p-books.com
The Story of the Heavens
by Robert Stawell Ball
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13     Next Part
Home - Random Browse

We must here endeavour to remove what may at first sight appear to be a paradox. How is it, that though the sodium flame produces two bright lines when viewed in the absence of other light, yet it actually appears to intensify the two dark lines in the sun's spectrum? The explanation of this leads us at once to the cardinal doctrine of spectrum analysis. The so-called dark lines in the solar spectrum are only dark by contrast with the brilliant illumination of the rest of the spectrum. A good deal of solar light really lies in the dark lines, though not enough to be seen when the eye is dazzled by the brilliancy around. When the flame of the spirit-lamp charged with sodium intervenes, it sends out a certain amount of light, which is entirely localised in these two lines. So far it would seem that the influence of the sodium flame ought to be manifested in diminishing the darkness of the lines and rendering them less conspicuous. As a matter of fact, they are far more conspicuous with the sodium flame than without it. This arises from the fact that the sodium flame possesses the remarkable property of cutting off the sunlight which was on its way to those particular lines; so that, though the sodium contributes some light to the lines, yet it intercepts a far greater quantity of the light that would otherwise have illuminated those lines, and hence they became darker with the sodium flame than without it.

We are thus conducted to a remarkable principle, which has led to the interpretation of the dark lines in the spectrum of the sun. We find that when the sodium vapour is heated, it gives out light of a very particular type, which, viewed through the prism, is concentrated in two lines. But the sodium vapour possesses also this property, that light from the sun can pass through it without any perceptible absorption, except of those particular rays which are of the same characters as the two lines in question. In other words, we say that if the heated vapour of a substance gives a spectrum of bright lines, corresponding to lights of various kinds, this same vapour will act as an opaque screen to lights of those special kinds, while remaining transparent to light of every other description.

This principle is of such importance in the theory of spectrum analysis that we add a further example. Let us take the element iron, which in a very striking degree illustrates the law in question. In the solar spectrum some hundreds of the dark lines are known to correspond with the spectrum of iron. This correspondence is exhibited in a vivid manner when, by a suitable contrivance, the light of an electric spark from poles of iron is examined in the spectroscope side by side with the solar spectrum. The iron lines in the sun are identical in position with the lines in the spectrum of glowing iron vapour. But the spectrum of iron, as here described, consists of bright lines; while those with which it is compared in the sun are dark on a bright background. They can be completely understood if we suppose the vapour arising from intensely heated iron to be present in the atmosphere which surrounds the luminous strata on the sun. This vapour would absorb or stop precisely the same rays as it emits when incandescent, and hence we learn the important fact that iron, no less than sodium, must, in one form or another, be a constituent of the sun.

Such is, in brief outline, the celebrated discovery of modern times which has given an interpretation to the dark lines of the solar spectrum. The spectra of a large number of terrestrial substances have been examined in comparison with the solar spectrum, and thus it has been established that many of the elements known on the earth are present in the sun. We may mention calcium, iron, hydrogen, sodium, carbon, nickel, magnesium, cobalt, aluminium, chromium, strontium, manganese, copper, zinc, cadmium, silver, tin, lead, potassium. Some of the elements which are of the greatest importance on the earth would appear to be missing from the sun. Sulphur, phosphorus, mercury, gold, nitrogen may be mentioned among the elements which have hitherto given no indication of their being solar constituents.

It is also possible that the lines of a substance in the sun's atmosphere may be so very bright that the light of the continuous spectrum, on which they are superposed, is not able to "reverse" them—i.e. turn them into dark lines. We know, for instance, that the bright lines of sodium vapour may be made so intensely bright that the spectrum of an incandescent lime-cylinder placed behind the sodium vapour does not reverse these lines. If, then, we make the sodium lines fainter, they may be reduced to exactly the intensity prevailing in that part of the spectrum of the lime-light, in which case the lines, of course, could not be distinguished. The question as to what elements are really missing from the sun must therefore, like many other questions concerning our great luminary, at present be considered an open one. We shall shortly see that an element previously unknown has actually been discovered by means of a line representing it in the solar spectrum.

Let us now return to the sun-spots and see what the spectroscope can teach us as to their nature. We attach a powerful spectroscope to the eye-end of a telescope in order to get as much light as possible concentrated on the slit; the latter has therefore to be placed exactly at the focus of the object-glass. The instrument is then pointed to a spot, so that its image falls on the slit, and the presence of the dark central part called the umbra reveals itself by a darkish stripe which traverses the ordinary sun-spectrum from end to end. It is bordered on both sides by the spectrum of the penumbra, which is much brighter than that of the umbra, but fainter than that of the adjoining regions of the sun.

From the fact that the spectrum is darkened we learn that there is considerable general absorption of light in the umbra. This absorption is not, however, such as would be caused by the presence of volumes of minute solid or liquid particles like those which constitute smoke or cloud. This is indicated by the fact, first discovered by Young in 1883, that the spectrum is not uniformly darkened as it would be if the absorption were caused by floating particles. In the course of examination of many large and quiescent spots, he perceived that the middle green part of the spectrum was crossed by countless fine, dark lines, generally touching each other, but here and there separated by bright intervals. Each line is thicker in the middle (corresponding to the centre of the spot) and tapers to a fine thread at each end; indeed, most of these lines can be traced across the spectrum of the penumbra and out on to that of the solar surface. The absorption would therefore seem to be caused by gases at a much lower temperature than that of the gases present outside the spot.

In the red and yellow parts of the spot-spectrum, which have been specially studied for many years by Sir Norman Lockyer at the South Kensington Observatory, interesting details are found which confirm this conclusion. Many of the dark lines are not thicker and darker in the spot than they are in the ordinary sun-spectrum, while others are very much thickened in the spot-spectrum, such as the lines of iron, calcium, and sodium. The sodium lines are sometimes both widened and doubly reversed—that is, on the thick dark line a bright line is superposed. The same peculiarity is not seldom seen in the notable calcium lines H and K at the violet end of the spectrum. These facts indicate the presence of great masses of the vapours of sodium and calcium over the nucleus. The observations at South Kensington have also brought to light another interesting peculiarity of the spot-spectra. At the time of minimum frequency of spots the lines of iron and other terrestrial elements are prominent among the most widened lines; at the maxima these almost vanish, and the widening is found only amongst lines of unknown origin.

The spectroscope has given us the means of studying other interesting features on the sun, which are so faint that in the full blaze of sunlight they cannot be readily observed with a mere telescope. We can, however, see them easily enough when the brilliant body of the sun is obscured during the rare occurrence of a total eclipse. The conditions necessary for the occurrence of an eclipse will be more fully considered in the next chapter. For the present it will be sufficient to observe that by the movement of the moon it may so happen that the moon completely hides the sun, and thus for certain parts of the earth produces what we call a total eclipse. The few minutes during which a total eclipse lasts are of much interest to the astronomer. Darkness reigns over the landscape, and in that darkness rare and beautiful sights are witnessed.



We have in Fig. 19 a diagram of a total eclipse, showing some of the remarkable objects known as prominences (a, b, c, d, e) which project from behind the dark body of the moon. That they do not belong to the moon, but are solar appendages of some sort, is easily demonstrated. They first appear on the eastern limb at the commencement of totality. Those first seen are gradually more or less covered by the advancing moon, while others peep out behind the western limb of the moon, until totality is over and the sunlight bursts out again, when they all instantly vanish.

The first total eclipse which occurred after the spectroscope had been placed in the hands of astronomers was in 1868. On the 18th August in that year a total eclipse was visible in India. Several observers, armed with spectroscopes, were on the look-out for the prominences, and were able to announce that their spectrum consisted of detached bright lines, thus demonstrating that these objects were masses of glowing gas. On the following day the illustrious astronomer, Janssen, one of the observers of the eclipse, succeeded in seeing the lines in full sunlight, as he now knew exactly where to look for them. Many months before the eclipse Sir Norman Lockyer had been preparing to search for the prominences, as he expected them to yield a line spectrum which would be readily visible, if only the sun's ordinary light could be sufficiently winnowed away. He proposed to effect this by using a spectroscope of great dispersion, which would spread out the continuous spectrum considerably and make it fainter. The effect of the great dispersion on the isolated bright lines he expected to see would be only to widen the intervals between them without interfering with their brightness. The new spectroscope, which he ordered to be constructed for this purpose, was not completed until some weeks after the eclipse was over, though before the news of Janssen's achievement reached Europe from India. When that news did arrive Sir N. Lockyer had already found the spectrum of unseen prominences at the sun's limb. The honour of the practical application of a method of observing solar prominences without the help of an eclipse must therefore be shared between the two astronomers.

When a spectroscope is pointed to the margin of the sun so that the slit is radial, certain short luminous lines become visible which lie exactly in the prolongation of the corresponding dark lines in the solar spectrum. From due consideration of the circumstances it can be shown that the gases which form the prominences are also present as a comparatively shallow atmospheric layer all round the great luminary. This layer is about five or six thousand miles deep, and is situated immediately above the dense layer of luminous clouds which forms the visible surface of the sun and which we call the photosphere. The gaseous envelope from which the prominences spring has been called the chromosphere on account of the coloured lines displayed in its spectrum. Such lines are very numerous, but those pertaining to the single substance, hydrogen, predominate so greatly that we may say the chromosphere consists chiefly of this element. It is, however, to be noted that calcium and one other element are also invariably present, while iron, manganese and magnesium are often apparent. The remarkable element, of which we have not yet mentioned the name, has had an astonishing history.

During the eclipse of 1868 a fine yellow line was noticed among the lines of the prominence spectrum, and it was not unnaturally at first assumed that it must be the yellow sodium line. But when careful observations were afterwards made without hurry in full sunshine, and accurate measures were obtained, it was at once remarked that this line was not identical with either of the components of the double sodium line. The new line was, no doubt, quite close to the sodium lines, but slightly towards the green part of the spectrum. It was also noticed there was not generally any corresponding line to be seen among the dark lines in the ordinary solar spectrum, though a fine dark one has now and then been detected, especially near a sun-spot. Sir Norman Lockyer and Sir Edward Frankland showed that this was not produced by any known terrestrial element. It was, therefore, supposed to be caused by some hitherto unknown body to which the name of helium, or the sun element, was given. About a dozen less conspicuous lines were gradually identified in the spectrum of the prominences and the chromosphere, which appeared also to be caused by this same mysterious helium. These same remarkable lines have in more recent years also been detected in the spectra of various stars.

This gas so long known in the heavens was at last detected on earth. In April, 1895, Professor Ramsay, who with Lord Rayleigh had discovered the new element argon, detected the presence of the famous helium line in the spectrum of the gas liberated by heating the rare mineral known as cleveite, found in Norway. Thus this element, the existence of which had first been detected on the sun, ninety-three million miles away, has at last been proved to be a terrestrial element also.

When it was announced by Runge that the principal line in the spectrum of the terrestrial helium had a faint and very close companion line on the red-ward side, some doubt seemed at first to be cast on the identity of the new terrestrial gas discovered by Ramsay with the helium of the chromosphere. The helium line of the latter had never been noticed to be double. Subsequently, however, several observers provided with very powerful instruments found that the famous line in the chromosphere really had a very faint companion line. Thus the identity between the celestial helium and the gas found on our globe was established in the most remarkable manner. Certain circumstances have seemed to indicate that the new gas might possibly be a mixture of two gases of different densities, but up to the present this has not been proved to be the case.

After it had been found possible to see the spectra of prominences without waiting for an eclipse, Sir W. Huggins, in an observation on the 13th of February, 1869, successfully applied a method for viewing the remarkable solar objects themselves instead of their mere spectra in full sunshine. It is only necessary to adjust the spectroscope so that one of the brightest lines—e.g. the red hydrogen line—is in the middle of the field of the viewing telescope, and then to open wide the slit of the spectroscope. A red image of the prominence will then be displayed instead of the mere line. In fact, when the slit is opened wide, the prisms produce a series of detached images of the prominence under observation, one for each kind of light which the object emits.

We have spoken of the spectroscope as depending upon the action of glass prisms. It remains to be added that in the highest class of spectroscopes the prisms are replaced by ruled gratings from which the light is reflected. The effect of the ruling is to produce by what is known as diffraction the required breaking up of the beam of light into its constituent parts.



Majestic indeed are the proportions of some of those mighty prominences which leap from the luminous surface; yet they flicker, as do our terrestrial flames, when we allow them time comparable to their gigantic dimensions. Drawings of the same prominence made at intervals of a few hours, or even less, often show great changes. The magnitude of the displacements that have been noticed sometimes attains many thousands of miles, and the actual velocity with which such masses move frequently exceeds 100 miles a second. Still more violent are the convulsions when, from the surface of the chromosphere, as from a mighty furnace, vast incandescent masses of gas are projected upwards. Plate IV. gives a view of a number of prominences as seen by Trouvelot at Harvard College Observatory, Cambridge, U.S.A. Trouvelot has succeeded in exhibiting in the different pictures the wondrous variety of aspect which these objects assume. The dimensions of the prominences may be inferred from the scale appended to the plate. The largest of those here shown is fully 80,000 miles high; and trustworthy observers have recorded prominences of an altitude even much greater. The rapid changes which these objects sometimes undergo are well illustrated in the two sketches on the left of the lowest line, which were drawn on April 27th, 1872. These are both drawings of the same prominence taken at an interval no greater than twenty minutes. This mighty flame is so vast that its length is ten times as great as the diameter of the earth, yet in this brief period it has completely changed its aspect; the upper part of the flame has, indeed, broken away, and is now shown in that part of the drawing between the two figures on the line above. The same plate also shows various instances of the remarkable spike-like objects, taken, however, at different times and at various parts of the sun. These spikes attain altitudes not generally greater than 20,000 miles, though sometimes they soar aloft to stupendous distances.

We may refer to one special object of this kind, the remarkable history of which has been chronicled by Professor Young. On October 7th, 1880, a prominence was seen, at about 10.30 a.m., on the south-east limb of the sun. It was then about 40,000 miles high, and attracted no special attention. Half an hour later a marvellous transformation had taken place. During that brief interval the prominence became very brilliant and doubled its length. For another hour the mighty flame still soared upwards, until it attained the unprecedented elevation of 350,000 miles—a distance more than one-third the diameter of the great luminary itself. At this climax the energy of the mighty outbreak seems to have at last become exhausted: the flame broke up into fragments, and by 12.30—an interval of only two hours from the time when it was first noticed—the phenomenon had completely faded away.

No doubt this particular eruption was exceptional in its vehemence, and in the vastness of the changes of which it was an indication. The velocity of upheaval must have been at least 200,000 miles an hour, or, to put it in another form, more than fifty miles a second. This mighty flame leaped from the sun with a velocity more than 100 times as great as that of the swiftest bullet ever fired from a rifle.

The prominences may be generally divided into two classes. We have first those which are comparatively quiescent, and in form somewhat resemble the clouds which float in our earth's atmosphere. The second class of prominences are best described as eruptive. They are, in fact, thrown up from the chromosphere like gigantic jets of incandescent material. These two classes of objects differ not only in appearance but also in the gases of which they are composed. The cloud-like prominences consist mainly of hydrogen, with helium and calcium, while many metals are present in the eruptive discharges. The latter are never seen in the neighbourhood of the sun's poles, but generally appear close to a sun-spot, thus confirming the conclusion that the spots are associated with violent disturbances on the surface of the sun. When a spot has reached the limb of the sun it is frequently found to be surrounded by prominences. It has even been possible in a few instances to detect powerful gaseous eruptions in the neighbourhood of a spot, the spectroscope rendering them visible against the background of the solar surface just as the prominences are observed at the limb against the background of the sky.

In order to photograph a prominence we have, of course, to substitute a photographic plate for the observer's eye. Owing, however, to the difficulty of preventing the feeble light from the prominence from being overpowered by extraneous light, the photography of these bodies was not very successful until Professor Hale, of Chicago, designed his spectro-heliograph. In this instrument there is (in addition to the usual slit through which the light falls on the prisms, or grating,) a second slit immediately in front of the photographic plate through which the light of a given wave-length can be permitted to pass to the exclusion of all the rest. The light chosen for producing an image of the prominences is that radiated in the remarkable "K line," due to calcium. This lies at the extreme end of the violet. The light from that part of the spectrum, though it is invisible to the eye, is much more active photographically than the light from the red, yellow, or green parts of the spectrum. The front slit is adjusted so that the K line falls upon the second slit, and as the front slit is slowly swept by clockwork over the whole of a prominence, the second slit keeps pace with it by a mechanical contrivance.

If the image of the solar disc is hidden by a screen of exactly the proper size, the slits may be made to sweep over the whole sun, thus giving us at one exposure a picture of the chromospheric ring round the sun's limb with its prominences. The screen may now be withdrawn, and the slits may be made to sweep rapidly over the disc itself. They reveal the existence of glowing calcium vapours in many parts of the surface of the sun. Thus we get a striking picture of the sun as drawn by this particular light. In this manner Professor Hale confirmed the observation made long before by Professor Young, that the spectra of faculae always show the two great calcium bands.

The velocity with which a prominence shoots upward from the sun's limb can, of course, be measured directly by observations of the ordinary kind with a micrometer. The spectroscope, however, enables us to estimate the speed with which disturbances at the surface of the sun travel in the direction towards the earth or from the earth. We can measure this speed by watching the peculiar behaviour of the spectral lines representing the rapidly moving masses. This opens up a remarkable line of investigation with important applications in many branches of astronomy.

It is, of course, now generally understood that the sensation of light is caused by waves or undulations which impinge on the retina of the eye after having been transmitted through that medium which we call the ether. To the different colours correspond different wave-lengths—that is to say, different distances between two successive waves. A beam of white light is formed by the union of innumerable different waves whose lengths have almost every possible value lying between certain limits. The wave-length of red light is such that there are 33,000 waves in an inch, while that of violet light is but little more than half that of red light. The position of a line in the spectrum depends solely on the wave-length of the light to which it is due. Suppose that the source of light is approaching directly towards the observer; obviously the waves follow each other more closely than if the source were at rest, and the number of undulations which his eye receives in a second must be proportionately increased. Thus the distance between two successive ether waves will be very slightly diminished. A well-known phenomenon of a similar character is the change of pitch of the whistle of a locomotive engine as it rushes past. This is particularly noticeable if the observer happens to be in a train which is moving rapidly in the opposite direction. In the case of sound, of course, the vibrations or waves take place in the air and not in the ether. But the effect of motion to or from the observer is strictly analogous in the two cases. As, however, light travels 186,000 miles a second, the source of light will also have to travel with a very high velocity in order to produce even the smallest perceptible change in the position of a spectral line.

We have already seen that enormously high velocities are by no means uncommon in some of these mighty disturbances on the sun; accordingly, when we examine the spectrum of a sun-spot, we often see that some of the lines are shifted a little towards one end of the spectrum and sometimes towards the other, while in other cases the lines are seen to be distorted or twisted in the most fantastic manner, indicating very violent local commotions. If the spot happens to be near the centre of the sun's disc, the gases must be shooting upwards or downwards to produce these changes in the lines. The velocities indicated in observations of this class sometimes amount to as much as two or even three hundred miles per second. We find it difficult to conceive the enormous internal pressures which are required to impel such mighty masses of gases aloft from the photosphere with speeds so terrific, or the conditions which bring about the downrush of such gigantic masses of vapour from above. In the spectra of the prominences on the sun's limb also we often see the bright lines bent or shifted to one side. In such cases what we witness is evidently caused by movements along the surface of the chromosphere, conveying materials towards us or away from us.

An interesting application of this beautiful method of measuring the speed of moving bodies has been made in various attempts to determine the period of rotation of the sun spectroscopically. As the sun turns round on its axis, a point on the eastern limb is moving towards the observer and a point on the western limb is moving away from him. In each case the velocity is a little over a mile per second. At the eastern limb the lines in the solar spectrum are very slightly shifted towards the violet end of the spectrum, while the lines in the spectrum of the western limb are equally shifted towards the red end. By an ingenious optical contrivance it is possible to place the spectra from the two limbs side by side, which doubles the apparent displacement, and thus makes it much more easy to measure. Even with this contrivance the visual quantities to be measured remain exceedingly minute. All the parts of the instrument have to be most accurately adjusted, and the observations are correspondingly delicate. They have been attempted by various observers. Among the most successful investigations of this kind we may mention that of the Swedish astronomer, Duner, who, by pointing his instrument to a number of places on the limb, found values in good agreement with the peculiar law of rotation which has been deduced from the motion of sun-spots. This result is specially interesting, as it shows that the atmospheric layers, in which that absorption takes place which produces the dark lines in the spectrum, shares in the motion of the photosphere at the same latitude.



We have yet to mention one other striking phenomenon which is among the chief attractions to observers of total eclipses, and which it has hitherto not been found possible to see in full daylight. This is the corona or aureole of light which is suddenly seen to surround the sun in an eclipse when the moon has completely covered the last remaining crescent of the sun. A general idea of the appearance of the corona is given in Fig. 20, and we further present in Plate V. the drawing of the corona made by Professor Harkness from a comparison of a large number of photographs obtained at different places in the United States during the total eclipse of July 29th, 1878. In Fig. 21 we are permitted by the kindness of Mr. and Mrs. Maunder to reproduce the remarkable photograph of the corona which they obtained in India during the eclipse of January 22nd, 1898.



The part of the corona nearest the sun is very bright, though not so brilliant as the prominences, which (as Professor Young says) blaze through it like carbuncles. This inner portion is generally of fairly regular outline, forming a white ring about a tenth part of the solar diameter in width. The outer parts of the corona are usually very irregular and very extensive. They are often interrupted by narrow "rifts," or narrow dark bands, which reach from the limb of the sun through the entire corona. On the other hand, there are also sometimes narrow bright streamers, inclined at various angles to the limb of the sun and not seldom curved. In the eclipses of 1867, 1878, and 1889, all of which occurred at periods of sun-spot minimum, the corona showed long and faint streamers nearly in the direction of the sun's equator, and short but distinct brushes of light near the poles. In the eclipses of 1870, 1882, and 1893, near sun-spot maxima, the corona was more regularly circular, and chiefly developed over the spot zones. We have here another proof (if one were necessary) of the intimate connection between the periodicity of the spots and the development of all other solar phenomena.

In the spectrum of the corona there is a mysterious line in the green, as to the origin of which nothing is at present certainly known. It is best seen during eclipses occurring near the time of sun-spot maximum. It is presented in the ordinary solar spectrum as a very thin, dark line, which generally remains undisturbed even when lines of hydrogen and other substances are twisted and distorted by the violent rush of disturbed elements. The line is always present among the bright lines of the chromosphere spectrum. In addition to it the corona shows a few other bright lines, belonging, no doubt, to the same unknown element ("coronium"), and also a faint continuous spectrum, in which even a few of the more prominent dark lines of the solar spectrum have been sometimes detected. This shows that in addition to glowing gas (represented by the bright lines) the corona also contains a great deal of matter like dust, or fog, the minute particles of which are capable of reflecting the sunlight and thereby producing a feeble continuous spectrum. This matter seems to form the principal constituent of the long coronal rays and streamers, as the latter are not visible in the detached images of the corona which appear instead of the bright lines when the corona is viewed, or photographed, during an eclipse, in a spectroscope without a slit. If the long rays were composed of the gas or gases which constitute the inner corona, it is evident that they ought to appear in these detached images. As to the nature of the forces which are continually engaged in shooting out these enormously long streamers, we have at present but little information. It is, however, certain that the extensive atmospheric envelope round the sun, which shows itself as the inner corona, must be extremely attenuated. Comets have on several occasions been known to rush through this coronal atmosphere without evincing the slightest appreciable diminution in their speed from the resistance to which they were exposed.

We have accumulated by observation a great number of facts concerning the sun, but when we try to draw from these facts conclusions as to the physical constitution of that great body, it cannot be denied that the difficulties seem to be very great indeed. We find that the best authorities differ considerably in the opinions they entertain as to its nature. We shall here set forth the principal conclusions as to which there is little or no controversy.

We shall see in a following chapter that astronomers have been able to determine the relative densities of the bodies in the solar system; in other words, they have found the relation between the quantities of matter contained in an equally large volume of each. It has thus been ascertained that the average density of the sun is about a quarter that of the earth. If we compare the weight of the sun with that of an equally great globe of water, we find that the luminary would be barely one and a half times as heavy as the water. Of course, the actual mass of the sun is very enormous; it is no less than 330,000 times as great as that of the earth. The solar material itself is, however, relatively light, so that the sun is four times as big as it would have to be if, while its weight remained the same, its density equalled that of the earth. Bearing in mind this lightness of the sun, and also the exceedingly high temperature which we know to prevail there, no other conclusion seems possible than that the body of the sun must be in a gaseous state. The conditions under which such gases exist in the sun are, no doubt, altogether different from those with which we are acquainted on the earth. At the surface of the sun the force of gravity is more than twenty-seven times as great as it is on the earth. A person who on the earth could just lift twenty-seven equal pieces of metal would, if he were transferred to the sun, only be able to lift one of the pieces at a time. The pressure of the gases below the surface must therefore be very great, and it might be supposed that they would become liquefied in consequence. It was, however, discovered by Andrews that so long as a gas is kept at a temperature higher than a certain point, known as the "critical temperature" (which is different for different gases), the gas will not be turned into a liquid however great be the pressure to which it is submitted. The temperature on the sun cannot be lower than the critical temperatures of the gases there existing; so it would seem that even the enormous pressure can hardly reduce the gases in the great luminary to the liquid form.

Of the interior of the sun we can, of course, expect to learn little or nothing. What we observe is the surface-layer, the so-called photosphere, in which the cold of space produces the condensation of the gases into those luminous clouds which we see in our drawings and photographs as "rice grains" or "willow leaves." It has been suggested by Dr. Johnstone Stoney (and afterwards by Professor Hastings, of Baltimore) that these luminous clouds are mainly composed of carbon with those of the related elements silicon and boron, the boiling points of which are much higher than those of other elements which might be considered likely to form the photospheric clouds. The low atomic weight of carbon must also have the effect of giving the molecules of this element a very high velocity, and thereby enabling them to work their way into the upper regions, where the temperature has so fallen that the vapour becomes chilled into cloud. A necessary consequence of the rapid cooling of these clouds, and the consequent radiation of heat on a large scale, would be the formation of what we may perhaps describe as smoke, which settles by degrees through the intervals between the clouds (making these intervals appear darker) until it is again volatilised on reaching a level of greater heat below the clouds. This same smoke is probably the cause of the well-known fact that the solar limb is considerably fainter than the middle of the disc. This seems to arise from the greater absorption caused by the longer distance which a ray of light from a point near the limb has to travel through this layer of smoke before reaching the earth. It is shown that this absorption cannot be attributed to a gaseous atmosphere, since this would have the effect of producing more dark absorption lines in the spectrum. There would thus be a marked difference between the solar spectrum from a part near the middle of the disc and the spectrum from a part near the limb. This, however, we do not find to be the case.

With regard to the nature of sun-spots, the idea first suggested by Secchi and Lockyer, that they represent down rushes of cooler vapours into the photosphere (or to its surface), seems on the whole to accord best with the observed phenomena. We have already mentioned that the spots are generally accompanied by faculae and eruptive prominences in their immediate neighbourhood, but whether these eruptions are caused by the downfall of the vapour which makes the photospheric matter "splash up" in the vicinity, or whether the eruptions come first, and by diminishing the upward pressure from below form a "sink," into which overlying cooler vapour descends, are problems as to which opinions are still much divided.

A remarkable appendage to the sun, which extends to a distance very much greater than that of the corona, produces the phenomenon of the zodiacal light. A pearly glow is sometimes seen in the spring to spread over a part of the sky in the vicinity of the point where the sun has disappeared after sunset. The same spectacle may also be witnessed before sunrise in the autumn, and it would seem as if the material producing the zodiacal light, whatever it may be, had a lens-shaped form with the sun in the centre. The nature of this object is still a matter of uncertainty, but it is probably composed of a kind of dust, as the faint spectrum it affords is of a continuous type. A view of the zodiacal light is shown in Fig. 22.

In all directions the sun pours forth, with the most prodigal liberality, its torrents of light and of heat. The earth can only grasp the merest fraction, less than the 2,000,000,000th part of the whole. Our fellow planets and the moon also intercept a trifle; but how small is the portion of the mighty flood which they can utilise! The sip that a flying swallow takes from a river is as far from exhausting the water in the river as are the planets from using all the heat which streams from the sun.

The sun's gracious beams supply the magic power that enables the corn to grow and ripen. It is the heat of the sun which raises water from the ocean in the form of vapour, and then sends down that vapour as rain to refresh the earth and to fill the rivers which bear our ships down to the ocean. It is the heat of the sun beating on the large continents which gives rise to the breezes and winds that waft our vessels across the deep; and when on a winter's evening we draw around the fire and feel its invigorating rays, we are only enjoying sunbeams which shone on the earth countless ages ago. The heat in those ancient sunbeams developed the mighty vegetation of the coal period, and in the form of coal that heat has slumbered for millions of years, till we now call it again into activity. It is the power of the sun stored up in coal that urges on our steam-engines. It is the light of the sun stored up in coal that beams from every gaslight in our cities.

For the power to live and move, for the plenty with which we are surrounded, for the beauty with which nature is adorned, we are immediately indebted to one body in the countless hosts of space, and that body is the sun.



CHAPTER III.

THE MOON.

The Moon and the Tides—The Use of the Moon in Navigation—The Changes of the Moon—The Moon and the Poets—Whence the Light of the Moon?—Sizes of the Earth and the Moon—Weight of the Moon—Changes in Apparent Size—Variations in its Distance—Influence of the Earth on the Moon—The Path of the Moon—Explanation of the Moon's Phases—Lunar Eclipses—Eclipses of the Sun, how produced—Visibility of the Moon in a Total Eclipse—How Eclipses are Predicted—Uses of the Moon in finding Longitude—The Moon not connected with the Weather—Topography of the Moon—Nasmyth's Drawing of Triesnecker—Volcanoes on the Moon—Normal Lunar Crater—Plato—The Shadows of Lunar Mountains—The Micrometer—Lunar Heights—Former Activity on the Moon—Nasmyth's View of the Formation of Craters—Gravitation on the Moon—Varied Sizes of the Lunar Craters—Other Features of the Moon—Is there Life on the Moon?—Absence of Water and of Air—Dr. Stoney's Theory—Explanation of the Rugged Character of Lunar Scenery—Possibility of Life on Distant Bodies in Space.

If the moon were suddenly struck out of existence, we should be immediately apprised of the fact by a wail from every seaport in the kingdom. From London and from Liverpool we should hear the same story—the rise and fall of the tide had almost ceased. The ships in dock could not get out; the ships outside could not get in; and the maritime commerce of the world would be thrown into dire confusion.

The moon is the principal agent in causing the daily ebb and flow of the tide, and this is the most important work which our satellite has to do. The fleets of fishing boats around the coasts time their daily movements by the tide, and are largely indebted to the moon for bringing them in and out of harbour. Experienced sailors assure us that the tides are of the utmost service to navigation. The question as to how the moon causes the tides is postponed to a future chapter, in which we shall also sketch the marvellous part which the tides seem to have played in the early history of our earth.

Who is there that has not watched, with admiration, the beautiful series of changes through which the moon passes every month? We first see her as an exquisite crescent of pale light in the western sky after sunset. If the night is fine, the rest of the moon is visible inside the crescent, being faintly illumined by light reflected from our own earth. Night after night she moves further and further to the east, until she becomes full, and rises about the same time that the sun sets. From the time of the full the disc of light begins to diminish until the last quarter is reached. Then it is that the moon is seen high in the heavens in the morning. As the days pass by, the crescent shape is again assumed. The crescent wanes thinner and thinner as the satellite draws closer to the sun. Finally she becomes lost in the overpowering light of the sun, again to emerge as the new moon, and again to go through the same cycle of changes.

The brilliance of the moon arises solely from the light of the sun, which falls on the not self-luminous substance of the moon. Out of the vast flood of light which the sun pours forth with such prodigality into space the dark body of the moon intercepts a little, and of that little it reflects a small fraction to illuminate the earth. The moon sheds so much light, and seems so bright, that it is often difficult at night to remember that the moon has no light except what falls on it from the sun. Nevertheless, the actual surface of the brightest full moon is perhaps not much brighter than the streets of London on a clear sunshiny day. A very simple observation will suffice to show that the moon's light is only sunlight. Look some morning at the moon in daylight, and compare the moon with the clouds. The brightness of the moon and of the clouds are directly comparable, and then it can be readily comprehended how the sun which illuminates the clouds has also illumined the moon. An attempt has been made to form a comparative estimate of the brightness of the sun and the full moon. If 600,000 full moons were shining at once, their collective brilliancy would equal that of the sun.

The beautiful crescent moon has furnished a theme for many a poet. Indeed, if we may venture to say so, it would seem that some poets have forgotten that the moon is not to be seen every night. A poetical description of evening is almost certain to be associated with the appearance of the moon in some phase or other. We may cite one notable instance in which a poet, describing an historical event, has enshrined in exquisite verse a statement which cannot be correct. Every child who speaks our language has been taught that the burial of Sir John Moore took place

"By the struggling moonbeams' misty light."

There is an appearance of detail in this statement which wears the garb of truth. We are not inclined to doubt that the night was misty, nor as to whether the moonbeams had to struggle into visibility; the question at issue is a much more fundamental one. We do not know who was the first to raise the point as to whether any moon shone on that memorable event at all or not; but the question having been raised, the Nautical Almanac immediately supplies an answer. From it we learn in language, whose truthfulness constitutes its only claim to be poetry, that the moon was new at one o'clock in the morning of the day of the battle of Corunna (16th January, 1809). The ballad evidently implies that the funeral took place on the night following the battle. We are therefore assured that the moon can hardly have been a day old when the hero was consigned to his grave. But the moon in such a case is practically invisible, and yields no appreciable moonbeams at all, misty or otherwise. Indeed, if the funeral took place at the "dead of night," as the poet asserts, then the moon must have been far below the horizon at the time.[6]

In alluding to this and similar instances, Mr. Nasmyth gives a word of advice to authors or to artists who desire to bring the moon on a scene without knowing as a matter of fact that our satellite was actually present. He recommends them to follow the example of Bottom in A Midsummer's Night's Dream, and consult "a calendar, a calendar! Look in the almanac; find out moonshine, find out moonshine!"



Among the countless host of celestial bodies—the sun, the moon, the planets, and the stars—our satellite enjoys one special claim on our attention. The moon is our nearest permanent neighbour. It is just possible that a comet may occasionally approach the earth more closely than the moon but with this exception the other celestial bodies are all many hundreds or thousands, or even many millions, of times further from us than the moon.

It is also to be observed that the moon is one of the smallest visible objects which the heavens contain. Every one of the thousands of stars that can be seen with the unaided eye is enormously larger than our satellite. The brilliance and apparent vast proportions of the moon arise from the fact that it is only 240,000 miles away, which is a distance almost immeasurably small when compared with the distances between the earth and the stars.

Fig. 23 exhibits the relative sizes of the earth and its attendant. The small globe shows the moon, while the larger globe represents the earth. When we measure the actual diameters of the two globes, we find that of the earth to be 7,918 miles and of the moon 2,160 miles, so that the diameter of the earth is nearly four times greater than the diameter of the moon. If the earth were cut into fifty pieces, all equally large, then one of these pieces rolled into a globe would equal the size of the moon. The superficial extent of the moon is equal to about one thirteenth part of the surface of the earth. The hemisphere our neighbour turns towards us exhibits an area equal to about one twenty-seventh part of the area of the earth. This, to speak approximately, is about double the actual extent of the continent of Europe. The average materials of the earth are, however, much heavier than those contained in the moon. It would take more than eighty globes, each as ponderous as the moon, to weigh down the earth.

Amid the changes which the moon presents to us, one obvious fact stands prominently forth. Whether our satellite be new or full, at first quarter or at last, whether it be high in the heavens or low near the horizon, whether it be in process of eclipse by the sun, or whether the sun himself is being eclipsed by the moon, the apparent size of the latter is nearly constant. We can express the matter numerically. A globe one foot in diameter, at a distance of 111 feet from the observer, would under ordinary circumstances be just sufficient to hide the disc of the moon; occasionally, however, the globe would have to be brought in to a distance of only 103 feet, or occasionally it might have to be moved out to so much as 118 feet, if the moon is to be exactly hidden. It is unusual for the moon to approach either of its extreme limits of position, so that the distance from the eye at which the globe must be situated so as to exactly cover the moon is usually more than 105 feet, and less than 117 feet. These fluctuations in the apparent size of our satellite are contained within such narrow limits that in the first glance at the subject they may be overlooked. It will be easily seen that the apparent size of the moon must be connected with its real distance from the earth. Suppose, for the sake of illustration, that the moon were to recede into space, its size would seem to dwindle, and long ere it had reached the distance of even the very nearest of the other celestial bodies it would have shrunk into insignificance. On the other hand, if the moon were to come nearer to the earth, its apparent size would gradually increase until, when close to our globe, it would seem like a mighty continent stretching over the sky. We find that the apparent size of the moon is nearly constant, and hence we infer that the average distance of the same body is also nearly constant. The average value of that distance is 239,000 miles. In rare circumstances it may approach to a distance but little more than 221,000 miles, or recede to a distance hardly less than 253,000 miles, but the ordinary fluctuations do not exceed more than about 13,000 miles on either side of its mean value.

From the moon's incessant changes we perceive that she is in constant motion, and we now further see that whatever these movements may be, the earth and the moon must at present remain at nearly the same distance apart. If we further add that the path pursued by the moon around the heavens lies nearly in a plane, then we are forced to the conclusion that our satellite must be revolving in a nearly circular path around the earth at the centre. It can, indeed, be shown that the constant distance of the two bodies involves as a necessary condition the revolution of the moon around the earth. The attraction between the moon and the earth tends to bring the two bodies together. The only way by which such a catastrophe can be permanently avoided is by making the satellite move as we actually find it to do. The attraction between the earth and the moon still exists, but its effect is not then shown in bringing the moon in towards the earth. The attraction has now to exert its whole power in restraining the moon in its circular path; were the attraction to cease, the moon would start off in a straight line, and recede never to return.



The fact of the moon's revolution around the earth is easily demonstrated by observations of the stars. The rising and setting of our satellite is, of course, due to the rotation of the earth, and this apparent diurnal movement the moon possesses in common with the sun and with the stars. It will, however, be noticed that the moon is continually changing its place among the stars. Even in the course of a single night the displacement will be conspicuous to a careful observer without the aid of a telescope. The moon completes each revolution around the earth in a period of 27.3 days.



In Fig. 24 we have a view of the relative positions of the earth, the sun, and the moon, but it is to be observed that, for the convenience of illustration, we have been obliged to represent the orbit of the moon on a much larger scale than it ought to be in comparison with the distance of the sun. That half of the moon which is turned towards the sun is brilliantly illuminated, and, according as we see more or less of that brilliant half, we say that the moon is more or less full, the several "phases" being visible in the succession shown by the numbers in Fig. 25. A beginner sometimes finds considerable difficulty in understanding how the light on the full moon at night can have been derived from the sun. "Is not," he will say, "the earth in the way? and must it not intercept the sunlight from every object on the other side of the earth to the sun?" A study of Fig. 24 will explain the difficulty. The plane in which the moon revolves does not coincide with the plane in which the earth revolves around the sun. The line in which the plane of the earth's motion is intersected by that of the moon divides the moon's path into two semicircles. We must imagine the moon's path to be tilted a little, so that the upper semicircle is somewhat above the plane of the paper, and the other semicircle below. It thus follows that when the moon is in the position marked full, under the circumstances shown in the figure, the moon will be just above the line joining the earth and the sun; the sunlight will thus pass over the earth to the moon, and the moon will be illuminated. At new moon, the moon will be under the line joining the earth and the sun.

As the relative positions of the earth and the sun are changing, it happens twice in each revolution that the sun comes into the position of the line of intersection of the two planes. If this occurs at the time of full moon, the earth lies directly between the moon and the sun; the moon is thus plunged into the shadow of the earth, the light from the sun is intercepted, and we say that the moon is eclipsed. The moon sometimes only partially enters the earth's shadow, in which case the eclipse is a partial one. When, on the other hand, the sun is situated on the line of intersection at the time of new moon, the moon lies directly between the earth and the sun, and the dark body of the moon will then cut off the sunlight from the earth, producing a solar eclipse. Usually only a part of the sun is thus obscured, forming the well-known partial eclipse; if, however, the moon pass centrally over the sun, then we must have one or other of two very remarkable kinds of eclipse. Sometimes the moon entirely blots out the sun, and thus is produced the sublime spectacle of a total eclipse, which tells us so much as to the nature of the sun, and to which we have already referred in the last chapter. Even when the moon is placed centrally over the sun, a thin rim of sunlight is occasionally seen round the margin of the moon. We then have what is known as an annular eclipse.

It is remarkable that the moon is sometimes able to hide the sun completely, while on other occasions it fails to do so. It happens that the average apparent size of the moon is nearly equal to the average apparent size of the sun, but, owing to the fluctuations in their distances, the actual apparent sizes of both bodies undergo certain changes. On certain occasions the apparent size of the moon is greater than that of the sun. In this case a central passage produces a total eclipse; but it may also happen that the apparent size of the sun exceeds that of the moon, in which case a central passage can only produce an annular eclipse.



There are hardly any more interesting celestial phenomena than the different descriptions of eclipses. The almanac will always give timely notice of the occurrence, and the more striking features can be observed without a telescope. In an eclipse of the moon (Fig. 26) it is interesting to note the moment when the black shadow is first detected, to watch its gradual encroachment over the bright surface of the moon, to follow it, in case the eclipse is total, until there is only a thin crescent of moonlight left, and to watch the final extinction of that crescent when the whole moon is plunged into the shadow. But now a spectacle of great interest and beauty is often manifested; for though the moon is so hidden behind the earth that not a single direct ray of the sunlight could reach its surface, yet we often find that the moon remains visible, and, indeed, actually glows with a copper-coloured hue bright enough to permit several of the markings on the surface to be discerned.

This illumination of the moon even in the depth of a total eclipse is due to the sunbeams which have just grazed the edge of the earth. In doing so they have become bent by the refraction of the atmosphere, and have thus been turned inwards into the shadow. Such beams have passed through a prodigious thickness of the earth's atmosphere, and in this long journey through hundreds of miles of air they have become tinged with a ruddy or copper-like hue. Nor is this property of our atmosphere an unfamiliar one. The sun both at sunrise and at sunset glows with a light which is much more ruddy than the beams it dispenses at noonday. But at sunset or at sunrise the rays which reach our eyes have much more of our atmosphere to penetrate than they have at noon, and accordingly the atmosphere imparts to them that ruddy colour so characteristic and often so lovely. If the spectrum of the sun when close to the horizon is examined it is seen to be filled with numerous dark lines and bands situated chiefly towards the blue and violet end. These are caused by the increased absorption which the light suffers in the atmosphere, and give rise to the preponderating red light on the sun under such conditions. In the case of the eclipsed moon, the sunbeams have to take an atmospheric journey more than double as long as that at sunrise or sunset, and hence the ruddy glow of the eclipsed moon may be accounted for.

The almanacs give the full particulars of each eclipse that happens in the corresponding year. These predictions are reliable, because astronomers have been carefully observing the moon for ages, and have learned from these observations not only how the moon moves at present, but also how it will move for ages to come. The actual calculations are so complicated that we cannot here discuss them. There is, however, one leading principle about eclipses which is so simple that we must refer to it. The eclipses occurring this year have no very obvious relation to the eclipses that occurred last year, or to those that will occur next year. Yet, when we take a more extended view of the sequence of these phenomena, a very definite principle becomes manifest. If we observe all the eclipses in a period of eighteen years, or nineteen years, then we can predict, with at least an approximation to the truth, all the future eclipses for many years. It is only necessary to recollect that in 6,585-1/3 days after one eclipse a nearly similar eclipse follows. For instance, a beautiful eclipse of the moon occurred on the 5th of December, 1881. If we count back 6,585 days from that date, or, that is, eighteen years and eleven days, we come to November 24th, 1863, and a similar eclipse of the moon took place then. Again, there were four eclipses in the year 1881. If we add 6,585-1/3 days to the date of each eclipse, it will give the dates of all the four eclipses in the year 1899. It was this rule which enabled the ancient astronomers to predict the recurrence of eclipses, at a time when the motions of the moon were not understood nearly so well as they now are.

During a long voyage, and perhaps in critical circumstances, the moon will often render invaluable information to the sailor. To navigate a ship, suppose from Liverpool to China, the captain must frequently determine the precise position which his ship then occupies. If he could not do this, he would never find his way across the trackless ocean. Observations of the sun give him his latitude and tell him his local time, but the captain further requires to know the Greenwich time before he can place his finger at a point of the chart and say, "My ship is here." To ascertain the Greenwich time the ship carries a chronometer which has been carefully rated before starting, and, as a precaution, two or three chronometers are usually provided to guard against the risk of error. An unknown error of a minute in the chronometer might perhaps lead the vessel fifteen miles from its proper course.



It is important to have the means of testing the chronometers during the progress of the voyage; and it would be a great convenience if every captain, when he wished, could actually consult some infallible standard of Greenwich time. We want, in fact, a Greenwich clock which may be visible over the whole globe. There is such a clock; and, like any other clock, it has a face on which certain marks are made, and a hand which travels round that face. The great clock at Westminster shrinks into insignificance when compared with the mighty clock which the captain uses for setting his chronometer. The face of this stupendous dial is the face of the heavens. The numbers engraved on the face of a clock are replaced by the twinkling stars; while the hand which moves over the dial is the beautiful moon herself. When the captain desires to test his chronometer, he measures the distance of the moon from a neighbouring star. For example, he may see that the moon is three degrees from the star Regulus. In the Nautical Almanac he finds the Greenwich time at which the moon was three degrees from Regulus. Comparing this with the indications of the chronometer, he finds the required correction.

There is one widely-credited myth about the moon which must be regarded as devoid of foundation. The idea that our satellite and the weather bear some relation has no doubt been entertained by high authority, and appears to be an article in the belief of many an excellent mariner. Careful comparison between the state of the weather and the phases of the moon has, however, quite discredited the notion that any connection of the kind does really exist.

We often notice large blank spaces on maps of Africa and of Australia which indicate our ignorance of parts of the interior of those great continents. We can find no such blank spaces in the map of the moon. Astronomers know the surface of the moon better than geographers know the interior of Africa. Every spot on the face of the moon which is as large as an English parish has been mapped, and all the more important objects have been named.

A general map of the moon is shown in Plate VI. It has been based upon drawings made with small telescopes, and it gives an entire view of that side of our satellite which is presented towards us. The moon is shown as it appears in an astronomical telescope, which inverts everything, so that the south is at the top and the north at the bottom (to show objects upright a telescope requires an additional pair of lenses in the eye-piece, and as this diminishes the amount of light reaching the eye they are dispensed with in astronomical telescopes). We can see on the map some of the characteristic features of lunar scenery. Those dark regions so conspicuous in the ordinary full moon are easily recognised on the map. They were thought to be seas by astronomers before the days of telescopes, and indeed the name "Mare" is still retained, though it is obvious that they contain no water at present. The map also shows certain ridges or elevated portions, and when we apply measurement to these objects we learn that they must be mighty mountain ranges. But the most striking features on the moon are those ring-like objects which are scattered over the surface in profusion. These are known as the lunar craters.

To facilitate reference to the chief points of interest we have arranged an index map (Fig. 27) which will give a clue to the names of the several objects depicted upon the plate. The so-called seas are represented by capital letters; so that A is the Mare Crisium, and H the Oceanus Procellarum. The ranges of mountains are indicated by small letters; thus a on the index is the site of the so-called Caucasus mountains, and similarly the Apennines are denoted by c. The numerous craters are distinguished by numbers; for example, the feature on the map corresponding to 20 on the index is the crater designated Ptolemy.

A. Mare Crisium. B. Mare Foecunditatis. C. Mare Tranquillitatis. D. Mare Serenitatis. E. Mare Imbrium. F. Sinus Iridum. G. Mare Vaporum. H. Oceanus Procellarum. I. Mare Humorum. J. Mare Nubium. K. Mare Nectaris.

a. Caucasus. b. Alps. c. Apennines. d. Carpathians. f. Cordilleras & D'Alembert mountains. g. Rook mountains. h. Doerfel mountains. i. Leibnitz mountains.

1. Posidonius. 2. Linne. 3. Aristotle. 4. Great Valley of the Alps. 5. Aristillus. 6. Autolycus. 7. Archimedes. 8. Plato. 9. Eratosthenes. 10. Copernicus. 11. Kepler. 12. Aristarchus. 13. Grimaldi. 14. Gassendi. 15. Schickard. 16. Wargentin. 17. Clavius. 18. Tycho. 19. Alphonsus. 20. Ptolemy. 21. Catharina. 22. Cyrillus. 23. Theophilus. 24. Petavius. 25. Hyginus. 26. Triesnecker.

In every geographical atlas there is a map showing the two hemispheres of the earth, the eastern and the western. In the case of the moon we can only give a map of one hemisphere, for the simple reason that the moon always turns the same side towards us, and accordingly we never get a view of the other side. This is caused by the interesting circumstance that the moon takes exactly the same time to turn once round its own axis as it takes to go once round the earth. The rotation is, however, performed with uniform speed, while the moon does not move in its orbit with a perfectly uniform velocity (see Chapter IV.). The consequence is that we now get a slight glimpse round the east limb, and now a similar glimpse round the west limb, as if the moon were shaking its head very gently at us. But it is only an insignificant margin of the far side of the moon which this libration permits us to examine.

Lunar objects are well suited for observation when the sunlight falls upon them in such a manner as to exhibit strongly contrasted lights and shadows. It is impossible to observe the moon satisfactorily when it is full, for then no conspicuous shadows are cast. The most opportune moment for seeing any particular lunar object is when it lies just at the illuminated side of the boundary between light and shade, for then the features are brought out with exquisite distinctness.

Plate VII.[7] gives an illustration of lunar scenery, the object represented being known to astronomers by the name of Triesnecker. The district included is only a very small fraction of the entire surface of the moon, yet the actual area is very considerable, embracing as it does many hundreds of square miles. We see in it various ranges of lunar mountains, while the central object in the picture is one of those remarkable lunar craters which we meet with so frequently in every lunar landscape. This crater is about twenty miles in diameter, and it has a lofty mountain in the centre, the peak of which is just illuminated by the rising sun in that phase of our satellite which is represented in the picture.

A typical view of a lunar crater is shown in Plate VIII. This is, no doubt, a somewhat imaginary sketch. The point of view from which the artist is supposed to have taken the picture is one quite unattainable by terrestrial astronomers, yet there can be little doubt that it is a fair representation of objects on the moon. We should, however, recollect the scale on which it is drawn. The vast crater must be many miles across, and the mountain at its centre must be thousands of feet high. The telescope will, even at its best, only show the moon as well as we could see it with the unaided eye if it were 250 miles away instead of being 240,000. We must not, therefore, expect to see any details on the moon even with the finest telescopes, unless they were coarse enough to be visible at a distance of 250 miles. England from such a point of view would only show London as a coloured spot, in contrast with the general surface of the country.

We return, however, from a somewhat fancy sketch to a more prosaic examination of what the telescope does actually reveal. Plate IX. represents the large crater Plato, so well known to everyone who uses a telescope. The floor of this remarkable object is nearly flat, and the central mountain, so often seen in other craters, is entirely wanting. We describe it more fully in the general list of lunar objects.

The mountain peaks on the moon throw long, well-defined shadows, characterised by a sharpness which we do not find in the shadows of terrestrial objects. The difference between the two cases arises from the absence of air from the moon. Our atmosphere diffuses a certain amount of light, which mitigates the blackness of terrestrial shadows and tends to soften their outline. No such influences are at work on the moon, and the sharpness of the shadows is taken advantage of in our attempts to measure the heights of the lunar mountains.

It is often easy to compute the altitude of a church steeple, a lofty chimney, or any similar object, from the length of its shadow. The simplest and the most accurate process is to measure at noon the number of feet from the base of the object to the end of the shadow. The elevation of the sun at noon on the day in question can be obtained from the almanac, and then the height of the object follows by a simple calculation. Indeed, if the observations can be made either on the 6th of April or the 6th of September, at or near the latitude of London, then calculations would be unnecessary. The noonday length of the shadow on either of the dates named is equal to the altitude of the object. In summer the length of the noontide shadow is less than the altitude; in winter the length of the shadow exceeds the altitude. At sunrise or sunset the shadows are, of course, much longer than at noon, and it is shadows of this kind that we observe on the moon. The necessary measurements are made by that indispensable adjunct to the equatorial telescope known as the micrometer.

This word denotes an instrument for measuring small distances. In one sense the term is not a happy one. The objects to which the astronomer applies the micrometer are usually anything but small. They are generally of the most transcendent dimensions, far exceeding the moon or the sun, or even our whole system. Still, the name is not altogether inappropriate, for, vast though the objects may be, they generally seem minute, even in the telescope, on account of their great distance.

We require for such measurements an instrument capable of the greatest nicety. Here, again, we invoke the aid of the spider, to whose assistance in another department we have already referred. In the filar micrometer two spider lines are parallel, and one intersects them at right angles. One or both of the parallel lines can be moved by means of screws, the threads of which have been shaped by consummate workmanship. The distance through which the line has been moved is accurately indicated by noting the number of revolutions and parts of a revolution of the screw. Suppose the two lines be first brought into coincidence, and then separated until the apparent length of the shadow of the mountain on the moon is equal to the distance between the lines: we then know the number of revolutions of the micrometer screw which is equivalent to the length of the shadow. The number of miles on the moon which correspond to one revolution of the screw has been previously ascertained by other observations, and hence the length of the shadow can be determined. The elevation of the sun, as it would have appeared to an observer at this point of the moon, at the moment when the measures were being made, is also obtainable, and hence the actual elevation of the mountain can be calculated. By measurements of this kind the altitudes of other lunar objects, such, for example, as the height of the rampart surrounding a circular-walled plane, can be determined.

The beauty and interest of the moon as a telescopic object induces us to give to the student a somewhat detailed account of the more remarkable features which it presents. Most of the objects we are to describe can be effectively exhibited with very moderate telescopic power. It is, however, to be remembered that all of them cannot be well seen at one time. The region most distinctly shown is the boundary between light and darkness. The student will, therefore, select for observation such objects as may happen to lie near that boundary at the time when he is observing.

1. Posidonius.—The diameter of this large crater is nearly 60 miles. Although its surrounding wall is comparatively slender, it is so distinctly marked as to make the object very conspicuous. As so frequently happens in lunar volcanoes, the bottom of the crater is below the level of the surrounding plain, in the present instance to the extent of nearly 2,500 feet.

2. Linne.—This small crater lies in the Mare Serenitatis. About sixty years ago it was described as being about 6-1/2 miles in diameter, and seems to have been sufficiently conspicuous. In 1866 Schmidt, of Athens, announced that the crater had disappeared. Since then an exceedingly small shallow depression has been visible, but the whole object is now very inconsiderable. This seems to be the most clearly attested case of change in a lunar object. Apparently the walls of the crater have tumbled into the interior and partly filled it up, but many astronomers doubt that a change has really taken place, as Schroeter, a Hanoverian observer at the end of the eighteenth century, appears not to have seen any conspicuous crater in the place, though it must be admitted that his observations are rather incomplete. To give some idea of Schmidt's amazing industry in lunar researches, it may be mentioned that in six years he made nearly 57,000 individual settings of his micrometer in the measurement of lunar altitudes. His great chart of the mountains in the moon is based on no less than 2,731 drawings and sketches, if those are counted twice that may have been used for two divisions of the map.

3. Aristotle.—This great philosopher's name has been attached to a grand crater 50 miles in diameter, the interior of which, although very hilly, shows no decidedly marked central cone. But the lofty wall of the crater, exceeding 10,500 feet in height, overshadows the floor so continuously that its features are never seen to advantage.

4. The Great Valley of the Alps.—A wonderfully straight valley, with a width ranging from 3-1/2 to 6 miles, runs right through the lunar Alps. It is, according to Maedler, at least 11,500 feet deep, and over 80 miles in length. A few low ridges which are parallel to the sides of the valley may possibly be the result of landslips.

5. Aristillus.—Under favourable conditions Lord Rosse's great telescope has shown the exterior of this magnificent crater to be scored with deep gullies radiating from its centre. Aristillus is about 34 miles wide and 10,000 feet in depth.

6. Autolycus is somewhat smaller than the foregoing, to which it forms a companion in accordance with what Maedler thought a well-defined relation amongst lunar craters, by which they frequently occurred in pairs, with the smaller one more usually to the south. Towards the edge this arrangement is generally rather apparent than real, and is merely a result of foreshortening.

7. Archimedes.—This large plain, about 50 miles in diameter, has its vast smooth interior divided by unequally bright streaks into seven distinct zones, running east and west. There is no central mountain or other obvious internal sign of former activity, but its irregular wall rises into abrupt towers, and is marked outside by decided terraces.



8. Plato.—We have already referred to this extensive circular plain, which is noticeable with the smallest telescope. The average height of the rampart is about 3,800 feet on the eastern side; the western side is somewhat lower, but there is one peak rising to the height of nearly 7,300 feet. The plain girdled by this vast rampart is of ample proportions. It is a somewhat irregular circle, about 60 miles in diameter, and containing an area of 2,700 square miles. On its floor the shadows of the western wall are shown in Plate IX., as are also three of the small craters, of which a large number have been detected by persevering observers. The narrow sharp line leading from the crater to the left is one of those remarkable "clefts" which traverse the moon in so many directions. Another may be seen further to the left. Above Plato are several detached mountains, the loftiest of which is Pico, about 8,000 feet in height. Its long and pointed shadow would at first sight lead one to suppose that it must be very steep; but Schmidt, who specially studied the inclinations of the lunar slopes, is of opinion that it cannot be nearly so steep as many of the Swiss mountains that are frequently ascended. As many as thirty minute craters have been carefully observed on the floor of Plato, and variations have been thought by Mr. W.H. Pickering to be perceptible.

9. Eratosthenes.—This profound crater, upwards of 37 miles in diameter, lies at the end of the gigantic range of the Apennines. Not improbably, Eratosthenes once formed the volcanic vent for the stupendous forces that elevated the comparatively craterless peaks of these great mountains.

10. Copernicus.—Of all the lunar craters this is one of the grandest and best known. The region to the west is dotted over with innumerable minute craterlets. It has a central many-peaked mountain about 2,400 feet in height. There is good reason to believe that the terracing shown in its interior is mainly due to the repeated alternate rise, partial congelation, and subsequent retreat of a vast sea of lava. At full moon the crater of Copernicus is seen to be surrounded by radiating streaks.

11. Kepler.—Although the internal depth of this crater is scarcely less than 10,000 feet, it has but a very low surrounding wall, which is remarkable for being covered with the same glistening substance that also forms a system of bright rays not unlike those surrounding the last object.

12. Aristarchus is the most brilliant of the lunar craters, being specially vivid with a low power in a large telescope. So bright is it, indeed, that it has often been seen on the dark side just after new moon, and has thus given rise to marvellous stories of active lunar volcanoes. To the south-east lies another smaller crater, Herodotus, north of which is a narrow, deep valley, nowhere more than 2-1/2 miles broad, which makes a remarkable zigzag. It is one of the largest of the lunar "clefts."

13. Grimaldi calls for notice as the darkest object of its size in the moon. Under very exceptional circumstances it has been seen with the naked eye, and as its area has been estimated at nearly 14,000 square miles, it gives an idea of how little unaided vision can discern in the moon; it must, however, be added that we always see Grimaldi considerably foreshortened.

14. The great crater Gassendi has been very frequently mapped on account of its elaborate system of "clefts." At its northern end it communicates with a smaller but much deeper crater, that is often filled with black shadow after the whole floor of Gassendi has been illuminated.

15. Schickard is one of the largest walled plains on the moon, about 134 miles in breadth. Within its vast expanse Maedler detected 23 minor craters. With regard to this object Chacornac pointed out that, owing to the curvature of the surface of the moon, a spectator at the centre of the floor "would think himself in a boundless desert," because the surrounding wall, although in one place nearly 10,000 feet high, would lie entirely beneath his horizon.

16. Close to the foregoing is Wargentin. There can be little doubt that this is really a huge crater almost filled with congealed lava, as there is scarcely any fall towards the interior.

17. Clavius.—Near the 60th parallel of lunar south latitude lies this enormous enclosure, the area of which is not less than 16,500 square miles. Both in its interior and on its walls are many peaks and secondary craters. The telescopic view of a sunrise upon the surface of Clavius is truly said by Maedler to be indescribably magnificent. One of the peaks rises to a height of 24,000 feet above the bottom of one of the included craters. Maedler even expressed the opinion that in this wild neighbourhood there are craters so profound that no ray of sunlight ever penetrated their lowest depths, while, as if in compensation, there are peaks whose summits enjoy a mean day almost twice as long as their night.

18. If the full moon be viewed through an opera-glass or any small hand-telescope, one crater is immediately seen to be conspicuous beyond all others, by reason of the brilliant rays or streaks that radiate from it. This is the majestic Tycho, 17,000 feet in depth and 50 miles in diameter (Plate X.). A peak 6,000 feet in height rises in the centre of its floor, while a series of terraces diversity its interior slopes; but it is the mysterious bright rays that chiefly surprise us. When the sun rises on Tycho, these streaks are utterly invisible; indeed, the whole object is then so obscure that it requires a practised eye to recognise Tycho amidst its mountainous surroundings. But as soon as the sun has attained a height of about 30 deg. above its horizon, the rays emerge from their obscurity and gradually increase in brightness until the moon becomes full, when they are the most conspicuous objects on her surface. They vary in length, from a few hundred miles to two or, in one instance, nearly three thousand miles. They extend indifferently across vast plains, into the deepest craters, or over the loftiest elevations. We know of nothing on our earth to which they can be compared. As these rays are only seen about the time of full moon, their visibility obviously depends on the light falling more or less closely in the line of sight, quite regardless of the inclination of the surfaces, mountains or valleys, on which they appear. Each small portion of the surface of the streak must therefore be of a form which is symmetrical to the spectator from whatever point it is seen. The sphere alone appears to fulfil this condition, and Professor Copeland therefore suggests that the material constituting the surface of the streak must be made up of a large number of more or less completely spherical globules. The streaks must represent parts of the lunar surface either pitted with minute cavities of spherical figure, or strewn over with minute transparent spheres.[8]

Near the centre of the moon's disc is a fine range of ring plains fully open to our view under all illuminations. Of these, two may be mentioned—Alphonsus (19), the floor of which is strangely characterised by two bright and several dark markings which cannot be explained by irregularities in the surface.—Ptolemy (20). Besides several small enclosed craters, its floor is crossed by numerous low ridges, visible when the sun is rising or setting.

21, 22, 23.—When the moon is five or six days old this beautiful group of three craters will be favourably placed for observation. They are named Catharina, Cyrillus, and Theophilus. Catharina, the most southerly of the group, is more than 16,000 feet deep, and connected with Cyrillus by a wide valley; but between Cyrillus and Theophilus there is no such connection. Indeed, Cyrillus looks as if its huge surrounding ramparts, as high as Mont Blanc, had been completely finished before the volcanic forces commenced the formation of Theophilus, the rampart of which encroaches considerably on its older neighbour. Theophilus stands as a well-defined circular crater about 64 miles in diameter, with an internal depth of 14,000 to 18,000 feet, and a beautiful central group of mountains, one-third of that height, on its floor. Although Theophilus is the deepest crater we can see in the moon, it has suffered little or no deformation from secondary eruptions, while the floor and wall of Catharina show complete sequences of lesser craters of various sizes that have broken in upon and partly destroyed each other. In the spring of the year, when the moon is somewhat before the first quarter, this instructive group of extinct volcanoes can be seen to great advantage at a convenient hour in the evening.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13     Next Part
Home - Random Browse