p-books.com
The Student's Elements of Geology
by Sir Charles Lyell
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16     Next Part
Home - Random Browse

Had it been declared that we are living in the Eocene epoch, the idea would not be so extravagant, for the great reptiles of the Upper Chalk, the Mosasaurus, Pliosaurus, and Pterodactyle, and many others, as well as so many genera of chambered univalves, had already disappeared from the earth, and the marine fauna had made a greater approach to our own by nearly the entire difference which separates it from the fauna of the Cretaceous seas. The Eocene nummulitic limestone of Egypt is a rock mainly composed, like the more ancient white chalk, of globigerine mud; and if the reader will refer to what we have said of the extent to which the nummulitic marine strata, formed originally at the bottom of the sea, now enter into the framework of mountain chains of the principal continents, he will at once perceive that the present Atlantic, Pacific, and Indian Oceans are geographical terms, which must be wholly without meaning when applied to the Eocene, and still more to the Cretaceous Period; so that to talk of the chalk having been uninterruptedly forming in the Atlantic from the Cretaceous Period to our own, is as inadmissible in a geographical as in a geological sense.

CHALK-FLINTS.

The origin of the layers of flint, whether in the form of nodules, or continuous sheets, or in veins or cracks not parallel to the stratification, has always been more difficult to explain than that of the white chalk. But here, again, the late deep-sea soundings have suggested a possible source of such mineral matter. During the cruise of the "Bulldog," already alluded to, it was ascertained that while the calcareous Globigerinae had almost exclusive possession of certain tracts of the sea-bottom, they were wholly wanting in others, as between Greenland and Labrador. According to Dr. Wallich, they may flourish in those spaces where they derive nutriment from organic and other matter, brought from the south by the warm waters of the Gulf Stream, and they may be absent where the effects of that great current are not felt. Now, in several of the spaces where the calcareous Rhizopods are wanting, certain microscopic plants, called Diatomaceae, above-mentioned (Figures 233-235), the solid parts of which are siliceous, monopolise the ground at a depth of nearly 400 fathoms, or 2400 feet.

The large quantities of silex in solution required for the formation of these plants may probably arise from the disintegration of feldspathic rocks, which are universally distributed. As more than half of their bulk is formed of siliceous earth, they may afford an endless supply of silica to all the great rivers which flow into the ocean. We may imagine that, after a lapse of many years or centuries, changes took place in the direction of the marine currents, favouring at one time a supply in the same area of siliceous, and at another of calcareous matter in excess, giving rise in the one case to a preponderance of Globigerinae, and in the other of Diatomaceae. These last, and certain sponges, may by their decomposition have furnished the silex, which, separating from the chalky mud, collected round organic bodies, or formed nodules, or filled shrinkage cracks.

POT-STONES.

(FIGURE 237. View of a chalk-pit at Horstead, near Norwich, showing the position of the pot-stones. From a drawing by Mrs. Gunn.)

A more difficult enigma is presented by the occurrence of certain huge flints, or pot-stones, as they are called in Norfolk, occurring singly, or arranged in nearly continuous columns at right angles to the ordinary and horizontal layers of small flints. I visited in the year 1825 an extensive range of quarries then open on the river Bure, near Horstead, about six miles from Norwich, which afforded a continuous section, a quarter of a mile in length, of white chalk, exposed to the depth of about twenty-six feet, and covered by a bed of gravel. The pot-stones, many of them pear-shaped, were usually about three feet in height and one foot in their transverse diameter, placed in vertical rows, like pillars, at irregular distances from each other, but usually from twenty to thirty feet apart, though sometimes nearer together, as in Figure 237. These rows did not terminate downward in any instance which I could examine, nor upward, except at the point where they were cut off abruptly by the bed of gravel. On breaking open the pot-stones, I found an internal cylindrical nucleus of pure chalk, much harder than the ordinary surrounding chalk, and not crumbling to pieces like it, when exposed to the winter's frost. At the distance of half a mile, the vertical piles of pot-stones were much farther apart from each other. Dr. Buckland has described very similar phenomena as characterising the white chalk on the north coast of Antrim, in Ireland. (Geological Transactions 1st Series volume 4 page 413.)

VITREOUS SPONGES OF THE CHALK.

These pear-shaped masses of flint often resemble in shape and size the large sponges called Neptune's Cups (Spongia patera, Hardw.), which grow in the seas of Sumatra; and if we could suppose a series of such gigantic sponges to be separated from each other, like trees in a forest, and the individuals of each successive generation to grow on the exact spot where the parent sponge died and was enveloped in calcareous mud, so that they should become piled one above the other in a vertical column, their growth keeping pace with the accumulation of the enveloping calcareous mud, a counterpart of the phenomena of the Horstead pot-stones might be obtained.

(FIGURE 238. Ventriculites radiatus, Mantell. Syn. Ocellaria radiata. D'Orbigny. White chalk.)

Professor Wyville Thomson, describing the modern soundings in 1869 off the north coast of Scotland, speaks of the ooze or chalk mud brought from a depth of about 3000 feet, and states that at one haul they obtained forty specimens of vitreous sponges buried in the mud. He suggests that the Ventriculites of the chalk were nearly allied to these sponges, and that when the silica of their spicules was removed, and was dissolved out of the calcareous matrix, it set into flint.

BOULDERS AND GROUPS OF PEBBLES IN CHALK.

The occurrence here and there, in the white chalk of the south of England, of isolated pebbles of quartz and green schist has justly excited much wonder. It was at first supposed that they had been dropped from the roots of some floating tree, by which means stones are carried to some of the small coral islands of the Pacific. But the discovery in 1857 of a group of stones in the white chalk near Croydon, the largest of which was syenite and weighed about forty pounds, accompanied by pebbles and fine sand like that of a beach, has been shown by Mr. Godwin Austen to be inexplicable except by the agency of floating ice. If we consider that icebergs now reach 40 degrees north latitude in the Atlantic, and several degrees nearer the equator in the southern hemisphere, we can the more easily believe that even during the Cretaceous epoch, assuming that the climate was milder, fragments of coast ice may have floated occasionally as far as the south of England.

DISTINCTNESS OF MINERAL CHARACTER IN CONTEMPORANEOUS ROCKS OF THE CRETACEOUS PERIOD.

But we must not imagine that because pebbles are so rare in the white chalk of England and France there are no proofs of sand, shingle, and clay having been accumulated contemporaneously even in European seas. The siliceous sandstone called "upper quader" by the Germans overlies white argillaceous chalk or "planer-kalk," a deposit resembling in composition and organic remains the chalk marl of the English series. This sandstone contains as many fossil shells common to our white chalk as could be expected in a sea-bottom formed of such different materials. It sometimes attains a thickness of 600 feet, and, by its jointed structure and vertical precipices, plays a conspicuous part in the picturesque scenery of Saxon Switzerland, near Dresden. It demonstrates that in the Cretaceous sea, as in our own, distinct mineral deposits were simultaneously in progress. The quartzose sandstone alluded to, derived from the detritus of the neighbouring granite, is absolutely devoid of carbonate of lime, yet it was formed at the distance only of four hundred miles from a sea-bottom now constituting part of France, where the purely calcareous white chalk was forming. In the North American continent, on the other hand, where the Upper Cretaceous formations are so widely developed, true white chalk, in the ordinary sense of that term, does not exist.

FOSSILS OF THE WHITE CHALK.

(FIGURE 239. Ananchytes ovatus, Leske. White chalk, upper and lower. a. Side view. b. Base of the shell, on which both the oral and anal apertures are placed; the anal being more round, and at the smaller end.)

(FIGURE 240. Micraster cor-angumum, Leske. White chalk.)

(FIGURE 241. Galerites albogalerus, Lam. White chalk.)

(FIGURE 242. Marsupites Milleri. Mant. White chalk.)

Among the fossils of the white chalk, echinoderms are very numerous; and some of the genera, like Ananchytes (see Figure 239), are exclusively cretaceous. Among the Crinoidea, the Marsupites (Figure 242) is a characteristic genus. Among the mollusca, the cephalopoda are represented by Ammonites, Baculites (Figure 229), and Belemnites (Figure 226). Although there are eight or more species of Ammonites and six of them peculiar to it, this genus is much less fully represented than in each of the other subdivisions of the Upper Cretaceous group.

(FIGURE 243. Terebratulina striata, Wahlenb. Upper white chalk.)

(FIGURE 244. Rhynchonella octoplicata, Sowerby. (Var. of R. plicatilis). Upper white chalk.

(FIGURE 245. Magas pumila, Sowerby. Upper white chalk.)

(FIGURE 246. Terebratula carnea, Sowerby. Upper white chalk.)

(FIGURE 247. Terebratula biplicata, Brocch. Upper cretaceous.)

(FIGURE 248. Crania Parisiensis, Duf. Inferior or attached valve. Upper white chalk.)

(FIGURE 249. Pecten Beaveri, Sowerby. Reduced to one-third diameter. Lower white chalk and chalk marl. Maidstone.)

(FIGURE 250. Lima spinosa, Sowerby. Syn. Spondylus spinosus. Upper white chalk.)

(FIGURE 251. Ostrea vesicularis. Syn. Gryphaea convexa. Upper chalk and upper greensand.)

Among the brachiopoda in the white chalk, the Terebratulae are very abundant (see Figures 243-247). With these are associated some forms of oyster (see Figure 251), and other bivalves (Figures 249, 250).

(FIGURE 252. Inoceramus Lamarckii. Syn. Catillus Lamarckii. White chalk (Dixon's Geology Sussex Table 28 Figure 29).)

Among the bivalve mollusca, no form marks the Cretaceous era in Europe, America, and India in a more striking manner than the extinct genus Inoceramus (Catillus of Lam.; see Figure 252), the shells of which are distinguished by a fibrous texture, and are often met with in fragments, having probably been extremely friable.

(Figures 253 to 256. Radiolites Mortoni. Mantell. Houghton, Sussex. White chalk. Diameter one-seventh natural size. On the side where the shell is thinnest, there is one external furrow and corresponding internal ridge, a, b, Figures 253, 254; but they are usually less prominent than in these figures. The upper or opercular valve is wanting.

(FIGURE 253. Two individuals deprived of their upper valves, adhering together.)

(FIGURE 254. Same seen from above.)

(FIGURE 255. Transverse section of part of the wall of the shell, magnified to show the structure.)

(FIGURE 256. Vertical section of the same.))

Of the singular family called Rudistes by Lamarck, hereafter to be mentioned as extremely characteristic of the chalk of southern Europe, a single representative only (Figure 253) has been discovered in the white chalk of England.

(FIGURE 257. Eschara disticha. White chalk. a. Natural size. b. Portion magnified.)

(FIGURE 258. Escharina oceani. a. Natural size. b. Part of the same magnified. White chalk.)

(FIGURE 259. A branching sponge in a flint, from the white chalk. From the collection of Mr. Bowerbank.)

The general absence of univalve mollusca in the white chalk is very marked. Of bryozoa there is an abundance, such as Eschara and Escharina (Figures 257, 258). These and other organic bodies, especially sponges, such as Ventriculites (Figure 238), are dispersed indifferently through the soft chalk and hard flint, and some of the flinty nodules owe their irregular forms to inclosed sponges, such as Figure 259, a, where the hollows in the exterior are caused by the branches of a sponge (Figure 259, b), seen on breaking open the flint.

(FIGURE 260. Palatal tooth of Ptychodus decurrens. Lower white chalk. Maidstone.)

(FIGURE 261. Cestracion Phillippi; recent. Port Jackson. Buckland, Bridgewater Treatise Plate 27 d.))

The remains of fishes of the Upper Cretaceous formations consist chiefly of teeth belonging to the shark family. Some of the genera are common to the Tertiary formations, and some are distinct. To the latter belongs the genus Ptychodus (Figure 260), which is allied to the living Port Jackson shark, Cestracion Phillippi, the anterior teeth of which (see Figure 261, a) are sharp and cutting, while the posterior or palatal teeth (b) are flat (Figure 260). But we meet with no bones of land-animals, nor any terrestrial or fluviatile shells, nor any plants, except sea-weeds, and here and there a piece of drift-wood. All the appearances concur in leading us to conclude that the white chalk was the product of an open sea of considerable depth.

The existence of turtles and oviparous saurians, and of a Pterodactyl or winged lizard, found in the white chalk of Maidstone, implies, no doubt, some neighbouring land; but a few small islets in mid-ocean, like Ascension, formerly so much frequented by migratory droves of turtle, might perhaps have afforded the required retreat where these creatures laid their eggs in the sand, or from which the flying species may have been blown out to sea. Of the vegetation of such islands we have scarcely any indication, but it consisted partly of cycadaceous plants; for a fragment of one of these was found by Captain Ibbetson in the Chalk Marl of the Isle of Wight, and is referred by A. Brongniart to Clathraria Lyellii, Mantell, a species common to the antecedent Wealden period. The fossil plants, however, of beds corresponding in age to the white chalk at Aix-la-Chapelle, presently to be described, like the sandy beds of Saxony, before alluded to, afford such evidence of land as to prove how vague must be any efforts of ours to restore the geography of that period.

The Pterodactyl of the Kentish chalk, above alluded to, was of gigantic dimensions, measuring 16 feet 6 inches from tip to tip of its outstretched wings. Some of its elongated bones were at first mistaken by able anatomists for those of birds; of which class no osseous remains have as yet been derived from the white chalk, although they have been found (as will be seen) in the Chloritic sand.

(FIGURE 262. Coprolites of fish, from the chalk.)

The collector of fossils from the white chalk was formerly puzzled by meeting with certain bodies which they call larch-cones, which were afterwards recognised by Dr. Buckland to be the excrement of fish (see Figure 262). They are composed in great part of phosphate of lime.

LOWER WHITE CHALK.

(FIGURE 263. Baculites anceps, Lam. Lower chalk.)

The Lower White Chalk, which is several hundred feet thick, without flints, has yielded 25 species of Ammonites, of which half are peculiar to it. The genera Baculite, Hamite, Scaphite, Turrilite, Nautilus, Belemnite, and Belemnitella, are also represented.

CHALK MARL.

(FIGURE 264. Ammonites Rhotomagensis. Chalk marl. Back and side view.)

(FIGURE 265. Turrilites costatus, Lam. Lower chalk and chalk marl. a. Section, showing the foliated border of the sutures of the chambers.)

(FIGURE 266. Scaphites aequalis. Chloritic marl and sand, Dorsetshire.)

The lower chalk without flints passes gradually downward, in the south of England, into an argillaceous limestone, "the chalk marl," already alluded to. It contains 32 species of Ammonites, seven of which are peculiar to it, while eleven pass up into the overlying lower white chalk. A. Rhotomagensis is characteristic of this formation. Among the British cephalopods of other genera may be mentioned Scaphites aequalis (Figure 266) and Turrilites costatus (Figure 265).

CHLORITIC SERIES (OR UPPER GREENSAND).

According to the old nomenclature, this subdivision of the chalk was called Upper Greensand, in order to distinguish it from those members of the Neocomian or Lower Cretaceous series below the Gault to which the name of Greensand had been applied. Besides the reasons before given for abandoning this nomenclature, it is objectionable in this instance as leading the uninitiated to suppose that the divisions thus named Upper and Lower Greensand are of co-ordinate value, instead of which the chloritic sand is quite a subordinate member of the Upper Cretaceous group, and the term Greensand has very commonly been used for the whole of the Lower Cretaceous rocks, which are almost comparable in importance to the entire Upper Cretaceous series. The higher portion of the Chloritic series in some districts has been called chloritic marl, from its consisting of a chalky marl with chloritic grains. In parts of Surrey, where calcareous matter is largely intermixed with sand, it forms a stone called malm-rock or firestone. In the cliffs of the southern coast of the Isle of Wight it contains bands of calcareous limestone with nodules of chert.

COPROLITE BED.

The so-called coprolite bed, found near Farnham, in Surrey, and near Cambridge, contains nodules of phosphate of lime in such abundance as to be largely worked for the manufacture of artificial manure. It belongs to the upper part of the Chloritic series, and is doubtless chiefly of animal origin, and may perhaps be partly coprolitic, derived from the excrement of fish and reptiles. The late Mr. Barrett discovered in it, near Cambridge, in 1858, the remains of a bird, which was rather larger than the common pigeon, and probably of the order Natatores, and which, like most of the Gull tribe, had well-developed wings. Portions of the metacarpus, metatarsus, tibia, and femur have been detected, and the determinations of Mr. Barrett have been confirmed by Professor Owen.

This phosphatic bed in the suburbs of Cambridge must have been formed partly by the denudation of pre-existing rocks, mostly of Cretaceous age. The fossil shells and bones of animals washed out of these denuded strata, now forming a layer only a few feet thick, have yielded a rich harvest to the collector. A large Rudist of the genus Radiolite, no less than two feet in height, may be seen in the Cambridge Museum, obtained from this bed. The number of reptilian remains, all apparently of Cretaceous age, is truly surprising; more than ten species of Pterodactyl, five or six of Ichthyosaurus, one of Pliosaurus, one of Dinosaurus, eight of Chelonians, besides other forms, having been recognised.

The chloritic sand is regarded by many geologists as a littoral deposit of the Chalk Ocean, and therefore contemporaneous with part of the chalk marl, and even, perhaps, with some part of the white chalk. For, as the land went on sinking, and the cretaceous sea widened its area, white mud and chloritic sand were always forming somewhere, but the line of sea-shore was perpetually shifting its position. Hence, though both sand and mud originated simultaneously, the one near the land, the other far from it, the sands in every locality where a shore became submerged might constitute the underlying deposit.

(FIGURE 267. Ostrea columba. Syn. Gryphaea columba. Chloritic sand.)

(FIGURE 268. Ostrea carinata. Chalk marl and chloritic sand. Neocomian.)

(FIGURE 269. Terebrirostra lyra, Sowerby. Chloritic sand.)

(FIGURE 270. Pecten 5-costatus. White chalk and chloritic sand. Neocomian.)

(FIGURE 271. Plagiostoma Hoperi, Sowerby. Syn. Lima Hoperi. White chalk and chloritic sand.)

Among the characteristic mollusca of the chloritic sand may be mentioned Terebrirostra lyra (Figure 269), Plagiostoma Hoperi (Figure 271), Pecten quinque-costatus (Figure 270), and Ostrea columba (Figure 267).

The Cephalopoda are abundant, among which 40 species of Ammonites are now known, 10 being peculiar to this subdivision, and the rest common to the beds immediately above or below.

GAULT.

(FIGURE 272. Ancyloceras spinigerum, d'Orb. Syn. Hamites spiniger, Sowerby. Near Folkestone. Gault.)

The lowest member of the Upper Cretaceous group, usually about 100 feet thick in the S.E. of England, is provincially termed Gault. It consists of a dark blue marl, sometimes intermixed with green sand. Many peculiar forms of cephalopoda, such as the Hamite (Figure 272), and Scaphite, with other fossils, characterise this formation, which, small as is its thickness, can be traced by its organic remains to distant parts of Europe, as, for example, to the Alps.

Twenty-one species of British Ammonites are recorded as found in the Gault, of which only eight are peculiar to it, ten being common to the overlying Chloritic series.

CONNECTION BETWEEN UPPER AND LOWER CRETACEOUS STRATA.— BLACKDOWN BEDS.

The break between the Upper and Lower Cretaceous formations will be appreciated when it is stated that, although the Neocomian contains 31 species of Ammonite, and the Gault, as we have seen, 21, there are only three of those common to both divisions. Nevertheless, we may expect the discovery in England, and still more when we extend our survey to the Continent, of beds of passage intermediate between the Upper and Lower Cretaceous. Even now the Blackdown beds in Devonshire, which rest immediately on Triassic strata, and which evidently belong to some part of the Cretaceous series, have been referred by some geologists to the Upper group, by others to the Lower or Neocomian. They resemble the Folkestone beds of the latter series in mineral character, and 59 out of 156 of their fossil mollusca are common to them; but they have also 16 species common to the Gault, and 20 to the overlying Chloritic series; and what is very important, out of seven Ammonites six are found also in the Gault and Chloritic series, only one being peculiar to the Blackdown beds.

Professor Ramsay has remarked that there is a stratigraphical break; for in Kent, Surrey, and Sussex, at those few points where there are exposures of junctions of the Gault and Neocomian, the surface of the latter has been much eroded or denuded, while to the westward of the great chalk escarpment the unconformability of the two groups is equally striking. At Blackdown this unconformability is still more marked, for though distant only 100 miles from Kent and Surrey, no formation intervenes between these beds and the Trias; all intermediate groups, such as the Lower Neocomian and Oolite, having either not been deposited or destroyed by denudation.

FLORA OF THE UPPER CRETACEOUS PERIOD.

As the Upper Cretaceous rocks of Europe are, for the most part, of purely marine origin, and formed in deep water usually far from the nearest shore, land-plants of this period, as we might naturally have anticipated, are very rarely met with. In the neighbourhood of Aix-la-Chapelle, however, an important exception occurs, for there certain white sands and laminated clays, 400 feet in thickness, contain the remains of terrestrial plants in a beautiful state of preservation. These beds are the equivalents of the white chalk and chalk marl of England, or Senonien of d'Orbigny, although the white siliceous sands of the lower beds, and the green grains in the upper part of the formation, cause it to differ in mineral character from our white chalk.

Beds of fine clay, with fossil plants, and with seams of lignite, and even perfect coal, are intercalated. Floating wood, containing perforating shells, such as Pholas and Gastrochoena, occur. There are likewise a few beds of a yellowish-brown limestone, with marine shells, which enable us to prove that the lowest and highest plant-beds belong to one group. Among these shells are Pecten quadricostatus, and several others which are common to the upper and lower part of the series, and Trigonia limbata, d'Orbigny, a shell of the white chalk. On the whole, the organic remains and the geological position of the strata prove distinctly that in the neighbourhood of Aix-la-Chapelle a gulf of the ancient Cretaceous sea was bounded by land composed of Devonian rocks. These rocks consisted of quartzose and schistose beds, the first of which supplied white sand and the other argillaceous mud to a river which entered the sea at this point, carrying down in its turbid waters much drift-wood and the leaves of plants. Occasionally, when the force of the river abated, marine shells of the genera Trigonia, Turritella, Pecten, etc., established themselves in the same area, and plants allied to Zostera and Fucus grew on the bottom.

The fossil plants of this member of the upper chalk at Aix have been diligently collected and studied by Dr. Debey, and as they afford the only example yet known of a terrestrial flora older than the Eocene, in which the great divisions of the vegetable kingdom are represented in nearly the same proportions as in our own times, they deserve particular attention. Dr. Debey estimates the number of species as amounting to more than two hundred, of which sixty-seven are cryptogamous, chiefly ferns, twenty species of which can be well determined, most of them being in fructification. The scars on the bark of one or two are supposed to indicate tree-ferns. Of thirteen genera three are still existing, namely, Gleichenia, now inhabiting the Cape of Good Hope, and New Holland; Lygodium, now spread extensively through tropical regions, but having some species which live in Japan and North America; and Asplenium, a cosmopolite form. Among the phaenogamous plants, the Conifers are abundant, the most common belonging to a genus called Cycadopteris by Debey, and hardly separable from Sequoia (or Wellingtonia), of which both the cones and branches are preserved. When I visited Aix, I found the silicified wood of this plant very plentifully dispersed through the white sands in the pits near that city. In one silicified trunk 200 rings of annual growth could be counted. Species of Araucaria like those of Australia are also found. Cycads are extremely rare, and of Monocotyledons there are but few. No palms have been recognised with certainty, but the genus Pandanus, or screw pine, has been distinctly made out. The number of the Dicotyledonous Angiosperms is the most striking feature in so ancient a flora.

(In this and subsequent remarks on fossil plants I shall often use Dr. Lindley's terms, as most familiar in this country; but as those of M. A. Brongniart are much cited, it may be useful to geologists to give a table explaining the corresponding names of groups so much spoken of in palaeontology.

COLUMN 1. BRONGNIART.

COLUMN 2. LINDLEY.

COLUMN 3. EXAMPLES.

CRYPTOGAMIC.

1. Cryptogamous amphigens, or cellular cryptogamic: Thallogens: Lichens, sea- weeds, fungi.

2. Cryptogamous acrogens: Acrogens: Mosses, equisetums, ferns, lycopodiums— Lepidodendra.

PHAENEROGAMIC.

3. Dicotyledonous gymnosperms: Gymnogens: Conifers and Cycads.

4. Dicotyledonous Angiosperms: Exogens: Compositae, leguminosae, umbelliferae, cruciferae, heaths, etc. All native European trees except conifers.

5. Monocotyledons: Endogens. Palms, lilies, aloes, rushes, grasses, etc.)

Among them we find the familiar forms of the Oak, Fig, and Walnut (Quercus, Ficus, and Juglans), of the last both the nuts and leaves; also several genera of the Myrtaceae. But the predominant order is the Proteaceae, of which there are between sixty and seventy supposed species, many of extinct genera, but some referred to the following living forms— Dryandra, Grevillea, Hakea, Banksia, Persoonia— all now belonging to Australia, and Leucospermum, species of which form small bushes at the Cape.

The epidermis of the leaves of many of these Aix plants, especially of the Proteaceae, is so perfectly preserved in an envelope of fine clay, that under the microscope the stomata, or polygonal cellules, can be detected, and their peculiar arrangement is identical with that known to characterise some living Proteaceae (Grevillea, for example). Although this peculiarity of the structure of stomata is also found in plants of widely distant orders, it is, on the whole, but rarely met with, and being thus observed to characterise a foliage previously suspected to be proteaceous, it adds to the probability that the botanical evidence had been correctly interpreted.

An occasional admixture at Aix-la-Chapelle of Fucoids and Zosterites attests, like the shells, the presence of salt-water. Of insects, Dr. Debey has obtained about ten species of the families Curculionidae and Carabidae.

The resemblance of the flora of Aix-la-Chapelle to the tertiary and living floras in the proportional number of dicotyledonous angiosperms as compared to the gymnogens, is a subject of no small theoretical interest, because we can now affirm that these Aix plants flourished before the rich reptilian fauna of the secondary rocks had ceased to exist. The Ichthyosaurus, Pterodactyl, and Mosasaurus were of coeval date with the oak, the walnut, and the fig. Speculations have often been hazarded respecting a connection between the rarity of Exogens in the older rocks and a peculiar state of the atmosphere. A denser air, it was suggested, had in earlier times been alike adverse to the well-being of the higher order of flowering plants, and of the quick-breathing animals, such as mammalia and birds, while it was favourable to a cryptogamic and gymnospermous flora, and to a predominance of reptile life. But we now learn that there is no incompatibility in the co-existence of a vegetation like that of the present globe, and some of the most remarkable forms of the extinct reptiles of the age of gymnosperms.

If the passage seem at present to be somewhat sudden from the flora of the Lower or Neocomian to that of the Upper Cretaceous period, the abruptness of the change will probably disappear when we are better acquainted with the fossil vegetation of the uppermost beds of the Neocomian and that of the lowest strata of the Gault or true Cretaceous series.

HIPPURITE LIMESTONE.— DIFFERENCE BETWEEN THE CHALK OF THE NORTH AND SOUTH OF EUROPE.

(FIGURE 273. Map of part of S.W. France, from the Loire river to the Pyrenees.)

By the aid of the three tests, superposition, mineral character, and fossils, the geologist has been enabled to refer to the same Cretaceous period certain rocks in the north and south of Europe, which differ greatly both in their fossil contents and in their mineral composition and structure.

If we attempt to trace the cretaceous deposits from England and France to the countries bordering the Mediterranean, we perceive, in the first place, that in the neighbourhood of London and Paris they form one great continuous mass, the Straits of Dover being a trifling interruption, a mere valley with chalk cliffs on both sides. We then observe that the main body of the chalk which surrounds Paris stretches from Tours to near Poitiers (see Figure 273, in which the shaded part represents chalk).

Between Poitiers and La Rochelle, the space marked A on the map separates two regions of chalk. This space is occupied by the Oolite and certain other formations older than the Chalk and Neocomian, and has been supposed by M. E. de Beaumont to have formed an island in the Cretaceous sea. South of this space we again meet with rocks which we at once recognise to be cretaceous, partly from the chalky matrix and partly from the fossils being very similar to those of the white chalk of the north: especially certain species of the genera Spatangus, Ananchytes, Cidarites, Nucula, Ostrea, Gryphaea (Exogyra), Pecten, Plagiostoma (Lima), Trigonia, Catillus (Inoceramus), and Terebratula. (d'Archiac, Sur la form. Cretacee du S.-O. de la France Mem. de la Soc. Geol. de France tome 2.) But Ammonites, as M. d'Archiac observes, of which so many species are met with in the chalk of the north of France, are scarcely ever found in the southern region; while the genera Hamite, Turrilite, and Scaphite, and perhaps Belemnite, are entirely wanting.

(FIGURE 274. Radiolites radiosa, d'Orbigny. White chalk of France. b. Upper valve of same.)

(FIGURE 275. Radiolites foliaceus, d'Orbigny. Syn. Sphaerulites agarici-formis, Blainv. White chalk of France.)

(FIGURE 276. Hippurites organisans, Desmoulins. Upper chalk:— chalk marl of Pyrenees? (d'Orbigny's Palaeontologie francaise plate 533.) a. Young individual; when full grown they occur in groups adhering laterally to each other. b. Upper side of the upper valve, showing a reticulated structure in those parts, b, where the external coating is worn off. c. Upper end or opening of the lower and cylindrical valve. d. Cast of the interior of the lower conical valve.)

On the other hand, certain forms are common in the south which are rare or wholly unknown in the north of France. Among these may be mentioned many Hippurites, Sphaerulites, and other members of that great family of mollusca called Rudistes by Lamarck, to which nothing analogous has been discovered in the living creation, but which is quite characteristic of rocks of the Cretaceous era in the south of France, Spain, Sicily, Greece, and other countries bordering the Mediterranean. The species called Hippurites organisans (Figure 276) is more abundant than any other in the south of Europe; and the geologist should make himself well acquainted with the cast of the interior, d, which is often the only part preserved in many compact marbles of the Upper Cretaceous period. The flutings on the interior of the Hippurite, which are represented on the cast by smooth, rounded longitudinal ribs, and in some individuals attain a great size and length, are wholly unlike the markings on the exterior of the shell.

CRETACEOUS ROCKS IN THE UNITED STATES.

If we pass to the American continent, we find in the State of New Jersey a series of sandy and argillaceous beds wholly unlike in mineral character to our Upper Cretaceous system; which we can, nevertheless, recognise as referable, palaeontologically, to the same division.

That they were about the same age generally as the European chalk and Neocomian, was the conclusion to which Dr. Morton and Mr. Conrad came after their investigation of the fossils in 1834. The strata consist chiefly of green sand and green marl, with an overlying coralline limestone of a pale yellow colour, and the fossils, on the whole, agree most nearly with those of the Upper European series, from the Maestricht beds to the Gault inclusive. I collected sixty shells from the New Jersey deposits in 1841, five of which were identical with European species— Ostrea larva, O. vesicularis, Gryphaea costata, Pecten quinque-costatus, Belemnitella mucronata. As some of these have the greatest vertical range in Europe, they might be expected more than any others to recur in distant parts of the globe. Even where the species were different, the generic forms, such as the Baculite and certain sections of Ammonites, as also the Inoceramus (see above, Figure 252) and other bivalves, have a decidedly cretaceous aspect. Fifteen out of the sixty shells above alluded to were regarded by Professor Forbes as good geographical representatives of well-known cretaceous fossils of Europe. The correspondence, therefore, is not small, when we reflect that the part of the United States where these strata occur is between 3000 and 4000 miles distant from the chalk of Central and Northern Europe, and that there is a difference of ten degrees in the latitude of the places compared on opposite sides of the Atlantic. Fish of the genera Lamna, Galeus, and Carcharodon are common to New Jersey and the European cretaceous rocks. So also is the genus Mosasaurus among reptiles.

It appears from the labours of Dr. Newberry and others, that the Cretaceous strata of the United States east and west of the Appalachians are characterised by a flora decidedly analogous to that of Aix-la-Chapelle above-mentioned, and therefore having considerable resemblance to the vegetation of the Tertiary and Recent Periods.

CHAPTER XVIII.

LOWER CRETACEOUS OR NEOCOMIAN FORMATION.

Classification of marine and fresh-water Strata. Upper Neocomian. Folkestone and Hythe Beds. Atherfield Clay. Similarity of Conditions causing Reappearance of Species after short Intervals. Upper Speeton Clay. Middle Neocomian. Tealby Series. Middle Speeton Clay. Lower Neocomian. Lower Speeton Clay. Wealden Formation. Fresh-water Character of the Wealden. Weald Clay. Hastings Sands. Punfield Beds of Purbeck, Dorsetshire. Fossil Shells and Fish of the Wealden. Area of the Wealden. Flora of the Wealden.

We now come to the Lower Cretaceous Formation which was formerly called Lower Greensand, and for which it will be useful for reasons before explained (Chapter 17) to use the term "Neocomian."

TABLE 18.1. LOWER CRETACEOUS OR NEOCOMIAN GROUP.

COLUMN 1: MARINE. COLUMN 2: FRESH-WATER.

1. Upper Neocomian— Greensand of Folkestone, Sandgate, and Hythe, Atherfield clay, upper part of Speeton clay: Part of Wealden beds of Kent, Surrey, Sussex, Hants, and Dorset.

2. Middle Neocomian— Punfield Marine bed, Tealby beds, middle part of Speeton clay: Part of Wealden beds of Kent, Surrey, Sussex, Hants, and Dorset.

3. Lower Neocomian— Lower part of Speeton clay: Part of Wealden beds of Kent, Surrey, Sussex, Hants, and Dorset.

In Western France, the Alps, the Carpathians, Northern Italy, and the Apennines, an extensive series of rocks has been described by Continental geologists under the name of Tithonian. These beds, which are without any marine equivalent in this country, appear completely to bridge over the interval between the Neocomian and the Oolites. They may, perhaps, as suggested by Mr. Judd, be of the same age as part of the Wealden series.

UPPER NEOCOMIAN.

FOLKSTONE AND HYTHE BEDS.

(FIGURE 277. Nautilus plicatus, Sowerby, in Fitton's Monog.)

(FIGURE 278. Ancyloceras gigas, d'Orbigny.)

(FIGURE 279. Gervillia anceps, Desh. Upper Neocomian, Surrey.)

(FIGURE 280. Trigonia caudata, Agassiz. Upper Neocomian.)

(FIGURE 281. Terebratula sella, Sowerby. Upper Neocomian, Hythe.)

(FIGURE 282. Diceras Lonsdalii. Upper Neocomian, Wilts. a. The bivalve shell. b. Cast of one of the valves enlarged.)

The sands which crop out beneath the Gault in Wiltshire, Surrey, and Sussex are sometimes in the uppermost part pure white, at others of a yellow and ferruginous colour, and some of the beds contain much green matter. At Folkestone they contain layers of calcareous matter and chert, and at Hythe, in the neighbourhood, as also at Maidstone and other parts of Kent, the limestone called Kentish Rag is intercalated. This somewhat clayey and calcareous stone forms strata two feet thick, alternating with quartzose sand. The total thickness of these Folkestone and Hythe beds is less than 300 feet, and they are seen to rest immediately on a grey clay, to which we shall presently allude as the Atherfield clay. Among the fossils of the Folkestone and Hythe beds we may mention Nautilus plicatus (Figure 277), Ancyloceras (Scaphites) gigas (Figure 278), which has been aptly described as an Ammonite more or less uncoiled; Trigonia caudata (Figure 280), Gervillia anceps (Figure 279), a bivalve genus allied to Avicula, and Terebratula sella (Figure 281). In ferruginous beds of the same age in Wiltshire is found a remarkable shell called Diceras Lonsdalii (Figure 282), which abounds in the Upper and Middle Neocomian of Southern Europe. This genus is closely allied to Chama, and the cast of the interior has been compared to the horns of a goat.

ATHERFIELD CLAY.

We mentioned before that the Folkstone and Hythe series rest on a grey clay. This clay is only of slight thickness in Kent and Surrey, but acquires great dimensions at Atherfield, in the Isle of Wight. The difference, indeed, in mineral character and thickness of the Upper Neocomian formation near Folkestone, and the corresponding beds in the south of the Isle of Wight, about 100 miles distant, is truly remarkable. In the latter place we find no limestone answering to the Kentish Rag, and the entire thickness from the bottom of the Atherfield clay to the top of the Neocomian, instead of being less than 300 feet as in Kent, is given by the late Professor E. Forbes as 843 feet, which he divides into sixty-three strata, forming three groups. The uppermost of these consists of ferruginous sands, the second of sands and clay, and the third or lowest of a brown clay, abounding in fossils.

Pebbles of quartzose sandstone, jasper, and flinty slate, together with grains of chlorite and mica, and, as Mr. Godwin-Austen has shown, fragments and water- worn fossils of the oolitic rocks, speak plainly of the nature of the pre- existing formations, by the wearing down of which the Neocomian beds were formed. The land, consisting of such rocks, was doubtless submerged before the origin of the white chalk, a deposit which was formed in a more open sea, and in clearer waters.

(FIGURE 283. Perna Mulleti, Desh. One-eighth natural size. a. Exterior. b. Part of hinge-line of upper or right valve.)

Among the shells of the Atherfield clay the biggest and most abundant shell is the large Perna Mulleti, of which a reduced figure is given in Figure 283.

SIMILARITY OF CONDITIONS CAUSING REAPPEARANCE OF SPECIES.

Some species of mollusca and other fossils range through the whole series, while others are confined to particular subdivisions, and Forbes laid down a law which has since been found of very general application in regard to estimating the chronological relations of consecutive strata. Whenever similar conditions, he says, are repeated, the same species reappear, provided too great a lapse of time has not intervened; whereas if the length of the interval has been geologically great, the same genera will reappear represented by distinct species. Changes of depth, or of the mineral nature of the sea-bottom, the presence or absence of lime or of peroxide of iron, the occurrence of a muddy, or a sandy, or a gravelly bottom, are marked by the banishment of certain species and the predominance of others. But these differences of conditions being mineral, chemical, and local in their nature, have no necessary connection with the extinction, throughout a large area, of certain animals or plants. When the forms proper to loose sand or soft clay, or to perfectly clear water, or to a sea of moderate or great depth, recur with all the same species, we may infer that the interval of time has been, geologically speaking, small, however dense the mass of matter accumulated. But if, the genera remaining the same, the species are changed, we have entered upon a new period; and no similarity of climate, or of geographical and local conditions, can then recall the old species which a long series of destructive causes in the animate and inanimate world has gradually annihilated.

SPEETON CLAY, UPPER DIVISION.

(FIGURE 284. Ammonites Deshayesii, Leym. Upper Neocomian.)

On the coast, beneath the white chalk of Flamborough Head, in Yorkshire, an argillaceous formation crops out, called the Speeton clay, several hundred feet in thickness, the palaeontological relations of which have been ably worked out by Mr. John W. Judd, and he has shown that it is separable into three divisions, the uppermost of which, 150 feet thick, and containing 87 species of mollusca, decidedly belongs to the Atherfield clay and associated strata of Hythe and Folkestone, already described. (Judd, Speeton clay, Quarterly Geological Journal volume 24 1868 page 218.) It is characterised by the Perna Mulleti (Figure 283) and Terebratula sella (Figure 281), and by Ammonites Deshayesii (Figure 284), a well-known Hythe fossil. Fine skeletons of reptiles of the genera Pliosaurus and Teleosaurus have been obtained from this clay. At the base of this upper division of the Speeton clay there occurs a layer of large Septaria, formerly worked for the manufacture of cement. This bed is crowded with fossils, especially Ammonites, one species of which, three feet in diameter, was observed by Mr. Judd.

MIDDLE NEOCOMIAN.

TEALBY SERIES.

(FIGURE 285. Pecten cinctus, Sowerby. (P. crassitesta, Rom.) Middle Neocomian, England; Middle and Lower Neocomian, Germany. One-fifth natural size.)

(FIGURE 286. Ancyloceras (Crioceras) Duvallei, Leveille. Middle and Lower Neocomian. One-fifth natural size.)

At Tealby, a village in the Lincolnshire Wolds, there crop out beneath the white chalk some non-fossiliferous ferruginous sands about twenty-feet thick, beneath which are beds of clay and limestone, about fifty feet thick, with an interesting suite of fossils, among which are Pecten cinctus (Figure 285), from 9 to 12 inches in diameter, Ancyloceras Duvallei (Figure 286), and some forty other shells, many of them common to the Middle Speeton clay, about to be mentioned. Mr. Judd remarks that as Ammonites clypei-formis and Terebratula hippopus characterise the Middle Neocomian of the Continent, it is to this stage that the Tealby series containing the same fossils may be assigned. (Judd Quarterly Geological Journal 1867 volume 23 page 249.)

The middle division of the Speeton clay, occurring at Speeton below the cement- bed, before alluded to, is 150 feet thick, and contains about 39 species of mollusca, half of which are common to the overlying clay. Among the peculiar shells, Pecten cinctus (Figure 285) and Ancyloceras (Crioceras) Duvallei (Figure 286) occur.

LOWER NEOCOMIAN.

(FIGURE 287. Ammonites Noricus, Schloth. Lower Neocomian, Speeton.)

In the lower division of the Speeton clay, 200 feet thick, 46 species of mollusca have been found, and three divisions, each characterised by its peculiar ammonite, have been noticed by Mr. Judd. The central zone is marked by Ammonites Noricus (see Figure 287). On the Continent these beds are well-known by their corresponding fossils, the Hils clay and conglomerate of the north of Germany agreeing with the Middle and Lower Speeton, the latter of which, with the same mineral characters and fossils as in Yorkshire, is also found in the little island of Heligoland. Yellow limestone, which I have myself seen near Neuchatel, in Switzerland, represents the Lower Neocomian at Speeton.

WEALDEN FORMATION.

Beneath the Atherfield clay or Upper Neocomian of the S.E. of England, a fresh- water formation is found, called the Wealden, which, although it occupies a small horizontal area in Europe, as compared to the White Chalk and the marine Neocomian beds, is nevertheless of great geological interest, since the imbedded remains give us some insight into the nature of the terrestrial fauna and flora of the Lower Cretaceous epoch. The name of Wealden was given to this group because it was first studied in parts of Kent, Surrey, and Sussex, called the Weald; and we are indebted to Dr. Mantell for having shown, in 1822, in his "Geology of Sussex," that the whole group was of fluviatile origin. In proof of this he called attention to the entire absence of Ammonites, Belemnites, Brachiopoda, Echinodermata, Corals, and other marine fossils, so characteristic of the Cretaceous rocks above, and of the Oolitic strata below, and to the presence in the Weald of Paludinae, Melaniae, Cyrenae, and various fluviatile shells, as well as the bones of terrestrial reptiles and the trunks and leaves of land-plants.

(FIGURE 288. Section from (left) W.S.W. through Brixton bay, Isle of Wight, Solent and South Downs to E.N.E. (right). 1. Tertiary. 2. Chalk and Gault. 3. Upper Neocomian (or Lower Greensand). 4. Wealden (Weald Clay and Hastings Sands).)

The evidence of so unexpected a fact as that of a dense mass of purely fresh- water origin underlying a deep-sea deposit (a phenomenon with which we have since become familiar) was received, at first, with no small doubt and incredulity. But the relative position of the beds is unequivocal; the Weald Clay being distinctly seen to pass beneath the Atherfield Clay in various parts of Surrey, Kent, and Sussex, and to reappear in the Isle of Wight at the base of the Cretaceous series, being, no doubt, continuous far beneath the surface, as indicated by the dotted lines in Figure 288. They are also found occupying the same relative position below the chalk in the peninsula of Purbeck, Dorsetshire, where, as we shall see in the sequel, they repose on strata referable to the Upper Oolite.

WEALD CLAY.

The Upper division, or Weald Clay, is, in great part, of fresh-water origin, but in its highest portion contains beds of oysters and other marine shells which indicate fluvio-marine conditions. The uppermost beds are not only conformable, as Dr. Fitton observes, to the inferior strata of the overlying Neocomian, but of similar mineral composition. To explain this, we may suppose that, as the delta of a great river was tranquilly subsiding, so as to allow the sea to encroach upon the space previously occupied by fresh-water, the river still continued to carry down the same sediment into the sea. In confirmation of this view it may be stated that the remains of the Iguanodon Mantelli, a gigantic terrestrial reptile, very characteristic of the Wealden, has been discovered near Maidstone, in the overlying Kentish Rag, or marine limestone of the Upper Neocomian. Hence we may infer that some of the saurians which inhabited the country of the great river continued to live when part of the district had become submerged beneath the sea. Thus, in our own times, we may suppose the bones of large alligators to be frequently entombed in recent fresh-water strata in the delta of the Ganges. But if part of that delta should sink down so as to be covered by the sea, marine formations might begin to accumulate in the same space where fresh-water beds had previously been formed; and yet the Ganges might still pour down its turbid waters in the same direction, and carry seaward the carcasses of the same species of alligator, in which case their bones might be included in marine as well as in subjacent fresh-water strata.

(FIGURES 289 AND 290. Tooth of Iguanodon Mantelli.

(FIGURE 289. a, and b.)

(FIGURE 290. A. Partially worn tooth of young individual of the same. b. Crown of tooth in adult worn down. (Mantell.)))

The Iguanodon, first discovered by Dr. Mantell, was an herbivorous reptile, of which the teeth, though bearing a great analogy, in their general form and crenated edges (see Figure 289 a and b), to the modern Iguanas which now frequent the tropical woods of America and the West Indies, exhibit many important differences. It appears that they have often been worn by the process of mastication; whereas the existing herbivorous reptiles clip and gnaw off the vegetable productions on which they feed, but do not chew them. Their teeth frequently present an appearance of having been chipped off, but never, like the fossil teeth of the Iguanodon, have a flat ground surface (see Figure 290, b) resembling the grinders of herbivorous mammalia. Dr. Mantell computes that the teeth and bones of this species which passed under his examination during twenty years must have belonged to no less than seventy-one distinct individuals, varying in age and magnitude from the reptile just burst from the egg, to one of which the femur measured twenty-four inches in circumference. Yet, notwithstanding that the teeth were more numerous than any other bones, it is remarkable that it was not until the relics of all these individuals had been found, that a solitary example of part of a jaw-bone was obtained. Soon afterwards remains both of the upper and lower jaw were met with in the Hastings beds in Tilgate Forest, near Cuckfield. In the same sands at Hastings, Mr. Beckles found large tridactyle impressions which it is conjectured were made by the hind feet of this animal, on which it is ascertained that there were only three well-developed toes.

(FIGURE 291. Cypris spinigera, Fitton.)

(FIGURE 292. Weald clay with Cyprides.)

Occasionally bands of limestone, called Sussex Marble, occur in the Weald Clay, almost entirely composed of a species of Paludina, closely resembling the common P. vivipara of English rivers. Shells of the Cypris, a genus of Crustaceans mentioned in Chapter 3 as abounding in lakes and ponds, are also plentifully scattered through the clays of the Wealden, sometimes producing, like plates of mica, a thin lamination (see Figure 292).

HASTINGS SANDS.

This lower division of the Wealden consists of sand, sandstone, calciferous grit, clay, and shale; the argillaceous strata, notwithstanding the name, predominating somewhat over the arenaceous, as will be seen by reference to the following table, drawn up by Messrs. Drew and Foster, of the Geological Survey of Great Britain:

TABLE 18.1. SUBORDINATE FORMATIONS IN THE HASTINGS SAND.

COLUMN 1: NAME OF SUBORDINATE FORMATION. COLUMN 2: MINERAL COMPOSITION OF THE STRATA. COLUMN 3: THICKNESS IN FEET.

Tunbridge Wells Sand: Sandstone and loam: 150.

Wadhurst Clay: Blue and brown shale and clay, with a little calc-grit: 100.

Ashdown Sand: Hard sand, with some beds of calc-grit: 160.

Ashburnham Beds: Mottled white and red clay, with some sandstone: 330.

The picturesque scenery of the "High Rocks" and other places in the neighbourhood of Tunbridge Wells is caused by the steep natural cliffs, to which a hard bed of white sand, occurring in the upper part of the Tunbridge Wells Sand, mentioned in the above table, gives rise. This bed of "rock-sand" varies in thickness from 25 to 48 feet. Large masses of it, which were by no means hard or capable of making a good building-stone, form, nevertheless, projecting rocks with perpendicular faces, and resist the degrading action of the river because, says Mr. Drew, they present a solid mass without planes of division. The calcareous sandstone and grit of Tilgate Forest, near Cuckfield, in which the remains of the Iguanodon and Hylaeosaurus were first found by Dr. Mantell, constitute an upper member of the Tunbridge Wells Sand, while the "sand-rock" of the Hastings cliffs, about 100 feet thick, is one of the lower members of the same. The reptiles, which are very abundant in this division, consist partly of saurians, referred by Owen and Mantell to eight genera, among which, besides those already enumerated, we find the Megalosaurus and Plesiosaurus. The Pterodactyl also, a flying reptile, is met with in the same strata, and many remains of Chelonians of the genera Trionyx and Emys, now confined to tropical regions.

(FIGURE 293. Lepidotus Mantelli, Agassiz. Wealden. a. Palate and teeth. b. Side view of teeth. c. Scale.)

The fishes of the Wealden are chiefly referable to the Ganoid and Placoid orders. Among them the teeth and scales of Lepidotus are most widely diffused (see Figure 293). These ganoids were allied to the Lepidosteus, or Gar-pike, of the American rivers. The whole body was covered with large rhomboidal scales, very thick, and having the exposed part coated with enamel. Most of the species of this genus are supposed to have been either river-fish, or inhabitants of the sea at the mouth of estuaries.

(FIGURE 294. Unio Valdensis, Mant. Isle of Wight and Dorsetshire; in the lower beds of the Hastings Sands. a, b.)

(FIGURE 295. Underside of slab of sandstone about one yard in diameter. Stammerham, Sussex.)

At different heights in the Hastings Sands, we find again and again slabs of sandstone with a strong ripple-mark, and between these slabs beds of clay many yards thick. In some places, as at Stammerham, Horsham, near there, are indications of this clay having been exposed so as to dry and crack before the next layer was thrown down upon it. The open cracks in the clay have served as moulds, of which casts have been taken in relief, and which are, therefore, seen on the lower surface of the sandstone (see Figure 295).

(FIGURE 296. Sphenopteris gracilis, Fitton. From the Hastings Sands near Tunbridge Wells. a. A portion of the same magnified.)

Near the same place a reddish sandstone occurs in which are innumerable traces of a fossil vegetable, apparently Sphenopteris, the stems and branches of which are disposed as if the plants were standing erect on the spot where they originally grew, the sand having been gently deposited upon and around them; and similar appearances have been remarked in other places in this formation. (Mantell Geology of S.E. of England page 244.) In the same division also of the Wealden, at Cuckfield, is a bed of gravel or conglomerate, consisting of water- worn pebbles of quartz and jasper, with rolled bones of reptiles. These must have been drifted by a current, probably in water of no great depth.

From such facts we may infer that, notwithstanding the great thickness of this division of the Wealden, the whole of it was a deposit in water of a moderate depth, and often extremely shallow. This idea may seem startling at first, yet such would be the natural consequence of a gradual and continuous sinking of the ground in an estuary or bay, into which a great river discharged its turbid waters. By each foot of subsidence, the fundamental rock would be depressed one foot farther from the surface; but the bay would not be deepened, if newly- deposited mud and sand should raise the bottom one foot. On the contrary, such new strata of sand and mud might be frequently laid dry at low water, or overgrown for a season by a vegetation proper to marshes.

PUNFIELD BEDS, BRACKISH AND MARINE.

(FIGURE 297. Vicarya Lujani, De Verneuil (Foss. de Utrillas.) Wealden, Punfield. a. Nearly perfect shell. b. Vertical section of smaller specimen, showing continuous ridges as in Nerinaea.)

The shells of the Wealden beds belong to the genera Melanopsis, Melania, Paludina, Cyrena, Cyclas, Unio (see Figure 294), and others, which inhabit rivers or lakes; but one band has been found at Punfield, in Dorsetshire, indicating a brackish state of the water, where the genera Corbula, Mytilus, and Ostrea occur; and in some places this bed becomes purely marine, containing some well-known Neocomian fossils, among which Ammonites Deshayesii (Figure 284) may be mentioned. Others are peculiar as British, but very characteristic of the Upper and Middle Neocomian of Spain, and among these the Vicarya Lujani (Figure 297), a shell allied to Nerinea, is conspicuous.

By reference to Table 18.1 it will be seen that the Wealden beds are given as the fresh-water equivalents of the Marine Neocomian. The highest part of them in England may, for reasons just given, be regarded as Upper Neocomian, while some of the inferior portions may correspond in age to the Middle and Lower divisions of that group. In favour of this latter view, M. Marcou mentions that a fish called Asteracanthus granulosus, occurring in the Tilgate beds, is characteristic of the lowest beds of the Neocomian of the Jura, and it is well known that Corbula alata, common in the Ashburnham beds, is found also at the base of the Neocomian of the Continent.

AREA OF THE WEALDEN.

In regard to the geographical extent of the Wealden, it can not be accurately laid down, because so much of it is concealed beneath the newer marine formations. It has been traced about 320 English miles from west to east, from the coast of Dorsetshire to near Boulogne, in France; and nearly 200 miles from north-west to south-east, from Surrey and Hampshire to Vassy, in France. If the formation be continuous throughout this space, which is very doubtful, it does not follow that the whole was contemporaneous; because, in all likelihood, the physical geography of the region underwent frequent changes throughout the whole period, and the estuary may have altered its form, and even shifted its place. Dr. Dunker, of Cassel, and H. von Meyer, in an excellent monograph on the Wealdens of Hanover and Westphalia, have shown that they correspond so closely, not only in their fossils, but also in their mineral characters, with the English series, that we can scarcely hesitate to refer the whole to one great delta. Even then, the magnitude of the deposit may not exceed that of many modern rivers. Thus, the delta of the Quorra or Niger, in Africa, stretches into the interior for more than 170 miles, and occupies, it is supposed, a space of more than 300 miles along the coast, thus forming a surface of more than 25,000 square miles, or equal to about one-half of England. (Fitton Geology of Hastings page 58, who cites Lander's Travels.) Besides, we know not, in such cases, how far the fluviatile sediment and organic remains of the river and the land may be carried out from the coast, and spread over the bed of the sea. I have shown, when treating of the Mississippi, that a more ancient delta, including species of shells such as now inhabit Louisiana, has been upraised, and made to occupy a wide geographical area, while a newer delta is forming; and the possibility of such movements and their effects must not be lost sight of when we speculate on the origin of the Wealden. (See Chapter 6 and Second Visit to the United States volume 2 chapter 34.)

It may be asked where the continent was placed, from the ruins of which the Wealden strata were derived, and by the drainage of which a great river was fed. If the Wealden was gradually going downward 1000 feet or more perpendicularly, a large body of fresh-water would not continue to be poured into the sea at the same point. The adjoining land, if it participated in the movement, could not escape being submerged. But we may suppose such land to have been stationary, or even undergoing contemporaneous slow upheaval. There may have been an ascending movement in one region, and a descending one in a contiguous parallel zone of country. But even if that were the case, it is clear that finally an extensive depression took place in that part of Europe where the deep sea of the Cretaceous period was afterwards brought in.

THICKNESS OF THE WEALDEN.

In the Weald area itself, between the North and South Downs, fresh-water beds to the thickness of 1600 feet are known, the base not being reached. Probably the thickness of the whole Wealden series, as seen in Swanage Bay, can not be estimated as less than 2000 feet.

WEALDEN FLORA.

The flora of the Wealden is characterised by a great abundance of Coniferae, Cycadeae, anD Ferns, and by the absence of leaves and fruits of Dicotyledonous Angiosperms. The discovery in 1855, in the Hastings beds of the Isle of Wight, of Gyrogonites, or spore-vessels of the Chara, was the first example of that genus of plants, so common in the tertiary strata, being found in a Secondary or Mesozoic rock.

CHAPTER XIX.

JURASSIC GROUP.— PURBECK BEDS AND OOLITE.

The Purbeck Beds a Member of the Jurassic Group. Subdivisions of that Group. Physical Geography of the Oolite in England and France. Upper Oolite. Purbeck Beds. New Genera of fossil Mammalia in the Middle Purbeck of Dorsetshire. Dirt-bed or ancient Soil. Fossils of the Purbeck Beds. Portland Stone and Fossils. Kimmeridge Clay. Lithographic Stone of Solenhofen. Archaeopteryx. Middle Oolite. Coral Rag. Nerinaea Limestone. Oxford Clay, Ammonites and Belemnites. Kelloway Rock. Lower, or Bath, Oolite. Great Plants of the Oolite. Oolite and Bradford Clay. Stonesfield Slate. Fossil Mammalia. Fuller's Earth. Inferior Oolite and Fossils. Northamptonshire Slates. Yorkshire Oolitic Coal-field. Brora Coal. Palaeontological Relations of the several Subdivisions of the Oolitic group.

CLASSIFICATION OF THE OOLITE.

Immediately below the Hastings Sands we find in Dorsetshire another remarkable fresh-water formation, called THE PURBECK, because it was first studied in the sea-cliffs of the peninsula of Purbeck in that county. These beds are for the most part of fresh-water origin, but the organic remains of some few intercalated beds are marine, and show that the Purbeck series has a closer affinity to the Oolitic group, of which it may be considered as the newest or uppermost member.

In England generally, and in the greater part of Europe, both the Wealden and Purbeck beds are wanting, and the marine cretaceous group is followed immediately, in the descending order, by another series called the Jurassic. In this term, the formations commonly designated as "the Oolite and Lias" are included, both being found in the Jura Mountains. The Oolite was so named because in the countries where it was first examined the limestones belonging to it had an Oolitic structure (see Chapter 3). These rocks occupy in England a zone nearly thirty miles in average breadth, which extends across the island, from Yorkshire in the north-east, to Dorsetshire in the south-west. Their mineral characters are not uniform throughout this region; but the following are the names of the principal subdivisions observed in the central and south- eastern parts of England.

TABLE 19.1. OOLITE.

UPPER OOLITE: a. Purbeck beds. b. Portland stone and sand. c. Kimmeridge clay.

MIDDLE OOLITE: d. Coral rag. e. Oxford clay, and Kelloway rock.

LOWER OOLITE: f. Cornbrash and Forest marble. g. Great Oolite and Stonesfield slate. h. Fuller's earth. i. Inferior Oolite.

The Upper Oolitic system of the Table 19.1 has usually the Kimmeridge clay for its base; the Middle Oolitic system, the Oxford clay. The Lower system reposes on the Lias, an argillo-calcareous formation, which some include in the Lower Oolite, but which will be treated of separately in the next chapter. Many of these subdivisions are distinguished by peculiar organic remains; and, though varying in thickness, may be traced in certain directions for great distances, especially if we compare the part of England to which the above-mentioned type refers with the north-east of France and the Jura Mountains adjoining. In that country, distant above 400 geographical miles, the analogy to the accepted English type, notwithstanding the thinness or occasional absence of the clays, is more perfect than in Yorkshire or Normandy.

PHYSICAL GEOGRAPHY.

The alternation, on a grand scale, of distinct formations of clay and limestone has caused the oolitic and liassic series to give rise to some marked features in the physical outline of parts of England and France. Wide valleys can usually be traced throughout the long bands of country where the argillaceous strata crop out; and between these valleys the limestones are observed, forming ranges of hills or more elevated grounds. These ranges terminate abruptly on the side on which the several clays rise up from beneath the calcareous strata.

(FIGURE 298. Section through Lias (left), Lower Oolite, Oxford Clay, Middle Oolite, Kim. Clay. Upper Oolite. Gault, Chalk and London Clay (right).)

Figure 298 will give the reader an idea of the configuration of the surface now alluded to, such as may be seen in passing from London to Cheltenham, or in other parallel lines, from east to west, in the southern part of England. It has been necessary, however, in this drawing, greatly to exaggerate the inclination of the beds, and the height of the several formations, as compared to their horizontal extent. It will be remarked, that the lines of steep slope, or escarpment, face towards the west in the great calcareous eminences formed by the chalk and the Upper, Middle, and Lower Oolites; and at the base of which we have respectively the Gault, Kimmeridge clay, Oxford clay, and Lias. This last forms, generally, a broad vale at the foot of the escarpment of inferior Oolite, but where it acquires considerable thickness, and contains solid beds of marlstone, it occupies the lower part of the escarpment.

The external outline of the country which the geologist observes in travelling eastward from Paris to Metz, is precisely analogous, and is caused by a similar succession of rocks intervening between the tertiary strata and the Lias; with this difference, however, that the escarpments of Chalk, Upper, Middle, and Lower Oolites face towards the east instead of the west. It is evident, therefore, that the denuding causes (see Chapter 6) have acted similarly over an area several hundred miles in diameter, removing the softer clays more extensively than the limestones, and causing these last to form steep slopes or escarpments wherever the harder calcareous rock was based upon a more yielding and destructible formation.

UPPER OOLITE.

PURBECK BEDS.

These strata, which we class as the uppermost member of the Oolite, are of limited geographical extent in Europe, as already stated, but they acquire importance when we consider the succession of three distinct sets of fossil remains which they contain. Such repeated changes in organic life must have reference to the history of a vast lapse of ages. The Purbeck beds are finely exposed to view in Durdlestone Bay, near Swanage, Dorsetshire, and at Lulworth Cove and the neighbouring bays between Weymouth and Swanage. At Meup's Bay, in particular, Professor E. Forbes examined minutely, in 1850, the organic remains of this group, displayed in a continuous sea-cliff section, and it appears from his researches that the Upper, Middle, and Lower Purbecks are each marked by peculiar species of organic remains, these again being different, so far as a comparison has yet been instituted, from the fossils of the overlying Hastings Sands and Weald Clay.

UPPER PURBECK.

(FIGURE 299. Cyprides from the Upper Purbeck. a. Cypris gibbosa, E. Forbes. b. Cypris tuberculata, E. Forbes. c. Cypris leguminella, E. Forbes.)

The highest of the three divisions is purely fresh-water, the strata, about fifty feet in thickness, containing shells of the genera Paludina, Physa, Limnaea, Planorbis, Valvata, Cyclas, and Unio, with Cyprides and fish. All the species seem peculiar, and among these the Cyprides are very abundant and characteristic (see Figure 299, a, b, c.)

The stone called "Purbeck Marble," formerly much used in ornamental architecture in the old English cathedrals of the southern counties, is exclusively procured from this division.

MIDDLE PURBECK.

Next in succession is the Middle Purbeck, about thirty feet thick, the uppermost part of which consists of fresh-water limestone, with cyprides, turtles, and fish, of different species from those in the preceding strata. Below the limestone are brackish-water beds full of Cyrena, and traversed by bands abounding in Corbula and Melania. These are based on a purely marine deposit, with Pecten, Modiola, Avicula, and Thracia. Below this, again, come limestones and shales, partly of brackish and partly of fresh-water origin, in which many fish, especially species of Lepidotus and Microdon radiatus, are found, and a crocodilian reptile named Macrorhynchus. Among the mollusks, a remarkable ribbed Melania, of the section Chilina, occurs.

(FIGURE 300. Ostrea distorta, Sowerby. Cinder-bed. Middle Purbeck.)

(FIGURE 301. Hemicidaris Purbeckensis, E. Forbes. Middle Purbeck.)

(FIGURE 302. Cyprides from the Middle Purbecks. a. Cypris striato-punctata, E. Forbes. b. Cypris fasciculata, E. Forbes. c. Cypris granulata, Sowerby.)

(FIGURE 303. Physa Bristovii, E. Forbes. Middle Purbeck.)

Immediately below is a great and conspicuous stratum, twelve feet thick, formed of a vast accumulation of shells of Ostrea distorta (Figure 300), long familiar to geologists under the local name of "Cinder-bed." In the uppermost part of this bed Professor Forbes discovered the first echinoderm (Figure 301) as yet known in the Purbeck series, a species of Hemicidaris, a genus characteristic of the Oolitic period, and scarcely, if at all, distinguishable from a previously known Oolitic fossil. It was accompanied by a species of Perna. Below the Cinder-bed fresh-water strata are again seen, filled in many places with species of Cypris (Figure 302, a, b, c), and with Valvata, Paludina, Planorbis, Limnaea, Physa (Figure 303), and Cyclas, all different from any occurring higher in the series. It will be seen that Cypris fasciculata (Figure 302, b) has tubercles at the end only of each valve, a character by which it can be immediately recognised. In fact, these minute crustaceans, almost as frequent in some of the shales as plates of mica in a micaceous sandstone, enable geologists at once to identify the Middle Purbeck in places far from the Dorsetshire cliffs, as, for example, in the Vale of Wardour in Wiltshire. Thick beds of chert occur in the Middle Purbeck filled with mollusca and cyprides of the genera already enumerated, in a beautiful state of preservation, often converted into chalcedony. Among these Professor Forbes met with gyrogonites (the spore-vessels of Chara), plants never until 1851 discovered in rocks older than the Eocene. About twenty feet below the "Cinder-bed" is a stratum two or three inches thick, in which fossil mammalia presently to be mentioned occur, and beneath this a thin band of greenish shales, with marine shells and impressions of leaves like those of a large Zostera, forming the base of the Middle Purbeck.

FOSSIL MAMMALIA OF THE MIDDLE PURBECK.

In 1852, after alluding to the discovery of numerous insects and air-breathing mollusca in the Purbeck strata, I remarked that, although no mammalia had then been found, "it was too soon to infer their non-existence on mere negative evidence." (Elements of Geology 4th edition.) Only two years after this remark was in print, Mr. W.R. Brodie found in the Middle Purbeck, about twenty feet below the "Cinder-bed" above alluded to, in Durdlestone Bay, portions of several small jaws with teeth, which Professor Owen recognised as belonging to a small mammifer of the insectivorous class, more closely allied in its dentition to the Amphitherium (or Thylacotherium) than to any existing type.

Four years later (in 1856) the remains of several other species of warm-blooded quadrupeds were exhumed by Mr. S.H. Beckles, F.R.S., from the same thin bed of marl near the base of the Middle Purbeck. In this marly stratum many reptiles, several insects, and some fresh-water shells of the genera Paludina, Planorbis, and Cyclas, were found.

Mr. Beckles had determined thoroughly to explore the thin layer of calcareous mud from which in the suburbs of Swanage the bones of the Spalacotherium had already been obtained, and in three weeks he brought to light from an area forty feet long and ten wide, and from a layer the average thickness of which was only five inches, portions of the skeletons of six new species of mammalia, as interpreted by Dr. Falconer, who first examined them. Before these interesting inquiries were brought to a close, the joint labours of Professor Owen and Dr. Falconer had made it clear that twelve or more species of mammalia characterised this portion of the Middle Purbeck, most of them insectivorous or predaceous, varying in size from that of a mole to that of the common polecat, Mustela putorius. While the majority had the character of insectivorous marsupials, Dr. Falconer selected one as differing widely from the rest, and pointed out that in certain characters it was allied to the living Kangaroo-rat, or Hypsiprymnus, ten species of which now inhabit the prairies and scrub-jungle of Australia, feeding on plants, and gnawing scratched-up roots. A striking peculiarity of their dentition, one in which they differ from all other quadrupeds, consists in their having a single large pre-molar, the enamel of which is furrowed with vertical grooves, usually seven in number.

(FIGURE 304. Pre-molar of the recent Australian Hypsiprymnus Gaimardi, showing 7 grooves, at right angles to the length of the jaw, magnified 3 1/2 diameters.)

(FIGURE 305. Third and largest pre-molar (lower jaw) of Plagiaulax Becklesii, magnified 5 1/2 diameters, showing 7 diagonal grooves.)

(FIGURE 306. Plagiaulex Becklesii, Falconer. Middle Purbeck. Right ramus of lower jaw, magnified two diameters. a. Incisor. b, c. Line of vertical fracture behind the pre-molars. pm. Three pre-molars, the third and last (much larger than the other two taken together) being divided by a crack. m. Sockets of two missing molars.)

The largest pre-molar (see Figure 305) in the fossil genus exhibits in like manner seven parallel grooves, producing by their termination a similar serrated edge in the crown; but their direction is diagonal— a distinction, says Dr. Falconer, which is "trivial, not typical." As these oblique furrows form so marked a character of the majority of the teeth, Dr. Falconer gave to the fossil the generic name of Plagiaulax. The shape and relative size of the incisor, a, Figure 306, exhibit a no less striking similarity to Hypsiprymnus. Nevertheless, the more sudden upward curve of this incisor, as well as other characters of the jaw, indicate a great deviation in the form of Plagiaulax from that of the living kangaroo-rats.

There are two fossil specimens of lower jaws of this genus evidently referable to two distinct species extremely unequal in size and otherwise distinguishable. The Plagiaulax Becklesii (Figure 306) was about as big as the English squirrel or the flying phalanger of Australia (Petaurus Australis, Waterhouse). The smaller fossil, having only half the linear dimensions of the other, was probably only one-twelfth of its bulk. It is of peculiar geological interest, because, as shown by Dr. Falconer, its two back molars bear a decided resemblance to those of the Triassic Microlestes (Figure 389 Chapter 19), the most ancient of known mammalia, of which an account will be given in Chapter 21.

Up to 1857 all the mammalian remains discovered in secondary rocks had consisted solely of single branches of the lower jaw, but in that year Mr. Beckles obtained the upper portion of a skull, and on the same slab the lower jaw of another quadruped with eight molars, a large canine, and a broad and thick incisor. It has been named Triconodon from its bicuspid teeth, and is supposed to have been a small insectivorous marsupial, about the size of a hedgehog. Other jaws have since been found indicating a larger species of the same genus.

Professor Owen has proposed the name of Galestes for the largest of the mammalia discovered in 1858 in Purbeck, equalling the polecat (Mustela putorius) in size. It is supposed to have been predaceous and marsupial.

Between forty and fifty pieces or sides of lower jaws with teeth have been found in oolitic strata in Purbeck; only five upper maxillaries, together with one portion of a separate cranium, occur at Stonesfield, and it is remarkable that with these there were no examples in Purbeck of an entire skeleton, nor of any considerable number of bones in juxtaposition. In several portions of the matrix there were detached bones, often much decomposed, and fragments of others apparently mammalian; but if all of them were restored, they would scarcely suffice to complete the five skeletons to which the five upper maxillaries above alluded to belonged. As the average number of pieces in each mammalian skeleton is about 250, there must be many thousands of missing bones; and when we endeavour to account for their absence, we are almost tempted to indulge in speculations like those once suggested to me by Dr. Buckland, when he tried to solve the enigma in reference to Stonesfield; "The corpses," he said, "of drowned animals, when they float in a river, distended by gases during putrefaction, have often their lower jaw hanging loose, and sometimes it has dropped off. The rest of the body may then be drifted elsewhere, and sometimes may be swallowed entire by a predaceous reptile or fish, such as an ichthyosaur or a shark."

As all the above-mentioned Purbeck marsupials, belonging to eight or nine genera and to about fourteen species, insectivorous, predaceous, and herbivorous, have been obtained from an area less than 500 square yards in extent, and from a single stratum no more than a few inches thick, we may safely conclude that the whole lived together in the same region, and in all likelihood they constituted a mere fraction of the mammalia which inhabited the lands drained by one river and its tributaries. They afford the first positive proof as yet obtained of the co-existence of a varied fauna of the highest class of vertebrata with that ample development of reptile life which marks all the periods from the Trias to the Lower Cretaceous inclusive, and with a gymnospermous flora, or that state of the vegetable kingdom when cycads and conifers predominated over all kinds of plants, except the ferns, so far, at least, as our present imperfect knowledge of fossil botany entitles us to speak.

TABLE 19.2. NUMBER AND DISTRIBUTION OF ALL THE KNOWN SPECIES OF FOSSIL MAMMALIA FROM STRATA OLDER THAN THE PARIS GYPSUM, OR THAN THE BEMBRIDGE SERIES OF THE ISLE OF WIGHT.

TERTIARY:

Headon Series and beds between the Paris Gypsum and the Gres de Beauchamp: 14: 10 English, 4 French.

Barton Clay and Sables de Beauchamp: 0.

Bagshot Beds, Calcaire Grossier, and Upper Soissonnais of Cuisse-Lamotte: 20: 16 French, 1 English, 3 United States (I allude to several Zeuglodons found in Alabama, and referred by some zoologists to three species.)

London Clay, including the Kyson Sand: 7 English.

Plastic Clay and Lignite: 9: 7 French, 2 English.

Sables de Bracheux: 1 French.

Thanet Sands and Lower Landenian of Belgium: 0.

SECONDARY:

Maestricht Chalk: 0.

White Chalk: 0.

Chalk Marl: 0.

Chloritic Series (Upper Greensand): 0.

Gault: 0.

Neocomian (Lower Greensand): 0.

Wealden: 0.

Upper Purbeck Oolite : 0.

Middle Purbeck Oolite : 14 Swanage.

Lower Purbeck Oolite: 0.

Portland Oolite: 0.

Kimmeridge Clay: 0.

Coral Rag: 0.

Oxford Clay: 0.

Great Oolite: 4 Stonesfield.

Inferior Oolite: 0.

Lias: 0.

Upper Trias: 4 Wurtemberg, Somersetshire. N. Carolina.

Middle Trias: 0.

Lower Trias: 0.

PRIMARY.

Permian: 0.

Carboniferous : 0.

Devonian: 0.

Silurian: 0.

Cambrian: 0.

Laruentian: 0.

Table 19.2 will enable the reader to see at a glance how conspicuous a part, numerically considered, the mammalian species of the Middle Purbeck now play when compared with those of other formations more ancient than the Paris gypsum, and, at the same time, it will help him to appreciate the enormous hiatus in the history of fossil mammalia which at present occurs between the Eocene and Purbeck periods, and between the latter and the Stonesfield Oolite, and between this again and the Trias.

The Sables de Bracheux, enumerated in the Tertiary division of the table, supposed by Mr. Prestwich to be somewhat newer than the Thanet Sands, and by M. Hebert to be of about that age, have yielded at La Fere the Arctocyon (Palaeocyon) primaevus, the oldest known tertiary mammal.

It is worthy of notice, that in the Hastings Sands there are certain layers of clay and sandstone in which numerous footprints of quadrupeds have been found by Mr. Beckles, and traced by him in the same set of rocks through Sussex and the Isle of Wight. They appear to belong to three or four species of reptiles, and no one of them to any warm-blooded quadruped. They ought, therefore, to serve as a warning to us, when we fail in like manner to detect mammalian footprints in older rocks (such as the New Red Sandstone), to refrain from inferring that quadrupeds, other than reptilian, did not exist or pre-exist.

But the most instructive lesson read to us by the Purbeck strata consists in this: They are all, with the exception of a few intercalated brackish and marine layers, of fresh-water origin; they are 160 feet in thickness, have been well searched by skillful collectors, and by the late Edward Forbes in particular, who studied them for months consecutively. They have been numbered, and the contents of each stratum recorded separately, by the officers of the Geological Survey of Great Britain. They have been divided into three distinct groups by Forbes, each characterised by the same genera of pulmoniferous mollusca and cyprides, these genera being represented in each group by different species; they have yielded insects of many orders, and the fruits of several plants; and lastly, they contain "dirt-beds," or old terrestrial surfaces and vegetable soils at different levels, in some of which erect trunks and stumps of cycads and conifers, with their roots still attached to them, are preserved. Yet when the geologist inquires if any land-animals of a higher grade than reptiles lived during any one of these three periods, the rocks are all silent, save one thin layer a few inches in thickness; and this single page of the earth's history has suddenly revealed to us in a few weeks the memorials of so many species of fossil mammalia, that they already outnumber those of many a subdivision of the tertiary series, and far surpass those of all the other secondary rocks put together!

LOWER PURBECK.

(FIGURE 307. Cyprides from the Lower Purbeck. a. Cypris Purbeckensis, Forbes. b. Same magnified. c. Cypris punctata, Forbes. d, e. Two views magnified of the same.)

Beneath the thin marine band mentioned above as the base of the Middle Purbeck, some purely fresh-water marls occur, containing species of Cypris (Figure 307 a, c), Valvata, and Limnaea, different from those of the Middle Purbeck. This is the beginning of the inferior division, which is about 80 feet thick. Below the marls are seen, at Meup's Bay, more than thirty feet of brackish-water strata, abounding in a species of Serpula, allied to, if not identical with, Serpula coacervites, found in beds of the same age in Hanover. There are also shells of the genus Rissoa (of the subgenus Hydrobia), and a little Cardium of the subgenus Protocardium, in these marine beds, together with Cypris. Some of the cypris-bearing shales are strangely contorted and broken up, at the west end of the Isle of Purbeck. The great dirt-bed or vegetable soil containing the roots and stools of Cycadeae, which I shall presently describe, underlies these marls, and rests upon the lowest fresh-water limestone, a rock about eight feet thick, containing Cyclas, Valvata, and Limnaea, of the same species as those of the uppermost part of the Lower Purbeck, or above the dirt-bed. The fresh-water limestone in its turn rests upon the top beds of the Portland stone, which, although it contains purely marine remains, often consists of a rock undistinguishable in mineral character from the Lowest Purbeck limestone.

DIRT-BED OR ANCIENT SURFACE-SOIL.

(FIGURE 308. Mantellia nidiformis, Brongniart. The upper part shows the woody stem, the lower part the bases of the leaves.)

The most remarkable of all the varied succession of beds enumerated in the above list is that called by the quarrymen "the dirt," or "black dirt," which was evidently an ancient vegetable soil. It is from 12 to 18 inches thick, is of a dark brown or black colour, and contains a large proportion of earthy lignite. Through it are dispersed rounded and sub-angular fragments of stone, from 3 to 9 inches in diameter, in such numbers that it almost deserves the name of gravel. I also saw in 1866, in Portland, a smaller dirt-bed six feet below the principal one, six inches thick, consisting of brown earth with upright Cycads of the same species, Mantellia nidiformis, as those found in the upper bed, but no Coniferae. The weight of the incumbent strata squeezing down the compressible dirt-bed has caused the Cycads to assume that form which has led the quarrymen to call them "petrified birds' nests," which suggested to Brongniart the specific name of nidiformis. I am indebted to Mr. Carruthers for Figure 308 of one of these Purbeck specimens, in which the original cylindrical figure has been less distorted than usual by pressure.

Many silicified trunks of coniferous trees, and the remains of plants allied to Zamia and Cycas, are buried in this dirt-bed, and must have become fossil on the spots where they grew. The stumps of the trees stand erect for a height of from one to three feet, and even in one instance to six feet, with their roots attached to the soil at about the same distances from one another as the trees in a modern forest. The carbonaceous matter is most abundant immediately around the stumps, and round the remains of fossil Cycadeae.

(FIGURE 309. Section in Isle of Portland, Dorset. (Buckland and De la Beche.)showing layers (from top to bottom): Fresh-water calcareous slate: Dirt- bed and ancient forest: Lowest fresh-water beds of the Lower Purbeck: and Portland stone, marine.)

Besides the upright stumps above mentioned, the dirt-bed contains the stems of silicified trees laid prostrate. These are partly sunk into the black earth, and partly enveloped by a calcareous slate which covers the dirt-bed. The fragments of the prostrate trees are rarely more than three or four feet in length; but by joining many of them together, trunks have been restored, having a length from the root to the branches of from 20 to 23 feet, the stems being undivided for 17 or 20 feet, and then forked. The diameter of these near the root is about one foot; but I measured one myself, in 1866, which was 3 1/2 feet in diameter, said by the quarrymen to be unusually large. Root-shaped cavities were observed by Professor Henslow to descend from the bottom of the dirt-bed into the subjacent fresh-water stone, which, though now solid, must have been in a soft and penetrable state when the trees grew. The thin layers of calcareous slate (Figure 309) were evidently deposited tranquilly, and would have been horizontal but for the protrusion of the stumps of the trees, around the top of each of which they form hemispherical concretions.

(FIGURE 310. Section of cliff east of Lulworth Cove. (Buckland and De la Beche.) showing layers (from top to bottom): Fresh-water calcareous slate: Dirt-bed, with stools of trees: Fresh-water: Portland stone, marine.)

The dirt-bed is by no means confined to the island of Portland, where it has been most carefully studied, but is seen in the same relative position in the cliffs east of Lulworth Cove, in Dorsetshire, where, as the strata have been disturbed, and are now inclined at an angle of 45 degrees, the stumps of the trees are also inclined at the same angle in an opposite direction— a beautiful illustration of a change in the position of beds originally horizontal (see Figure 310).

From the facts above described we may infer, first, that those beds of the Upper Oolite, called "the Portland," which are full of marine shells, were overspread with fluviatile mud, which became dry land, and covered by a forest, throughout a portion of the space now occupied by the south of England, the climate being such as to permit the growth of the Zamia and Cycas. Secondly. This land at length sank down and was submerged with its forests beneath a body of fresh- water, from which sediment was thrown down enveloping fluviatile shells. Thirdly. The regular and uniform preservation of this thin bed of black earth over a distance of many miles, shows that the change from dry land to the state of a fresh-water lake or estuary, was not accompanied by any violent denudation, or rush of water, since the loose black earth, together with the trees which lay prostrate on its surface, must inevitably have been swept away had any such violent catastrophe taken place.

The forest of the dirt-bed, as before hinted, was not everywhere the first vegetation which grew in this region. Besides the lower bed containing upright Cycadeae, before mentioned, another has sometimes been found above it, which implies oscillations in the level of the same ground, and its alternate occupation by land and water more than once.

SUBDIVISIONS OF THE PURBECK.

It will be observed that the division of the Purbecks into upper, middle, and lower, was made by Professor Forbes strictly on the principle of the entire distinctness of the species of organic remains which they include. The lines of demarkation are not lines of disturbance, nor indicated by any striking physical characters or mineral changes. The features which attract the eye in the Purbecks, such as the dirt-beds, the dislocated strata at Lulworth, and the Cinder-bed, do not indicate any breaks in the distribution of organised beings. "The causes which led to a complete change of life three times during the deposition of the fresh-water and brackish strata must," says this naturalist, "be sought for, not simply in either a rapid or a sudden change of their area into land or sea, but in the great lapse of time which intervened between the epochs of deposition at certain periods during their formation."

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16     Next Part
Home - Random Browse