|
The discovery of one minor planet was quickly followed by similar successes, so that within seven years Pallas, Juno, and Vesta were added to the solar system. The orbits of all these bodies lie in the region between the orbit of Mars and of Jupiter, and for many years it seems to have been thought that our planetary system was now complete. Forty years later systematic research was again commenced. Planet after planet was added to the list; gradually the discoveries became a stream of increasing volume, until in 1897 the total number reached about 430. Their distribution in the solar system is somewhat as represented in Fig. 55. By the improvement of astronomical telescopes, and by the devotion with which certain astronomers have applied themselves to this interesting research, a special method of observing has been created for the distinct purpose of searching out these little objects.
It is known that the paths in which all the great planets move through the heavens coincide very nearly with the path which the sun appears to follow among the stars, and which is known as the ecliptic. It is natural to assume that the small planets also move in the same great highway, which leads them through all the signs of the zodiac in succession. Some of the small planets, no doubt, deviate rather widely from the track of the sun, but the great majority are approximately near it. This consideration at once simplifies the search for new planets. A certain zone extending around the heavens is to be examined, but there is in general little advantage in pushing the research into other parts of the sky.
The next step is to construct a map containing all the stars in this region. This is a task of very great labour; the stars visible in the large telescopes are so numerous that many tens of thousands, perhaps we should say hundreds of thousands, are included in the region so narrowly limited. The fact is that many of the minor planets now known are objects of extreme minuteness; they can only be seen with very powerful telescopes, and for their detection it is necessary to use charts on which even the faintest stars have been depicted. Many astronomers have concurred in the labour of producing these charts; among them may be mentioned Palisa, of Vienna, who by means of his charts has found eighty-three minor planets, and the late Professor Peters, of Clinton, New York, who in a similar way found forty-nine of these bodies.
The astronomer about to seek for a new planet directs his telescope towards that part of the sun's path which is on the meridian at midnight; there, if anywhere, lies the chance of success, because that is the region in which such a body is nearer to the earth than at any other part of its course. He steadfastly compares his chart with the heavens, and usually finds the stars in the heavens and the stars in the chart to correspond; but sometimes it will happen that a point in the heavens is missing from the chart. His attention is at once arrested; he follows the object with care, and if it moves it is a planet. Still he cannot be sure that he has really made a discovery; he has found a planet, no doubt, but it may be one of the large number already known. To clear up this point he must undertake a further, and sometimes a very laborious, enquiry; he must search the Berlin Year-Book and other ephemerides of such planets and see whether it is possible for one of them to have been in the position on the night in question. If he can ascertain that no previously discovered body could have been there, he is then entitled to announce to his brother astronomers the discovery of a new member of the solar system. It seems certain that all the more important of the minor planets have been long since discovered. The recent additions to the list are generally extremely minute objects, beyond the powers of small telescopes.
Since 1891 the method of searching for minor planets which we have just described has been almost abandoned in favour of a process greatly superior. It has been found feasible to employ photography for making charts of the heavens. A photographic plate is exposed in the telescope to a certain region of the sky sufficiently long to enable very faint telescopic stars to imprint their images. Care has to be taken that the clock which moves the camera shall keep pace most accurately with the rotation of the earth, so that fixed stars appear on the plate as sharp points. If, on developing the plate, a star is found to have left a trail, it is evident that this star must during the time of exposure (generally some hours) have had an independent motion of its own; in other words, it must be a planet. For greater security a second picture is generally taken of the same region after a short interval. If the place occupied by the trail on the first plate is now vacant, while on the second plate a new trail appears in a line with the first one, there remains no possible doubt that we have genuine indications of a planet, and that we have not been led astray by some impurity on the plate or by a few minute stars which happened to lie very closely together. Wolf, of Heidelberg, and following in his footsteps Charlois, of Nice, have in this manner discovered a great number of new minor planets, while they have also recovered a good many of those which had been lost sight of owing to an insufficiency of observations.
On the 13th of August, 1898, Herr G. Witt, of the observatory of Urania in Berlin, discovered a new asteroid by the photographic method. This object was at first regarded merely as forming an addition of no special importance to the 432 asteroids whose discovery had preceded it. It received, as usual, a provisional designation in accordance with a simple alphabetical device. This temporary label affixed to Witt's asteroid was "D Q." But the formal naming of the asteroid has now superseded this label. Herr Witt has given to his asteroid the name of "Eros." This has been duly accepted by astronomers, and thus for all time the planet is to be known.
The feature which makes the discovery of Eros one of the most remarkable incidents in recent astronomy is that on those rare occasions when this asteroid comes nearest to the earth it is closer to the earth than the planet Mars can ever be. Closer than the planet Venus can ever be. Closer than any other known asteroid can ever be. Thus we assign to Eros the exceptional position of being our nearest planetary neighbour in the whole host of heaven. Under certain circumstances it will have a distance from the earth not exceeding one-seventh of the mean distance of the sun.
Of the physical composition of the asteroids and of the character of their surfaces we are entirely ignorant. It may be, for anything we can tell, that these planets are globes like our earth in miniature, diversified by continents and by oceans. If there be life on such bodies, which are often only a few miles in diameter, that life must be something totally different from anything with which we are familiar. Setting aside every other difficulty arising from the possible absence of water and from the great improbability of finding there an atmosphere of a density and a composition suitable for respiration, gravitation itself would prohibit organic beings adapted for this earth from residing on a minor planet.
Let us attempt to illustrate this point, and suppose that we take the case of a minor planet eight miles in diameter, or, in round numbers, one-thousandth part of the diameter of the earth. If we further suppose that the materials of the planet are of the same nature as the substances in the earth, it is easy to prove that the gravity on the surface of the planet will be only one-thousandth part of the gravity of the earth. It follows that the weight of an object on the earth would be reduced to the thousandth part if that object were transferred to the planet. This would not be disclosed by an ordinary weighing scales, where the weights are to be placed in one pan and the body to be weighed in the other. Tested in this way, a body would, of course, weigh precisely the same anywhere; for if the gravitation of the body is altered, so is also in equal proportion the gravitation of the counterpoising weights. But, weighed with a spring balance, the change would be at once evident, and the effort with which a weight could be raised would be reduced to one-thousandth part. A load of one thousand pounds could be lifted from the surface of the planet by the same effort which would lift one pound on the earth; the effects which this would produce are very remarkable.
In our description of the moon it was mentioned (p. 103) that we can calculate the velocity with which it would be necessary to discharge a projectile so that it would never again fall back on the globe from which it was expelled. We applied this reasoning to explain why the moon has apparently altogether lost any atmosphere it might have once possessed.
If we assume for the sake of illustration that the densities of all planets are identical, then the law which expresses the critical velocity for each planet can be readily stated. It is, in fact, simply proportional to the diameter of the globe in question. Thus, for a minor planet whose diameter was one-thousandth part of that of the earth, or about eight miles, the critical velocity would be the thousandth part of six miles a second—that is, about thirty feet per second. This is a low velocity compared with ordinary standards. A child easily tosses a ball up fifteen or sixteen feet high, yet to carry it up this height it must be projected with a velocity of thirty feet per second. A child, standing upon a planet eight miles in diameter, throws his ball vertically upwards; up and up the ball will soar to an amazing elevation. If the original velocity were less than thirty feet per second, the ball would at length cease to move, would begin to turn, and fall with a gradually accelerating pace, until at length it regained the surface with a speed equal to that with which it had been projected. If the original velocity had been as much as, or more than, thirty feet per second, then the ball would soar up and up never to return. In a future chapter it will be necessary to refer again to this subject.
A few of the minor planets appear in powerful telescopes as discs with appreciable dimensions, and they have even been measured with the micrometer. In this way Professor Barnard, late of the Lick Observatory, determined the following values for the diameters of the four first discovered minor planets:—
Ceres 485 miles. Pallas 304 miles. Juno 118 miles. Vesta 243 miles.
The value for Juno is, however, very uncertain, and by far the greater number of the minor planets are very much smaller than the figures here given would indicate. It is possible by a certain calculation to form an estimate of the aggregate mass of all the minor planets, inasmuch as observations disclose to us the extent of their united disturbing influences on the motion of Mars. In this manner Le Verrier concluded that the collected mass of the small planets must be about equal to one-fourth of the mass of the earth. Harzer, repeating the enquiry in an improved manner, deduced a collected mass one-sixth of that of the earth. There can be no doubt that the total mass of all the minor planets at present known is not more than a very small fraction of the amount to which these calculations point. We therefore conclude that there must be a vast number of minor planets which have not yet been recognised in the observatory. These unknown planets must be extremely minute.
The orbits of this group of bodies differ in remarkable characteristics from those of the larger planets. Some of them are inclined at angles of 30 deg. to the plane of the earth's orbit, the inclinations of the great planets being not more than a few degrees. Some of the orbits of the minor planets are also greatly elongated ellipses, while, of course, the orbits of the large planets do not much depart from the circular form. The periods of revolution of these small objects round the sun range from three years to nearly nine years.
A great increase in the number of minor planets has rewarded the zeal of those astronomers who have devoted their labours to this subject. Their success has entailed a vast amount of labour on the computers of the "Berlin Year-Book." That useful work occupies in this respect a position which has not been taken by our own "Nautical Almanac," nor by the similar publications of other countries. A skilful band of computers make it their duty to provide for the "Berlin Year-Book" detailed information as to the movements of the minor planets. As soon as a few complete observations have been obtained, the little object passes into the secure grasp of the mathematician; he is able to predict its career for years to come, and the announcements with respect to all the known minor planets are to be found in the annual volumes of the work referred to.
The growth of discovery has been so rapid that the necessary labour for the preparation of such predictions is now enormous. It must be confessed that many of the minor planets are very faint and otherwise devoid of interest, so that astronomers are sometimes tempted to concur with the suggestion that a portion of the astronomical labour now devoted to the computation of the paths of these bodies might be more profitably applied. For this it would be only necessary to cast adrift all the less interesting members of the host, and allow them to pursue their paths unwatched by the telescope, or by the still more ceaseless tables of the mathematical computer.
The sun, which controls the mighty orbs of our system, does not disdain to guide, with equal care, the tiny globes which form the minor planets. At certain times some of them approach near enough to the earth to merit the attention of those astronomers who are specially interested in determining the dimensions of the solar system. The observations are of such a nature that they can be made with considerable precision; they can also be multiplied to any extent that may be desired. Some of these little bodies have consequently a great astronomical future, inasmuch as they seem destined to indicate the true distance from the earth to the sun more accurately than Venus or than Mars. The smallest of these planets will not answer for this purpose; they can only be seen in powerful telescopes, and they do not admit of being measured with the necessary accuracy. It is also obvious that the planets to be chosen for observation must come as near the earth as possible. In favourable circumstances, some of the minor planets will approach the earth to a distance which is about three-quarters of the distance of the sun. These various conditions limit the number of bodies available for this purpose to about a dozen, of which one or two will usually be suitably placed each year.
For the determination of the sun's distance this method by the minor planets offers unquestionable advantages. The orb itself is a minute star-like point in the telescope, and the measures are made from it to the stars which are seen near it. A few words will, perhaps, be necessary at this place as to the nature of the observations referred to. When we speak of the measures from the planet to the star, we do not refer to what would be perhaps the most ordinary acceptation of the expression. We do not mean the actual measurement of the number of miles in a straight line between the planet and the star. This element, even if attainable, could only be the result of a protracted series of observations of a nature which will be explained later on when we come to speak of the distances of the stars. The measures now referred to are of a more simple character; they are merely to ascertain the apparent distance of the objects expressed in angular measure. This angular measurement is of a wholly different character from the linear measurement, and the two methods may, indeed, lead to results that would at first seem paradoxical.
We may take, as an illustration, the case of the group of stars forming the Pleiades, and those which form the Great Bear. The latter is a large group, the former is a small one. But why do we think the words large and small rightly applied here? Each pair of stars of the Great Bear makes a large angle with the eye. Each pair of stars in the Pleiades makes a small angle, and it is these angles which are the direct object of astronomical measurement. We speak of the distance of two stars, meaning thereby the angle which is bounded by the two lines from the eye to the two stars. This is what our instruments are able to measure, and it is to be observed that no reference to linear magnitude is implied. Indeed, if we are to mention actual dimensions, it is quite possible, for anything we can tell, that the Pleiades may form a much larger group than the Great Bear, and that the apparent superiority of the latter is merely due to its being closer to us. The most accurate of these angular measures are obtained when two stars, or two star-like points, are so close together as to enable them to be included in one field of view of the telescope. There are special forms of apparatus which enable the astronomer in this case to give to his observations a precision unattainable in the measurement of objects less definitely marked, or at a greater apparent distance. The determination of the distance of the small star-like planet from a star is therefore characterised by great accuracy.
But there is another and, perhaps, a weightier argument in favour of the determination of the scale of the solar system by this process. The real strength of the minor planet method rests hardly so much on the individual accuracy of the observations, as on the fact that from the nature of the method a considerable number of repetitions can be concentrated on the result. It will, of course, be understood that when we speak of the accuracy of an observation, it is not to be presumed that it can ever be entirely free from error. Errors always exist, and though they may be small, yet if the quantity to be measured is minute, an error of intrinsic insignificance may amount to an appreciable fraction of the whole. The one way by which their effect can be subdued is by taking the mean of a large number of observations. This is the real source of the value of the minor planet method. We have not to wait for the occurrence of rare events like the transit of Venus. Each year will witness the approach of some one or more minor planets sufficiently close to the earth to render the method applicable. The varied circumstances attending each planet, and the great variety of the observations which may be made upon it, will further conduce to eliminate error.
As the planet pursues its course through the sky, which is everywhere studded over with countless myriads of minute stars, it is evident that this body, itself so like a star, will always have some stars in its immediate neighbourhood. As the movements of the planet are well known, we can foretell where it will be on each night that it is to be observed. It is thus possible to prearrange with observers in widely-different parts of the earth as to the observations to be made on each particular night.
An attempt has been made, on the suggestion of Dr. Gill, to carry out this method on a scale commensurate with its importance. The planets Iris, Victoria, and Sappho happened, in the years 1888 and 1889, to approach so close to the earth that arrangements were made for simultaneous measurements in both the northern and the southern hemispheres. A scheme was completely drawn up many months before the observations were to commence. Each observer who participated in the work was thus advised beforehand of the stars which were to be employed each night. Viewed from any part of the earth, from the Cape of Good Hope or from Great Britain, the positions of the stars remain absolutely unchanged. Their distance is so stupendous that a change of place on the earth displaces them to no appreciable extent. But the case is different with a minor planet. It is hardly one-millionth part of the distance of the stars, and the displacement of the planet when viewed from the Cape and when viewed from Europe is a measurable quantity.
The magnitude we are seeking is to be elicited by comparison between the measurements made in the northern hemisphere with those made in the southern. The observations in the two localities must be as nearly simultaneous as possible, due allowance being made for the motion of the planet in whatever interval may have elapsed. Although every precaution is taken to eliminate the errors of each observation, yet the fact remains that we compare the measures made by observers in the northern hemisphere with those made by different observers, using of course different instruments, thousands of miles away. But in this respect we are at no greater disadvantage than in observing the transit of Venus.
It is, however, possible to obviate even this objection, and thus to give the minor planet method a supremacy over its rival which cannot be disputed. The difficulty would be overcome if we could arrange that an astronomer, after making a set of observations on a fine night in the northern hemisphere, should be instantly transferred, instruments and all, to the southern station, and there repeat the observations. An equivalent transformation can be effected without any miraculous agency, and in it we have undoubtedly the most perfect mode of measuring the sun's distance with which we are acquainted. This method has already been applied with success by Dr. Gill in the case of Juno, and there are other members of the host of minor planets still more favourably circumstanced.
Consider, for instance, a minor planet, which sometimes approaches to within 70,000,000 miles of the earth. When the opposition is drawing near, a skilled observer is to be placed at some suitable station near the equator. The instrument he is to use should be that marvellous piece of mechanical and optical skill known as the heliometer.[20] It can be used to measure the angular distance between objects too far apart for the filar micrometer. The measurements are to be made in the evening as soon as the planet has risen high enough to enable it to be seen distinctly. The observer and the observatory are then to be transferred to the other side of the earth. How is this to be done? Say, rather, how we could prevent it from being done. Is not the earth rotating on its axis, so that in the course of a few hours the observatory on the equator is carried bodily round for thousands of miles? As the morning approaches the observations are to be repeated. The planet is found to have changed its place very considerably with regard to the stars. This is partly due to its own motion, but it is also largely due to the parallactic displacement arising from the rotation of the earth, which may amount to so much as twenty seconds. The measures on a single night with the heliometer should not have a mean error greater than one-fifth of a second, and we might reasonably expect that observations could be secured on about twenty-five nights during the opposition. Four such groups might be expected to give the sun's distance without any uncertainty greater than the thousandth part of the total amount. The chief difficulty of the process arises from the movement of the planet during the interval which divides the evening from the morning observations. This drawback can be avoided by diligent and repeated measurements of the place of the planet with respect to the stars among which it passes.
In the monumental piece of work which issued in 1897 from the Cape Observatory, under the direction of Dr. Gill, the final results from the observations of Iris, Victoria, and Sappho have been obtained. From this it appears that the angle which the earth's equatorial radius subtends at the centre of the sun when at its mean distance has the value 8".802. If we employ the best value of the earth's equatorial radius we obtain 92,870,000 miles as the mean distance of the centre of the sun from the centre of the earth. This is probably the most accurate determination of the scale of the solar system which has yet been made.
CHAPTER XII.
JUPITER.
The Great Size of Jupiter—Comparison of his Diameter with that of the Earth—Dimensions of the Planet and his Orbit—His Rotation—Comparison of his Weight and Bulk with that of the Earth—Relative Lightness of Jupiter—How Explained—Jupiter still probably in a Heated Condition—The Belts on Jupiter—Spots on his Surface—Time of Rotation of different Spots various—Storms on Jupiter—Jupiter not Incandescent—The Satellites—Their Discovery—Telescopic Appearance—Their Orbits—The Eclipses and Occultations—A Satellite in Transit—The Velocity of Light Discovered—How is this Velocity to be Measured Experimentally?—Determination of the Sun's Distance by the Eclipses of Jupiter's Satellites—Jupiter's Satellites demonstrating the Copernican System.
In our exploration of the beautiful series of bodies which form the solar system, we have proceeded step by step outwards from the sun. In the pursuit of this method we have now come to the splendid planet Jupiter, which wends its majestic way in a path immediately outside those orbits of the minor planets which we have just been considering. Great, indeed, is the contrast between these tiny globes and the stupendous globe of Jupiter. Had we adopted a somewhat different method of treatment—had we, for instance, discussed the various bodies of our planetary system in the order of their magnitude—then the minor planets would have been the last to be considered, while the leader of the host would be Jupiter. To this position Jupiter is entitled without an approach to rivalry. The next greatest on the list, the beautiful and interesting Saturn, comes a long distance behind. Another great descent in the scale of magnitude has to be made before we reach Uranus and Neptune, while still another step downwards must be made before we reach that lesser group of planets which includes our earth. So conspicuously does Jupiter tower over the rest, that even if Saturn were to be augmented by all the other globes of our system rolled into one, the united mass would still not equal the great globe of Jupiter.
The adjoining picture (Fig. 56) shows the relative dimensions of Jupiter and the earth, and it conveys to the eye a more vivid impression of the enormous bulk of Jupiter than we can readily obtain by merely considering the numerical statements by which his bulk is to be accurately estimated. As, however, it will be necessary to place the numerical facts before our readers, we do so at the outset of this chapter.
Jupiter revolves in an elliptic orbit around the sun in the focus, at a mean distance of 483,000,000 miles. The path of Jupiter is thus about 5.2 times as great in diameter as the path pursued by the earth. The shape of Jupiter's orbit departs very appreciably from a circle, the greatest distance from the sun being 5.45, while the least distance is about 4.95, the earth's distance from the sun being taken as unity. In the most favourable circumstances for seeing Jupiter at opposition, it must still be about four times as far from the earth as the earth is from the sun. This great globe will also illustrate the law that the more distant a planet is, the slower is the velocity with which its orbital motion is accomplished. While the earth passes over eighteen miles each second, Jupiter only accomplishes eight miles. Thus for a twofold reason the time occupied by an exterior planet in completing a revolution is greater than the period of the earth. Not only has the outer planet to complete a longer course than the earth, but the speed is less; it thus happens that Jupiter requires 4,332.6 days, or about fifty days less than twelve years, to make a circuit of the heavens.
The mean diameter of the great planet is about 87,000 miles. We say the mean diameter, because there is a conspicuous difference in the case of Jupiter between his equatorial and his polar diameters. We have already seen that there is a similar difference in the case of the earth, where we find the polar diameter to be shorter than the equatorial; but the inequality of these two dimensions is very much larger in Jupiter than in the earth. The equatorial diameter of Jupiter is 89,600 miles, while the polar is not more than 84,400 miles. The ellipticity of Jupiter indicated by these figures is sufficiently marked to be obvious without any refined measures. Around the shortest diameter the planet spins with what must be considered an enormous velocity when we reflect on the size of the globe. Each rotation is completed in about 9 hrs. 55 mins.
We may naturally contrast the period of rotation of Jupiter with the much slower rotation of our earth in twenty-four hours. The difference becomes much more striking if we consider the relative speeds at which an object on the equator of the earth and on that of Jupiter actually moves. As the diameter of Jupiter is nearly eleven times that of the earth, it will follow that the speed of the equator on Jupiter must be about twenty-seven times as great as that on the earth. It is no doubt to this high velocity of rotation that we must ascribe the extraordinary ellipticity of Jupiter; the rapid rotation causes a great centrifugal force, and this bulges out the pliant materials of which he seems to be formed.
Jupiter is not, so far as we can see, a solid body. This is an important circumstance; and therefore it will be necessary to discuss the matter at some little length, as we here perceive a wide contrast between this great planet and the other planets which have previously occupied our attention. From the measurements already given it is easy to calculate the bulk or the volume of Jupiter. It will be found that this planet is about 1,300 times as large as the earth; in other words, it would take 1,300 globes, each as large as our earth, all rolled into one, to form a single globe as large as Jupiter.
If the materials of which Jupiter is composed were of a nature analogous to the materials of the earth, we might expect that the weight of the planet would exceed the weight of the earth in something like the proportion of their volumes. This is the matter now proposed to be brought to trial. Here we may at once be met with the query, as to how we are to find the weight of Jupiter. It is not even an easy matter to weigh the earth on which we stand. How, then, can we weigh a mighty planet vastly larger than the earth, and distant from us by some hundreds of millions of miles? Truly, this is a bold problem. Yet the intellectual resources of man have proved sufficient to achieve this feat of celestial engineering. They are not, it is true, actually able to make the ponderous weighing scales in which the great planet is to be cast, but they are able to divert to this purpose certain natural phenomena which yield the information that is required.
Such investigations are based on the principle of universal gravitation. The mass of Jupiter attracts other masses in the solar system. The efficiency of that attraction is more particularly shown on the bodies which are near the planet. In virtue of this attraction certain movements are performed by those bodies. We can observe their character with our telescopes, we can ascertain their amount, and from our measurements we can calculate the mass of the body by which the movements have been produced. This is the sole method which we possess for the investigation of the masses of the planets; and though it may be difficult in its application—not only from the observations which are required, but also from the intricacy and the profundity of the calculations to which those observations must be submitted—yet, in the case of Jupiter at least, there is no uncertainty about the result.
The task is peculiarly simplified in the case of the greatest planet of our system by the beautiful system of moons with which he is attended. These little moons revolve under the guidance of Jupiter, and their movements are not otherwise interfered with so as to prevent their use for our present purpose. It is from the observations of the satellites of Jupiter that we are enabled to measure his attractive power, and thence to calculate the mass of the mighty planet.
To those not specially conversant with the principles of mechanics, it may seem difficult to realise the degree of accuracy of which such a method is capable. Yet there can be no doubt that his moons inform us of the mass of Jupiter, and do not leave a margin of inaccuracy so great as one hundredth part of the total amount. If other confirmation be needed, then it is forthcoming in abundance. A minor planet occasionally draws near the orbit of Jupiter and experiences his attraction; the planet is forced to swerve from its path, and the amount of the deviation can be measured. From that measurement the mass of Jupiter can be computed by a calculation, of which it would be impossible to give an account in this place. The mass of Jupiter, as determined by this method, agrees with the mass obtained in a totally different manner from the satellites.
Nor have we yet exhausted the resources of astronomy in its bearing on this question. We can discard the planetary system, and invite the assistance of a comet which, flashing through the orbits of the planets, occasionally experiences large and sometimes enormous disturbances. For the present it suffices to remark, that on one or two occasions it has happened that venturous comets have been near enough to Jupiter to be much disturbed by his attraction, and then to proclaim in their altered movements the magnitude of the mass which has affected them. The satellites of Jupiter, the minor planets, and the comets, all tell the weight of the giant orb; and, as they all concur in the result (at least within extremely narrow limits), we cannot hesitate to conclude that the mass of the greatest planet of our system has been determined with accuracy.
The results of these measures must now be stated. They show, of course, that Jupiter is vastly inferior to the sun—that, in fact, it would take about 1,047 Jupiters, all rolled into one, to form a globe equal in weight to the sun. They also show us that it would take 316 globes as heavy as our Earth to counterbalance the weight of Jupiter.
No doubt this proves Jupiter to be a body of magnificent proportions; but the remarkable circumstance is not that Jupiter should be 316 times as heavy as the earth, but that he is not a great deal more. Have we not stated that Jupiter is 1,300 times as large as the earth? How then comes it that he is only 316 times as heavy? This points at once to some fundamental contrast between the constitution of Jupiter and of the earth. How are we to account for this difference? We can conceive of two explanations. In the first place, it might be supposed that Jupiter is constituted of materials partly or wholly unknown on the earth. There is, however, an alternative supposition at once more philosophical and more consistent with the evidence. It is true that we know little or nothing of what the elementary substances on Jupiter may be, but one of the great discoveries of modern astronomy has taught us something of the elementary bodies present in other bodies of the universe, and has demonstrated that to a large extent they are identical with the elementary bodies on the earth. If Jupiter be composed of bodies resembling those on the earth, there is one way, and only one, in which we can account for the disparity between his size and his mass. Perhaps the best way of stating the argument will be found in a glance at the remote history of the earth itself, for it seems not impossible that the present condition of Jupiter was itself foreshadowed by the condition of our earth countless ages ago.
In a previous chapter we had occasion to point out how the earth seemed to be cooling from an earlier and highly heated condition. The further we look back, the hotter our globe seems to have been; and if we project our glance back to an epoch sufficiently remote, we see that it must once have been so hot that life on its surface would have been impossible. Back still earlier, we find the heat to have been such that water could not rest on the earth; and hence it seems likely that at some incredibly remote epoch all the oceans now reposing in the deeps on the surface, and perhaps a considerable portion of its now solid crust, must have been in a state of vapour. Such a transformation of the globe would not alter its mass, for the materials weigh the same whatever be their condition as to temperature, but it would alter the size of our globe to a very considerable extent. If these oceans were transformed into vapour, then the atmosphere, charged with mighty clouds, would have a bulk some hundreds of times greater than that which it has at present. Viewed from a distant planet, the cloud-laden atmosphere would indicate the visible size of our globe, and its average density would accordingly appear to be very much less than it is at present.
From these considerations it will be manifest that the discrepancy between the size and the weight of Jupiter, as contrasted with our earth, would be completely removed if we supposed that Jupiter was at the present day a highly heated body in the condition of our earth countless ages ago. Every circumstance of the case tends to justify this argument. We have assigned the smallness of the moon as a reason why the moon has cooled sufficiently to make its volcanoes silent and still. In the same way the smallness of the earth, as compared with Jupiter, accounts for the fact that Jupiter still retains a large part of its original heat, while the smaller earth has dissipated most of its store. This argument is illustrated and strengthened when we introduce other planets into the comparison. As a general rule we find that the smaller bodies, like the earth and Mars, have a high density, indicative of a low temperature, while the giant planets, like Jupiter and Saturn, have a low density, suggesting that they still retain a large part of their original heat. We say "original heat" for the want, perhaps, of a more correct expression; it will, however, indicate that we do not in the least refer to the solar heat, of which, indeed, the great outer planets receive much less than those nearer the sun. Where the original heat may have come from is a matter still confined to the province of speculation.
A complete justification of these views with regard to Jupiter is to be found when we make a minute telescopic scrutiny of its surface; and it fortunately happens that the size of the planet is so great that, even at a distance of more millions of miles than there are days in the year, we can still trace on its surface some significant features.
Plate XI. gives a series of four different views of Jupiter. They have been taken from a series of admirable drawings of the great planet made by Mr. Griffiths in 1897. The first picture shows the appearance of the globe at 10h. 20m. Greenwich time on February 17th, 1897, through a powerful refracting telescope. We at once notice in this drawing that the outline of Jupiter is distinctly elliptical. The surface of the planet usually shows the remarkable series of belts here represented. They are nearly parallel to each other and to the planet's equator.
When Jupiter is observed for some hours, the appearance of the belts undergoes certain changes. These are partly due to the regular rotation of the planet on its axis, which, in a period of less than five hours, will completely carry away the hemisphere we first saw, and replace it by the hemisphere originally at the other side. But besides the changes thus arising, the belts and other features on the planet are also very variable. Sometimes new stripes or marks appear, and old ones disappear; in fact, a thorough examination of Jupiter will demonstrate the remarkable fact that there are no permanent features whatever to be discerned. We are here immediately struck by the contrast between Jupiter and Mars; on the smaller planet the main topographical outlines are almost invariable, and it has been feasible to construct maps of the surface with tolerably accurate detail; a map of Jupiter is, however, an impossibility—the drawing of the planet which we make to-night will be different from the drawing of the same hemisphere made a few weeks hence.
It should, however, be noticed that objects occasionally appear on the planet which seem of a rather more persistent character than the belts. We may especially mention the object known as the great oblong Red Spot, which has been a very remarkable feature upon the southern hemisphere of Jupiter since 1878. This object, which has attracted a great deal of attention from observers, is about 30,000 miles long by about 7,000 in breadth. Professor Barnard remarks that the older the spots on Jupiter are, the more ruddy do they tend to become.
The conclusion is irresistibly forced upon us that when we view the surface of Jupiter we are not looking at any solid body. The want of permanence in the features of the planet would be intelligible if what we see be merely an atmosphere laden with clouds of impenetrable density. The belts especially support this view; we are at once reminded of the equatorial zones on our own earth, and it is not at all unlikely that an observer sufficiently remote from the earth to obtain a just view of its appearance would detect upon its surface more or less perfect cloud-belts suggestive of those on Jupiter. A view of our earth would be, as it were, intermediate between a view of Jupiter and of Mars. In the latter case the appearance of the permanent features of the planet is only to a trifling extent obscured by clouds floating over the surface. Our earth would always be partly, and often perhaps very largely, covered with cloud, while Jupiter seems at all times completely enveloped.
From another class of observations we are also taught the important truth that Jupiter is not, superficially at least, a solid body. The period of rotation of the planet around its axis is derived from the observation of certain marks, which present sufficient definiteness and sufficient permanence to be suitable for the purpose. Suppose one of these objects to lie at the centre of the planet's disc; its position is carefully measured, and the time is noted. As the hours pass on, the mark moves to the edge of the disc, then round the other side of the planet, and back again to the visible disc. When it has returned to the position originally occupied the time is again taken, and the interval which has elapsed is called the period of rotation of the spot.
If Jupiter were a solid, and if these features were engraved upon its surface, then it is perfectly clear that the time of rotation as found by any one spot must coincide precisely with the time yielded by any other spot; but this is not observed to be the case. In fact, it would be nearer the truth to say that each spot gives a special period of its own. Nor are the differences very minute. It has been found that the time in which the red spot (the latitude of which is about 25 deg. south) is carried round is five minutes longer than that required by some peculiar white marks near the equator. The red spot has now been watched for about twenty years, and during most of that time has had a tendency to rotate more and more slowly, as may be seen from the following values of its rotation period:—
In 1879, 9h. 55m. 33.9s. In 1886, 9h. 55m. 40.6s. In 1891, 9h. 55m. 41.7s.
Since 1891 this tendency seems to have ceased, while the spot has been gradually fading away. Generally speaking, we may say that the equatorial regions rotate in about 9h. 50m. 20s., and the temperate zones in about 9h. 55m. 40s. Remarkable exceptions are occasionally met with. Some small black spots in north latitude 22 deg., which broke out in 1880 and again in 1891, rotated in 9h. 48m. to 9h. 49-1/2m. It may, therefore, be regarded as certain that the globe of Jupiter, so far as we can see it, is not a solid body. It consists, on the exterior at all events, of clouds and vaporous masses, which seem to be agitated by storms of the utmost intensity, if we are to judge from the ceaseless changes of the planet's surface.
Various photographs of Jupiter have been obtained; those which have been taken at the Lick Observatory being specially interesting and instructive. Pictures of the planet obtained with the camera in remarkable circumstances are represented in Figs. 57-60, which were taken by Professor Wm. H. Pickering at Arequipa, Peru, on the 12th of August, 1892.[21] The small object with the belts is the planet Jupiter. The large advancing disc (of which only a small part can be shown) is the moon. The phenomenon illustrated is called the "occultation" of the planet. The planet is half-way behind the moon in Fig. 59, while in Fig. 60 half of the planet is still hidden by the dark limb of the moon.
It is well known that the tempests by which the atmosphere surrounding the earth is convulsed are to be ultimately attributed to the heat of the sun. It is the rays from the great luminary which, striking on the vast continents, warm the air in contact therewith. This heated air becomes lighter, and rises, while air to supply its place must flow in along the surface. The currents so produced form a breeze or a wind; while, under exceptional circumstances, we have the phenomena of cyclones and hurricanes, all originated by the sun's heat. Need we add that the rains, which so often accompany the storms, have also arisen from the solar beams, which have distilled from the wide expanse of ocean the moisture by which the earth is refreshed?
The storms on Jupiter seem to be vastly greater than those on the earth. Yet the intensity of the sun's heat on Jupiter is only a mere fraction—less, indeed, than the twenty-fifth part—of that received by the earth. It is incredible that the motive power of the appalling tempests on the great planet can be entirely, or even largely, due to the feeble influence of solar heat. We are, therefore, led to seek for some other source of such disturbances. What that source is to be will appear obvious when we admit that Jupiter still retains a large proportion of primitive internal heat. Just as the sun itself is distracted by violent tempests as an accompaniment of its intense internal fervour, so, in a lesser degree, do we observe the same phenomena in Jupiter. It may also be noticed that the spots on the sun usually lie in more or less regular zones, parallel to its equator, the arrangement being in this respect not dissimilar to that of the belts on Jupiter.
It being admitted that the mighty planet still retains some of its internal heat, the question remains as to how much. It is, of course, obvious that the heat of the planet is inconsiderable when compared with the heat of the sun. The brilliance of Jupiter, which makes it an object of such splendour in our midnight sky, is derived from the same great source which illuminates the earth, the moon, or the other planets. Jupiter, in fact, shines by reflected sunlight, and not in virtue of any intrinsic light in his globe. A beautiful proof of this truth is familiar to every user of a telescope. The little satellites of the planet sometimes intrude between him and the sun, and cast a shadow on Jupiter. The shadow is black, or, at all events, it seems black, relatively to the brilliant surrounding surface of the planet. It must, therefore, be obvious that Jupiter is indebted to the sun for its brilliancy. The satellites supply another interesting proof of this truth. One of these bodies sometimes enters the shadow of Jupiter and lo! the little body vanishes. It does so because Jupiter has cut off the supply of sunlight which previously rendered the satellite visible. But the planet is not himself able to offer the satellite any light in compensation for the sunlight which he has intercepted.[22]
Enough, however, has been demonstrated to enable us to pronounce on the question as to whether the globe of Jupiter can be inhabited by living creatures resembling those on this earth. Obviously this cannot be so. The internal heat and the fearful tempests seem to preclude the possibility of organic life on the great planet, even were there not other arguments tending to the same conclusion. It may, however, be contended, with perhaps some plausibility, that Jupiter has in the distant future the prospect of a glorious career as the residence of organic life. The time will assuredly come when the internal heat must decline, when the clouds will gradually condense into oceans. On the surface dry land may then appear, and Jupiter be rendered habitable.
From this sketch of the planet itself we now turn to the interesting and beautiful system of five satellites by which Jupiter is attended. We have, indeed, already found it necessary to allude more than once to these little bodies, but not to such an extent as to interfere with the more formal treatment which they are now to receive.
The discovery of the four chief satellites may be regarded as an important epoch in the history of astronomy. They are objects situated in a remarkable manner on the border-line which divides the objects visible to the unaided eye from those which require telescopic aid. It has been frequently asserted that these objects have been seen with the unaided eye; but without entering into any controversy on the matter, it is sufficient to recite the well-known fact that, although Jupiter had been a familiar object for countless centuries, yet the sharpest eyes under the clearest skies never discovered the satellites until Galileo turned the newly invented telescope upon them. This tube was no doubt a very feeble instrument, but very little power suffices to show objects so dose to the limit of visibility.
The view of the planet and its elaborate system of satellites as shown in a telescope of moderate power, is represented in Fig. 61. We here see the great globe, and nearly in a line parsing through its centre lie four small objects, three on one side and one on the other. These little bodies resemble stars, but they can be distinguished therefrom by their ceaseless movements around the planet, which they never fail to accompany during his entire circuit of the heavens. There is no more pleasing spectacle for the student than to follow with his telescope the movements of this beautiful system.
In Fig. 62 we have represented some of the various phenomena which the satellites present. The long black shadow is that produced by the interposition of Jupiter in the path of the sun's rays. In consequence of the great distance of the sun this shadow will extend, in the form of a very elongated cone, to a distance far beyond the orbit of the outer satellite. The second satellite is immersed in this shadow, and consequently eclipsed. The eclipse of a satellite must not be attributed to the intervention of the body of Jupiter between the satellite and the earth. Such an occurrence is called an occultation, and the third satellite is shown in this condition. The second and the third satellites are thus alike invisible, but the cause of the invisibility is quite different in the two cases. The eclipse is much the more striking phenomenon of the two, because the satellite, at the moment it plunges into the darkness, may be still at some apparent distance from the edge of the planet, and is thus seen up to the moment of the eclipse. In an occultation the satellite in passing behind the planet is, at the time of disappearance, close to the planet's bright edge, and the extinction of the light from the small body cannot be observed with the same impressiveness as the occurrence of an eclipse.
A satellite also assumes another remarkable situation when in the course of transit over the face of the planet. The satellite itself is not always very easy to see in such circumstances, but the beautiful shadow which it casts forms a sharp black spot on the brilliant orb: the satellite will, indeed, frequently cast a visible shadow when it passes between the planet and the sun, even though it be not actually at the moment in front of the planet, as it is seen from the earth.
The periods in which the four principal moons of Jupiter revolve around their primary are respectively, 1 day 18 hrs. 27 min. 34 secs. for the first; 3 days 13 hrs. 13 min. 42 secs., for the second; 7 days 3 hrs. 42 min. 33 secs, for the third; and 16 days 16 hrs. 32 min. 11 secs. for the fourth. We thus observe that the periods of Jupiter's satellites are decidedly briefer than that of our moon. Even the satellite most distant from the great planet requires for each revolution less than two-thirds of an ordinary lunar month. The innermost of these bodies, revolving as it does in less than two days, presents a striking series of ceaseless and rapid changes, and it becomes eclipsed during every revolution. The distance from the centre of Jupiter to the orbit of the innermost of these four attendants is a quarter of a million miles, while the radius of the outermost is a little more than a million miles. The second of the satellites proceeding outwards from the planet is almost the same size as our moon; the other three bodies are larger; the third being the greatest of all (about 3,560 miles in diameter). Owing to the minuteness of the satellites as seen from the earth, it is extremely difficult to perceive any markings on their surfaces, but the few observations made seem to indicate that the satellites (like our moon) always turn the same face towards their primary. Professor Barnard has, with the great Lick refractor, seen a white equatorial belt on the first satellite, while its poles were very dark. Mr. Douglass, observing with Mr. Lowell's great refractor, has also reported certain streaky markings on the third satellite.
A very interesting astronomical discovery was that made by Professor E.E. Barnard in 1892. He detected with the 36-inch Lick refractor an extremely minute fifth satellite to Jupiter at a distance of 112,400 miles, and revolving in a period of 11 hrs. 57 min. 22.6 secs. It can only be seen with the most powerful telescopes.
The eclipses of Jupiter's satellites had been observed for many years, and the times of their occurrence had been recorded. At length it was perceived that a certain order reigned among the eclipses of these bodies, as among all other astronomical phenomena. When once the laws according to which the eclipses recurred had been perceived, the usual consequence followed. It became possible to foretell the time at which the eclipses would occur in future. Predictions were accordingly made, and it was found that they were approximately verified. Further improvements in the calculations were then perfected, and it was sought to predict the times with still greater accuracy. But when it came to naming the actual minute at which the eclipse should occur, expectations were not always realised. Sometimes the eclipse was five or ten minutes too soon. Sometimes it was five or ten minutes too late. Discrepancies of this kind always demand attention. It is, indeed, by the right use of them that discoveries are often made, and one of the most interesting examples is that now before us.
The irregularity in the occurrence of the eclipses was at length perceived to observe certain rules. It was noticed that when the earth was near to Jupiter the eclipse generally occurred before the predicted time; while when the earth happened to be at the side of its orbit away from Jupiter, the eclipse occurred after the predicted time. Once this was proved, the great discovery was quickly made by Roemer, a Danish astronomer, in 1675. When the satellite enters the shadow, its light gradually decreases until it disappears. It is the last ray of light from the eclipsed satellite that gives the time of the eclipse; but that ray of light has to travel from the satellite to the earth, and enter our telescope, before we can note the occurrence. It used to be thought that light travelled instantaneously, so that the moment the eclipse occurred was assumed to be the moment when the eclipse was seen in the telescope. This was now perceived to be incorrect. It was found that light took time to travel. When the earth was comparatively near Jupiter the light had only a short journey, the intelligence of the eclipse arrived quickly, and the eclipse was seen sooner than the calculations indicated. When the earth occupied a position far from Jupiter, the light had a longer journey, and took more than the average time, so that the eclipse was later than the prediction. This simple explanation removed the difficulty attending the predictions of the eclipses of the satellites. But the discovery had a significance far more momentous. We learned from it that light had a measurable velocity, which, according to recent researches, amounts to 186,300 miles per second.
One of the most celebrated attempts to ascertain the distance of the sun is derived from a combination of experiments on the velocity of light with astronomical measurements. This is a method of considerable refinement and interest, and although it does not so fulfil all the necessary conditions as to make it perfectly satisfactory, yet it is impossible to avoid some reference to it here. Notwithstanding that the velocity of light is so stupendous, it has been found possible to measure that velocity by actual trial. This is one of the most delicate experimental researches that have ever been undertaken. If it be difficult to measure the speed of a rifle bullet, what shall we say of the speed of a ray of light, which is nearly a million times as great? How shall we devise an apparatus subtle enough to determine the velocity which would girdle the earth at the equator no less than seven times in a single second of time? Ordinary contrivances for measurement are here futile; we have to devise an instrument of a wholly different character.
In the attempt to discover the speed of a moving body we first mark out a certain distance, and then measure the time which the body requires to traverse that distance. We determine the velocity of a railway train by the time it takes to pass from one mile-post to the next. We learn the speed of a rifle bullet by an ingenious contrivance really founded on the same principle. The greater the velocity, the more desirable is it that the distance traversed during the experiment shall be as large as possible. In dealing with the measurement of the velocity of light, we therefore choose for our measured distance the greatest length that may be convenient. It is, however, necessary that the two ends of the line shall be visible from each other. A hill a mile or two away will form a suitable site for the distant station, and the distance of the selected point on the hill from the observer must be carefully measured.
The problem is now easily stated. A ray of light is to be sent from the observer to the distant station, and the time occupied by that ray in the journey is to be measured. We may suppose that the observer, by a suitable contrivance, has arranged a lantern from which a thin ray of light issues. Let us assume that this travels all the way to the distant station, and there falls upon the surface of a reflecting mirror. Instantly it will be diverted by reflection into a new direction depending upon the inclination of the mirror. By suitable adjustment the latter can be so placed that the light shall fall perpendicularly upon it, in which case the ray will of course return along the direction in which it came. Let the mirror be fixed in this position throughout the course of the experiments. It follows that a ray of light starting from the lantern will be returned to the lantern after it has made the journey to the distant station and back again. Imagine, then, a little shutter placed in front of the lantern. We open the shutter, the ray streams forth to the remote reflector, and back again through the opening. But now, after having allowed the ray to pass through the shutter, suppose we try and close it before the ray has had time to get back again. What fingers could be nimble enough to do this? Even if the distant station were ten miles away, so that the light had a journey of ten miles in going to the mirror and ten miles in coming back, yet the whole course would be accomplished in about the nine-thousandth part of a second—a period so short that even were it a thousand times as long it would hardly enable manual dexterity to close the aperture. Yet a shutter can be constructed which shall be sufficiently delicate for the purpose.
The principle of this beautiful method will be sufficiently obvious from the diagram on this page (Fig. 63), which has been taken from Newcomb's "Popular Astronomy." The figure exhibits the lantern and the observer, and a large wheel with projecting teeth. Each tooth as it passes round eclipses the beam of light emerging from the lantern, and also the eye, which is of course directed to the mirror at the distant station. In the position of the wheel here shown the ray from the lantern will pass to the mirror and back so as to be visible to the eye; but if the wheel be rotating, it may so happen that the beam after leaving the lantern will not have time to return before the next tooth of the wheel comes in front of the eye and screens it. If the wheel be urged still faster, the next tooth may have passed the eye, so that the ray again becomes visible. The speed at which the wheel is rotating can be measured. We can thus determine the time taken by one of the teeth to pass in front of the eye; we have accordingly a measure of the time occupied by the ray of light in the double journey, and hence we have a measurement of the velocity of light.
It thus appears that we can tell the velocity of light either by the observations of Jupiter's satellites or by experimental enquiry. If we take the latter method, then we are entitled to deduce remarkable astronomical consequences. We can, in fact, employ this method for solving that great problem so often referred to—the distance from the earth to the sun—though it cannot compete in accuracy with some of the other methods.
The dimensions of the solar system are so considerable that a sunbeam requires an appreciable interval of time to span the abyss which separates the earth from the sun. Eight minutes is approximately the duration of the journey, so that at any moment we see the sun as it appeared eight minutes earlier to an observer in its immediate neighbourhood. In fact, if the sun were to be suddenly blotted out it would still be seen shining brilliantly for eight minutes after it had really disappeared. We can determine this period from the eclipses of Jupiter's satellites.
So long as the satellite is shining it radiates a stream of light across the vast space between Jupiter and the earth. When the eclipse has commenced, the little orb is no longer luminous, but there is, nevertheless, a long stream of light on its way, and until all this has poured into our telescopes we still see the satellite shining as before. If we could calculate the moment when the eclipse really took place, and if we could observe the moment at which the eclipse is seen, the difference between the two gives the time which the light occupies on the journey. This can be found with some accuracy; and, as we already know the velocity of light, we can ascertain the distance of Jupiter from the earth; and hence deduce the scale of the solar system. It must, however, be remarked that at both extremities of the process there are characteristic sources of uncertainty. The occurrence of the eclipse is not an instantaneous phenomenon. The satellite is large enough to require an appreciable time in crossing the boundary which defines the shadow, so that the observation of an eclipse cannot be sufficiently precise to form the basis of an important and accurate measurement.[23] Still greater difficulties accompany the attempt to define the true moment of the occurrence of the eclipse as it would be seen by an observer in the vicinity of the satellite. For this we should require a far more perfect theory of the movements of Jupiter's satellites than is at present attainable. This method of finding the sun's distance holds out no prospect of a result accurate to the one-thousandth part of its amount, and we may discard it, inasmuch as the other methods available seem to admit of much higher accuracy.
The four chief satellites of Jupiter have special interest for the mathematician, who finds in them a most striking instance of the universality of the law of gravitation. These bodies are, of course, mainly controlled in their movements by the attraction of the great planet; but they also attract each other, and certain curious consequences are the result.
The mean motion of the first satellite in each day about the centre of Jupiter is 203 deg..4890. That of the second is 101 deg..3748, and that of the third is 50 deg..3177. These quantities are so related that the following law will be found to be observed:
The mean motion of the first satellite added to twice the mean motion of the third is exactly equal to three times the mean motion of the second.
There is another law of an analogous character, which is thus expressed (the mean longitude being the angle between a fixed line and the radius to the mean place of the satellite): If to the mean longitude of the first satellite we add twice the mean longitude of the third, and subtract three times the mean longitude of the second, the difference is always 180 deg..
It was from observation that these principles were first discovered. Laplace, however, showed that if the satellites revolved nearly in this way, then their mutual perturbations, in accordance with the law of gravitation, would preserve them in this relative position for ever.
We shall conclude with the remark, that the discovery of Jupiter's satellites afforded the great confirmation of the Copernican theory. Copernicus had asked the world to believe that our sun was a great globe, and that the earth and all the other planets were small bodies revolving round the great one. This doctrine, so repugnant to the theories previously held, and to the immediate evidence of our senses, could only be established by a refined course of reasoning. The discovery of Jupiter's satellites was very opportune. Here we had an exquisite ocular demonstration of a system, though, of course, on a much smaller scale, precisely identical with that which Copernicus had proposed. The astronomer who had watched Jupiter's moons circling around their primary, who had noticed their eclipses and all the interesting phenomena attendant on them, saw before his eyes, in a manner wholly unmistakable, that the great planet controlled these small bodies, and forced them to revolve around him, and thus exhibited a miniature of the great solar system itself. "As in the case of the spots on the sun, Galileo's announcement of this discovery was received with incredulity by those philosophers of the day who believed that everything in nature was described in the writings of Aristotle. One eminent astronomer, Clavius, said that to see the satellites one must have a telescope which would produce them; but he changed his mind as soon as he saw them himself. Another philosopher, more prudent, refused to put his eye to the telescope lest he should see them and be convinced. He died shortly afterwards. 'I hope,' said the caustic Galileo, 'that he saw them while on his way to heaven'"[24]
CHAPTER XIII.
SATURN.
The Position of Saturn in the System—Saturn one of the Three most Interesting Objects in the Heavens—Compared with Jupiter—Saturn to the Unaided Eye—Statistics relating to the Planet—Density of Saturn—Lighter than Water—The Researches of Galileo—What he found in Saturn—A Mysterious Object—The Discoveries made by Huyghens half a Century later—How the Existence of the Ring was Demonstrated—Invisibility of the Rings every Fifteen Years—The Rotation of the Planet—The Celebrated Cypher—The Explanation—Drawing of Saturn—The Dark Line—W. Herschel's Researches—Is the Division in the Ring really a Separation?—Possibility of Deciding the Question—The Ring in a Critical Position—Are there other Divisions in the Ring?—The Dusky Ring—Physical Nature of Saturn's Rings—Can they be Solid?—Can they even be Slender Rings?—A Fluid?—True Nature of the Rings—A Multitude of Small Satellites—Analogy of the Rings of Saturn to the Group of Minor Planets—Problems Suggested by Saturn—The Group of Satellites to Saturn—The Discoveries of Additional Satellites—The Orbit of Saturn not the Frontier of our System.
At a profound distance in space, which, on an average, is 886,000,000 miles, the planet Saturn performs its mighty revolution around the sun in a period of twenty-nine and a half years. This gigantic orbit formed the boundary to the planetary system, so far as it was known to the ancients.
Although Saturn is not so great a body as Jupiter, yet it vastly exceeds the earth in bulk and in mass, and is, indeed, much greater than any one of the planets, Jupiter alone excepted. But while Saturn must yield the palm to Jupiter so far as mere dimensions are concerned, yet it will be generally admitted that even Jupiter, with all the retinue by which he is attended, cannot compete in beauty with the marvellous system of Saturn. To the present writer it has always seemed that Saturn is one of the three most interesting celestial objects visible to observers in northern latitudes. The other two will occupy our attention in future chapters. They are the great nebula in Orion, and the star cluster in Hercules.
So far as the globe of Saturn is concerned, we do not meet with any features which give to the planet any exceptional interest. The globe is less than that of Jupiter, and as the latter is also much nearer to us, the apparent size of Saturn is in a twofold way much smaller than that of Jupiter. It should also be noticed that, owing to the greater distance of Saturn from the sun, its intrinsic brilliancy is less than that of Jupiter. There are, no doubt, certain marks and bands often to be seen on Saturn, but they are not nearly so striking nor so characteristic as the ever-variable belts upon Jupiter. The telescopic appearance of the globe of Saturn must also be ranked as greatly inferior in interest to that of Mars. The delicacy of detail which we can see on Mars when favourably placed has no parallel whatever in the dim and distant Saturn. Nor has Saturn, regarded again merely as a globe, anything like the interest of Venus. The great splendour of Venus is altogether out of comparison with that of Saturn, while the brilliant crescent of the evening star is infinitely more pleasing than any telescopic view of the globe of Saturn. Yet even while we admit all this to the fullest extent, it does not invalidate the claim of Saturn to be one of the most supremely beautiful and interesting objects in the heavens. This interest is not due to his globe; it is due to that marvellous system of rings by which Saturn is surrounded—a system wonderful from every point of view, and, so far as our knowledge goes, without a parallel in the wide extent of the universe.
To the unaided eye Saturn usually appears like a star of the first magnitude. Its light alone would hardly be sufficient to discriminate it from many of the brighter fixed stars. Yet the ancients were acquainted with Saturn, and they knew it as a planet. It was included with the other four great planets—Mercury, Venus, Mars, and Jupiter—in the group of wanderers, which were bound to no fixed points of the sky like the stars. On account of the great distance of Saturn, its movements are much slower than those of the other planets known to the ancients. Twenty-nine years and a half are required for this distant object to complete its circuit of the heavens; and, though this movement is slow compared with the incessant changes of Venus, yet it is rapid enough to attract the attention of any careful observer. In a single year Saturn moves through a distance of about twelve degrees, a quantity sufficiently large to be conspicuous to casual observation. Even in a month, or sometimes in a week, the planet traverses an arc of the sky which can be detected by anyone who will take the trouble to mark the place of the planet with regard to the stars in its vicinity. Those who are privileged to use accurate astronomical instruments can readily detect the motion of Saturn in a few hours.
The average distance from the sun to Saturn is about 886 millions of miles. The path of Saturn, as of every other planet, is really an ellipse with the sun in one focus. In the case of Saturn the shape of this ellipse is very appreciably different from a purely circular path. Around this path Saturn moves with an average velocity of 5.96 miles per second.
The mean diameter of the globe of Saturn is about 71,000 miles. Its equatorial diameter is about 75,000 miles, and its polar diameter 67,000 miles—the ratio of these numbers being approximately that of 10 to 9. It is thus obvious that Saturn departs from the truly spherical shape to a very marked extent. The protuberance at its equator must, no doubt, be attributed to the high velocity with which the planet is rotating. The velocity of rotation of Saturn is more than double as fast as that of the earth, though it is not quite so fast as that of Jupiter. Saturn makes one complete rotation in about 10 hrs. 14 min. Mr. Stanley Williams has, however, observed with great care a number of spots which he has discovered, and he finds that some of these spots in about 27 deg. north latitude indicate rotation in a period of 10 hrs. 14 mins. to 15 min., while equatorial spots require no more than 10 hrs. 12 min. to 13 min. There is, however, the peculiarity that spots in the same latitude, but at different parts of the planet, rotate at rates which differ by a minute or more, while the period found by various groups of spots seems to change from year to year.
These facts prove that Saturn and the spots do not form a rigid system. The lightness of this planet is such as to be wholly incompatible with the supposition that its globe is constituted of solid materials at all comparable with those of which the crust of our earth is composed. The satellites, which surround Saturn and form a system only less interesting than the renowned rings themselves, enable us to weigh the planet in comparison with the sun, and hence to deduce its actual mass relatively to the earth. The result is not a little remarkable. It appears that the density of the earth is eight times as great as that of Saturn. In fact, the density of the latter is less than that of water itself, so that a mighty globe of water, equal in bulk to Saturn, would actually weigh more. If we could conceive a vast ocean into which a globe equal to Saturn in size and weight were cast, the great globe would not sink like our earth or like any of the other planets; it would float buoyantly at the surface with one-fourth of its bulk out of the water.
We thus learn with high probability that what our telescopes show upon Saturn is not a solid surface, but merely a vast envelope of clouds surrounding a heated interior. It is impossible to resist the suggestion that this planet, like Jupiter, has still retained its heat because its mass is so large. We must, however, allude to a circumstance which perhaps may seem somewhat inconsistent with the view here taken. We have found that Jupiter and Saturn are, both of them, much less dense than the earth. When we compare the two planets together, it appears that Saturn is much less dense than Jupiter. In fact, every cubic mile of Jupiter weighs nearly twice as much as each cubic mile of Saturn. This would seem to point to the conclusion that Saturn is the more heated of the two bodies. Yet, as Jupiter is the larger, it might more reasonably have been expected to be hotter than the other planet. We do not attempt to reconcile this discrepancy; in fact, in our ignorance as to the material constitution of these bodies, it would be idle to discuss the question.
Even if we allow for the lightness of Saturn, as compared bulk for bulk with the earth, yet the volume of Saturn is so enormous that the planet weighs more than ninety-five times as much as the earth. The adjoining view represents the relative sizes of Saturn and the earth (Fig. 65).
As the unaided eye discloses none of those marvels by which Saturn is surrounded, the interest which attaches to this planet may be said to commence from the time when it began to be observed with the telescope. The history must be briefly alluded to, for it was only by degrees that the real nature of this complicated object was understood. When Galileo completed his little refracting telescope, which, though it only magnified thirty times, was yet an enormous addition to the powers of unaided vision, he made with it his memorable review of the heavens. He saw the spots on the sun and the mountains on the moon; he noticed the crescent of Venus and the satellites of Jupiter. Stimulated and encouraged by such brilliant discoveries, he naturally sought to examine the other planets, and accordingly directed his telescope to Saturn. Here, again, Galileo at once made a discovery. He saw that Saturn presented a visible form like the other planets, but that it differed from any other telescopic object, inasmuch as it appeared to him to be composed of three bodies which always touched each other and always maintained the same relative positions. These three bodies were in a line—the central one was the largest, and the two others were east and west of it. There was nothing he had hitherto seen in the heavens which filled his mind with such astonishment, and which seemed so wholly inexplicable.
In his endeavours to understand this mysterious object, Galileo continued his observations during the year 1610, and, to his amazement, he saw the two lesser bodies gradually become smaller and smaller, until, in the course of the two following years, they had entirely vanished, and the planet simply appeared with a round disc like Jupiter. Here, again, was a new source of anxiety to Galileo. He had at that day to contend against the advocates of the ancient system of astronomy, who derided his discoveries and refused to accept his theories. He had announced his observation of the composite nature of Saturn; he had now to tell of the gradual decline and the ultimate extinction of these two auxiliary globes, and he naturally feared that his opponents would seize the opportunity of pronouncing that the whole of his observations were illusory.[25] "What," he remarks, "is to be said concerning so strange a metamorphosis? Are the two lesser stars consumed after the manner of the solar spots? Have they vanished and suddenly fled? Has Saturn perhaps, devoured his own children? Or were the appearances indeed illusion or fraud, with which the glasses have so long deceived me, as well as many others to whom I have shown them? Now, perhaps, is the time come to revive the well-nigh withered hopes of those who, guided by more profound contemplations, have discovered the fallacy of the new observations, and demonstrated the utter impossibility of their existence. I do not know what to say in a case so surprising, so unlooked for, and so novel. The shortness of the time, the unexpected nature of the event, the weakness of my understanding, and the fear of being mistaken, have greatly confounded me."
But Galileo was not mistaken. The objects were really there when he first began to observe, they really did decline, and they really disappeared; but this disappearance was only for a time—they again came into view. They were then subjected to ceaseless examination, until gradually their nature became unfolded. With increased telescopic power it was found that the two bodies which Galileo had described as globes on either side of Saturn were not really spherical—they were rather two luminous crescents with the concavity of each turned towards the central globe. It was also perceived that these objects underwent a remarkable series of periodic changes. At the beginning of such a series the planet was found with a truly circular disc. The appendages first appeared as two arms extending directly outwards on each side of the planet; then these arms gradually opened into two crescents, resembling handles to the globe, and attained their maximum width after about seven or eight years; then they began to contract, until after the lapse of about the same time they vanished again.
The true nature of these objects was at length discovered by Huyghens in 1655, nearly half a century after Galileo had first detected their appearance. He perceived the shadow thrown by the ring upon the globe, and his explanation of the phenomena was obtained in a very philosophical manner. He noticed that the earth, the sun, and the moon rotated upon their axes, and he therefore regarded it as a general law that each one of the bodies in the system rotates about an axis. It is true, observations had not yet been made which actually showed that Saturn was also rotating; but it would be highly, nay, indeed, infinitely, improbable that any planet should be devoid of such movement. All the analogies of the system pointed to the conclusion that the velocity of rotation would be considerable. One satellite of Saturn was already known to revolve in a period of sixteen days, being little more than half our month. Huyghens assumed—and it was a most reasonable assumption—that Saturn in all probability rotated rapidly on its axis. It was also to be observed that if these remarkable appendages were attached by an actual bodily connection to the planet they must rotate with Saturn. If, however, the appendages were not actually attached it would still be necessary that they should rotate if the analogy of Saturn to other objects in the system were to be in any degree preserved. We see satellites near Jupiter which revolve around him. We see, nearer home, how the moon revolves around the earth. We see how all the planetary system revolves around the sun. All these considerations were present to Huyghens when he came to the conclusion that, whether the curious appendages were actually attached to the planet or were physically free from it, they must still be in rotation.
Provided with such reasonings, it soon became easy to conjecture the true nature of the Saturnian system. We have seen how the appendages declined to invisibility once every fifteen years, and then gradually reappeared in the form, at first, of rectilinear arms projecting outwards from the planet. The progressive development is a slow one, and for weeks and months, night after night, the same appearance is presented with but little change. But all this time both Saturn and the mysterious objects around him are rotating. Whatever these may be, they present the same appearance to the eye, notwithstanding their ceaseless motion of rotation.
What must be the shape of an object which satisfies the conditions here implied? It will obviously not suffice to regard the projections as two spokes diverging from the planet. They would change from visibility to invisibility in every rotation, and thus there would be ceaseless alterations of the appearance instead of that slow and gradual change which requires fifteen years for a complete period. There are, indeed, other considerations which preclude the possibility of the objects being anything of this character, for they are always of the same length as compared with the diameter of the planet. A little reflection will show that one supposition—and indeed only one—will meet all the facts of the case. If there were a thin symmetrical ring rotating in its own plane around the equator of Saturn, then the persistence of the object from night to night would be accounted for. This at once removes the greater part of the difficulty. For the rest, it was only necessary to suppose that the ring was so thin that when turned actually edgewise to the earth it became invisible, and then as the illuminated side of the plane became turned more and more towards the earth the appendages to the planet gradually increased. The handle-shaped appearance which the object periodically assumed demonstrated that the ring could not be attached to the globe.
At length Huyghens found that he had the clue to the great enigma which had perplexed astronomers for the last fifty years. He saw that the ring was an object of astonishing interest, unique at that time, as it is, indeed, unique still. He felt, however, that he had hardly demonstrated the matter with all the certainty which it merited, and which he thought that by further attention he could secure. Yet he was loath to hazard the loss of his discovery by an undue postponement of its announcement, lest some other astronomer might intervene. How, then, was he to secure his priority if the discovery should turn out correct, and at the same time be enabled to perfect it at his leisure? He adopted the course, usual at the time, of making his first announcement in cipher, and accordingly, on March 5th, 1656, he published a tract, which contained the following proposition:—
aaaaaaa ccccc d eeeee g h iiiiiii llll mm nnnnnnnnn oooo pp q rr s ttttt uuuuu
Perhaps some of those curious persons whose successors now devote so much labour to double acrostics may have pondered on this renowned cryptograph, and even attempted to decipher it. But even if such attempts were made, we do not learn that they were successful. A few years of further study were thus secured to Huyghens. He tested his theory in every way that he could devise, and he found it verified in every detail. He therefore thought that it was needless for him any longer to conceal from the world his great discovery, and accordingly in the year 1659—about three years after the appearance of his cryptograph—he announced the interpretation of it. By restoring the letters to their original arrangement the discovery was enunciated in the following words:—"Annulo cingitur, tenui, plano, nusquam cohaerente, ad eclipticam inclinato," which may be translated into the statement:—"The planet is surrounded by a slender flat ring everywhere distinct from its surface, and inclined to the elliptic." |
|