p-books.com
The Story of a Piece of Coal - What It Is, Whence It Comes, and Whither It Goes
by Edward A. Martin
Previous Part     1  2  3
Home - Random Browse

The term asphalt has been applied to so many and various mixtures, that one scarcely associates it with natural mineral pitch which is found in some parts of the world. From time immemorial this compact, bituminous, resinous mineral has been discovered in masses on the shores of the Dead Sea, which has in consequence received the well-known title of Lake Asphaltites. Like the naphthas and petroleums which have been noticed, this has had its origin in the decomposition of vegetable matter, and appears to be thrown up in a liquid form by the volcanic energies which, are still believed to be active in the centre of the lake, and which may be existent beneath a stratum, or bed, of oil-producing bitumen.

In connection with the formation of this substance, the remarks of Sir Charles Lyell, the great geologist, may well be quoted, as showing the transformation of vegetable matter into petroleum, and afterwards into solid-looking asphalt. At Trinidad is a lake of bitumen which is a mile and a half in circumference. "The Orinoco has for ages been rolling down great quantities of woody and vegetable bodies into the surrounding sea, where, by the influence of currents and eddies, they may be arrested, and accumulated in particular places. The frequent occurrence of earthquakes and other indications of volcanic action in those parts, lend countenance to the opinion that these vegetable substances may have undergone, by the agency of subterranean fire, those transformations or chemical changes which produce petroleum; and this may, by the same causes, be forced up to the surface, where, by exposure to the air, it becomes inspissated, and forms those different varieties of earth-pitch or asphaltum so abundant in the island."

It is interesting to note also that it was obtained, at an ancient period, from the oil-fountains of Is, and that it was put to considerable use in the embalming of the bodies of the Egyptians. It appears, too, to have been employed in the construction of the walls of Babylon, and thus from very early times these wonderful products and results of decayed vegetation have been brought into use for the service of man.

Aniline has been previously referred (p. 135) to as having been prepared from nitro-benzole, or essence de mirbane, and its preparation, by treating this substance with iron-filings and acetic acid, was one of the early triumphs of the chemists who undertook the search after the unknown contained in gas-tar. It had previously been obtained from oils distilled from bones. The importance of the substance lies in the fact that, by the action of various chemical reagents, a series of colouring matters of very great richness are formed, and these are the well-known aniline dyes.

As early as 1836, it was discovered that aniline, when heated with chloride of lime, acquired a beautiful blue tint. This discovery led to no immediate practical result, and it was not until twenty-one years after that a further discovery was made, which may indeed be said to have achieved a world-wide reputation. It was found that, by adding bichromate of potash to a solution of aniline and sulphuric acid, a powder was obtained from which the dye was afterwards extracted, which is known as mauve. Since that time dyes in all shades and colours have been obtained from the same source. Magenta was the next dye to make its appearance, and in the fickle history of fashion, probably no colours have had such extraordinary runs of popularity as those of mauve and magenta. Every conceivable colour was obtained in due course from the same source, and chemists began to suspect that, in the course of time, the colouring matter of dyer's madder, which was known as alizarin, would also be obtained therefrom. Hitherto this had been obtained from the root of the madder-plant, but by dint of careful and well-reasoned research, it was obtained by Dr Groebe, from a solid crystalline coal-tar product, known as anthracene, (C{12}H{14}). This artificial alizarin yields colours which are purer than those of natural madder, and being derived from what was originally regarded as a waste product, its cost of production is considerably cheaper.

We have endeavoured thus far to deal with (1) gas, and (2) tar, the two principal products in the distillation of coal. We have yet to say a few words concerning the useful ammoniacal liquor, and the final residue in the retorts, i.e., coke.

The ammoniacal liquor which has been passing over during distillation of the coal, and which has been collecting in the hydraulic main and in other parts of the gas-making apparatus, is set aside to be treated to a variety of chemical reactions, in order to wrench from it its useful constituents. Amongst these, of course, ammonia stands in the first rank, the others being comparatively unimportant. In order to obtain this, the liquor is first of all neutralised by being treated with a quantity of acid, which converts the principal constituent of the liquor, viz., carbonate of ammonia (smelling salts), into either sulphate of ammonia, or chloride of ammonia, familiarly known as sal-ammoniac, according as sulphuric acid or hydrochloric acid is the acid used. Thus carbonate of ammonia with sulphuric acid will give sulphate of ammonia, but carbonate of ammonia with hydrochloric acid will give sal-ammoniac (chloride of ammonia). By a further treatment of these with lime, or, as it is chemically known, oxide of calcium, ammonia is set free, whilst chloride of lime (the well-known disinfectant), or sulphate of lime (gypsum, or "plaster of Paris" ), is the result.

Thus:

Sulphate of ammonia + lime = plaster of Paris + ammonia.

or,

Sal-ammoniac + lime = chloride of lime + ammonia.

Ammonia itself is a most powerful gas, and acts rapidly upon the eyes. It has a stimulating effect upon the nerves. It is not a chemical element, being composed of three parts of hydrogen by weight to one of nitrogen, both of which elements alone are very harmless, and, the latter indeed, very necessary to human life. Ammonia is fatal to life, producing great irritation of the lungs.

It has also been called "hartshorn," being obtained by destructive distillation of horn and bone. The name "ammonia" is said to have been derived from the fact that it was first obtained by the Arabs near the temple of Jupiter Ammon, in Lybia, North Africa, from the excrement of camels, in the form of sal-ammoniac. There are always traces of it in the atmosphere, especially in the vicinity of large towns and manufactories where large quantities of coal are burned.

Coke, if properly prepared, should consist of pure carbon. Good coal should yield as much as 80 per cent. of coke, but owing to the unsatisfactory manner of its production, this proportion is seldom yielded, whilst the coke which is familiar to householders, being the residue left in the retorts after gas-making, usually contains so large a proportion of sulphur as to make its combustion almost offensive. No doubt the result of its unsatisfactory preparation has been that it has failed to make its way into households as it should have done, but there is also another objection to its use, namely, the fact that, owing to the quantity of oxygen required in its combustion, it gives rise to feelings of suffocation where insufficient ventilation of the room is provided.

Large quantities of coke are, however, consumed in the feeding of furnace fires, and in the heating of boilers of locomotives, as well as in metallurgical operations; and in order to supply the demand, large quantities of coal are "coked," a process by which the volatile products are completely combusted, pure coke remaining behind. This process is therefore the direct opposite to that of "distillation," by which the volatile products are carefully collected and re-distilled.

The sulphurous impurities which are always present in the coal, and which are, to a certain extent, retained in coke made at the gas-works, themselves have a value, which in these utilitarian days is not long likely to escape the attention of capitalists. In coal, bands of bright shining iron pyrites are constantly seen, even in the homely scuttle, and when coal is washed, as it is in some places, the removal of the pyrites increases the value of the coal, whilst it has a value of its own.

The conversion of the sulphur which escapes from our chimneys into sulphuretted hydrogen, and then into sulphuric acid, or oil of vitriol, has already been referred to, and we can only hope that in these days when every available source of wealth is being looked up, and when there threatens to remain nothing which shall in the future be known as "waste," that the atmosphere will be spared being longer the receptacle for the unowned and execrated brimstone of millions of fires and furnaces.



CHAPTER VII.

THE COAL SUPPLIES OF THE WORLD.

As compared with some of the American coal-fields, those of Britain are but small, both in extent and thickness. They can be regarded as falling naturally into three principal areas.

The northern coal-field, including those of Fife, Stirling, and Ayr in Scotland; Cumberland, Newcastle, and Durham in England; Tyrone in Ireland.

The middle coal-field, all geologically in union, including those of Yorkshire, Derbyshire, Shropshire, Staffordshire, Flint, and Denbigh.

The southern coal-field, including South Wales, Forest of Dean, Bristol, Dover, with an offshoot at Leinster, &c., and Millstreet, Cork.

Thus it will be seen that while England and Scotland are, in comparison with their extent of surface, bountifully supplied with coal-areas, in the sister island of Ireland coal-producing areas are almost absent. The isolated beds in Cork and Tipperary, in Tyrone and Antrim, are but the remnants left of what were formerly beds of coal extending the whole breadth and length of Ireland. Such beds as there remain undoubtedly belong to the base of the coal-measures, and observations all go to show that the surface suffered such extreme denudation subsequent to the growth of the coal-forests, that the wealth which once lay there, has been swept away from the surface which formerly boasted of it.

On the continent of Europe the coal-fields, though not occupying so large a proportion of the surface of the country as in England, are very far from being slight or to be disregarded. The extent of forest-lands still remaining in Germany and Austria are sufficing for the immediate needs of the districts where some of the best seams occur. It is only where there is a dearth of handy fuel, ready to be had, perhaps, by the simple felling of a few trees, that man commences to dig into the earth for his fuel. But although on the continent not yet occupying so prominent a position in public estimation as do coal-fields in Great Britain, those of the former have one conspicuous characteristic, viz., the great thickness of some of the individual seams.

In the coal-field of Midlothian the seams of coal vary from 2 feet to 5 feet in thickness. One of them is known as the "great seam," and in spite of its name attains a thickness only of from 8 to 10 feet thick. There are altogether about thirty seams of coal. When, however, we pass to the continent, we find many instances, such as that of the coal-field of Central France, in which the seams attain vast thicknesses, many of them actually reaching 40 and 60 feet, and sometimes even 80 feet. One of the seams in the district of St. Etienne varies from 30 to 70 feet thick, whilst the fifteen to eighteen workable seams give a thickness of 112 feet, although the total area of the field is not great. Again, in the remarkable basin of the Saone-et-Loire, although there are but ten beds of coal, two of them run from 30 to 60 feet each, whilst at Creusot the main seam actually runs locally to a thickness varying between 40 and 130 feet.

The Belgian coal-field stretches in the form of a narrow strip from 7 to 9 miles wide by about 100 miles long, and is divided into three principal basins. In that stretching from Liege to Verviers there are eighty-three seams of coal, none of which are less than 3 feet thick. In the basin of the Sambre, stretching from Namur to Charleroi, there are seventy-three seams which are workable, whilst in that between Mons and Thulin there are no less than one hundred and fifty-seven seams. The measures here are so folded in zigzag fashion, that in boring in the neighbourhood of Mons to a depth of 350 yards vertical, a single seam was passed through no less than six times.

Germany, on the west side of the Rhine, is exceptionally fortunate in the possession of the famous Pfalz-Saarbruecken coal-field, measuring about 60 miles long by 20 miles wide, and covering about 175 square miles. Much of the coal which lies deep in these coal-measures will always remain unattainable, owing to the enormous thickness of the strata, but a careful computation made of the coal which can be worked, gives an estimate of no less than 2750 millions of tons. There is a grand total of two hundred and forty-four seams, although about half of them are unworkable.

Beside other smaller coal-producing areas in Germany, the coal-fields of Silesia in the southeastern corner of Prussia are a possession unrivalled both on account of their extent and thickness. It is stated that there exist 333 feet of coal, all the seams of which exceed 2-1/2 feet, and that in the aggregate there is here, within a workable depth, the scarcely conceivable quantity of 50,000 million tons of coal.

The coal-field of Upper Silesia, occupying an area about 20 miles long by 15 miles broad, is estimated to contain some 10,000 feet of strata, with 333 feet of good coal. This is about three times the thickness contained in the South Wales coal-field, in a similar thickness of coal-measures. There are single seams up to 60 feet thick, but much of the coal is covered by more recent rocks of New Red and Cretaceous age. In Lower Silesia there are numerous seams 3-1/2 feet to 5 feet thick, but owing to their liability to change in character even in the same seam, their value is inferior to the coals of Upper Silesia.

When British supplies are at length exhausted, we may anticipate that some of the earliest coals to be imported, should coal then be needed, will reach Britain from the upper waters of the Oder.

The coal-field of Westphalia has lately come into prominence in connection with the search which has been made for coal in Kent and Surrey, the strata which are mined at Dortmund being thought to be continuous from the Bristol coal-field. Borings have been made through the chalk of the district north of the Westphalian coal-field, and these have shown the existence of further coal-measures. The coal-field extends between Essen and Dortmund a distance of 30 miles east and west, and exhibits a series of about one hundred and thirty seams, with an aggregate of 300 feet of coal.

It is estimated that this coal-field alone contains no less than 39,200 millions of tons of coal.

Russia possesses supplies of coal whose influence has scarcely yet been felt, owing to the sparseness of the population and the abundance of forest. Carboniferous rocks abut against the flanks of the Ural Mountains, along the sides of which they extend for a length of about a thousand miles, with inter-stratifications of coal. Their actual contents have not yet been gauged, but there is every reason to believe that those coal-beds which have been seen are but samples of many others which will, when properly worked, satisfy the needs of a much larger population than the country now possesses.

Like the lower coals of Scotland, the Russian coals are found in the carboniferous limestone. This may also be said of the coal-fields in the governments of Tula and Kaluga, and of those important coal-bearing strata near the river Donetz, stretching to the northern corner of the Sea of Azov. In the last-named, the seams are spread over an area of 11,000 square miles, in which there are forty-four workable seams containing 114 feet of coal. The thickest of known Russian coals occur at Lithwinsk, where three seams are worked, each measuring 30 feet to 40 feet thick.

An extension of the Upper Silesian coal-field appears in Russian Poland. This is of upper Carboniferous age, and contains an aggregate of 60 feet of coal.

At Ostrau, in Upper Silesia (Austria), there is a remarkable coal-field. Of its 370 seams there are no less than 117 workable ones, and these contain 350 feet of coal. The coals here are very full of gas, which even percolates to the cellars of houses in the town. A bore hole which was sunk in 1852 to a depth of 150 feet, gave off a stream of gas, which ignited, and burnt for many years with a flame some feet long.

The Zwickau coal-field in Saxony is one of the most important in Europe. It contains a remarkable seam of coal, known as Russokohle or soot-coal, running at times 25 feet thick. It was separated by Geinitz and others into four zones, according to their vegetable contents, viz.:—

1. Zone of Ferns.

2. Zone of Annularia and Calamites.

3. Zone of Sigillaria.

4. Zone of Sagenaria (in Silesia), equivalent to the culm-measures of Devonshire.

Coals belonging to other than true Carboniferous age are found in Europe at Steyerdorf on the Danube, where there are a few seams of good coal in strata of Liassic age, and in Hungary and Styria, where there are tertiary coals which approach closely to those of true Carboniferous age in composition and quality.

In Spain there are a few small scattered basins. Coal is found overlying the carboniferous limestone of the Cantabrian chain, the seams being from 5 feet to 8 feet thick. In the Satero valley, near Sotillo, is a single seam measuring from 60 feet to 100 feet thick. Coal of Neocomian age appears at Montalban.

When we look outside the continent of Europe, we may well be astonished at the bountiful manner in which nature has laid out beds of coal upon these ancient surfaces of our globe.

Professor Rogers estimated that, in the United States of America, the coal-fields occupy an area of no less than 196,850 square miles.

Here, again, it is extremely probable that the coal-fields which remain, in spite of their gigantic existing areas, are but the remnants of one tremendous area of deposit, bounded only on the east by the Atlantic, and on the west by a line running from the great lakes to the frontiers of Mexico. The whole area has been subjected to forces which have produced foldings and flexures in the Carboniferous strata after deposition. These undulations are greatest near the Alleghanies, and between these mountains and the Atlantic, whilst the flexures gradually dying out westward, cause the strata there to remain fairly horizontal. In the troughs of the foldings thus formed the coal-measures rest, those portions which had been thrown up as anticlines having suffered loss by denudation. Where the foldings are greatest there the coal has been naturally most altered; bituminous and caking-coals are characteristic of the broad flat areas west of the mountains, whilst, where the contortions are greatest, the coal becomes a pure anthracite.

It must not be thought that in this huge area the coal is all uniformly good. It varies greatly in quality, and in some districts it occurs in such thin seams as to be worthless, except as fuel for consumption by the actual coal-getters. There are, too, areas of many square miles in extent, where there are now no coals at all, the formation having been denuded right down to the palaeozoic back-bone of the country.

Amongst the actual coal-fields, that of Pennsylvania stands pre-eminent. The anthracite here is in inexhaustible quantity, its output exceeding that of the ordinary bituminous coal. The great field of which this is a portion, extends in an unbroken length for 875 miles N.E. and S.W., and includes the basins of Ohio, Maryland, Virginia, Kentucky, and Tennessee. The workable seams of anthracite about Pottsville measure in the aggregate from 70 to 207 feet. Some of the lower seams individually attain an exceptional thickness, that at Lehigh Summit mine containing a seam, or rather a bed, of 30 feet of good coal.

A remarkable seam of coal has given the town of Pittsburg its name. This is 8 feet thick at its outcrop near the town, and although its thickness varies considerably, Professor Rogers estimates that the sheet of coal measures superficially about 14,000 square miles. What a forest there must have existed to produce so widespread a bed! Even as it is, it has at a former epoch suffered great denudation, if certain detached basins should be considered as indicating its former extent.

The principal seam in the anthracite district of central Pennsylvania, which extends for about 650 miles along the left bank of the Susquehanna, is known as the "Mammoth" vein, and is 29-1/2 feet thick at Wilkesbarre, whilst at other places it attains to, and even exceeds, 60 feet.

On the west of the chain of mountains the foldings become gentler, and the coal assumes an almost horizontal position. In passing through Ohio we find a saddle-back ridge or anticline of more ancient strata than the coal, and in consequence of this, we have a physical boundary placed upon the coal-fields on each side.

Passing across this older ridge of denuded Silurian and other rocks, we reach the famous Illinois and Indiana coal-field, whose coal-measures lie in a broad trough, bounded on the west by the uprising of the carboniferous limestone of the upper Mississippi. This limestone formation appears here for the first time, having been absent on the eastern side of the Ohio anticline. The area of the coal-field is estimated at 51,000 square miles.

In connection with the coal-fields of the United States, it is interesting to notice that a wide area in Texas, estimated at 3000 square miles, produces a large amount of coal annually from strata of the Liassic age. Another important area of production in eastern Virginia contains coal referable to the Jurassic age, and is similar in fossil contents to the Jurassic of Whitby and Brora. The main seam in eastern Virginia boasts a thickness of from 30 to 40 feet of good coal.

Very serviceable lignites of Cretaceous age are found on the Pacific slope, to which age those of Vancouver's Island and Saskatchewan River are referable.

Other coal-fields of less importance are found between Lakes Huron and Erie, where the measures cover an area of 5000 square miles, and also in Rhode Island.

In British North America we find extensive deposits of valuable coal-measures. Large developments occur in New Brunswick and Nova Scotia. At South Joggins there is a thickness of 14,750 feet of strata, in which are found seventy-six coal-seams of 45 feet in total thickness. At Picton there are six seams with a total of 80 feet of coal. In the lower carboniferous group is found the peculiar asphaltic coal of the Albert mine in New Brunswick. Extensive deposits of lignite are met with both in the Dominion and in the United States, whilst true coal-measures flank both sides of the Rocky Mountains. Coal-seams are often encountered in the Arctic archipelago.

The principal areas of deposit in South America are in Brazil, Uruguay, and Peru. The largest is the Candiota coal-field, in Brazil, where sections in the valley of the Candiota River show five good seams with a total of 65 feet of coal. It is, however, worked but little, the principal workings being at San Jeronimo on the Jacahahay River.

In Peru the true carboniferous coal-seams are found on the higher ground of the Andes, whilst coal of secondary age is found in considerable quantities on the rise towards the mountains. At Porton, east of Truxillo, the same metamorphism which has changed the ridge of sandstone to a hard quartzite has also changed the ordinary bituminous coal into an anthracite, which is here vertical in position. The coals of Peru usually rise to more than 10,000 feet above the sea, and they are practically inaccessible.

Cretaceous coals have been found at Lota in Chili, and at Sandy Point, Straits of Magellan.

Turning to Asia, we find that coal has been worked from time to time at Heraclea in Asia Minor. Lignites are met with at Smyrna and Lebanon.

The coal-fields of Hindoostan are small but numerous, being found in all parts of the peninsula. There is an important coal-field at Raniganj, near the Hooghly, 140 miles north of Calcutta. It has an area of 500 square miles. In the Raniganj district there are occasional seams 20 feet to 80 feet in thickness, but the coals are of somewhat inferior quality.

The best quality amongst Indian coals has come from a small coal-field of about 11 square miles in extent, situated at Kurhurbali on the East Indian Railway. Other coal-fields are found at Jherria and on the Sone River, in Bengal, and at Mopani on the Nerbudda. Much is expected in future from the large coal-field of the Wardha and Chanda districts, in the Central Provinces, the coal of which may eventually prove to be of Permian age.

The coal-deposits of China are undoubtedly of tremendous extent, although from want of exploration it is difficult to form any satisfactory estimate of them. Near Pekin there are beds of coal 95 feet thick, which afford ample provision for the needs of the city. In the mountainous districts of western China the area over which carboniferous strata are exposed has been estimated at 100,000 square miles. The coal-measures extend westward to the Mongolian frontier, where coal-seams 30 feet thick are known to lie in horizontal plane for 200 miles. Most of the Chinese coal-deposits are rendered of small value, either owing to the mountainous nature of the valleys in which they outcrop, or to their inaccessibility from the sea. Japan is not lacking in good supplies of coal. A colliery is worked by the government on the island of Takasima, near Nagasaki, for the supply of coals for the use of the navy.

The British possession of Labuan, off the island of Borneo, is rich in a coal of tertiary age, remarkable for the quantity of fossil resin which, it contains. Coal is also found in Sumatra, and in the Malayan Archipelago.

In Cape Colony and Natal the coal-bearing Karoo beds are probably of New Red age. The coal is reported to be excellent in quantity.

In Abyssinia lignites are frequently met with in the high lands of the interior.

Coal is very extensively developed throughout Australasia. In New South Wales, coal-measures occur in large detached portions between 29 deg. and 35 deg. S. latitude. The Newcastle district, at the mouth of the Hunter river, is the chief seat of the coal trade, and the seams are here found up to 30 feet thick. Coal-bearing strata are found at Bowen River, in Queensland, covering an area of 24,000 square miles, whilst important mines of Cretaceous age are worked at Ipswich, near Brisbane. In New Zealand quantities of lignite, described as a hydrous coal, are found and utilised; also an anhydrous coal which may prove to be either of Cretaceous or Jurassic age.

We have thus briefly sketched the supplies of coal, so far as they are known, which are to be found in various countries. But England has of late years been concerned as to the possible failure of her home supplies in the not very distant future, and the effects which such failure would be likely to produce on the commercial prosperity of the country.

Great Britain has long been the centre of the universe in the supply of the world's coal, and as a matter of fact, has been for many years raising considerably more than one half of the total amount of coal raised throughout the whole world. There is, as we have seen, an abundance of coal elsewhere, which will, in the course of time, compete with her when properly worked, but Britain seems to have early taken the lead in the production of coal, and to have become the great universal coal distributor. Those who have misgivings as to what will happen when her coal is exhausted, receive little comfort from the fact that in North America, in Prussia, in China and elsewhere, there are tremendous supplies of coal as yet untouched, although a certain sense of relief is experienced when that fact becomes generally known.

If by the time of exhaustion of the home mines Britain is still dependent upon coal for fuel, which, in this age of electricity, scarcely seems probable, her trade and commerce will feel with tremendous effect the blow which her prestige will experience when the first vessel, laden with foreign coal, weighs anchor in a British harbour. In the great coal lock-out of 1893, when, for the greater part of sixteen weeks scarcely a ton of coal reached the surface in some of her principal coal-fields, it was rumoured, falsely as it appeared, that a collier from America had indeed reached those shores, and the importance which attached to the supposed event was shown by the anxious references to it in the public press, where the truth or otherwise of the alarm was actively discussed. Should such a thing at any time actually come to pass, it will indeed be a retribution to those who have for years been squandering their inheritance in many a wasteful manner of coal-consumption.

Thirty years ago, when so much small coal was wasted and wantonly consumed in order to dispose of it in the easiest manner possible at the pitmouths, and when only the best and largest coal was deemed to be of any value, louder and louder did scientific men speak in protest against this great and increasing prodigality. Wild estimates were set on foot showing how that, sooner or later, there would be in Britain no native supply of coal at all, and finally a Royal Commission was appointed in 1866, to collect evidence and report upon the probable time during which the supplies of Great Britain would last.

This Commission reported in 1871, and the outcome of it was that a period of twelve hundred and seventy-three years was assigned as the period during which the coal would last, at the then-existing rate of consumption. The quantity of workable coal within a depth of 4000 feet was estimated to be 90,207 millions of tons, or, including that at greater depths, 146,480 millions of tons. Since that date, however, there has been a steady annual increase in the amount of coal consumed, and subsequent estimates go to show that the supplies cannot last for more than 250 years, or, taking into consideration a possible decrease in consumption, 350 years. Most of the coal-mines will, indeed, have been worked out in less than a hundred years hence, and then, perhaps, the competition brought about by the demand for, and the scarcity of, coal from the remaining mines, will have resulted in the dreaded importation of coal from abroad.

In referring to the outcome of the Royal Commission of 1866, although the Commissioners fixed so comparatively short a period as the probable duration of the coal supplies, it is but fair that it should be stated that other estimates have been made which have materially differed from their estimate. Whereas one estimate more than doubled that of the Royal Commission, that of Sir William Armstrong in 1863 gave it as 212 years, and Professor Jevons, speaking in 1875 concerning Armstrong's estimate, observed that the annual increase in the amount used, which was allowed for in the estimate, had so greatly itself increased, that the 212 years must be considerably reduced.

One can scarcely thoroughly appreciate the enormous quantity of coal that is brought to the surface annually, and the only wonder is that there are any supplies left at all. The Great Pyramid which is said by Herodotus to have been twenty years in building, and which took 100,000 men to build, contains 3,394,307 cubic yards of stone. The coal raised in 1892 would make a pyramid which would contain 181,500,000 cubic yards, at the low estimate that one ton could be squeezed into one cubic yard.

The increase in the quantity of coal which has been raised in succeeding years can well be seen from the following facts.

In 1820 there were raised in Great Britain about 20 millions of tons. By 1855 this amount had increased to 64-1/2 millions. In 1865 this again had increased to 98 millions, whilst twenty years after, viz., in 1885, this had increased to no less than 159 millions, such were the giant strides which the increase in consumption made.

In the return for 1892, this amount had farther increased to 181-1/2 millions of tons, an advance in eight years of a quantity more than equal to the total raised in 1820, and in 1894 the total reached 199-1/2 millions; this was produced by 795,240 persons, employed in and about the mines.



CHAPTER VIII.

THE COAL-TAR COLOURS.

In a former chapter some slight reference has been made to those bye-products of coal-tar which have proved so valuable in the production of the aniline dyes. It is thought that the subject is of so interesting a nature as to deserve more notice than it was possible to bestow upon it in that place. With abstruse chemical formulae and complex chemical equations it is proposed to have as little as possible to do, but even the most unscientific treatment of the subject must occasionally necessitate a scientific method of elucidation.

The dyeing industry has been radically changed during the last half century by the introduction of what are known as the artificial dyes, whilst the natural colouring matters which had previously been the sole basis of the industry, and which had been obtained by very simple chemical methods from some of the constituents of the animal kingdom, or which were found in a natural state in the vegetable kingdom, have very largely given place to those which have been obtained from coal-tar, a product of the mineralised vegetation of the carboniferous age.

The development and discovery of the aniline colouring matters were not, of course, possible until after the extensive adoption of house-gas for illuminating purposes, and even then it was many years before the waste products from the gas-works came to have an appreciable value of their own. This, however, came with the increased utilitarianism of the commerce of the present century, but although aniline was first discovered in 1826 by Unverdorben, in the materials produced by the dry distillation of indigo (Portuguese, anil, indigo), it was not until thirty years afterwards, namely, in 1856, that the discovery of the method of manufacture of the first aniline dye, mauveine, was announced, the discovery being due to the persistent efforts of Perkin, to whom, together with other chemists working in the same field, is due the great advance which has been made in the chemical knowledge of the carbon, hydrogen, and oxygen compounds. Scientists appeared to work along two planes; there were those who discovered certain chemical compounds in the resulting products of reactions in the treatment of existing vegetation, and there were those who, studying the wonderful constituents in coal-tar, the product of a past age, immediately set to work to find therein those compounds which their contemporaries had already discovered. Generally, too, with signal success.

The discovery of benzene in 1825 by Faraday was followed in the course of a few years by its discovery in coal-tar by Hofmann. Toluene, which was discovered in 1837 by Pelletier, was recognised in the fractional distillation of crude naphtha by Mansfield in 1848. Although the method of production of mauveine on a large scale was not accomplished until 1856, yet it had been noticed in 1834, the actual year of its recognition as a constituent of coal-tar, that, when brought into contact with chloride of lime, it gave brilliant colours, but it required a considerable cheapening of the process of aniline manufacture before the dyes commenced to enter into competition with the old natural dyes.

The isolation of aniline from coal-tar is expensive, in consequence of the small quantities in which it is there found, but it was discovered by Mitscherlich that by acting upon benzene, one of the early distillates of coal-tar, for the production of nitro-benzole, a compound was produced from which aniline could be obtained in large quantities. There were thus two methods of obtaining aniline from tar, the experimental and the practical.

In producing nitrobenzole (nitrobenzene), chemically represented as (C{6}H{5}NO{2}), the nitric acid used as the reagent with benzene, is mixed with a quantity of sulphuric acid, with the object of absorbing water which is formed during the reaction, as this would tend to dilute the efficiency of the nitric acid. The proportions are 100 parts of purified benzene, with a mixture of 115 parts of concentrated nitric acid (HNO{3}) and 160 parts of concentrated sulphuric acid. The mixture is gradually introduced into the large cast-iron cylinder into which the benzene has been poured. The outside of the cylinder is supplied with an arrangement by which fine jets of water can be made to play upon it in the early stages of the reaction which follows, and at the end of from eight to ten hours the contents are allowed to run off into a storage reservoir. Here they arrange themselves into two layers, the top of which consists of the nitrobenzene which has been produced, together with some benzene which is still unacted upon. The mixture is then freed from the latter by treatment with a current of steam. Nitrobenzene presents itself as a yellowish oily liquid, with a peculiar taste as of bitter almonds. It was formerly in great demand by perfumers, but its poisonous properties render it a dangerous substance to deal with. In practice a given quantity of benzene will yield about 150 per cent of nitrobenzene. Stated chemically, the reaction is shown by the following equation:—

C_{6}H_{6} + HNO_{3} = C_{6}H_{5}NO_{2}, + H_{2}O (Benzene) (Nitric acid) (Nitrobenzene) (Water).

The water which is thus formed in the process, by the freeing of one of the atoms of hydrogen in the benzene, is absorbed by the sulphuric acid present, although the latter takes no actual part in the reaction.

From the nitrobenzene thus obtained, the aniline which is now used so extensively is prepared. The component atoms of a molecule of aniline are shown in the formula C_{6}H_{5}NH_{2}. It is also known as phenylamine or amido-benzole, or commercially as aniline oil. There are various methods of reducing nitrobenzene for aniline, the object being to replace the oxygen of the former by an equivalent number of atoms of hydrogen. The process generally used is that known as Bechamp's, with slight modifications. Equal volumes of nitrobenzene and acetic acid, together with a quantity of iron-filings rather in excess of the weight of the nitrobenzene, are placed in a capacious retort. A brisk effervescence ensues, and to moderate the increase of temperature which is caused by the reaction, it is found necessary to cool the retort. Instead of acetic acid hydrochloric acid has been a good deal used, with, it is said, certain advantageous results. From 60 to 65 per cent. of aniline on the quantity of nitrobenzene used, is yielded by Bechamp's process.

Stated in a few words, the above is the process adopted on all hands for the production of commercial aniline, or aniline oil. The details of the distillation and rectification of the oil are, however, as varied as they can well be, no two manufacturers adopting the same process. Many of the aniline dyes depend entirely for their superiority, on the quality of the oil used, and for this reason it is subject to one or more processes of rectification. This is performed by distilling, the distillates at the various temperatures being separately collected.

When pure, aniline is a colourless oily liquid, but on exposure rapidly turns brown. It has strong refracting powers and an agreeable aromatic smell. It is very poisonous when taken internally; its sulphate is, however, sometimes used medicinally. It is by the action upon aniline of certain oxidising agents, that the various colouring matters so well known as aniline dyes are obtained.

Commercial aniline oil is not, as we have seen, the purest form of rectified aniline. The aniline oils of commerce are very variable in character, the principal constituents being pure aniline, para- and meta-toluidine, xylidines, and cumidines. They are best known to the colour manufacturer in four qualities—

(a) Aniline oil for blue and black.

(b) Aniline oil for magenta.

(c) Aniline oil for safranine.

(_d_) _Liquid toluidine.

From the first of these, which is almost pure aniline, aniline black is derived, and a number of organic compounds which are further used for the production of dyes. The hydrochloride of aniline is important and is known commercially as "aniline salt."

The distillation and rectification of aniline oil is practised on a similar principle to the fractional distillation which we have noticed as being used for the distillation of the naphthas. First, light aniline oils pass over, followed by others, and finally by the heavy oils, or "aniline-tailings." It is a matter of great necessity to those engaged in colour manufacture to apply that quality oil which is best for the production of the colour required. This is not always an easy matter, and there is great divergence of opinion and in practice on these points.

The so-called aniline colours are not all derived from aniline, such colouring matters being in some cases derived from other coal-tar products, such as benzene and toluene, phenol, naphthalene, and anthracene, and it is remarkable that although the earlier dyes were produced from the lighter and more easily distilled products of coal-tar, yet now some of the heaviest and most stubborn of the distillates are brought under requisition for colouring matters, those which not many years ago were regarded as fit only to be used as lubricants or to be regarded as waste.

It is scarcely necessary or advisable in a work of this kind to pursue the many chemical reactions, which, from the various acids and bases, result ultimately in the many shades and gradations of colour which are to be seen in dress and other fabrics. Many of them, beautiful in the extreme, are the outcome of much careful and well-planned study, and to print here the complicated chemical formulae which show the great changes taking place in compounds of complex molecules, or to mention even the names of these many-syllabled compounds, would be to destroy the purpose of this little book. The Rosanilines, the Indulines, and Safranines; the Oxazines, the Thionines: the Phenol and Azo dyes are all substances which are of greater interest to the chemical students and to the colour manufacturer than to the ordinary reader. Many of the names of the bases of various dyes are unknown outside the chemical dyeworks, although each and all have complicated; reactions of their own. In the reds are rosanilines, toluidine xylidine, &c.; in the blues—phenyl-rosanilines, diphenylamine, toluidine, aldehyde, &c.; violets—rosaniline, mauve, phenyl, ethyl, methyl, &c.; greens—iodine, aniline, leucaniline, chrysotoluidine, aldehyde, toluidine, methyl-anilinine, &c.; yellows and orange—leucaniline, phenylamine, &c.; browns—chrysotoluidine, &c.; blacks—aniline, toluidine, &c.

To take the rosanilines as an instance of the rest.

Aniline red, magenta, azaleine, rubine, solferino, fuchsine, chryaline, roseine, erythrobenzine, and others, are colouring matters in this group which are salts of rosaniline, and which are all recognised in commerce.

The base rosaniline is known chemically by the formula C_{20}H_{l9}N_{3}, and is prepared by heating a mixture of magenta aniline, toluidine, and pseudotoluidine, with arsenic acid and other oxidising agents. It is important that water should be used in such quantities as to prevent the solution of arsenic acid from depositing crystals on cooling. Unless carefully crystallised rosaniline will contain a slight proportion of the arseniate, and when articles of clothing are dyed with the salt, it is likely to produce an inflammatory condition of skin, when worn. Some years ago there was a great outcry against hose and other articles dyed with aniline dyes, owing to the bad effects which were produced, and this has no doubt proved very prejudicial to aniline dyes as a whole.

Again, the base known as mauve, or mauveine, has a composition shown by the formula C_{27}H_{24}N_{4}. It is produced from the sulphate of aniline by mixing it with a cold saturated solution of bichromate of potash, and allowing the mixture to stand for ten or twelve hours. A blue-black precipitate is then formed, which, after undergoing a process of purification, is dissolved in alcohol and evaporated to dryness. A metallic-looking powder is then obtained, which constitutes this all-important base. Mauve forms with acids a series of well-defined salts and is capable of expelling ammonia from its combinations. Mauve was the first aniline dye which was produced on a large scale, this being accomplished by Perkin in 1856.

The substance known as carbolic acid is so useful a product of a piece of coal that a description of the method of its production must necessarily have a place here. It is one of the most powerful antiseptic agents with which we are acquainted, and has strong anaesthetic qualities. Some useful dyes are also obtained from it. It is obtained in quantities from coal-tar, that portion of the distillate known as the light oils being its immediate source. The tar oil is mixed with a solution of caustic soda, and the mixture is violently agitated. This results in the caustic soda dissolving out the carbolic acid, whilst the undissolved oils collect upon the surface, allowing the alkaline solution to be drawn from beneath. The soda in the solution is then neutralised by the addition of a suitable quantity of sulphuric acid, and the salt so formed sinks while the carbolic acid rises to the surface.

Purification of the product is afterwards carried out by a process of fractional distillation. There are various other methods of preparing carbolic acid.

Carbolic acid is known chemically as C{6}H{5}(HO). When pure it appears as colourless needle-like crystals, and is exceedingly poisonous. It has been used with marked success in staying the course of disease, such as cholera and cattle plague. It is of a very volatile nature, and its efficacy lies in its power of destroying germs as they float in the atmosphere. Modern science tells us that all diseases have their origin in certain germs which are everywhere present and which seek only a suitable nidus in which to propagate and flourish. Unlike mere deodorisers which simply remove noxious gases or odours; unlike disinfectants which prevent the spread of infection, carbolic acid strikes at the very root and origin of disease by oxidising and consuming the germs which breed it. So powerful is it that one part in five thousand parts of flour paste, blood, &c., will for months prevent fermentation and putrefaction, whilst a little of its vapour in the atmosphere will preserve meat, as well as prevent it from becoming fly-blown. Although it has, in certain impure states, a slightly disagreeable odour, this is never such as to be in any way harmful, whilst on the other hand it is said to act as a tonic to those connected with its preparation and use.

The new artificial colouring matters which are continually being brought into the market, testify to the fact that, even with the many beautiful tints and hues which have been discovered, finality and perfection have not yet been reached. A good deal of popular prejudice has arisen against certain aniline dyes on account of their inferiority to many of the old dye-stuffs in respect to their fastness, but in recent years the manufacture of many which were under this disadvantage of looseness of dye, has entirely ceased, whilst others have been introduced which are quite as fast, and sometimes even faster than the natural dyes.

It is convenient to express the constituents of coal-tar, and the distillates of those constituents, in the form of a genealogical chart, and thus, by way of conclusion, summarise the results which we have noticed.

COAL. . - - . Water House-gas Coal-tar Ammoniacal Coke liquor . - - - -. Sulphur (sulphurreted First Second Heavy Anthracene Pitch hydrogen: light light oils (green sulphurous oils oils (creosote oils) acid: oil (crude oils) of vitriol) . . naphtha) Anthracene Ammoniacal Benzene Alizarin or liquor toluene, dyer's madder &c. Sulphuric acid=Carbonate of=Hydrochloric ammonia acid (smelling salts) Lime=Sulphate of Lime=Chloride of ammonia ammonia (sal ammoniac) . . . . Ammonia Sulphate Ammonia Chloride of lime of lime. (Plaster of Paris) . - . Crude Carbolic Naphthalin Creosote acid . - - -. Benzene=Nitric Acid Toluene Nylene Artificial Burning turpentine oils Nitrobenzene= } Iron filings oil (solvent (Essence de } and acetic acid naphtha) mirbane) Aniline=Various reagents Aniline dyes



INDEX.

A.

Accidents, causes of mining "Age of Acrogens" Alethopteris Alizarin American coal-fields Ammoniacal liquor Aniline Aniline dyes Aniline oil, commercial Aniline salt Aniline "tailings" Anthracene Anthracite Artificial turpentine oil Asphalt Australian coals Aviculopecten

B.

Bechamp's process Benzene Bind Bitumen in Trinidad "Blower" a Boghead coal Bog-oak Boring diamonds Borrowdale graphite mine Bovey Tracey lignite British coal-fields British North-American coal-measures Briquettes

C.

Calamites, extinct horsetails Carbolic acid Carboniferous formation, the Cardiocarpum, fossil fruit Carelessness of miners Causes of earth-movements Changes of level Charcoal as a disinfectant Chemistry of a gas-flame Chinese coals Clanny's safety-lamp Clayton's experiments with gas Clay, regularity in deposition of Club-mosses, great height of fossil Coal-dust, danger from Coal formed in large lakes or closed seas Coal formation, geological position of Coal formed by escape of gases Coal-mine, the Coal not the result of drifted vegetation Coal-period, climate of "Coal-pipes" Coal-plants, classification of Coal-seam, each, a forest growth Coals of non-carboniferous age Coal, vegetable origin of Coke "Cole" "Condensers" Cones of Lepidodendra Conifers in coal-measures Current-bedding in sandstone

D.

Davy-lamp Dangers of benzene Darwin on the Chonos Archipelago Diamonds, how made artificially Disintegration of vegetable substances Disproportion in relative thickness of coal and coal-measures

E.

Early use of coal Effects of an explosion Encrinital limestone Equiseta "Essence de mirbane" European coal-fields Evelyn on the use of coal Experiments illustrating fossilisation

F.

Filling retorts by machinery Firedamp Fire, mines on First light oils First record of an explosion Flashing-point of oil Flooding of pits Fog and smoke Foraminifera Fossil ferns Fructification on fossil-ferns Furnace, ventilating

G.

Gas, coal Gasholder, the Gas, house, constituents of Glossopteris Graphite "Green Grease"

H.

Hannay, of Glasgow Heavy oils Humboldt's safety-lamp Hydraulic Main

I.

Impurities in house-gas Indian coals Insertion of rootlets of stigmaria Insufficiency of modern forest growths Ireland denuded of coal-beds Iron, supplies of

L.

Lepidodendra Lepidostrobi Lignite London lit by gas

M.

Mammoth trees Marco Polo Marsh gas Medium oils Metamorphism of coal by igneous agency Methods of ventilation Mountain limestone Murdock's use of gas Mussel beds

N.

Napthalin Neuropteris Newcastle, charters to Nitro-benzole

O.

Objections to use of coal Oils from coal and lignite Oil-wells of America Olefiant gas Orthoceras

P.

Paraffins Peat Pecopteris Pennsylvanian anthracite Persian fire-worshippers Pitch Plumbago Polyzoa Prejudice against aniline dyes Prohibitions of the use of coal Proportions of explosive mixtures Psaronius "Purifiers" Pyrites in coal

Q.

Quantity of coal raised in Great Britain

R.

Reptiles of the coal-era Resemblance of American and British coal-flora Retorts Roman use of coal Rosanilines, the Royal Commission of 1866

S.

Sandstone, how formed Shales Sigillaria South American coals Spores of lepidodrendron Spores, resinous matter in Spores, inflammability of Steel-mill Sternbergia Stigmaria Subsidence throughout coal-era Surturbrand at Brighton Sussex iron-works

T.

Tar Testing pits by the candle Texas coal Toluene, discovery of Torbanehill mineral Trappers

U.

Underclays Uses to which coal is put

V.

Vaseline Vegetation of the coal age Ventilation of coal-pits

W.

"Washers" Waste of fuel Wealden lignite Westphalian coal-field

Y.

Young's Paraffin Oil

Z.

Zoroastrians

THE END

Previous Part     1  2  3
Home - Random Browse