused by the fungus to become constant in the course of time, the plant would, if found growing wild, be considered as a distinct species or even as belonging to a new genus." I quote this remark to show how profoundly, yet in how natural a manner, this plant must have been modified by the parasitic fungus.
Facts and Considerations opposed to the belief that the Conditions of Life act in a potent manner in causing definite Modifications of Structure.
I have alluded to the slight differences in species when naturally living in distinct countries under different conditions; and such differences we feel at first inclined, probably to a limited extent with justice, to attribute to the definite action of the surrounding conditions. But it must be borne in mind that there are a far greater number of animals and plants which range widely and have been exposed to great diversities of conditions, yet remain nearly uniform in character. Some authors, as previously remarked, account for the varieties of our culinary and agricultural plants by the definite action of the conditions to which they have been exposed in the different parts of Great Britain; but there are about 200 plants[710] which are found in every single English county; these plants must have been exposed for an immense period to considerable differences of climate and soil, yet do not differ. So, again, some birds, insects, other animals, and plants range over large portions of the world, yet retain the same character.
Notwithstanding the facts previously given on the occurrence of highly peculiar local diseases and on the strange modifications of structure in plants caused by the inoculated poison of insects, and other analogous cases; still there are a multitude of variations—such as the modified skull of the niata ox and bulldog, the long horns of Caffre cattle, the conjoined toes of the solid-hoofed swine, the immense crest and protuberant skull of Polish fowls, the crop of the pouter-pigeon, and a host of other such cases—which we can hardly attribute to the definite action, in the sense before specified, of the external conditions of life. No doubt in every case there must have been some exciting cause; but as we see innumerable individuals exposed to nearly the same conditions, and one alone is affected, we may conclude that the constitution of the individual is of far higher {286} importance than the conditions to which it has been exposed. It seems, indeed, to be a general rule that conspicuous variations occur rarely, and in one individual alone out of many thousands, though all may have been exposed, as far as we can judge, to nearly the same conditions. As the most strongly marked variations graduate insensibly into the most trifling, we are led by the same train of thought to attribute each slight variation much more to innate differences of constitution, however caused, than to the definite action of the surrounding conditions.
We are led to the same conclusion by considering the cases, formerly alluded to, of fowls and pigeons, which have varied and will no doubt go on varying in directly opposite ways, though kept during many generations under nearly the same conditions. Some, for instance, are born with their beaks, wings, tails, legs, &c., a little longer, and others with these same parts a little shorter. By the long-continued selection of such slight individual differences, which occur in birds kept in the same aviary, widely different races could certainly be formed; and long-continued selection, important as is the result, does nothing but preserve the variations which appear to us to arise spontaneously.
In these cases we see that domesticated animals vary in an indefinite number of particulars, though treated as uniformly as is possible. On the other hand, there are instances of animals and plants, which, though exposed to very different conditions, both under nature and domestication, have varied in nearly the same manner. Mr. Layard informs me that he has observed amongst the Caffres of South Africa a dog singularly like an arctic Esquimaux dog. Pigeons in India present nearly the same wide diversities of colour as in Europe; and I have seen chequered and simply barred pigeons, and pigeons with blue and white loins, from Sierra Leone, Madeira, England, and India. New varieties of flowers are continually raised in different parts of Great Britain, but many of these are found by the judges at our exhibitions to be almost identical with old varieties. A vast number of new fruit-trees and culinary vegetables have been produced in North America: these differ from European varieties in the same general manner as the several varieties raised in Europe differ from each other; and no one has ever pretended that the climate of America has given to the many American varieties any general character by which they can be recognised. Nevertheless, from the facts previously advanced on the authority of Mr. Meehan with respect to American and European forest-trees, it would be rash to affirm that varieties raised in the two countries would not in the course of ages assume a distinctive character. Mr. Masters has recorded a striking fact[711] bearing on this subject: he raised numerous plants of Hybiscus Syriacus from seed collected in South Carolina and the Holy Land, where the parent-plants must have been exposed to considerably different conditions; yet the seedlings from both localities broke into two similar strains, one with obtuse leaves and purple or crimson flowers, and the other with elongated leaves and more or less pink flowers.
{287}
We may, also, infer the prepotent influence of the constitution of the organism over the definite action of the conditions of life, from the several cases given in the earlier chapters of parallel series of varieties,—an important subject, hereafter to be more fully discussed. Sub-varieties of the several kinds of wheat, gourds, peaches, and other plants, and to a certain limited extent sub-varieties of the fowl, pigeon, and dog, have been shown either to resemble or to differ from each other in a closely corresponding and parallel manner. In other cases, a variety of one species resembles a distinct species; or the varieties of two distinct species resemble each other. Although these parallel resemblances no doubt often result from reversion to the former characters of a common progenitor; yet in other cases, when new characters first appear, the resemblance must be attributed to the inheritance of a similar constitution, and consequently to a tendency to vary in the same manner. We see something of a similar kind in the same monstrosity appearing and reappearing many times in the same animal, and, as Dr. Maxwell Masters has remarked to me, in the same plant.
We may at least conclude thus far, that the amount of modification which animals and plants have undergone under domestication, does not correspond with the degree to which they have been subjected to changed circumstances. As we know the parentage of domesticated birds far better than of most quadrupeds, we will glance through the list. The pigeon has varied in Europe more than almost any other bird; yet it is a native species, and has not been exposed to any extraordinary change of conditions. The fowl has varied equally, or almost equally, with the pigeon, and is a native of the hot jungles of India. Neither the peacock, a native of the same country, nor the guinea-fowl, an inhabitant of the dry deserts of Africa, has varied at all, or only in colour. The turkey, from Mexico, has varied but little. The duck, on the other hand, a native of Europe, has yielded some well-marked races; and as this is an aquatic bird, it must have been subjected to a far more serious change in its habits than the pigeon or even the fowl, which nevertheless have varied in a much higher degree. The goose, a native of Europe and aquatic like the duck, has varied less than any other domesticated bird, except the peacock.
Bud-variation is, also, important under our present point of view. In some few cases, as when all the eyes or buds on the same tuber of the potato, or all the fruit on the same plum-tree, or all the flowers on the same plant, have suddenly varied in the same manner, it might be argued that the {288} variation had been definitely caused by some change in the conditions to which the plants had been exposed; yet, in other cases, such an admission is extremely difficult. As new characters sometimes appear by bud-variation, which do not occur in the parent-species or in any allied species, we may reject, at least in these cases, the idea that they are due to reversion. Now it is well worth while to reflect maturely on some striking case of bud-variation, for instance that of the peach. This tree has been cultivated by the million in various parts of the world, has been treated differently, grown on its own roots and grafted on various stocks, planted as a standard, against a wall, and under glass; yet each bud of each sub-variety keeps true to its kind. But occasionally, at long intervals of time, a tree in England, or under the widely-different climate of Virginia, produces a single bud, and this yields a branch which ever afterwards bears nectarines. Nectarines differ, as every one knows, from peaches in their smoothness, size, and flavour; and the difference is so great, that some botanists have maintained that they are specifically distinct. So permanent are the characters thus suddenly acquired, that a nectarine produced by bud-variation has propagated itself by seed. To guard against the supposition that there is some fundamental distinction between bud and seminal variation, it is well to bear in mind that nectarines have likewise been produced from the stone of the peach; and, reversely, peaches from the stone of the nectarine. Now is it possible to conceive external conditions more closely alike than those to which the buds on the same tree are exposed? Yet one bud alone, out of the many thousands borne by the same tree, has suddenly without any apparent cause produced a nectarine. But the case is even stronger than this, for the same flower-bud has yielded a fruit, one-half or one-quarter a nectarine, and the other half or three-quarters a peach. Again, seven or eight varieties of the peach have yielded by bud-variation nectarines: the nectarines thus produced, no doubt, differ a little from each other; but still they are nectarines. Of course there must be some cause, internal or external, to excite the peach-bud to change its nature; but I cannot imagine a class of facts better adapted to force on our minds the conviction that what we call the external conditions of life are quite insignificant in {289} relation to any particular variation, in comparison with the organisation or constitution of the being which varies.
It is known from the labours of Geoffroy St. Hilaire, and recently from those of Dareste and others, that eggs of the fowl, if shaken, placed upright, perforated, covered in part with varnish, &c., produce monstrous chickens. Now these monstrosities may be said to be directly caused by such unnatural conditions, but the modifications thus induced are not of a definite nature. An excellent observer, M. Camille Dareste,[712] remarks "that the various species of monstrosities are not determined by specific causes; the external agencies which modify the development of the embryo act solely in causing a perturbation—a perversion in the normal course of development." He compares the result to what we see in illness: a sudden chill, for instance, affects one individual alone out of many, causing either a cold, or sore-throat, rheumatism, or inflammation of the lungs or pleura. Contagious matter acts in an analogous manner.[713] We may take a still more specific instance: seven pigeons were struck by rattle-snakes;[714] some suffered from convulsions; some had their blood coagulated, in others it was perfectly fluid; some showed ecchymosed spots on the heart, others on the intestines, &c.; others again showed no visible lesion in any organ. It is well known that excess in drinking causes different diseases in different men; but men living under a cold and tropical climate are differently affected:[715] and in this case we see the definite influence of opposite conditions. The foregoing facts apparently give us as good an idea as we are likely for a long time to obtain, how in many cases external conditions act directly, though not definitely, in causing modifications of structure.
* * * * *
Summary.—There can be no doubt, from the facts given in the early part of this chapter, that extremely slight changes in {290} the conditions of life sometimes act in a definite manner on our already variable domesticated productions; and, as the action of changed conditions in causing general or indefinite variability is accumulative, so it may be with their definite action. Hence it is possible that great and definite modifications of structure may result from altered conditions acting during a long series of generations. In some few instances a marked effect has been produced quickly on all, or nearly all, the individuals which have been exposed to some considerable change of climate, food, or other circumstance. This has occurred, and is now occurring, with European men in the United States, with European dogs in India, with horses in the Falkland Islands, apparently with various animals at Angora, with foreign oysters in the Mediterranean, and with maize grown in Europe from tropical seed. We have seen that the chemical compounds secreted by plants and the state of their tissues are readily affected by changed conditions. In some cases a relation apparently exists between certain characters and certain conditions, so that if the latter be changed the character is lost—as with cultivated flowers, with some few culinary plants, with the fruit of the melon, with fat-tailed sheep, and other sheep having peculiar fleeces.
The production of galls, and the change of plumage in parrots when fed on peculiar food or when inoculated by the poison of a toad, prove to us what great and mysterious changes in structure and colour may be the definite result of chemical changes in the nutrient fluids or tissues.
We have also reason to believe that organic beings in a state of nature may be modified in various definite ways by the conditions to which they have been long exposed, as in the case of American trees in comparison with their representatives in Europe. But in all such cases it is most difficult to distinguish between the definite results of changed conditions, and the accumulation through natural selection of serviceable variations which have arisen independently of the nature of the conditions. If, for instance, a plant had to be modified so as to become fitted to inhabit a humid instead of an arid station, we have no reason to believe that variations of the right kind would occur more frequently if the parent-plant inhabited a station a little more {291} humid than usual. Whether the station was unusually dry or humid, variations adapting the plant in a slight degree for directly opposite habits of life would occasionally arise, as we have reason to believe from what we know in other cases.
In most, perhaps in all cases, the organisation or constitution of the being which is acted on, is a much more important element than the nature of the changed conditions, in determining the nature of the variation. We have evidence of this in the appearance of nearly similar modifications under different conditions, and of different modifications under apparently nearly the same conditions. We have still better evidence of this in closely parallel varieties being frequently produced from distinct races, or even distinct species, and in the frequent recurrence of the same monstrosity in the same species. We have also seen that the degree to which domesticated birds have varied, does not stand in any close relation with the amount of change to which they have been subjected.
To recur once again to bud-variations. When we reflect on the millions of buds which many trees have produced, before some one bud has varied, we are lost in wonder what the precise cause of each variation can be. Let us recall the case given by Andrew Knight of the forty-year-old tree of the yellow magnum bonum plum, an old variety which has been propagated by grafts on various stocks for a very long period throughout Europe and North America, and on which a single bud suddenly produced the red magnum bonum. We should also bear in mind that distinct varieties, and even distinct species,—as in the case of peaches, nectarines, and apricots,—of certain roses and camellias,—although separated by a vast number of generations from any progenitor in common, and although cultivated under diversified conditions, have yielded by bud-variation closely analogous varieties. When we reflect on these facts we become deeply impressed with the conviction that in such cases the nature of the variation depends but little on the conditions to which the plant has been exposed, and not in any especial manner on its individual character, but much more on the general nature or constitution, inherited from some remote progenitor, of the whole group of allied beings to which the plant belongs. We are thus driven to conclude that in most {292} cases the conditions of life play a subordinate part in causing any particular modification; like that which a spark plays, when a mass of combustibles bursts into flame—the nature of the flame depending on the combustible matter, and not on the spark.
No doubt each slight variation must have its efficient cause; but it is as hopeless an attempt to discover the cause of each as to say why a chill or a poison affects one man differently from another. Even with modifications resulting from the definite action of the conditions of life, when all or nearly all the individuals, which have been similarly exposed, are similarly affected, we can rarely see the precise relation between cause and effect. In the next chapter it will be shown that the increased use or disuse of various organs, produces an inherited effect. It will further be seen that certain variations are bound together by correlation and other laws. Beyond this we cannot at present explain either the causes or manner of action of Variation.
Finally, as indefinite and almost illimitable variability is the usual result of domestication and cultivation, with the same part or organ varying in different individuals in different or even in directly opposite ways; and as the same variation, if strongly pronounced, usually recurs only after long intervals of time, any particular variation would generally be lost by crossing, reversion, and the accidental destruction of the varying individuals, unless carefully preserved by man. Hence, although it must be admitted that new conditions of life do sometimes definitely affect organic beings, it may be doubted whether well-marked races have often been produced by the direct action of changed conditions without the aid of selection either by man or nature.
* * * * *
{293}
CHAPTER XXIV.
LAWS OF VARIATION—USE AND DISUSE, ETC.
NISUS FORMATIVUS, OR THE CO-ORDINATING POWER OF THE ORGANISATION—ON THE EFFECTS OF THE INCREASED USE AND DISUSE OF ORGANS—CHANGED HABITS OF LIFE—ACCLIMATISATION WITH ANIMALS AND PLANTS—VARIOUS METHODS BY WHICH THIS CAN BE EFFECTED—ARRESTS OF DEVELOPMENT—RUDIMENTARY ORGANS.
In this and the two following chapters I shall discuss, as well as the difficulty of the subject permits, the several laws which govern Variability. These may be grouped under the effects of use and disuse, including changed habits and acclimatisation—arrests of development—correlated variation—the cohesion of homologous parts—the variability of multiple parts—compensation of growth—the position of buds with respect to the axis of the plant—and lastly, analogous variation. These several subjects so graduate into each other that their distinction is often arbitrary.
It may be convenient first briefly to discuss that co-ordinating and reparative power which is common, in a higher or lower degree, to all organic beings, and which was formerly designated by physiologists as the nisus formativus.
Blumenbach and others[716] have insisted that the principle which permits a Hydra, when cut into fragments, to develop itself into two or more perfect animals, is the same with that which causes a wound in the higher animals to heal by a cicatrice. Such cases as that of the Hydra are evidently analogous with the spontaneous division or fissiparous generation of the lowest animals, and likewise with the budding of plants. Between these extreme cases and that of a mere cicatrice we have every gradation. Spallanzani,[717] by cutting off the legs and tail of a Salamander, got in the course of three months six crops of these members; so that 687 perfect bones were reproduced by one animal during one season. At whatever {294} point the limb was cut off, the deficient part, and no more, was exactly reproduced. Even with man, as we have seen in the twelfth chapter, when treating of polydactylism, the entire limb whilst in an embryonic state, and supernumerary digits, are occasionally, though imperfectly, reproduced after amputation. When a diseased bone has been removed, a new one sometimes "gradually assumes the regular form, and all the attachments of muscles, ligaments, &c., become as complete as before."[718]
This power of regrowth does not, however, always act perfectly: the reproduced tail of a lizard differs in the forms of the scales from the normal tail: with certain Orthopterous insects the large hind legs are reproduced of smaller size:[719] the white cicatrice which in the higher animals unites the edges of a deep wound is not formed of perfect skin, for elastic tissue is not produced till long afterwards.[720] "The activity of the nisus formativus," says Blumenbach, "is in an inverse ratio to the age of the organised body." To this may be added that its power is greater in animals the lower they are in the scale of organisation; and animals low in the scale correspond with the embryos of higher animals belonging to the same class. Newport's observations[721] afford a good illustration of this fact, for he found that "myriapods, whose highest development scarcely carries them beyond the larvae of perfect insects, can regenerate limbs and antennae up to the time of their last moult;" and so can the larvae of true insects, but not the mature insect. Salamanders correspond in development with the tadpoles or larvae of the tailless Batrachians, and both possess to a large extent the power of regrowth; but not so the mature tailless Batrachians.
Absorption often plays an important part in the repairs of injuries. When a bone is broken, and does not unite, the ends are absorbed and rounded, so that a false joint is formed; or if the ends unite, but overlap, the projecting parts are removed.[722] But absorption comes into action, as Virchow remarks, during the normal growth of bones; parts which are solid during youth become hollowed out for the medullary tissue as the bone increases in size. In trying to understand the many well-adapted cases of regrowth when aided by absorption, we should remember that most parts of the organisation, even whilst retaining the same form, undergo constant renewal; so that a part which was not renewed would naturally be liable to complete absorption.
Some cases, usually classed under the so-called nisus formativus, at first appear to come under a distinct head; for not only are old structures reproduced, but structures which appear new are formed. Thus, after inflammation "false membranes," furnished with blood-vessels, lymphatics, and nerves, are developed; or a foetus escapes from the Fallopian tubes, and falls into the abdomen, "nature pours out a quantity of plastic lymph, which forms itself into organised membrane, richly supplied with blood-vessels," and the foetus is nourished for a time. In certain cases of {295} hydrocephalus the open and dangerous spaces in the skull are filled up with new bones, which interlock by perfect serrated sutures.[723] But most physiologists, especially on the Continent, have now given up the belief in plastic lymph or blastema, and Virchow[724] maintains that every structure, new or old, is formed by the proliferation of pre-existing cells. On this view false membranes, like cancerous or other tumours, are merely abnormal developments of normal growths; and we can thus understand how it is that they resemble adjoining structures; for instance, that "false membrane in the serous cavities acquires a covering of epithelium exactly like that which covers the original serous membrane; adhesions of the iris may become black apparently from the production of pigment-cells like those of the uvea."[725]
No doubt the power of reparation, though not always quite perfect, is an admirable provision, ready for various emergencies, even for those which occur only at long intervals of time.[726] Yet this power is not more wonderful than the growth and development of every single creature, more especially of those which are propagated by fissiparous generation. This subject has been here noticed, because we may infer that, when any part or organ is either greatly increased in size or wholly suppressed through variation and continued selection, the co-ordinating power of the organisation will continually tend to bring all the parts again into harmony with each other.
On the Effects of the Increased Use and Disuse of Organs.
It is notorious, and we shall immediately adduce proofs, that increased use or action strengthens muscles, glands, sense-organs, &c.; and that disuse, on the other hand, weakens them. I have not met with any clear explanation of this fact in works on Physiology. Mr. Herbert Spencer[727] maintains that when muscles are much used, or when intermittent pressure is applied to the epidermis, an excess of nutritive matter exudes from the vessels, and that this gives additional development to the adjoining parts. That an increased flow of blood towards an organ leads to its greater development is probable, if not certain. Mr. Paget[728] thus accounts for the long, thick, and dark-coloured hair which occasionally grows, even in young children, near old-standing inflamed surfaces or fractured bones. When Hunter {296} inserted the spur of a cock into the comb, which is well supplied with blood-vessels, it grew in one case in a spiral direction to a length of six inches, and in another case forward, like a horn, so that the bird could not touch the ground with its beak. But whether Mr. Herbert Spencer's view of the exudation of nutritive matter due to increased movement and pressure, will fully account for the augmented size of bones, ligaments, and especially of internal glands and nerves, seems doubtful. According to the interesting observations of M. Sedillot,[729] when a portion of one bone of the leg or fore-arm of an animal is removed and is not replaced by growth, the associated bone enlarges till it attains a bulk equal to that of the two bones, of which it has to perform the functions. This is best exhibited in dogs in which the tibia has been removed; the companion bone, which is naturally almost filiform and not one-fifth the size of the other, soon acquires a size equal to or greater than the tibia. Now, it is at first difficult to believe that increased weight acting on a straight bone could, by alternately increased and diminished pressure, cause nutritive matter to exude from the vessels which permeate the periosteum. Nevertheless, the observations adduced by Mr. Spencer,[730] on the strengthening of the bowed bones of rickety children, along their concave sides, leads to the belief that this is possible.
Mr. H. Spencer has also shown that the ascent of the sap in trees is aided by the rocking movement caused by the wind; and the sap strengthens the trunk "in proportion to the stress to be borne; since the more severe and the more repeated the strains, the greater must be the exudation from the vessels into the surrounding tissue, and the greater the thickening of this tissue by secondary deposits."[731] But woody trunks may be formed of hard tissue without their having been subjected to any movement, as we see with ivy closely attached to old walls. In all these cases, it is very difficult to disentangle the effects of long-continued selection from those consequent on the increased action or movement of the part. Mr. H. Spencer[732] acknowledges this difficulty, and gives as an instance the spines {297} or thorns of trees, and the shells of nuts. Here we have extremely hard woody tissue without the possibility of any movement to cause exudation, and without, as far as we can see, any other directly exciting cause; and as the hardness of these parts is of manifest service to the plant, we may look at the result as probably due to the selection of so-called spontaneous variations. Every one knows that hard work thickens the epidermis on the hands; and when we hear that with infants long before their birth the epidermis is thicker on the palms and soles of the feet than on any other part of the body, as was observed with admiration by Albinus,[733] we are naturally inclined to attribute this to the inherited effects of long-continued use or pressure. We are tempted to extend the same view even to the hoofs of quadrupeds; but who will pretend to determine how far natural selection may have aided in the formation of structures of such obvious importance to the animal?
That use strengthens the muscles may be seen in the limbs of artisans who follow different trades; and when a muscle is strengthened, the tendons, and the crests of bone to which they are attached, become enlarged; and this must likewise be the case with the blood-vessels and nerves. On the other hand, when a limb is not used, as by Eastern fanatics, or when the nerve supplying it with nervous power is effectually destroyed, the muscles wither. So again, when the eye is destroyed the optic nerve becomes atrophied, sometimes even in the course of a few months.[734] The Proteus is furnished with branchiae as well as with lungs: and Schreibers[735] found that when the animal was compelled to live in deep water the branchiae were developed to thrice their ordinary size, and the lungs were partially atrophied. When, on the other hand, the animal was compelled to live in shallow water, the lungs became larger and more vascular, whilst the branchiae disappeared in a more or less complete degree. Such modifications as these are, however, of comparatively little value for us, as we do not actually know that they tend to be inherited.
In many cases there is reason to believe that the lessened use of various organs has affected the corresponding parts in the offspring. But there is no good evidence that this ever follows in the course of a single generation. It appears, as in the case of general or indefinite variability, that several generations must be subjected to changed habits for any appreciable result. Our domestic fowls, ducks, and geese have almost lost, not {298} only in the individual but in the race, their power of flight; for we do not see a chicken, when frightened, take flight like a young pheasant. Hence I was led carefully to compare the limb-bones of fowls, ducks, pigeons, and rabbits, with the same bones in the wild parent-species. As the measurements and weights were fully given in the earlier chapters, I need here only recapitulate the results. With domestic pigeons, the length of the sternum, the prominence of its crest, the length of the scapulae and furcula, the length of the wings as measured from tip to tip of the radius, are all reduced relatively to the same parts in the wild pigeon. The wing and tail feathers, however, are increased in length, but this may have as little connection with the use of the wings or tail, as the lengthened hair on a dog with the amount of exercise which the breed has habitually taken. The feet of pigeons, except in the long-beaked races, are reduced in size. With fowls the crest of the sternum is less prominent, and is often distorted or monstrous; the wing-bones have become lighter relatively to the leg-bones, and are apparently a little shorter in comparison with those of the parent-form, the Gallus bankiva. With ducks, the crest of the sternum is affected in the same manner as in the foregoing cases: the furcula, coracoids, and scapulae are all reduced in weight relatively to the whole skeleton: the bones of the wings are shorter and lighter, and the bones of the legs longer and heavier, relatively to each other, and relatively to the whole skeleton, in comparison with the same bones in the wild-duck. The decreased weight and size of the bones, in the foregoing cases, is probably the indirect result of the reaction of the weakened muscles on the bones. I failed to compare the feathers of the wings of the tame and wild duck; but Gloger[736] asserts that in the wild duck the tips of the wing-feathers reach almost to the end of the tail, whilst in the domestic duck they often hardly reach to its base. He remarks, also, on the greater thickness of the legs, and says that the swimming membrane between the toes is reduced; but I was not able to detect this latter difference.
With the domesticated rabbit the body, together with the whole skeleton, is generally larger and heavier than in the wild animal, and the leg-bones are heavier in due proportion; but whatever standard of comparison be taken, neither the leg-bones nor the scapulae have increased in length proportionally with the increased dimensions of the rest of the skeleton. The skull has become in a marked manner narrower, and, from the measurements of its capacity formerly given, we may conclude, that this narrowness results from the decreased size of the brain, consequent on the mentally inactive life led by these closely-confined animals.
We have seen in the eighth chapter that silk-moths, which have been kept during many centuries closely confined, emerge from their cocoons with their wings distorted, incapable of flight, often greatly reduced in size, or even, according to Quatrefages, quite rudimentary. This condition of the wings may be largely owing to the same kind of monstrosity which often affects wild Lepidoptera when artificially reared from the cocoon; or it may {299} be in part due to an inherent tendency, which is common to the females of many Bombycidae, to have their wings in a more or less rudimentary state; but part of the effect may probably be attributed to long-continued disuse.
From the foregoing facts there can be no doubt that certain parts of the skeleton in our anciently domesticated animals, have been modified in length and weight by the effects of decreased or increased use; but they have not been modified, as shown in the earlier chapters, in shape or structure. We must, however, be cautious in extending this latter conclusion to animals living a free life; for these will occasionally be exposed during successive generations to the severest competition. With wild animals it would be an advantage in the struggle for life that every superfluous and useless detail of structure should be removed or absorbed; and thus the reduced bones might ultimately become changed in structure. With highly-fed domesticated animals, on the other hand, there is no economy of growth; nor any tendency to the elimination of trifling and superfluous details of structure.
Turning now to more general observations, Nathusius has shown that, with the improved races of the pig, the shortened legs and snout, the form of the articular condyles of the occiput, and the position of the jaws with the upper canine teeth projecting in a most anomalous manner in front of the lower canines, may be attributed to these parts not having been fully exercised. For the highly-cultivated races do not travel in search of food, nor root up the ground with their ringed muzzles. These modifications of structure, which are all strictly inherited, characterise several improved breeds, so that they cannot have been derived from any single domestic or wild stock.[737] With respect to cattle, Professor Tanner has remarked that the lungs and liver in the improved breeds "are found to be considerably reduced in size when compared with those possessed by animals having perfect liberty;"[738] and the reduction of these organs affects the general shape of the body. The cause of the reduced lungs in highly-bred animals which take little exercise is {300} obvious; and perhaps the liver may be affected by the nutritious and artificial food on which they largely subsist.
It is well known that, when an artery is tied, the anastomosing branches, from being forced to transmit more blood, increase in diameter; and this increase cannot be accounted for by mere extension, as their coats gain in strength. Mr. Herbert Spencer[739] has argued that with plants the flow of sap from the point of supply to the growing part first elongates the cells in this line; and that the cells then become confluent, thus forming the ducts; so that, on this view, the vessels in plants are formed by the mutual reaction of the flowing sap and cellular tissue. Dr. W. Turner has remarked,[740] with respect to the branches of arteries, and likewise to a certain extent with nerves, that the great principle of compensation frequently comes into play; for "when two nerves pass to adjacent cutaneous areas, an inverse relation as regards size may subsist between them; a deficiency in one may be supplied by an increase in the other, and thus the area of the former may be trespassed on by the latter nerve." But how far in these cases the difference in size in the nerves and arteries is due to original variation, and how far to increased use or action, is not clear.
In reference to glands, Mr. Paget observes that "when one kidney is destroyed the other often becomes much larger, and does double work."[741] If we compare the size of the udders and their power of secretion in cows which have been long domesticated, and in certain goats in which the udders nearly touch the ground, with the size and power of secretion of these organs in wild or half-domesticated animals, the difference is great. A good cow with us daily yields more than five gallons, or forty pints of milk, whilst a first-rate animal, kept, for instance, by the Damaras of South Africa,[742] "rarely gives more than two or three pints of milk daily, and, should her calf be taken from her, she absolutely refuses to give any." We may attribute the excellence of our cows, and of certain goats, partly to the continued selection of the best milking animals, and partly to the inherited effects of the increased action, through man's art, of the secreting glands.
It is notorious, as was remarked in the twelfth chapter, that short-sight is inherited; and if we compare watchmakers or engravers with, for instance, sailors, we can hardly doubt that vision continually directed towards a near object permanently affects the structure of the eye.
Veterinarians are unanimous that horses become affected with spavins, splints, ringbones, &c., from being shod, and from travelling on hard roads, and they are almost equally unanimous that these injuries are transmitted. Formerly horses were not shod in North Carolina, and it has been asserted that they did not then suffer from these diseases of the legs and feet.[743]
{301}
Our domesticated quadrupeds are all descended, as far as is known, from species having erect ears; yet few kinds can be named, of which at least one race has not drooping ears. Cats in China, horses in parts of Russia, sheep in Italy and elsewhere, the guinea-pig in Germany, goats and cattle in India, rabbits, pigs, and dogs in all long-civilised countries, have dependent ears. With wild animals, which constantly use their ears like funnels to catch every passing sound, and especially to ascertain the direction whence it comes, there is not, as Mr. Blyth has remarked, any species with drooping ears except the elephant. Hence the incapacity to erect the ears is certainly in some manner the result of domestication; and this incapacity has been attributed by various authors[744] to disuse, for animals protected by man are not compelled habitually to use their ears. Col. Hamilton Smith[745] states that in ancient effigies of the dog, "with the exception of one Egyptian instance, no sculpture of the earlier Grecian era produces representations of hounds with completely drooping ears; those with them half pendulous are missing in the most ancient; and this character increases, by degrees, in the works of the Roman period." Godron also has remarked that "the pigs of the ancient Egyptians had not their ears enlarged and pendent."[746] But it is remarkable that the drooping of the ears, though probably the effect of disuse, is not accompanied by any decrease in size; on the contrary, when we remember that animals so different as fancy rabbits, certain Indian breeds of the goat, our petted spaniels, bloodhounds, and other dogs, have enormously elongated ears, it would appear as if disuse actually caused an increase in length. With rabbits, the drooping of the much elongated ears has affected even the structure of the skull.
The tail of no wild animal, as remarked to me by Mr. Blyth, is curled; whereas pigs and some races of dogs have their tails much curled. This deformity, therefore, appears to be the result of domestication, but whether in any way connected with the lessened use of the tail is doubtful.
{302}
The epidermis on our hands is easily thickened, as every one knows, by hard work. In a district of Ceylon the sheep have "horny callosities that defend their knees, and which arise from their habit of kneeling down to crop the short herbage, and this distinguishes the Jaffna flocks from those of other portions of the island;" but it is not stated whether this peculiarity is inherited.[747]
The mucous membrane which lines the stomach is continuous with the external skin of the body; therefore it is not surprising that its texture should be affected by the nature of the food consumed, but other and more interesting changes likewise follow. Hunter long ago observed that the muscular coat of the stomach of a gull (Larus tridactylus) which had been fed for a year chiefly on grain was thickened; and, according to Dr. Edmondston, a similar change periodically occurs in the Shetland Islands in the stomach of the Larus argentatus, which in the spring frequents the corn-fields and feeds on the seed. The same careful observer has noticed a great change in the stomach of a raven which had been long fed on vegetable food. In the case of an owl (Strix grallaria) similarly treated, Menetries states that the form of the stomach was changed, the inner coat became leathery, and the liver increased in size. Whether these modifications in the digestive organs would in the course of generations become inherited is not known.[748]
The increased or diminished length of the intestines, which apparently results from changed diet, is a more remarkable case, because it is characteristic of certain animals in their domesticated condition, and therefore must be inherited. The complex absorbent system, the blood-vessels, nerves, and muscles, are necessarily all modified together with the intestines. According to Daubenton, the intestines of the domestic cat are one-third longer than those of the wild cat of Europe; and although this species is not the parent-stock of the domestic animal, yet, as Isidore Geoffroy has remarked, the several species {303} of cats are so closely allied that the comparison is probably a fair one. The increased length appears to be due to the domestic cat being less strictly carnivorous in its diet than any wild feline species; I have seen a French kitten eating vegetables as readily as meat. According to Cuvier, the intestines of the domesticated pig exceed greatly in proportionate length those of the wild boar. In the tame and wild rabbit the change is of an opposite nature, and probably results from the nutritious food given to the tame rabbit.[749]
* * * * *
Changed Habits of Life, independently of the Use or Disuse of particular Organs.—This subject, as far as the mental powers of animals are concerned, so blends into instinct, on which I shall treat in a future work, that I will here only remind the reader of the many cases which occur under domestication, and which are familiar to every one—for instance the tameness of our animals—the pointing or retrieving of dogs—their not attacking the smaller animals kept by man—and so forth. How much of these changes ought to be attributed to inherited habit, and how much to the selection of individuals which have varied in the desired manner, irrespectively of the special circumstances under which they have been kept, can seldom be told. We have already seen that animals may be habituated to a changed diet; but a few additional instances may here be given.
In the Polynesian Islands and in China the dog is fed exclusively on vegetable matter, and the taste for this kind of food is to a certain extent inherited.[750] Our sporting dogs will not touch the bones of game birds, whilst other dogs devour them with greediness. In some parts of the world sheep have been largely fed on fish. The domestic hog is fond of barley, the wild boar is said to disdain it; and the disdain is partially inherited, for some young wild pigs bred in captivity showed an aversion for this grain, whilst others of the same brood relished it.[751] One of my relations bred some young pigs from {304} a Chinese sow by a wild Alpine boar; they lived free in the park, and were so tame that they came to the house to be fed; but they would not touch swill, which was devoured by the other pigs. An animal when once accustomed to an unnatural diet, which can generally be effected only during youth, dislikes its proper food, as Spallanzani found to be the case with a pigeon which had been long fed on meat. Individuals of the same species take to new food with different degrees of readiness; one horse, it is stated, soon learned to eat meat, whilst another would have perished from hunger rather than have partaken of it.[752]
The caterpillars of the Bombyx hesperus feed in a state of nature on the leaves of the Cafe diable, but, after having been reared on the Ailanthus, they would not touch the Cafe diable, and actually died of hunger.[753]
It has been found possible to accustom marine fish to live in fresh water; but as such changes in fish, and other marine animals, have been chiefly observed in a state of nature, they do not properly belong to our present subject. The period of gestation and of maturity, as shown in the earlier chapters,—the season and the frequency of the act of breeding,—have all been greatly modified under domestication. With the Egyptian goose the rate of change in the season has been recorded.[754] The wild drake pairs with one female, the domestic drake is polygamous. Certain breeds of fowls have lost the habit of incubation. The paces of the horse, and the manner of flight in certain breeds of the pigeon, have been modified, and are inherited. The voice differs much in certain fowls and pigeons. Some breeds are clamorous and others silent, as in the Call and common duck, or in the Spitz and pointer dog. Every one knows how dogs differ from each other in their manner of hunting, and in their ardour after different kinds of game or vermin.
With plants the period of vegetation is easily changed and is inherited, as in the case of summer and winter wheat, barley, {305} and vetches; but to this subject we shall immediately return under acclimatisation. Annual plants sometimes become perennial under a new climate, as I hear from Dr. Hooker is the case with the stock and mignonette in Tasmania. On the other hand, perennials sometimes become annuals, as with the Ricinus in England, and as, according to Captain Mangles, with many varieties of the heartsease. Von Berg[755] raised from seed of Verbascum phoenicium, which is usually a biennial, both annual and perennial varieties. Some deciduous bushes become evergreen in hot countries.[756] Rice requires much water, but there is one variety in India which can be grown without irrigation.[757] Certain varieties of the oat and of our other cereals are best fitted for certain soils.[758] Endless similar facts could be given in the animal and vegetable kingdoms. They are noticed here because they illustrate analogous differences in closely allied natural species, and because such changed habits of life, whether due to use and disuse, or to the direct action of external conditions, or to so-called spontaneous variation, would be apt to lead to modifications of structure.
* * * * *
Acclimatisation.—From the previous remarks we are naturally led to the much disputed subject of acclimatisation. There are two distinct questions: Do varieties descended from the same species differ in their power of living under different climates? And secondly, if they so differ, how have they become thus adapted? We have seen that European dogs do not succeed well in India, and it is asserted,[759] that no one has succeeded in there keeping the Newfoundland long alive; but then it may be argued, probably with truth, that these northern breeds are specifically distinct from the native dogs which flourish in India. The same remark may be made with respect to different breeds of sheep, of which, according to Youatt,[760] not one brought "from a torrid climate lasts out the second year," in the Zoological Gardens. But sheep are capable of some degree of acclimatisation, for Merino sheep bred at the Cape of Good Hope have been found {306} far better adapted for India than those imported from England.[761] It is almost certain that the breeds of the fowl are descended from the same species; but the Spanish breed, which there is good reason to believe originated near the Mediterranean,[762] though so fine and vigorous in England, suffers more from frost than any other breed. The Arrindy silk-moth introduced from Bengal, and the Ailanthus moth from the temperate province of Shan Tung, in China, belong to the same species, as we may infer from their identity in the caterpillar, cocoon, and mature states;[763] yet they differ much in constitution: the Indian form "will flourish only in warm latitudes," the other is quite hardy and withstands cold and rain.
Plants are more strictly adapted to climate than are animals. The latter when domesticated withstand such great diversities of climate, that we find nearly the same species in tropical and temperate countries; whilst the cultivated plants are widely dissimilar. Hence a larger field is open for inquiry in regard to the acclimatisation of plants than of animals. It is no exaggeration to say that with almost every plant which has long been cultivated varieties exist, which are endowed with constitutions fitted for very different climates; I will select only a few of the more striking cases, as it would be tedious to give all. In North America numerous fruit-trees have been raised, and in horticultural publications,—for instance, in Downing,—lists are given of the varieties which are best able to withstand the severe climate of the northern States and Canada. Many American varieties of the pear, plum, and peach are excellent in their own country, but until recently hardly one was known that succeeded in England; and with apples,[764] not one succeeds. Though the American varieties can withstand a severer winter than ours, the summer here is not hot enough. Fruit-trees have originated in Europe as in America with different constitutions, but they are not here much noticed, as the same nurserymen do not supply a wide area. The Forelle pear flowers early, and when the flowers have just set, and this is the critical period, they have been observed, both in France and England, to withstand with complete impunity a frost of 18deg and even 14deg Fahr., which killed the flowers, whether fully expanded or in bud, of all other kinds of pears.[765] This power in the flower of resisting cold and afterwards producing fruit does not invariably depend, as we know on good authority,[766] on general constitutional vigour.
{307}
In proceeding northward, the number of varieties which are enabled to resist the climate rapidly decreases, as may be seen in the list of the varieties of the cherry, apple, and pear, which can be cultivated in the neighbourhood of Stockholm.[767] Near Moscow, Prince Troubetzkoy planted for experiment in the open ground several varieties of the pear, but one alone, the Poire sans Pepins, withstood the cold of winter.[768] We thus see that our fruit-trees, like distinct species of the same genus, certainly differ from each other in their constitutional adaptation to different climates.
With the varieties of many plants, the adaptation to climate is often very close. Thus it has been proved by repeated trials "that few if any of the English varieties of wheat are adapted for cultivation in Scotland;"[769] but the failure in this case is at first only in the quantity, though ultimately in the quality, of the grain produced. The Rev. J. M. Berkeley sowed wheat-seed from India, and got "the most meagre ears," on land which would certainly have yielded a good crop from English wheat.[770] In these cases varieties have been carried from a warmer to a cooler climate; in the reverse case, as "when wheat was imported directly from France into the West Indian Islands, it produced either wholly barren spikes or furnished with only two or three miserable seeds, while West Indian seed by its side yielded an enormous harvest."[771] Here is another case of close adaptation to a slightly cooler climate; a kind of wheat which in England may be used indifferently either as a winter or summer variety, when sown under the warmer climate of Grignan, in France, behaved exactly as if it had been a true winter wheat.[772]
Botanists believe that all the varieties of maize belong to the same species; and we have seen that in North America, in proceeding northward, the varieties cultivated in each zone produce their flowers and ripen their seed within shorter and shorter periods. So that the tall, slowly maturing southern varieties do not succeed in New England, and the New English varieties do not succeed in Canada. I have not met with any statement that the southern varieties are actually injured or killed by a degree of cold which the northern varieties withstand with impunity, though this is probable; but the production of early flowering and early seeding varieties deserves to be considered as one form of acclimatisation. Hence it has been found possible, according to Kalm, to cultivate maize further and further northwards in America. In Europe, also, as we learn from the evidence given by Alph. De Candolle, the culture of maize has extended since the end of the last century thirty leagues north of its former boundary.[773] On the authority of the great Linnaeus,[774] I may quote an {308} analogous case, namely, that in Sweden tobacco raised from home-grown seed ripens its seed a month sooner and is less liable to miscarry than plants raised from foreign seed.
With the Vine, differently from the maize, the line of practical culture has retreated a little southward since the middle ages;[775] but this seems due to commerce, including that of wine, being now freer or more easy. Nevertheless the fact of the vine not having spread northward shows that acclimatisation has made no progress during several centuries. There is, however, a marked difference in the constitution of the several varieties,—some being hardy, whilst others, like the muscat of Alexandria, require a very high temperature to come to perfection. According to Labat,[776] vines taken from France to the West Indies succeed with extreme difficulty, whilst those imported from Madeira, or the Canary Islands, thrive admirably.
Gallesio gives a curious account of the naturalisation of the Orange in Italy. Daring many centuries the sweet orange was propagated exclusively by grafts, and so often suffered from frosts that it required protection. After the severe frost of 1709, and more especially after that of 1763, so many trees were destroyed that seedlings from the sweet orange were raised, and, to the surprise of the inhabitants, their fruit was found to be sweet. The trees thus raised were larger, more productive, and hardier than the former kinds; and seedlings are now continually raised. Hence Gallesio concludes that much more was effected for the naturalisation of the orange in Italy by the accidental production of new kinds during a period of about sixty years, than had been effected by grafting old varieties during many ages.[777] I may add that Risso[778] describes some Portuguese varieties of the orange as extremely sensitive to cold, and as much tenderer than certain other varieties.
The peach was known to Theophrastus, 322 B.C.[779] According to the authorities quoted by Dr. F. Rolle,[780] it was tender when first introduced into Greece, and even in the island of Rhodes only occasionally bore fruit. If this be correct, the peach, in spreading during the last two thousand years over the middle parts of Europe, must have become much hardier. At the present day different varieties differ much in hardiness: some French varieties will not succeed in England; and near Paris, the Pavie de Bonneuil does not ripen its fruit till very late, even when grown on a wall; "it is, therefore, only fit for a very hot southern climate."[781]
I will briefly give a few other cases. A variety of Magnolia grandiflora, raised by M. Roy, withstands cold several degrees lower than that which any other variety can resist. With camellias there is much difference in hardiness. One particular variety of Noisette rose withstood the severe frost of 1860 "untouched and hale amidst a universal destruction of other {309} Noisettes." In New York the "Irish yew is quite hardy, but the common yew is liable to be cut down." I may add that there are varieties of the sweet potato (Convolvulus batatas) which are suited for warmer, as well as for colder, climates.[782]
The plants as yet mentioned have been found capable of resisting an unusual degree of cold or heat, when fully grown. The following cases refer to plants whilst young. In a large bed of young Araucarias of the same age, growing close together and equally exposed, it was observed,[783] after the unusually severe winter of 1860-61, that, "in the midst of the dying, numerous individuals remained on which the frost had absolutely made no kind of impression." Dr. Lindley, after alluding to this and other similar cases, remarks, "Among the lessons which the late formidable winter has taught us, is that, even in their power of resisting cold, individuals of the same species of plants are remarkably different." Near Salisbury, there was a sharp frost on the night of May 24th, 1836, and all the French beans (Phaseolus vulgaris) in a bed were killed except about one in thirty, which completely escaped.[784] On the same day of the month, but in the year 1864, there was a severe frost in Kent, and two rows of scarlet-runners (P. multiflorus) in my garden, containing 390 plants of the same age and equally exposed, were all blackened and killed except about a dozen plants. In an adjoining row of "Fulmer's dwarf bean" (P. vulgaris), one single plant escaped. A still more severe frost occurred four days afterwards, and of the dozen plants which had previously escaped only three survived; these were not taller or more vigorous than the other young plants, but they escaped completely, with not even the tips of their leaves browned. It was impossible to behold these three plants, with their blackened, withered, and dead brethren all round them, and not see at a glance that they differed widely in constitutional power of resisting frost.
This work is not the proper place to show that wild plants {310} of the same species, naturally growing at different altitudes or under different latitudes, become to a certain extent acclimatised, as is proved by the different behaviour of their seedlings when raised in England. In my 'Origin of Species' I have alluded to some cases, and I could add others. One instance must suffice: Mr. Grigor, of Forres,[785] states that seedlings of the Scotch fir (Pinus sylvestris), raised from seed from the Continent and from the forests of Scotland, differ much. "The difference is perceptible in one-year-old, and more so in two-year-old seedlings; but the effects of the winter on the second year's growth almost uniformly makes those from the Continent quite brown, and so damaged, that by the month of March they are quite unsaleable, while the plants from the native Scotch pine, under the same treatment, and standing alongside, although considerably shorter, are rather stouter and quite green, so that the beds of the one can be known from the other when seen from the distance of a mile." Closely similar facts have been observed with seedling larches.
Hardy varieties would alone be valued or noticed in Europe; whilst tender varieties, requiring more warmth, would generally be neglected; but such occasionally arise. Thus Loudon[786] describes a Cornish variety of the elm which is almost an evergreen, and of which the shoots are often killed by the autumnal frosts, so that its timber is of little value. Horticulturists know that some varieties are much more tender than others: thus all the varieties of the broccoli are more tender than cabbages; but there is much difference in this respect in the sub-varieties of the broccoli; the pink and purple kinds are a little hardier than the white Cape broccoli, "but they are not to be depended on after the thermometer falls below 24deg Fahr.:" the Walcheren broccoli is less tender than the Cape, and there are several varieties which will stand much severer cold than the Walcheren.[787] Cauliflowers seed more freely in India than cabbages.[788] To give one instance with flowers: eleven plants raised from a hollyhock, called the Queen of the Whites,[789] were found to be much more tender than various other seedlings. It may be presumed that all tender varieties would succeed better under a climate warmer than ours. With fruit-trees, it is well known that certain varieties, for instance of the peach, stand forcing in a hot-house better than others; and this shows {311} either pliability of organisation or some constitutional difference. The same individual cherry-tree, when forced, has been observed during successive years gradually to change its period of vegetation.[790] Few pelargoniums can resist the heat of a stove, but Alba multiflora will, as a most skilful gardener asserts, "stand pine-apple top and bottom heat the whole winter, without looking any more drawn than if it had stood in a common greenhouse; and Blanche Fleur seems as if it had been made on purpose for growing in winter, like many bulbs, and to rest all summer."[791] There can hardly be a doubt that the Alba multiflora pelargonium must have a widely different constitution from that of most other varieties of this plant; it would probably withstand even an equatorial climate.
We have seen that according to Labat the vine and wheat require acclimatisation in order to succeed in the West Indies. Similar facts have been observed at Madras: "two parcels of mignonette-seed, one direct from Europe, the other saved at Bangalore (of which the mean temperature is much below that of Madras) were sown at the same time: they both vegetated equally favourably, but the former all died off a few days after they appeared above ground; the latter still survive, and are vigorous healthy plants." So again, "turnip and carrot seed saved at Hyderabad are found to answer better at Madras than seed from Europe or from the Cape of Good Hope."[792] Mr. J. Scott, of the Calcutta Botanic Gardens, informs me that seeds of the sweet-pea (Lathyrus odoratus) imported from England produce plants, with thick, rigid stems and small leaves, which rarely blossom and never yield seed; plants raised from French seed blossom sparingly, but all the flowers are sterile; on the other hand, plants raised from sweet-peas grown near Darjeeling in Upper India, but originally derived from England, can be successfully cultivated on the plains of India; for they flower and seed profusely, and their stems are lax and scandent. In some of the foregoing cases, as Dr. Hooker has remarked to me, the greater success may perhaps be attributed to the seeds having been more fully ripened under a more favourable climate; but this view can hardly be extended to so many cases, including plants, which, from being cultivated under a climate hotter than their native one, become fitted for a still hotter climate. We may therefore safely conclude that plants can to a certain extent become accustomed to a climate either hotter or colder than their own; although these latter cases have been more frequently observed. |
|