p-books.com
The Story of Evolution
by Joseph McCabe
Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse

The next planet, Uranus, 32,000 miles in diameter, seems to be another cloud-wrapt, greatly heated globe, if not, as some think, a sheer mass of vapours without a liquid core. Neptune is too dim and distant for profitable examination. It may be added, however, that the dense masses of gas which are found to surround the outer planets seem to confirm the nebular theory, which assumes that they were developed in the outer and lighter part of the material hurled from the sun.

From this encouraging survey of the sister-planets we return with more confidence to the story of the earth. I will not attempt to follow an imaginative scheme in regard to its early development. Take four photographs—one of a spiral nebula without knots in its arms, one of a nebula like that in Canes Venatici, one of the sun, and one of Jupiter—and you have an excellent illustration of the chief stages in its formation. In the first picture a section of the luminous arm of the nebula stretches thinly across millions of miles of space. In the next stage this material is largely collected in a luminous and hazy sphere, as we find in the nebula in Canes Venatici. The sun serves to illustrate a further stage in the condensation of this sphere. Jupiter represents a later chapter, in which the cooler vapours are wrapped close about the red-hot body of the planet. That seems to have been the early story of the earth. Some 6,000,000,000 billion tons of the nebulous matter were attracted to a common centre. As the particles pressed centreward, the temperature rose, and for a time the generation of heat was greater than its dissipation. Whether the earth ever shone as a small white star we cannot say. We must not hastily conclude that such a relatively small mass would behave like the far greater mass of a star, but we may, without attempting to determine its temperature, assume that it runs an analogous course.

One of the many features which I have indicated as pointing to a former fluidity of the earth may be explained here. We shall see in the course of this work that the mountain chains and other great irregularities of the earth's surface appear at a late stage in its development. Even as we find them to-day, they are seen to be merely slight ridges and furrows on the face of the globe, when we reflect on its enormous diameter, but there is good reason to think that in the beginning the earth was much nearer to a perfectly globular form. This points to a liquid or gaseous condition at one time, and the flattening of the sphere at the poles confirms the impression. We should hardly expect so perfect a rotundity in a body formed by the cool accretion of solid fragments and particles. It is just what we should expect in a fluid body, and the later irregularities of the surface are accounted for by the constant crumpling and wearing of its solid crust. Many would find a confirmation of this in the phenomena of volcanoes, geysers, and earthquakes, and the increase of the temperature as we descend the crust. But the interior condition of the earth, and the nature of these phenomena, are much disputed at present, and it is better not to rely on any theory of them. It is suggested that radium may be responsible for this subterraneous heat.

The next stage in the formation of the earth is necessarily one that we can reach only by conjecture. Over the globe of molten fire the vapours and gases would be suspended like a heavy canopy, as we find in Jupiter and Saturn to-day. When the period of maximum heat production was passed, however, the radiation into space would cause a lowering of the temperature, and a scum would form on the molten surface. As may be observed on the surface of any cooling vessel of fluid, the scum would stretch and crack; the skin would, so to say, prove too small for the body. The molten ocean below would surge through the crust, and bury it under floods of lava. Some hold that the slabs would sink in the ocean of metal, and thus the earth would first solidify in its deeper layers. There would, in any case, be an age-long struggle between the molten mass and the confining crust, until at length—to employ the old Roman conception of the activity of Etna—the giant was imprisoned below the heavy roof of rock.

Here again we seem to find evidence of the general correctness of the theory. The objection has been raised that the geologist does not find any rocks which he can identify as portions of the primitive crust of the earth. It seems to me that it would be too much to expect the survival at the surface of any part of the first scum that cooled on that fiery ocean. It is more natural to suppose that millions of years of volcanic activity on a prodigious scale would characterise this early stage, and the "primitive crust" would be buried in fragments, or dissolved again, under deep seas of lava. Now, this is precisely what we find, The oldest rocks known to the geologist—the Archaean rocks—are overwhelmingly volcanic, especially in their lower part. Their thickness, as we know them, is estimated at 50,000 feet; a thickness which must represent many millions of years. But we do not know how much thicker than this they may be. They underlie the oldest rocks that have ever been exposed to the gaze of the geologist. They include sedimentary deposits, showing the action of water, and even probable traces of organic remains, but they are, especially in their deeper and older sections, predominantly volcanic. They evince what we may call a volcanic age in the early story of the planet.

But before we pursue this part of the story further we must interpolate a remarkable event in the record—the birth of the moon. It is now generally believed, on a theory elaborated by Sir G. Darwin, that when the formation of the crust had reached a certain depth—something over thirty miles, it is calculated—it parted with a mass of matter, which became the moon. The size of our moon, in comparison with the earth, is so exceptional among the satellites which attend the planets of our solar system that it is assigned an exceptional origin. It is calculated that at that time the earth turned on its axis in the space of four or five hours, instead of twenty-four. We have already seen that the tidal influence of the sun has the effect of moderating the rotation of the planets. Now, this very rapid rotation of a liquid mass, with a thin crust, would (together with the instability occasioned by its cooling) cause it to bulge at the equator. The bulge would increase until the earth became a pear-shaped body. The small end of the pear would draw further and further away from the rest—as a drop of water does on the mouth of a tap—and at last the whole mass (some 5,000,000,000 cubic miles of matter) was broken off, and began to pursue an independent orbit round the earth.

There are astronomers who think that other cosmic bodies, besides our moon, may have been formed in this way. Possibly it is true of some of the double stars, but we will not return to that question. The further story of the moon, as it is known to astronomers, may be given in a few words. The rotational movement of the earth is becoming gradually slower on account of tidal influence; our day, in fact, becomes an hour longer every few million years. It can be shown that this had the effect of increasing the speed, and therefore enlarging the orbit, of the moon, as it revolved round the earth. As a result, the moon drew further and further away from the earth until it reached its present position, about 240,000 miles away. At the same time the tidal influence of the earth was lessening the rotational movement of the moon. This went on until it turned on its axis in the same period in which it revolves round the earth, and on this account it always presents the same face to the earth.

Through what chapters of life the moon may have passed in the meantime it is impossible to say. Its relatively small mass may have been unable to keep the lighter gases at its surface, or its air and water may, as some think, have been absorbed. It is to-day practically an airless and waterless desert, alternating between the heat of its long day and the intense cold of its long night. Careful observers, such as Professor Pickering, think that it may still have a shallow layer of heavy gases at its surface, and that this may permit the growth of some stunted vegetation during the day. Certain changes of colour, which are observed on its surface, have been interpreted in that sense. We can hardly conceive any other kind of life on it. In the dark even the gases will freeze on its surface, as there is no atmosphere to retain the heat. Indeed, some students of the moon (Fauth, etc.) believe that it is an unchanging desert of ice, bombarded by the projectiles of space.

An ingenious speculation as to the effect on the earth of this dislodgment of 5,000,000,000 cubic miles of its substance is worth noting. It supposes that the bed of the Pacific Ocean represents the enormous gap torn in its side by the delivery of the moon. At each side of this chasm the two continents, the Old World and the New, would be left floating on their molten ocean; and some have even seen a confirmation of this in the lines of crustal weakness which we trace, by volcanoes and earthquakes, on either side of the Pacific. Others, again, connect the shape of our great masses of land, which generally run to a southern point, with this early catastrophe. But these interesting speculations have a very slender basis, and we will return to the story of the development of the earth.

The last phase in preparation for the appearance of life would be the formation of the ocean. On the lines of the generally received nebular hypothesis this can easily be imagined, in broad outline. The gases would form the outer shell of the forming planet, since the heavier particles would travel inward. In this mixed mass of gas the oxygen and hydrogen would combine, at a fitting temperature, and form water. For ages the molten crust would hold this water suspended aloft as a surrounding shell of cloud, but when the surface cooled to about 380 degrees C. (Sollas), the liquid would begin to pour on it. A period of conflict would ensue, the still heated crust and the frequent volcanic outpours sending the water back in hissing steam to the clouds. At length, and now more rapidly, the temperature of the crust would sink still lower, and a heated ocean would settle upon it, filling the hollows of its irregular surface, and washing the bases of its outstanding ridges. From that time begins the age-long battle of the land and the water which, we shall see, has had a profound influence on the development of life.

In deference to the opinion of a number of geologists we must glance once more at the alternative view of the planetesimal school. In their opinion the molecules of water were partly attracted to the surface out of the disrupted matter, and partly collected within the porous outer layers of the globe. As the latter quantity grew, it would ooze upwards, fill the smaller depressions in the crust, and at length, with the addition of the attracted water, spread over the irregular surface. There is an even more important difference of opinion in regard to the formation of the atmosphere, but we may defer this until the question of climate interests us. We have now made our globe, and will pass on to that early chapter of its story in which living things make their appearance.

To some it will seem that we ought not to pass from the question of origin without a word on the subject of the age of the earth. All that one can do, however, is to give a number of very divergent estimates. Physicists have tried to calculate the age of the sun from the rate of its dissipation of heat, and have assigned, at the most, a hundred million years to our solar system; but the recent discovery of a source of heat in the disintegration of such metals as radium has made their calculations useless. Geologists have endeavoured, from observation of the action of geological agencies to-day, to estimate how long it will have taken them to form the stratified crust of the earth; but even the best estimates vary between twenty-five and a hundred million years, and we have reason to think that the intensity of these geological agencies may have varied in different ages. Chemists have calculated how long it would take the ocean, which was originally fresh water, to take up from the rocks and rivers the salt which it contains to-day; Professor Joly has on this ground assigned a hundred million years since the waters first descended upon the crust. We must be content to know that the best recent estimates, based on positive data, vary between fifty and a hundred million years for the story which we are now about to narrate. The earlier or astronomical period remains quite incalculable. Sir G. Darwin thinks that it was probably at least a thousand million years since the moon was separated from the earth. Whatever the period of time may be since some cosmic cataclysm scattered the material of our solar system in the form of a nebula, it is only a fraction of that larger and illimitable time which the evolution of the stars dimly suggests to the scientific imagination.



THE GEOLOGICAL SERIES

[The scale of years adopted—50,000,000 for the stratified rocks—is merely an intermediate between conflicting estimates.]

ERA. PERIOD. RELATIVE LENGTH.

Quaternary Holocene 500,000 years Pleistocene

Tertiary Pliocene 5,500,000 years or Miocene Cenozoic Oligocene Eocene

Secondary Cretaceous 7,200,000 years or Jurassic 3,600,000 " Mesozoic Triassic 2,500,000 "

Primary Permian 2,800,000 years or Carboniferous 6,200,000 " Palaeozoic Devonian 8,000,000 " Silurian 5,400,000 " Ordovician 5,400,000 " Cambrian 8,000,000 "

Archaean Keweenawan Unknown (probably Animikie at least Huronian 50,000,000 years) Keewatin Laurentian



CHAPTER V. THE BEGINNING OF LIFE

There is, perhaps, no other chapter in the chronicle of the earth that we approach with so lively an interest as the chapter which should record the first appearance of life. Unfortunately, as far as the authentic memorials of the past go, no other chapter is so impenetrably obscure as this. The reason is simple. It is a familiar saying that life has written its own record, the long-drawn record of its dynasties and its deaths, in the rocks. But there were millions of years during which life had not yet learned to write its record, and further millions of years the record of which has been irremediably destroyed. The first volume of the geological chronicle of the earth is the mass of the Archaean (or "primitive") rocks. What the actual magnitude of that volume, and the span of time it covers, may be, no geologist can say. The Archaean rocks still solidly underlie the lowest depth he has ever reached. It is computed, however, that these rocks, as far as they are known to us, have a total depth of nearly ten miles, and seem therefore to represent at least half the story of the earth from the time when it rounded into a globe, or cooled sufficiently to endure the presence of oceans.

Yet all that we read of the earth's story during those many millions of years could be told in a page or two. That section of geology is still in its infancy, it is true. A day may come when science will decipher a long and instructive narrative in the masses of quartz and gneiss, and the layers of various kinds, which it calls the Archaean rocks. But we may say with confidence that it will not discover in them more than a few stray syllables of the earlier part, and none whatever of the earliest part, of the epic of living nature. A few fossilised remains of somewhat advanced organisms, such as shell-fish and worms, are found in the higher and later rocks of the series, and more of the same comparatively high types will probably appear. In the earlier strata, representing an earlier stage of life, we find only thick seams of black shale, limestone, and ironstone, in which we seem to see the ashes of primitive organisms, cremated in the appalling fires of the volcanic age, or crushed out of recognition by the superimposed masses. Even if some wizardry of science were ever to restore the forms that have been reduced to ashes in this Archaean crematorium, it would be found that they are more or less advanced forms, far above the original level of life. No trace will ever be found in the rocks of the first few million years in the calendar of life.

The word impossible or unknowable is not lightly uttered in science to-day, but there is a very plain reason for admitting it here. The earliest living things were at least as primitive of nature as the lowest animals and plants we know to-day, and these, up to a fair level of organisation, are so soft of texture that, when they die, they leave no remains which may one day be turned into fossils. Some of them, indeed, form tiny shells of flint or lime, or, like the corals, make for themselves a solid bed; but this is a relatively late and higher stage of development. Many thousands of species of animals and plants lie below that level. We are therefore forced to conclude, from the aspect of living nature to-day, that for ages the early organisms had no hard and preservable parts. In thus declaring the impotence of geology, however, we are at the same time introducing another science, biology, which can throw appreciable light on the evolution of life. Let us first see what geology tells us about the infancy of the earth.

The distribution of the early rocks suggests that there was comparatively little dry land showing above the surface of the Archaean ocean. Our knowledge of these rocks is not at all complete, and we must remember that some of this primitive land may be now under the sea or buried in unsuspected regions. It is significant, however, that, up to the present, exploration seems to show that in those remote ages only about one-fifth of our actual land-surface stood above the level of the waters. Apart from a patch of some 20,000 square miles of what is now Australia, and smaller patches in Tasmania, New Zealand, and India, nearly the whole of this land was in the far North. A considerable area of eastern Canada had emerged, with lesser islands standing out to the west and south of North America. Another large area lay round the basin of the Baltic; and as Greenland, the Hebrides, and the extreme tip of Scotland, belong to the same age, it is believed that a continent, of which they are fragments, united America and Europe across the North Atlantic. Of the rest of what is now Europe there were merely large islands—one on the border of England and Wales, others in France, Spain, and Southern Germany. Asia was represented by a large area in China and Siberia, and an island or islands on the site of India. Very little of Africa or South America existed.

It will be seen at a glance that the physical story of the earth from that time is a record of the emergence from the waters of larger continents and the formation of lofty chains of mountains. Now this world-old battle of land and sea has been waged with varying fortune from age to age, and it has been one of the most important factors in the development of life. We are just beginning to realise what a wonderful light it throws on the upward advance of animals and plants. No one in the scientific world to-day questions that, however imperfect the record may be, there has been a continuous development of life from the lowest level to the highest. But why there was advance at all, why the primitive microbe climbs the scale of being, during millions of years, until it reaches the stature of humanity, seems to many a profound mystery. The solution of this mystery begins to break upon us when we contemplate, in the geological record, the prolonged series of changes in the face of the earth itself, and try to realise how these changes must have impelled living things to fresh and higher adaptations to their changing surroundings.

Imagine some early continent with its population of animals and plants. Each bay, estuary, river, and lake, each forest and marsh and solid plain, has its distinctive inhabitants. Imagine this continent slowly sinking into the sea, until the advancing arms of the salt water meet across it, mingling their diverse populations in a common world, making the fresh-water lake brackish or salt, turning the dry land into swamp, and flooding the forest. Or suppose, on the other hand, that the land rises, the marsh is drained, the genial climate succeeded by an icy cold, the luscious vegetation destroyed, the whole animal population compelled to change its habits and its food. But this is no imaginary picture. It is the actual story of the earth during millions of years, and it is chiefly in the light of these vast and exacting changes in the environment that we are going to survey the panorama of the advance of terrestrial life.

For the moment it will be enough to state two leading principles. The first is that there is no such thing as a "law of evolution" in the sense in which many people understand that phrase. It is now sufficiently well known that, when science speaks of a law, it does not mean that there is some rule that things MUST act in such and such a way. The law is a mere general expression of the fact that they DO act in that way. But many imagine that there is some principle within the living organism which impels it onward to a higher level of organisation. That is entirely an error. There is no "law of progress." If an animal is fitted to secure its livelihood and breed posterity in certain surroundings, it may remain unchanged indefinitely if these surroundings do not materially change. So the duckmole of Australia and the tuatara of New Zealand have retained primitive features for millions of years; so the aboriginal Australian and the Fuegian have remained stagnant, in their isolation, for a hundred thousand years or more; so the Chinaman, in his geographical isolation, has remained unchanged for two thousand years. There is no more a "conservative instinct" in Chinese than there is a "progressive instinct" in Europeans. The difference is one of history and geography, as we shall see.

To make this important principle still clearer, let us imagine some primitive philosopher observing the advance of the tide over a level beach. He must discover two things: why the water comes onward at all, and why it advances along those particular channels. We shall see later how men of science explain or interpret the mechanism in a living thing which enables it to advance, when it does advance. For the present it is enough to say that new-born animals and plants are always tending to differ somewhat from their parents, and we now know, by experiment, that when some exceptional influence is brought to bear on the parent, the young may differ considerably from her. But, if the parents were already in harmony with their environment, these variations on the part of the young are of no consequence. Let the environment alter, however, and some of these variations may chance to make the young better fitted than the parent was. The young which happen to have the useful variation will have an advantage over their brothers or sisters, and be more likely to survive and breed the next generation. If the change in the environment (in the food or climate, for instance) is prolonged and increased for hundreds of thousands of years, we shall expect to find a corresponding change in the animals and plants.

We shall find such changes occurring throughout the story of the earth. At one important point in the story we shall find so grave a revolution in the face of nature that twenty-nine out of every thirty species of animals and plants on the earth are annihilated. Less destructive and extreme changes have been taking place during nearly the whole of the period we have to cover, entailing a more gradual alteration of the structure of animals and plants; but we shall repeatedly find them culminating in very great changes of climate, or of the distribution of land and water, which have subjected the living population of the earth to the most searching tests and promoted every variation toward a more effective organisation. [*]

* This is a very simple expression of "Darwinism," and will be enlarged later. The reader should ignore the occasional statement of non-scientific writers that Darwinism is "dead" or superseded. The questions which are actually in dispute relate to the causes of the variation of the young from their parents, the magnitude of these variations' and the transmission of changes acquired by an animal during its own life. We shall see this more fully at a later stage. The importance of the environment as I have described it, is admitted by all schools.

And the second guiding principle I wish to lay down in advance is that these great changes in the face of the earth, which explain the progress of organisms, may very largely be reduced to one simple agency—the battle of the land and the sea. When you gaze at some line of cliffs that is being eaten away by the waves, or reflect on the material carried out to sea by the flooded river, you are—paradoxical as it may seem—beholding a material process that has had a profound influence on the development of life. The Archaean continent that we described was being reduced constantly by the wash of rain, the scouring of rivers, and the fretting of the waves on the coast. It is generally thought that these wearing agencies were more violent in early times, but that is disputed, and we will not build on it. In any case, in the course of time millions of tons of matter were scraped off the Archaean continent and laid on the floor of the sea by its rivers. This meant a very serious alteration of pressure or weight on the surface of the globe, and was bound to entail a reaction or restoration of the balance.

The rise of the land and formation of mountains used to be ascribed mainly to the cooling and shrinking of the globe of the earth. The skin (crust), it was thought, would become too large for the globe as it shrank, and would wrinkle outwards, or pucker up into mountain-chains. The position of our greater mountain-chains sprawling across half the earth (the Pyrenees to the Himalaya, and the Rocky Mountains to the Andes), seems to confirm this, but the question of the interior of the earth is obscure and disputed, and geologists generally conceive the rise of land and formation of mountains in a different way. They are due probably to the alteration of pressure on the crust in combination with the instability of the interior. The floors of the seas would sink still lower under their colossal burdens, and this would cause some draining of the land-surface. At the same time the heavy pressure below the seas and the lessening of pressure over the land would provoke a reaction. Enormous masses of rock would be forced toward and underneath the land-surface, bending, crumpling, and upheaving it as if its crust were but a leather coat. As a result, masses of land would slowly rise above the plain, to be shaped into hills and valleys by the hand of later time, and fresh surfaces would be dragged out of the deep, enlarging the fringes of the primitive continents, to be warped and crumpled in their turn at the next era of pressure.

In point of geological fact, the story of the earth has been one prolonged series of changes in the level of land and water, and in their respective limits. These changes have usually been very gradual, but they have always entailed changes (in climate, etc. ) of the greatest significance in the evolution of life. What was the swampy soil of England in the Carboniferous period is now sometimes thousands of feet beneath us; and what was the floor of a deep ocean over much of Europe and Asia at another time is now to be found on the slopes of lofty Alps, or 20,000 feet above the sea-level in Thibet. Our story of terrestrial life will be, to a great extent, the story of how animals and plants changed their structure in the long series of changes which this endless battle of land and sea brought over the face of the earth.

As we have no recognisable remains of the animals and plants of the earliest age, we will not linger over the Archaean rocks. Starting from deep and obscure masses of volcanic matter, the geologist, as he travels up the series of Archaean rocks, can trace only a dim and most unsatisfactory picture of those remote times. Between outpours of volcanic floods he finds, after a time, traces that an ocean and rivers are wearing away the land. He finds seams of carbon among the rocks of the second division of the Archaean (the Keewatin), and deduces from this that a dense sea-weed population already covered the floor of the ocean. In the next division (the Huronian) he finds the traces of extensive ice-action strangely lying between masses of volcanic rock, and sees that thousands of square miles of eastern North America were then covered with an ice-sheet. Then fresh floods of molten matter are poured out from the depths below; then the sea floods the land for a time; and at last it makes its final emergence as the first definitive part of the North American continent, to enlarge, by successive fringes, to the continent of to-day. [*]

* I am quoting Professor Coleman's summary of Archaean research in North America (Address to the Geological Section of the British Association, 1909). Europe, as a continent, has had more "ups and downs" than America in the course of geological time.

This meagre picture of the battle of land and sea, with interludes of great volcanic activity and even of an ice age, represents nearly all we know of the first half of the world's story from geology. It is especially disappointing in regard to the living population. The very few fossils we find in the upper Archaean rocks are so similar to those we shall discuss in the next chapter that we may disregard them, and the seams of carbon-shales, iron-ore, and limestone, suggest only, at the most, that life was already abundant. We must turn elsewhere for some information on the origin and early development of life.

The question of the origin of life I will dismiss with a brief account of the various speculations of recent students of science. Broadly speaking, their views fall into three classes. Some think that the germs of life may have come to the earth from some other body in the universe; some think that life was evolved out of non-living matter in the early ages of the earth, under exceptional conditions which we do not at present know, or can only dimly conjecture; and some think that life is being evolved from non-life in nature to-day, and always has been so evolving. The majority of scientific men merely assume that the earliest living things were no exception to the general process of evolution, but think that we have too little positive knowledge to speculate profitably on the manner of their origin.

The first view, that the germs of life may have come to this planet on a meteoric visitor from some other world, as a storm-driven bird may take its parasites to some distant island, is not without adherents to-day. It was put forward long ago by Lord Kelvin and others; it has been revived by the distinguished Swede, Professor Svante Arrhenius. The scientific objection to it is that the more intense (ultra-violet) rays of the sun would frill such germs as they pass through space. But a broader objection, and one that may dispense us from dwelling on it, is that we gain nothing by throwing our problems upon another planet. We have no ground for supposing that the earth is less capable of evolving life than other planets.

The second view is that, when the earth had passed through its white-hot stage, great masses of very complex chemicals, produced by the great heat, were found on its surface. There is one complex chemical substance in particular, called cyanogen, which is either an important constituent of living matter, or closely akin to it. Now we need intense heat to produce this substance in the laboratory. May we not suppose that masses of it were produced during the incandescence of the earth, and that, when the waters descended, they passed through a series of changes which culminated in living plasm? Such is the "cyanogen hypothesis" of the origin of life, advocated by able physiologists such as Pfluger, Verworn, and others. It has the merit of suggesting a reason why life may not be evolving from non-life in nature to-day, although it may have so evolved in the Archaean period.

Other students suggest other combinations of carbon-compounds and water in the early days. Some suggest that electric action was probably far more intense in those ages; others think that quantities of radium may have been left at the surface. But the most important of these speculations on the origin of life in early times, and one that has the merit of not assuming any essentially different conditions then than we find now, is contained in a recent pronouncement of one of the greatest organic chemists in Europe, Professor Armstrong. He says that such great progress has been made in his science—the science of the chemical processes in living things—that "their cryptic character seems to have disappeared almost suddenly." On the strength of this new knowledge of living matter, he ventures to say that "a series of lucky accidents" could account for the first formation of living things out of non-living matter in Archaean times. Indeed, he goes further. He names certain inorganic substances, and says that the blowing of these into pools by the wind on the primitive planet would set afoot chemical combinations which would issue in the production of living matter. [*]

* See his address in Nature, vol. 76, p. 651. For other speculations see Verworn's "General Physiology," Butler Burke's "Origin of Life" (1906), and Dr. Bastian's "Origin of Life" (1911).

It is evident that the popular notion that scientific men have declared that life cannot be evolved from non-life is very far astray. This blunder is usually due to a misunderstanding of the dogmatic statement which one often reads in scientific works that "every living thing comes from a living thing." This principle has no reference to remote ages, when the conditions may have been different. It means that to-day, within our experience, the living thing is always born of a living parent. However, even this is questioned by some scientific men of eminence, and we come to the third view.

Professor Nageli, a distinguished botanist, and Professor Haeckel, maintain that our experience, as well as the range of our microscopes, is too limited to justify the current axiom. They believe that life may be evolving constantly from inorganic matter. Professor J. A. Thomson also warns us that our experience is very limited, and, for all we know, protoplasm may be forming naturally in our own time. Mr. Butler Burke has, under the action of radium, caused the birth of certain minute specks which strangely imitate the behaviour of bacteria. Dr. Bastian has maintained for years that he has produced living things from non-living matter. In his latest experiments, described in the book quoted, purely inorganic matter is used, and it is previously subjected, in hermetically sealed tubes, to a heat greater than what has been found necessary to kill any germs whatever.

Evidently the problem of the origin of life is not hopeless, but our knowledge of the nature of living matter is still so imperfect that we may leave detailed speculation on its origin to a future generation. Organic chemistry is making such strides that the day may not be far distant when living matter will be made by the chemist, and the secret of its origin revealed. For the present we must be content to choose the more plausible of the best-informed speculations on the subject.

But while the origin of life is obscure, the early stages of its evolution come fairly within the range of our knowledge. To the inexpert it must seem strange that, whereas we must rely on pure speculation in attempting to trace the origin of life, we can speak with more confidence of those early developments of plants and animals which are equally buried in the mists of the Archaean period. Have we not said that nothing remains of the procession of organisms during half the earth's story but a shapeless seam of carbon or limestone?

A simple illustration will serve to justify the procedure we are about to adopt. Suppose that the whole of our literary and pictorial references to earlier stages in the development of the bicycle, the locomotive, or the loom, were destroyed. We should still be able to retrace the phases of their evolution, because we should discover specimens belonging to those early phases lingering in our museums, in backward regions, and elsewhere. They might yet be useful in certain environments into which the higher machines have not penetrated. In the same way, if all the remains of prehistoric man and early civilisation were lost, we could still fairly retrace the steps of the human race, by gathering the lower tribes and races, and arranging them in the order of their advancement. They are so many surviving illustrations of the stages through which mankind as a whole has passed.

Just in the same way we may marshal the countless species of animals and plants to-day in such order that they will, in a general way, exhibit to us the age-long procession of life. From the very start of living evolution certain forms dropped out of the onward march, and have remained, to our great instruction, what their ancestors were millions of years ago. People create a difficulty for themselves by imagining that, if evolution is true, all animals must evolve. A glance at our own fellows will show the error of this. Of one family of human beings, as a French writer has said, one only becomes a Napoleon; the others remain Lucien, Jerome, or Joseph. Of one family of animals or trees, some advance in one or other direction; some remain at the original level. There is no "law of progress." The accidents of the world and hereditary endowment impel some onward, and do not impel others. Hence at nearly every great stage in the upward procession through the ages some regiment of plants or animals has dropped out, and it represents to-day the stage of life at which it ceased to progress. In other words, when we survey the line of the hundreds of thousands of species which we find in nature to-day, we can trace, amid their countless variations and branches, the line of organic evolution in the past; just as we could, from actual instances, study the evolution of a British house, from the prehistoric remains in Devonshire to a mansion in Park Lane or a provincial castle.

Another method of retracing the lost early chapters in the development of life is furnished by embryology. The value of this method is not recognised by all embryologists, but there are now few authorities who question the substantial correctness of it, and we shall, as we proceed, see some remarkable applications of it. In brief, it is generally admitted that an animal or plant is apt to reproduce, during its embryonic development, some of the stages of its ancestry in past time. This does not mean that a higher animal, whose ancestors were at one time worms, at another time fishes, and at a later time reptiles, will successively take the form of a little worm, a little fish, and a little reptile. The embryonic life itself has been subject to evolution, and this reproduction of ancestral forms has been proportionately disturbed. Still, we shall find that animals will tend, in their embryonic development, to reproduce various structural features which can only be understood as reminiscences of ancestral organs. In the lower animals the reproduction is much less disturbed than in the higher, but even in the case of man this law is most strikingly verified. We shall find it useful sometimes at least in confirming our conclusions as to the ancestry of a particular group.

We have, therefore, two important clues to the missing chapters in the story of evolution. Just as the scheme of the evolution of worlds is written broadly across the face of the heavens to-day, so the scheme of the evolution of life is written on the face of living nature; and it is written again, in blurred and broken characters, in the embryonic development of each individual. With these aids we set out to restore the lost beginning of the epic of organic evolution.



CHAPTER VI. THE INFANCY OF THE EARTH

The long Archaean period, into which half the story of the earth is so unsatisfactorily packed, came to a close with a considerable uplift of the land. We have seen that the earth at times reaches critical stages owing to the transfer of millions of tons of matter from the land to the depths of the ocean, and the need to readjust the pressure on the crust. Apparently this stage is reached at the end of the Archaean, and a great rise of the land—probably protracted during hundreds of thousands of years—takes place. The shore-bottoms round the primitive continent are raised above the water, their rocks crumpling like plates of lead under the overpowering pressure. The sea retires with its inhabitants, mingling their various provinces, transforming their settled homes. A larger continent spans the northern ocean of the earth.

In the shore-waters of this early continent are myriads of living things, representing all the great families of the animal world below the level of the fish and the insect. The mud and sand in which their frames are entombed, as they die, will one day be the "Cambrian" rocks of the geologist, and reveal to him their forms and suggest their habits. No great volcanic age will reduce them to streaks of shapeless carbon. The earth now buries its dead, and from their petrified remains we conjure up a picture of the swarming life of the Cambrian ocean.

A strange, sluggish population burrows in the mud, crawls over the sand, adheres to the rocks, and swims among the thickets of sea-weed. The strangest and most formidable, though still too puny a thing to survive in a more strenuous age, is the familiar Trilobite of the geological museum; a flattish animal with broad, round head, like a shovel, its back covered with a three-lobed shell, and a number of fine legs or swimmers below. It burrows in the loose bottom, or lies in it with its large compound eyes peeping out in search of prey. It is the chief representative of the hard-cased group (Crustacea) which will later replace it with the lobster, the shrimp, the crab, and the water-flea. Its remains form from a third to a fourth of all the buried Cambrian skeletons. With it, swimming in the water, are smaller members of the same family, which come nearer to our familiar small Crustacea.

Shell-fish are the next most conspicuous inhabitants. Molluscs are already well represented, but the more numerous are the more elementary Brachiopods ("lampshells"), which come next to the Trilobites in number and variety. Worms (or Annelids) wind in and out of the mud, leaving their tracks and tubes for later ages. Strange ball or cup-shaped little animals, with a hard frame, mounted on stony stalks and waving irregular arms to draw in the food-bearing water, are the earliest representatives of the Echinoderms. Some of these Cystids will presently blossom into the wonderful sea-lily population of the next age, some are already quitting their stalks, to become the free-moving star-fish, of which a primitive specimen has been found in the later Cambrian. Large jelly-fishes (of which casts are preserved) swim in the water; coral-animals lay their rocky foundations, but do not as yet form reefs; coarse sponges rise from the floor; and myriads of tiny Radiolaria and Thalamophores, with shells of flint and lime, float at the surface or at various depths.

This slight sketch of the Cambrian population shows us that living things had already reached a high level of development. Their story evidently goes back, for millions of years, deep into those mists of the Archaean age which we were unable to penetrate. We turn therefore to the zoologist to learn what he can tell us of the origin and family-relations of these Cambrian animals, and will afterwards see how they are climbing to higher levels under the eye of the geologist.

At the basis of the living world of to-day is a vast population of minute, generally microscopic, animals and plants, which are popularly known as "microbes." Each consists, in scientific language, of one cell. It is now well known that the bodies of the larger animals and plants are made up of millions of these units of living matter, or cells—the atoms of the organic world—and I need not enlarge on it. But even a single cell lends itself to infinite variety of shape, and we have to penetrate to the very lowest level of this luxuriant world of one-celled organisms to obtain some idea of the most primitive living things. Properly speaking, there were no "first living things." It cannot be doubted by any student of nature that the microbe developed so gradually that it is as impossible to fix a precise term for the beginning of life as it is to say when the night ends and the day begins. In the course of time little one-celled living units appeared in the waters of the earth, whether in the shallow shore waters or on the surface of the deep is a matter of conjecture.

We are justified in concluding that they were at least as rudimentary in structure and life as the lowest inhabitants of nature to-day. The distinction of being the lowest known living organisms should, I think, be awarded to certain one-celled vegetal organisms which are very common in nature. Minute simple specks of living matter, sometimes less than the five-thousandth of an inch in diameter, these lowly Algae are so numerous that it is they, in their millions, which cover moist surfaces with the familiar greenish or bluish coat. They have no visible organisation, though, naturally, they must have some kind of structure below the range of the microscope. Their life consists in the absorption of food-particles, at any point of their surface, and in dividing into two living microbes, instead of dying, when their bulk increases. A very lowly branch of the Bacteria (Nitrobacteria) sometimes dispute their claim to the lowest position in the hierarchy of living nature, but there is reason to suspect that these Bacteria may have degenerated from a higher level.

Here we have a convenient starting-point for the story of life, and may now trace the general lines of upward development. The first great principle to be recognised is the early division of these primitive organisms into two great classes, the moving and the stationary. The clue to this important divergence is found in diet. With exceptions on both sides, we find that the non-moving microbes generally feed on inorganic matter, which they convert into plasm; the moving microbes generally feed on ready-made plasm—on the living non-movers, on each other, or on particles of dead organic matter. Now, inorganic food is generally diffused in the waters, so that the vegetal feeders have no incentive to develop mobility. On the other hand, the power to move in search of their food, which is not equally diffused, becomes a most important advantage to the feeders on other organisms. They therefore develop various means of locomotion. Some flow or roll slowly along like tiny drops of oil on an inclined surface; others develop minute outgrowths of their substance, like fine hairs, which beat the water as oars do. Some of them have one strong oar, like the gondolier (but in front of the boat); others have two or more oars; while some have their little flanks bristling with fine lashes, like the flanks of a Roman galley.

If we imagine this simple principle at work for ages among the primitive microbes, we understand the first great division of the living world, into plants and animals. There must have been a long series of earlier stages below the plant and animal. In fact, some writers insist that the first organisms were animal in nature, feeding on the more elementary stages of living matter. At last one type develops chlorophyll (the green matter in leaves), and is able to build up plasm out of inorganic matter; another type develops mobility, and becomes a parasite on the plant world. There is no rigid distinction of the two worlds. Many microscopic plants move about just as animals do, and many animals live on fixed stalks; while many plants feed on organic matter. There is so little "difference of nature" between the plant and the animal that the experts differ in classifying some of these minute creatures. In fact, we shall often find plants and animals crossing the line of division. We shall find animals rooting themselves to the floor, like plants, though they will generally develop arms or streamers for bringing the food to them; and we shall find plants becoming insect-catchers. All this merely shows that the difference is a natural tendency, which special circumstances may overrule. It remains true that the great division of the organic world is due to a simple principle of development; difference of diet leads to difference of mobility.

But this simple principle will have further consequences of a most important character. It will lead to the development of mind in one half of living nature and leave it undeveloped in the other. Mind, as we know it in the lower levels of life, is not confined to the animal at all. Many even of the higher plants are very delicately sensitive to stimulation, and at the lowest level many plants behave just like animals. In other words, this sensitiveness to stimuli, which is the first form of mind, is distributed according to mobility. To the motionless organism it is no advantage; to the pursuing and pursued organism it is an immense advantage, and is one of the chief qualities for natural selection to foster.

For the moment, however, we must glance at the operation of this and other natural principles in the evolution of the one-celled animals and plants, which we take to represent the primitive population of the earth. As there are tens of thousands of different species even of "microbes," it is clear that we must deal with them in a very summary way. The evolution of the plant I reserve for a later chapter, and I must be content to suggest the development of one-celled animals on very broad lines. When some of the primitive cells began to feed on each other, and develop mobility, it is probable that at least two distinct types were evolved, corresponding to the two lowest animal organisms in nature to-day. One of these is a very minute and very common (in vases of decaying flowers, for instance) speck of plasm, which moves about by lashing the water with a single oar (flagellum), or hair-like extension of its substance. This type, however, which is known as the Flagellate, may be derived from the next, which we will take as the primitive and fundamental animal type. It is best seen in the common and familiar Amoeba, a minute sac of liquid or viscid plasm, often not more than a hundredth of an inch in diameter. As its "skin" is merely a finer kind of the viscous plasm, not an impenetrable membrane, it takes in food at any part of its surface, makes little "stomachs," or temporary cavities, round the food at any part of its interior, ejects the useless matter at any point, and thrusts out any part of its body as temporary "arms" or "feet."

Now it is plain that in an age of increasing microbic cannibalism the toughening of the skin would be one of the first advantages to secure survival, and this is, in point of fact, almost the second leading principle in early development. Naturally, as the skin becomes firmer, the animal can no longer, like the Amoeba, take food at, or make limbs of, any part of it. There must be permanent pores in the membrane to receive food or let out rays of the living substance to act as oars or arms. Thus we get an immense variety amongst these Protozoa, as the one-celled animals are called. Some (the Flagellates) have one or two stout oars; some (the Ciliates) have numbers of fine hairs (or cilia). Some have a definite mouth-funnel, but no stomach, and cilia drawing the water into it. Some (Vorticella, etc.), shrinking from the open battlefield, return to the plant-principle, live on stalks, and have wreaths of cilia round the open mouth drawing the water to them. Some (the Heliozoa) remain almost motionless, shooting out sticky rays of their matter on every side to catch the food. Some form tubes to live in; some (Coleps) develop horny plates for armour; and others develop projectiles to pierce their prey (stinging threads).

This miniature world is full of evolutionary interest, but it is too vast for detailed study here. We will take one group, which we know to have been already developed in the Cambrian, and let a study of its development stand for all. In every lecture or book on "the beauties of the microscope" we find, and are generally greatly puzzled by, minute shells of remarkable grace and beauty that are formed by some of these very elementary animals They are the Radiolaria (with flinty shells, as a rule) and the Thalamophora (with chalk frames). Evolution furnishes a simple key to their remarkable structure.

As we saw, one of the early requirements to be fostered by natural selection in the Archaean struggle for life was a "thick skin," and the thick skin had to be porous to let the animal shoot out its viscid substance in rays and earn its living. This stage above the Amoeba is beautifully illustrated in the sun-animalcules (Heliozoa). Now the lowest types of Radiolaria are of this character. They have no shell or framework at all. The next stage is for the little animal to develop fine irregular threads of flint in its skin, a much better security against the animal-eater. These animalcules, it must be recollected, are bits of almost pure plasm, and, as they live in crowds, dividing and subdividing, but never dying, make excellent mouthfuls for a small feeder. Those with the more flint in their skins were the more apt to survive and "breed." The threads of flint increase until they form a sort of thorn-thicket round a little social group, or a complete lattice round an individual body. Next, spikes or spines jut out from the lattice, partly for additional protection, partly to keep the little body afloat at the surface of the sea. In this way we get a bewildering variety and increasing complexity of forms, ascending in four divergent lines from the naked ancestral type to the extreme grace and intricacy of the Calocyclas monumentum or the Lychnaspis miranda. These, however, are rare specimens in the 4000 species of Radiolaria. I have hundreds of them, on microscopic slides, which have no beauty and little regularity of form. We see a gradual evolution, on utilitarian principles, as we run over the thousands of forms; and, when we recollect the inconceivable numbers in which these little animals have lived and struggled for life—passively—during tens of millions of years, we are not surprised at the elaborate protective frames of the higher types.

The Thalamophores, the sister-group of one-celled animals which largely compose our chalk and much of our limestone, are developed on the same principle. The earlier forms seem to have lived in a part of the ocean where silica was scarce, and they absorbed and built their protective frames of lime. In the simpler types the frame is not unlike a wide-necked bottle, turned upside-down. In later forms it takes the shape of a spirally coiled series of chambers, sometimes amounting to several thousand. These wonderful little houses are not difficult to understand. The original tiny animal covers itself with a coat of lime. It feeds, grows, and bulges out of its chamber. The new part of its flesh must have a fresh coat, and the process goes on until scores, or hundreds, or even thousands, of these tiny chambers make up the spiral shell of the morsel of living matter.

With this brief indication of the mechanical principles which have directed the evolution of two of the most remarkable groups of the one-celled animals we must be content, or the dimensions of this volume will not enable us even to reach the higher and more interesting types. We must advance at once to the larger animals, whose bodies are composed of myriads of cells.

The social tendency which pervades the animal world, and the evident use of that tendency, prepare us to understand that the primitive microbes would naturally come in time to live in clusters. Union means effectiveness in many ways, even when it does not mean strength. We have still many loose associations of one-celled animals in nature, illustrating the approach to a community life. Numbers of the Protozoa are social; they live either in a common jelly-like matrix, or on a common stalk. In fact, we have a singularly instructive illustration of the process in the evolution of the sponges.

It is well known that the horny texture to which we commonly give the name of sponge is the former tenement and shelter of a colony of one-celled animals, which are the real Sponges. In other groups the structure is of lime; in others, again, of flinty material. Now, the Sponges, as we have them to-day, are so varied, and start from so low a level, that no other group of animals "illustrates so strikingly the theory of evolution," as Professor Minchin says. We begin with colonies in which the individuals are (as in Proterospongia) irregularly distributed in their jelly-like common bed, each animal lashing the water, as stalked Flagellates do, and bringing the food to it. Such a colony would be admirable food for an early carnivore, and we soon find the protective principle making it less pleasant for the devourer. The first stage may be—at least there are such Sponges even now—that the common bed is strewn or sown with the cast shells of Radiolaria. However that may be, the Sponges soon begin to absorb the silica or lime of the sea-water, and deposit it in needles or fragments in their bed. The deposit goes on until at last an elaborate framework of thorny, or limy, or flinty material is constructed by the one-celled citizens. In the higher types a system of pores or canals lets the food-bearing water pass through, as the animals draw it in with their lashes; in the highest types the animals come still closer together, lining the walls of little chambers in the interior.

Here we have a very clear evolutionary transition from the solitary microbe to a higher level, but, unfortunately, it does not take us far. The Sponges are a side-issue, or cul de sac, from the Protozoic world, and do not lead on to the higher. Each one-celled unit remains an animal; it is a colony of unicellulars, not a many-celled body. We may admire it as an instructive approach toward the formation of a many-celled body, but we must look elsewhere for the true upward advance.

The next stage is best illustrated in certain spherical colonies of cells like the tiny green Volvox (now generally regarded as vegetal) of our ponds, or Magosphoera. Here the constituent cells merge their individuality in the common action. We have the first definite many-celled body. It is the type to which a moving close colony of one-celled microbes would soon come. The round surface is well adapted for rolling or spinning along in the water, and, as each little cell earns its own living, it must be at the surface, in contact with the water. Thus a hollow, or fluid-filled, little sphere, like the Volvox, is the natural connecting-link between the microbe and the many-celled body, and may be taken to represent the first important stage in its development.

The next important stage is also very clearly exhibited in nature, and is more or less clearly reproduced in the embryonic development of all animals. We may imagine that the age of microbes was succeeded by an age of these many-celled larger bodies, and the struggle for life entered upon a new phase. The great principle we have already recognised came into play once more. Large numbers of the many-celled bodies shrank from the field of battle, and adopted the method of the plant. They rooted themselves to the floor of the ocean, and developed long arms or lashes for creating a whirlpool movement in the water, and thus bringing the food into their open mouths. Forfeiting mobility, they have, like the plant, forfeited the greater possibilities of progress, and they remain flowering to-day on the floors of our waters, recalling the next phase in the evolution of early life. Such are the hydra, the polyp, the coral, and the sea-anemone. It is not singular that earlier observers could not detect that they were animals, and they were long known in science as "animal-plants" (Zoophytes).

When we look to the common structure of these animals, to find the ancestral type, we must ignore the nerve and muscle-cells which they have developed in some degree. Fundamentally, their body consists of a pouch, with an open mouth, the sides of the pouch consisting of a double layer of cells. In this we have a clue to the next stage of animal development. Take a soft india-rubber ball to represent the first many-celled animal. Press in one half of the ball close upon the other, narrow the mouth, and you have something like the body-structure of the coral and hydra. As this is the course of embryonic development, and as it is so well retained in the lowest groups of the many-celled animals, we take it to be the next stage. The reason for it will become clear on reflection. Division of labour naturally takes place in a colony, and in that way certain cells in the primitive body were confined to the work of digestion. It would be an obvious advantage for these to retire into the interior, leaving the whole external surface free for the adjustment of the animal's relations to the outer world.

Again we must refrain from following in detail the development of this new world of life which branches off in the Archaean ocean. The evolution of the Corals alone would be a lengthy and interesting story. But a word must be said about the jelly-fish, partly because the inexpert will be puzzled at the inclusion of so active an animal, and partly because its story admirably illustrates the principle we are studying. The Medusa really descends from one of the plant-like animals of the early Archaean period, but it has abandoned the ancestral stalk, turned upside down, and developed muscular swimming organs. Its past is betrayed in its embryonic development. As a rule the germ develops into a stalked polyp, out of which the free-swimming Medusa is formed. This return to active and free life must have occurred early, as we find casts of large Medusae in the Cambrian beds. In complete harmony with the principle we laid down, the jelly-fish has gained in nerve and sensitiveness in proportion to its return to an active career.

But this principle is best illustrated in the other branch of the early many-celled animals, which continued to move about in search of food. Here, as will be expected, we have the main stem of the animal world, and, although the successive stages of development are obscure, certain broad lines that it followed are clear and interesting.

It is evident that in a swarming population of such animals the most valuable qualities will be speed and perception. The sluggish Coral needs only sensitiveness enough, and mobility enough, to shrink behind its protecting scales at the approach of danger. In the open water the most speedy and most sensitive will be apt to escape destruction, and have the larger share in breeding the next generation. Imagine a selection on this principle going on for millions of years, and the general result can be conjectured. A very interesting analogy is found in the evolution of the boat. From the clumsy hollowed tree of Neolithic man natural selection, or the need of increasing speed, has developed the elongated, evenly balanced modern boat, with its distinct stem and stern. So in the Archaean ocean the struggle to overtake food, or escape feeders, evolved an elongated two-sided body, with head and tail, and with the oars (cilia) of the one-celled ancestor spread thickly along its flanks. In other words, a body akin to that of the lower water-worms would be the natural result; and this is, in point of fact, the next stage we find in the hierarchy of living nature.

Probably myriads of different types of this worm-like organisation were developed, but such animals leave no trace in the rocks, and we can only follow the development by broad analogies. The lowest flat-worms of to-day may represent some of these early types, and as we ascend the scale of what is loosely called "worm" organisation, we get some instructive suggestions of the way in which the various organs develop. Division of labour continues among the colony of cells which make up the body, and we get distinct nerve-cells, muscle-cells, and digestive cells. The nerve-cells are most useful at the head of an organism which moves through the water, just as the look-out peers from the head of the ship, and there they develop most thickly. By a fresh division of labour some of these cells become especially sensitive to light, some to the chemical qualities of matter, some to movements of the water; we have the beginning of the eyes, the nose, and the ears, as simple little depressions in the skin of the head, lined with these sensitive cells. A muscular gullet arises to protect the digestive tube; a simple drainage channel for waste matter forms under the skin; other channels permit the passage of the fluid food, become (in the higher worms) muscular blood-vessels, and begin to contract—somewhat erratically at first—and drive the blood through the system.

Here, perhaps, are millions of years of development compressed into a paragraph. But the purpose of this work is chiefly to describe the material record of the advance of life in the earth's strata, and show how it is related to great geological changes. We must therefore abstain from endeavouring to trace the genealogy of the innumerable types of animals which were, until recently, collected in zoology under the heading "Worms." It is more pertinent to inquire how the higher classes of animals, which we found in the Cambrian seas, can have arisen from this primitive worm-like population.

The struggle for life in the Archaean ocean would become keener and more exacting with the appearance of each new and more effective type. That is a familiar principle in our industrial world to-day, and we shall find it illustrated throughout our story. We therefore find the various processes of evolution, which we have already seen, now actively at work among the swarming Archaean population, and producing several very distinct types. In some of these struggling organisms speed is developed, together with offensive and defensive weapons, and a line slowly ascends toward the fish, which we will consider later. In others defensive armour is chiefly developed, and we get the lines of the heavy sluggish shell-fish, the Molluscs and Brachiopods, and, by a later compromise between speed and armour, the more active tough-coated Arthropods. In others the plant-principle reappears; the worm-like creature retires from the free-moving life, attaches itself to a fixed base, and becomes the Bryozoan or the Echinoderm. To trace the development of these types in any detail is impossible. The early remains are not preserved. But some clues are found in nature or in embryonic development, and, when the types do begin to be preserved in the rocks, we find the process of evolution plainly at work in them. We will therefore say a few words about the general evolution of each type, and then return to the geological record in the Cambrian rocks.

The starfish, the most familiar representative of the Echinoderms, seems very far removed from the kind of worm-like ancestor we have been imagining, but, fortunately, the very interesting story of the starfish is easily learned from the geological chronicle. Reflect on the flower-like expansion of its arms, and then imagine it mounted on a stalk, mouth side upward, with those arms—more tapering than they now are—waving round the mouth. That, apparently, was the past of the starfish and its cousins. We shall see that the earliest Echinoderms we know are cup-shaped structures on stalks, with a stiff, limy frame and (as in all sessile animals) a number of waving arms round the mouth. In the next geological age the stalk will become a long and flexible arrangement of muscles and plates of chalk, the cup will be more perfectly compacted of chalky plates, and the five arms will taper and branch until they have an almost feathery appearance; and the animal will be considered a "sea-lily" by the early geologist.

The evidence suggests that both the free-moving and the stalked Echinoderms descend from a common stalked Archaean ancestor. Some primitive animal abandoned the worm-like habit, and attached itself, like a polyp, to the floor. Like all such sessile animals, it developed a wreath of arms round the open mouth. The "sea-cucumber" (Holothurian) seems to be a type that left the stalk, retaining the little wreath of arms, before the body was heavily protected and deformed. In the others a strong limy skeleton was developed, and the nerves and other organs were modified in adaptation to the bud-like or flower-like structure. Another branch of the family then abandoned the stalk, and, spreading its arms flat, and gradually developing in them numbers of little "feet" (water-tubes), became the starfish. In the living Comatula we find a star passing through the stalked stage in its early development, when it looks like a tiny sea-lily. The sea-urchin has evolved from the star by folding the arms into a ball. [*]

* See the section on Echinoderms, by Professor MacBride, in the "Cambridge Natural History," I.

The Bryozoa (sea-mats, etc.) are another and lower branch of the primitive active organisms which have adopted a sessile life. In the shell-fish, on the other hand, the principle of armour-plating has its greatest development. It is assuredly a long and obscure way that leads from the ancestral type of animal we have been describing to the headless and shapeless mussel or oyster. Such a degeneration is, however, precisely what we should expect to find in the circumstances. Indeed, the larva, of many of the headless Molluscs have a mouth and eyes, and there is a very common type of larva—the trochosphere—in the Mollusc world which approaches the earlier form of some of the higher worms. The Molluscs, as we shall see, provide some admirable illustrations of the process of evolution. In some of the later fossilised specimens (Planorbis, Paludina, etc.) we can trace the animal as it gradually passes from one species to another. The freshening of the Caspian Sea, which was an outlying part of the Mediterranean quite late in the geological record, seems to have evolved several new genera of Molluscs.

Although, therefore, the remains are not preserved of those primitive Molluscs in which we might see the protecting shell gradually thickening, and deforming the worm-like body, we are not without indications of the process. Two unequal branches of the early wormlike organisms shrank into strong protective shells. The lower branch became the Brachiopods; the more advanced branch the Molluscs. In the Mollusc world, in turn, there are several early types developed. In the Pelecypods (or Lamellibranchs—the mussel, oyster, etc.) the animal retires wholly within its fortress, and degenerates. The Gastropods (snails, etc.) compromise, and retain a certain amount of freedom, so that they degenerate less. The highest group, the Cephalopods, "keep their heads," in the literal sense, and we shall find them advancing from form to form until, in the octopus of a later age, they discard the ancestral shell, and become the aristocrats of the Mollusc kingdom.

The last and most important line that led upward from the chaos of Archaean worms is that of the Arthropods. Its early characteristic was the acquisition of a chitinous coat over the body. Embryonic indications show that this was at first a continuous shield, but a type arose in which the coat broke into sections covering each segment of the body, giving greater freedom of movement. The shield, in fact, became a fine coat of mail. The Trilobite is an early and imperfect experiment of the class, and the larva of the modern king-crab bears witness that it has not perished without leaving descendants. How later Crustacea increase the toughness of the coat by deposits of lime, and lead on to the crab and lobster, and how one early branch invades the land, develops air-breathing apparatus, and culminates in the spiders and insects, will be considered later. We shall see that there is most remarkable evidence connecting the highest of the Arthropods, the insect, with a remote Annelid ancestor.

We are thus not entirely without clues to the origin of the more advanced animals we find when the fuller geological record begins. Further embryological study, and possibly the discovery of surviving primitive forms, of which Central Africa may yet yield a number, may enlarge our knowledge, but it is likely to remain very imperfect. The fossil records of the long ages during which the Mollusc, the Crustacean, and the Echinoderm slowly assumed their characteristic forms are hopelessly lost. But we are now prepared to return to the record which survives, and we shall find the remaining story of the earth a very ample and interesting chronicle of evolution.



CHAPTER VII. THE PASSAGE TO THE LAND

Slender as our knowledge is of the earlier evolution of the Invertebrate animals, we return to our Cambrian population with greater interest. The uncouth Trilobite and its livelier cousins, the sluggish, skulking Brachiopod and Mollusc, the squirming Annelids, and the plant-like Cystids, Corals, and Sponges are the outcome of millions of years of struggle. Just as men, when their culture and their warfare advanced, clothed themselves with armour, and the most completely mailed survived the battle, so, generation after generation, the thicker and harder-skinned animals survived in the Archaean battlefield, and the Cambrian age opened upon the various fashions of armour that we there described. But, although half the story of life is over, organisation is still imperfect and sluggish. We have now to see how it advances to higher levels, and how the drama is transferred from the ocean to a new and more stimulating environment.

The Cambrian age begins with a vigorous move on the part of the land. The seas roll back from the shores of the "lost Atlantis," and vast regions are laid bare to the sun and the rains. In the bays and hollows of the distant shores the animal survivors of the great upheaval adapt themselves to their fresh homes and continue the struggle. But the rivers and the waves are at work once more upon the land, and, as the Cambrian age proceeds, the fringes of the continents are sheared, and the shore-life steadily advances upon the low-lying land. By the end of the Cambrian age a very large proportion of the land is covered with a shallow sea, in which the debris of its surface is deposited. The levelling continues through the next (Ordovician) period. Before its close nearly the whole of the United States and the greater part of Canada are under water, and the new land that had appeared on the site of Europe is also for the most part submerged. The present British Isles are almost reduced to a strip of north-eastern Ireland, the northern extremity of Scotland, and large islands in the south-west and centre of England.

We have already seen that these victories of the sea are just as stimulating, in a different way, to animals as the victories of the land. American geologists are tracing, in a very instructive way, the effect on that early population of the encroachment of the sea. In each arm of the sea is a distinctive fauna. Life is still very parochial; the great cosmopolitans, the fishes, have not yet arrived. As the land is revelled, the arms of the sea approach each other, and at last mingle their waters and their populations, with stimulating effect. Provincial characters are modified, and cosmopolitan characters increase in the great central sea of America. The vast shallow waters provide a greatly enlarged theatre for the life of the time, and it flourishes enormously. Then, at the end of the Ordovician, the land begins to rise once more. Whether it was due to a fresh shrinking of the crust, or to the simple process we have described, or both, we need not attempt to determine; but both in Europe and America there is a great emergence of land. The shore-tracts and the shallow water are narrowed, the struggle is intensified in them, and we pass into the Silurian age with a greatly reduced number but more advanced variety of animals. In the Silurian age the sea advances once more, and the shore-waters expand. There is another great "expansive evolution" of life. But the Silurian age closes with a fresh and very extensive emergence of the land, and this time it will have the most important consequences. For two new things have meantime appeared on the earth. The fish has evolved in the waters, and the plant, at least, has found a footing on the land.

These geological changes which we have summarised and which have been too little noticed until recently in evolutionary studies, occupied 7,000,000 years, on the lowest estimate, and probably twice that period. The impatient critic of evolutionary hypotheses is apt to forget the length of these early periods. We shall see that in the last two or three million years of the earth's story most extraordinary progress has been made in plant and animal development, and can be very fairly traced. How much advance should we allow for these seven or fourteen million years of swarming life and changing environments?

We cannot nearly cover the whole ground of paleontology for the period, and must be content to notice some of the more interesting advances, and then deal more fully with the evolution of the fish, the forerunner of the great land animals.

The Trilobite was the most arresting figure in the Cambrian sea, and its fortunes deserve a paragraph. It reaches its climax in the Ordovician sea, and then begins to decline, as more powerful animals come upon the scene. At first (apparently) an eyeless organism, it gradually develops compound eyes, and in some species the experts have calculated that there were 15,000 facets to each eye. As time goes on, also, the eye stands out from the head on a kind of stalk, giving a wider range of vision. Some of the more sluggish species seem to have been able to roll themselves up, like hedgehogs, in their shells, when an enemy approached. But another branch of the same group (Crustacea) has meantime advanced, and it gradually supersedes the dwindling Trilobites. Toward the close of the Silurian great scorpion-like Crustaceans (Pterygotus, Eurypterus, etc.) make their appearance. Their development is obscure, but it must be remembered that the rocks only give the record of shore-life, and only a part of that is as yet opened by geology. Some experts think that they were developed in inland waters. Reaching sometimes a length of five or six feet, with two large compound eyes and some smaller eye-spots (ocelli), they must have been the giants of the Silurian ocean until the great sharks and other fishes appeared.

The quaint stalked Echinoderm which also we noticed in the Cambrian shallows has now evolved into a more handsome creature, the sea-lily. The cup-shaped body is now composed of a large number of limy plates, clothed with flesh; the arms are long, tapering, symmetrical, and richly fringed; the stalk advances higher and higher, until the flower-like animal sometimes waves its feathery arms from the top of a flexible pedestal composed of millions of tiny chalk disks. Small forests of these sea-lilies adorn the floor of the Silurian ocean, and their broken and dead frames form whole beds of limestone. The primitive Cystids dwindle and die out in the presence of such powerful competitors. Of 250 species only a dozen linger in the Silurian strata, though a new and more advanced type—the Blastoid—holds the field for a time. It is the age of the Crinoids or sea-lilies. The starfish, which has abandoned the stalk, does not seem to prosper as yet, and the brittle-star appears. Their age will come later. No sea-urchins or sea-cucumbers (which would hardly be preserved) are found as yet. It is precisely the order of appearance which our theory of their evolution demands.

The Brachiopods have passed into entirely new and more advanced species in the many advances and retreats of the shores, but the Molluscs show more interesting progress. The commanding group from the start is that of the Molluscs which have "kept their head," the Cephalopods, and their large shells show a most instructive evolution. The first great representative of the tribe is a straight-shelled Cephalopod, which becomes "the tyrant and scavenger of the Silurian ocean" (Chamberlin). Its tapering, conical shell sometimes runs to a length of fifteen feet, and a diameter of one foot. It would of itself be an important evolutionary factor in the primitive seas, and might explain more than one advance in protective armour or retreat into heavy shells. As the period advances the shell begins to curve, and at last it forms a close spiral coil. This would be so great an advantage that we are not surprised to find the coiled type (Goniatites) gain upon and gradually replace the straight-shelled types (Orthoceratites). The Silurian ocean swarms with these great shelled Cephalopods, of which the little Nautilus is now the only survivor.

We will not enlarge on the Sponges and Corals, which are slowly advancing toward the higher modern types. Two new and very powerful organisms have appeared, and merit the closest attention. One is the fish, the remote ancestor of the birds and mammals that will one day rule the earth. The other may be the ancestor of the fish itself, or it may be one of the many abortive outcomes and unsuccessful experiments of the stirring life of the time. And while these new types are themselves a result of the great and stimulating changes which we have reviewed and the incessant struggle for food and safety, they in turn enormously quicken the pace of development. The Dreadnought appears in the primitive seas; the effect on the fleets of the world of the evolution of our latest type of battleship gives us a faint idea of the effect, on all the moving population, of the coming of these monsters of the deep. The age had not lacked incentives to progress; it now obtains a more terrible and far-reaching stimulus.

Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse