p-books.com
The Principles of Scientific Management
by Frederick Winslow Taylor
Previous Part     1  2  3     Next Part
Home - Random Browse

All of this requires the kindly cooperation of the management, and involves a much more elaborate organization and system than the old-fashioned herding of men in large gangs. This organization consisted, in this case, of one set of men, who were engaged in the development of the science of laboring through time study, such as has been described above; another set of men, mostly skilled laborers themselves, who were teachers, and who helped and guided the men in their work; another set of tool-room men who provided them with the proper implements and kept them in perfect order, and another set of clerks who planned the work well in advance, moved the men with the least loss of time from one place to another, and properly recorded each man's earnings, etc. And this furnishes an elementary illustration of what has been referred to as cooperation between the management and the workmen.

The question which naturally presents itself is whether an elaborate organization of this sort can be made to pay for itself; whether such an organization is not top-heavy. This question will best be answered by a statement of the results of the third year of working under this plan.

Old Plan New Plan Task Work The number of yard laborers was reduced from between 400 & 600 down to about 140 Average number of tons per man per day 16 59 Average earnings per man per day $1.15 $1.88 Average cost of handling a ton of 2240 lbs $0.072 $0.033

And in computing the low cost of $0.033 per ton, the office and tool-room expenses, and the wages of all labor superintendents, foremen, clerks, time-study men, etc., are included.

During this year the total saving of the new plan over the old amounted to $36,417.69, and during the six months following, when all of the work of the yard was on task work, the saving was at the rate of between $75,000 and $80,000 per year.

Perhaps the most important of all the results attained was the effect on the workmen themselves. A careful inquiry into the condition of these men developed the fact that out of the 140 workmen only two were said to be drinking men. This does not, of course, imply that many of them did not take an occasional drink. The fact is that a steady drinker would find it almost impossible to keep up with the pace which was set, so that they were practically all sober. Many, if not most of them, were saving money, and they all lived better than they had before. These men constituted the finest body of picked laborers that the writer has ever seen together, and they looked upon the men who were over them, their bosses and their teachers, as their very best friends; not as nigger drivers, forcing them to work extra hard for ordinary wages, but as friends who were teaching them and helping them to earn much higher wages than they had ever earned before.

It would have been absolutely impossible for any one to have stirred up strife between these men and their employers. And this presents a very simple though effective illustration of what is meant by the words "prosperity for the employee, coupled with prosperity for the employer," the two principal objects of management. It is evident also that this result has been brought about by the application of the four fundamental principles of scientific management.

As another illustration of the value of a scientific study of the motives which influence workmen in their daily work, the loss of ambition and initiative will be cited, which takes place in workmen when they are herded into gangs instead of being treated as separate individuals. A careful analysis had demonstrated the fact that when workmen are herded together in gangs, each man in the gang becomes far less efficient than when his personal ambition is stimulated; that when men work in gangs, their individual efficiency falls almost invariably down to or below the level of the worst man in the gang; and that they are all pulled down instead of being elevated by being herded together. For this reason a general order had been issued in the Bethlehem Steel Works that not more than four men were to be allowed to work in a labor gang without a special permit, signed by the General Superintendent of the works, this special permit to extend for one week only. It was arranged that as far as possible each laborer should be given a separate individual task. As there were about 5000 men at work in the establishment, the General Superintendent had so much to do that there was but little time left for signing these special permits.

After gang work had been by this means broken up, an unusually fine set of ore shovelers had been developed, through careful selection and individual, scientific training. Each of these men was given a separate car to unload each day, and his wages depended upon his own personal work. The man who unloaded the largest amount of ore was paid the highest wages, and an unusual opportunity came for demonstrating the importance of individualizing each workman. Much of this ore came from the Lake Superior region, and the same ore was delivered both in Pittsburgh and in Bethlehem in exactly similar cars. There was a shortage of ore handlers in Pittsburgh, and hearing of the fine gang of laborers that had been developed at Bethlehem, one of the Pittsburgh steel works sent an agent to hire the Bethlehem men. The Pittsburgh men offered 4 9/10 cents a ton for unloading exactly the same ore, with the same shovels, from the same cars, that were unloaded in Bethlehem for 3 2/10 cents a ton. After carefully considering this situation, it was decided that it would be unwise to pay more than 3 2/10 cents per ton for unloading the Bethlehem cars, because, at this rate, the Bethlehem laborers were earning a little over $1.85 per man per day, and this price was 60 per cent more than the ruling rate of wages around Bethlehem.

A long series of experiments, coupled with close observation, had demonstrated the fact that when workmen of this caliber are given a carefully measured task, which calls for a big day's work on their part, and that when in return for this extra effort they are paid wages up to 60 per cent beyond the wages usually paid, that this increase in wages tends to make them not only more thrifty but better men in every way; that they live rather better, begin to save money, become more sober, and work more steadily. When, on the other hand, they receive much more than a 60 per cent increase in wages, many of them will work irregularly and tend to become more or less shiftless, extravagant, and dissipated. Our experiments showed, in other words, that it does not do for most men to get rich too fast.

After deciding, for this reason, not to raise the wages of our ore handlers, these men were brought into the office one at a time, and talked to somewhat as follows:

"Now, Patrick, you have proved to us that you are a high-priced man. You have been earning every day a little more than $1.85, and you are just the sort of man that we want to have in our ore-shoveling gang. A man has come here from Pittsburgh, ho is offering 4 9/10 cents per ton for handling ore while we can pay only 3 9/10 cents per ton. I think, therefore, that you had better apply to this man for a job. Of course, you know we are very sorry to have you leave us, but you have proved yourself a high-priced man, and we are very glad to see you get this chance of earning more money. Just remember, however, that at any time in the future, when you get out of a job, you can always come right back to us. There will always be a job for a high-priced man like you in our gang here."

Almost all of the ore handlers took this advice, and went to Pittsburgh, but in about six weeks most of them were again back in Bethlehem unloading ore at the old rate of 3 2/10 cents a ton. The writer had the following talk with one of these men after he had returned:

"Patrick, what are you doing back here? I thought we had gotten rid of you."

"'Well, Sir, I'll tell you how it was. When we got out there Jimmy and I were put on to a car with eight other men. We started to shovel the ore out just the same as we do here. After about half an hour I saw a little devil alongside of me doing pretty near nothing, so I said to him, 'Why don't you go to work? Unless we get the ore out of this car we won't get any money on pay-day.' He turned to me and said, 'Who in ——— are you?'

"'Well,' I said, 'that's none of your business'; and the little devil stood up to me and said, 'You'll be minding your own business, or I'll throw you off this car!' 'Well, I could have spit on him and drowned him, but the rest of the men put down their shovels and looked as if they were going to back him up; so I went round to Jimmy and said (so that the whole gang could hear it), 'Now, Jimmy, you and I will throw a shovel full whenever this little devil throws one, and not another shovel full.' So we watched him, and only shoveled when he shoveled.

"When pay-day came around, though, we had less money than we got here at Bethlehem. After that Jimmy and I went in to the boss, and asked him for a car to ourselves, the same as we got at Bethlehem, but he told us to mind our own business. And when another pay-day came around we had less money than we got here at Bethlehem, so Jimmy and I got the gang together and brought them all back here to work again."

When working each man for himself, these men were able to earn higher wages at 3 2/10 cents a ton than they could earn when they were paid 4 9/10 cents a ton on gang work; and this again shows the great gain which results from working according to even the most elementary of scientific principles. But it also shows that in the application of the most elementary principles it is necessary for the management to do their share of the work in cooperating with the workmen. The Pittsburgh managers knew just how the results had been attained at Bethlehem, but they were unwilling to go to the small trouble and expense required to plan ahead and assign a separate car to each shoveler, and then keep an individual record of each man's work, and pay him just what he had earned.

Bricklaying is one of the oldest of our trades.

For hundreds of years there has been little or no improvement made in the implements and materials used in this trade, nor in fact in the method of laying bricks. In spite of the millions of men who have practiced this trade, no great improvement has been evolved for many generations. Here, then, at least one would expect to find but little gain possible through scientific analysis and study. Mr. Frank B. Gilbreth, a member of our Society, who had himself studied bricklaying in his youth, became interested in the principles of scientific management, and decided to apply them to the art of bricklaying. He made an intensely interesting analysis and study of each movement of the bricklayer, and one after another eliminated all unnecessary movements and substituted fast for slow motions. He experimented with every minute element which in any way affects the speed and the tiring of the bricklayer.

He developed the exact position which each of the feet of the bricklayer should occupy with relation to the wall, the mortar box, and the pile of bricks, and so made it unnecessary for him to take a step or two toward the pile of bricks and back again each time a brick is laid.

He studied the best height for the mortar box and brick pile, and then designed a scaffold, with a table on it, upon which all of the materials are placed, so as to keep the bricks, the mortar, the man, and the wall in their proper relative positions. These scaffolds are adjusted, as the wall grows in height, for all of the bricklayers by a laborer especially detailed for this purpose, and by this means the bricklayer is saved the exertion of stooping down to the level of his feet for each brick and each trowel full of mortar and then straightening up again. Think of the waste of effort that has gone on through all these years, with each bricklayer lowering his body, weighing, say, 150 pounds, down two feet and raising it up again every time a brick (weighing about 5 pounds) is laid in the wall! And this each bricklayer did about one thousand times a day.

As a result of further study, after the bricks are unloaded from the cars, and before bringing them to the bricklayer, they are carefully sorted by a laborer, and placed with their best edge up on a simple wooden frame, constructed so as to enable him to take hold of each brick in the quickest time and in the most advantageous position. In this way the bricklayer avoids either having to turn the brick over or end for end to examine it before laying it, and he saves, also, the time taken in deciding which is the best edge and end to place on the outside of the wall. In most cases, also, he saves the time taken in disentangling the brick from a disorderly pile on the scaffold. This "pack" of bricks (as Mr. Gilbreth calls his loaded wooden frames) is placed by the helper in its proper position on the adjustable scaffold close to the mortar box.

We have all been used to seeing bricklayers tap each brick after it is placed on its bed of mortar several times with the end of the handle of the trowel so as to secure the right thickness for the joint. Mr. Gilbreth found that by tempering the mortar just right, the bricks could be readily bedded to the proper depth by a downward pressure of the hand with which they are laid. He insisted that his mortar mixers should give special attention to tempering the mortar, and so save the time consumed in tapping the brick.

Through all of this minute study of the motions to be made by the bricklayer in laying bricks under standard conditions, Mr. Gilbreth has reduced his movements from eighteen motions per brick to five, and even in one case to as low as two motions per brick. He has given all of the details of this analysis to the profession in the chapter headed "Motion Study," of his book entitled "Bricklaying System," published by Myron C. Clerk Publishing Company, New York and Chicago; E. F. N. Spon, of London.

An analysis of the expedients used by Mr. Gilbreth in reducing the motions of his bricklayers from eighteen to five shows that this improvement has been made in three different ways:

First. He has entirely dispensed with certain movements which the bricklayers in the past believed were necessary, but which a careful study and trial on his part have shown to be useless.

Second. He has introduced simple apparatus, such as his adjustable scaffold and his packets for holding the bricks, by means of which, with a very small amount of cooperation from a cheap laborer, he entirely eliminates a lot of tiresome and time-consuming motions which are necessary for the brick-layer who lacks the scaffold and the packet.

Third. He teaches his bricklayers to make simple motions with both hands at the same time, where before they completed a motion with the right hand and followed it later with one from the left hand.

For example, Mr. Gilbreth teaches his brick-layer to pick up a brick in the left hand at the same instant that he takes a trowel full of mortar with the right hand. This work with two hands at the same time is, of course, made possible by substituting a deep mortar box for the old mortar board (on which the mortar spread out so thin that a step or two had to be taken to reach it) and then placing the mortar box and the brick pile close together, and at the proper height on his new scaffold.

These three kinds of improvements are typical of the ways in which needless motions can be entirely eliminated and quicker types of movements substituted for slow movements when scientific motion study, as Mr. Gilbreth calls his analysis, time study, as the writer has called similar work, are, applied in any trade.

Most practical men would (knowing the opposition of almost all tradesmen to making any change in their methods and habits), however, be skeptical as to the possibility of actually achieving any large results from a study of this sort. Mr. Gilbreth reports that a few months ago, in a large brick building which he erected, he demonstrated on a commercial scale the great gain which is possible from practically applying his scientific study. With union bricklayers, in laying a factory wall, twelve inches thick, with two kinds of brick, faced and ruled joints on both sides of the wall, he averaged, after his selected workmen had become skilful in his new methods, 350 bricks per man per hour; whereas the average speed of doing this work with the old methods was, in that section of the country, 120 bricks per man per hour. His bricklayers were taught his new method of bricklaying by their foreman. Those who failed to profit by their teaching were dropped, and each man, as he became proficient under the new method, received a substantial (not a small) increase in his wages. With a view to individualizing his workmen and stimulating each man to do his best, Mr. Gilbreth also developed an ingenious method for measuring and recording the number of bricks laid by each man, and for telling each workman at frequent intervals how many bricks he had succeeded in laying.

It is only when this work is compared with the conditions which prevail under the tyranny of some of our misguided bricklayers' unions that the great waste of human effort which is going on will be realized. In one foreign city the bricklayers' union have restricted their men to 275 bricks per day on work of this character when working for the city, and 375 per day when working for private owners. The members of this union are probably sincere in their belief that this restriction of output is a benefit to their trade. It should be plain to all men, however, that this deliberate loafing is almost criminal, in that it inevitably results in making every workman's family pay higher rent for their housing, and also in the end drives work and trade away from their city, instead of bringing it to it.

Why is it, in a trade which has been continually practiced since before the Christian era, and with implements practically the same as they now are, that this simplification of the bricklayer's movements, this great gain, has not been made before?

It is highly likely that many times during all of these years individual bricklayers have recognized the possibility of eliminating each of these unnecessary motions. But even if, in the past, he did invent each one of Mr. Gilbreth's improvements, no bricklayer could alone increase his speed through their adoption because it will be remembered that in all cases several bricklayers work together in a row and that the walls all around a building must grow at the same rate of speed. No one bricklayer, then, can work much faster than the one next to him. Nor has any one workman the authority to make other men cooperate with him to do faster work. It is only through enforced standardization of methods, enforced adoption of the best implements and working conditions, and enforced cooperation that this faster work can be assured. And the duty of enforcing the adoption of standards and of enforcing-this cooperation rests with the management alone. The management must supply continually one or more teachers to show each new man the new and simpler motions, and the slower men must be constantly watched and helped until they have risen to their proper speed. All of those who, after proper teaching, either will not or cannot work in accordance with the new methods and at the higher speed must be discharged by the management. The management must also recognize the broad fact that workmen will not submit to this more rigid standardization and will not work extra hard, unless they receive extra pay for doing it.

All of this involves an individual study of and treatment for each man, while in the past they have been handled in large groups.

The management must also see that those who prepare the bricks and the mortar and adjust the scaffold, etc., for the bricklayers, cooperate with them by doing their work just right and always on time; and they must also inform each bricklayer at frequent intervals as to the progress he is making, so that he may not unintentionally fall off in his pace. Thus it will be seen that it is the assumption by the management of new duties and new kinds of work never done by employers in the past that makes this great improvement possible, and that, without this new help from the management, the workman even with full knowledge of the new methods and with the best of intentions could not attain these startling results.

Mr. Gilbreth's method of bricklaying furnishes a simple illustration of true and effective cooperation. Not the type of cooperation in which a mass of workmen on one side together cooperate with the management; but that in which several men in the management (each one in his own particular way) help each workman individually, on the one hand, by studying his needs and his shortcomings and teaching him better and quicker methods, and, on the other hand, by seeing that all other workmen with whom he comes in contact help and cooperate with him by doing their part of the work right and fast.

The writer has gone thus fully into Mr. Gilbreth's method in order that it may be perfectly clear that this increase in output and that this harmony could not have been attained under the management of "initiative and incentive" (that is, by putting the problem up to the workman and leaving him to solve it alone) which has been the philosophy of the past. And that his success has been due to the use of the four elements which constitute the essence of scientific management.

First. The development (by the management, not the workman) of the science of bricklaying, with rigid rules for each motion of every man, and the perfection and standardization of all implements and working conditions.

Second. The careful selection and subsequent training of the bricklayers into first-class men, and the elimination of all men who refuse to or are unable to adopt the best methods.

Third. Bringing the first-class bricklayer and the science of bricklaying together, through the constant help and watchfulness of the management, and through paying each man a large daily bonus for working fast and doing what he is told to do.

Fourth. An almost equal division of the work and responsibility between the workman and the management. All day long the management work almost side by side with the men, helping, encouraging, and smoothing the way for them, while in the past they stood one side, gave the men but little help, and threw on to them almost the entire responsibility as to methods, implements, speed, and harmonious cooperation.

Of these four elements, the first (the development of the science of bricklaying) is the most interesting and spectacular. Each of the three others is, however, quite as necessary for success.

It must not be forgotten that back of all this, and directing it, there must be the optimistic, determined, and hard-working leader who can wait patiently as well as work.

In most cases (particularly when the work to be done is intricate in its nature) the "development of the science" is the most important of the four great elements of the new management. There are instances, however, in which the "scientific selection of the workman" counts for more than anything else.

A case of this type is well illustrated in the very simple though unusual work of inspecting bicycle balls.

When the bicycle craze was at its height some years ago several million small balls made of hardened steel were used annually in bicycle bearings. And among the twenty or more operations used in making steel balls, perhaps the most important was that of inspecting them after final polishing so as to remove all fire-cracked or otherwise imperfect balls before boxing.

The writer was given the task of systematizing the largest bicycle ball factory in this country. This company had been running for from eight to ten years on ordinary day work before he undertook its reorganization, so that the one hundred and twenty or more girls who were inspecting the balls were "old bands" and skilled at their jobs.

It is impossible even in the most elementary work to change rapidly from the old independence of individual day work to scientific cooperation.

In most cases, however, there exist certain imperfections in working conditions which can at once be improved with benefit to all concerned.

In this instance it was found that the inspectors (girls) were working ten and one-half hours per day (with a Saturday half holiday.)

Their work consisted briefly in placing a row of small polished steel balls on the back of the left hand, in the crease between two of the fingers pressed together, and while they were rolled over and over, they were minutely examined in a strong light, and with the aid of a magnet held in the right hand, the defective balls were picked out and thrown into especial boxes. Four kinds of defects were looked for-dented, soft, scratched, and fire-cracked—and they were mostly so minute as to be invisible to an eye not especially trained to this work. It required the closest attention and concentration, so that the nervous tension of the inspectors was considerable, in spite of the fact that they were comfortably seated and were not physically tired.

A most casual study made it evident that a very considerable part of the ten and one-half hours during which the girls were supposed to work was really spent in idleness because the working period was too long. It is a matter of ordinary common sense to plan working hours so that the workers can really "work while they work" and "play while they play," and not mix the two.

Before the arrival of Mr. Sanford E. Thompson, who undertook a scientific study of the whole process, we decided, therefore, to shorten the working hours.

The old foreman who had been over the inspecting room for years was instructed to interview one after another of the better inspectors and the more influential girls and persuade them that they could do just as much work in ten hours each day as they had been doing in ten and one-half hours. Each girl was told that the proposition was to shorten the day's work to ten hours and pay them the same day's pay they were receiving for the ten and one-half hours.

In about two weeks the foreman reported that all of the girls he had talked to agreed that they could do their present work just as well in ten hours as in ten and one-half and that they approved of the change.

The writer had not been especially noted for his tact so he decided that it would be wise for him to display a little more of this quality by having the girls vote on the new proposition. This decision was hardly justified, however, for when the vote was taken the girls were unanimous that 10 1/2 hours was good enough for them and they wanted no innovation of any kind.

This settled the matter for the time being. A few months later tact was thrown to the winds and the working hours were arbitrarily shortened in successive steps to 10 hours, 9 1/2, 9, and 8 1/2 (the pay per day remaining the same); and with each shortening of the working day the output increased instead of diminishing.

The change from the old to the scientific method in this department was made under the direction of Mr. Sanford E. Thompson, perhaps the most experienced man in motion and time study in this country, under the general superintendence of Mr. H. L. Gantt.

In the Physiological departments of our universities experiments are regularly conducted to determine what is known as the "personal coefficient" of the man tested. This is done by suddenly bringing some object, the letter A or B for instance, within the range of vision of the subject, who, the instant he recognizes the letter has to do some definite thing, such as to press a particular electric button. The time which elapses from the instant the letter comes in view until the subject presses the button is accurately recorded by a delicate scientific instrument.

This test shows conclusively that there is a great difference in the "personal coefficient" of different men. Some individuals are born with unusually quick powers of perception accompanied by quick responsive action. With some the message is almost instantly transmitted from the eye to the brain, and the brain equally quickly responds by sending the proper message to the hand.

Men of this type are said to have a low "personal coefficient," while those of slow perception and slow action have a high "personal coefficient."

Mr. Thompson soon recognized that the quality most needed for bicycle ball inspectors was a low personal coefficient. Of course the ordinary qualities of endurance and industry were also called for.

For the ultimate good of the girls as well as the company, however, it became necessary to exclude, all girls who lacked a low "personal coefficient." And unfortunately this involved laying off many of the most intelligent, hardest working, and most trustworthy girls merely because they did not possess the quality of quick perception followed by quick action.

While the gradual selection of girls was going on other changes were also being made.

One of the dangers to be guarded against, when the pay of the man or woman is made in any way to depend on the quantity of the work done, is that in the effort to increase the quantity the quality is apt to deteriorate.

It is necessary in almost all cases, therefore, to take definite steps to insure against any falling off in quality before moving in any way towards an increase in quantity.

In the work of these particular girls quality was the very essence. They were engaged in picking out all defective balls.

The first step, therefore, was to make it impossible for them to slight their work without being, found out. This was accomplished through what is known as over-inspection, Each one of four of the most trust-worthy girls was given each day a lot of balls to inspect which had been examined the day before by one of the regular inspectors; the number identifying the lot to be over-inspected having been changed by the foreman so that none of the over-inspectors knew whose work they were examining. In addition to this one of the lots inspected by the four over-inspectors was examined on the following day by the chief inspector, selected on account of her especial accuracy and integrity.

An effective expedient was adopted for checking the honesty and accuracy of the over-inspection. Every two or three days a lot of balls was especially prepared by the foreman, who counted out a definite number of perfect balls, and added a recorded number of defective balls of each kind. Neither the inspectors nor the over-inspectors had any means of distinguishing this prepared lot from the regular commercial lots. And in this way all temptation to slight their work or make false returns was removed.

After insuring in this way against deterioration in quality, effective means were at once adopted to increase the output. Improved day work was substituted for the old slipshod method. An accurate daily record was kept both as to the quantity and quality of the work done in order to guard against any personal prejudice on the part of the foreman and to insure absolute impartiality and justice for each inspector. In a comparatively short time this record enabled the foreman to stir the ambition of all the inspectors by increasing the wages of those who turned out a large quantity and good quality, while at the same time lowering the pay of those who did indifferent work and discharging others who proved to be incorrigibly slow or careless. A careful examination was then made of the way in which each girl spent her time and an accurate time study was undertaken, through the use of a stop-watch and record blanks, to determine how fast each kind of inspection should be done, and to establish the exact conditions under which each girl could do her quickest and best work, while at the same time guarding against giving her a task so severe that there was danger from over fatigue or exhaustion. This investigation showed that the girls spent a considerable part of their time either in partial idleness, talking and half working, or in actually doing nothing.

Even when the hours of labor had been shortened from 10 1/2 to 8 1/2 hours a close observation of the girls showed that after about an hour and one-half of consecutive work they began to get nervous. They evidently needed a rest. It is wise to stop short of the point at which overstrain begins, so we arranged for them to have a ten minutes period for recreation at the end of each hour and one quarter. During these recess periods (two of ten minutes each in the morning and two in the afternoon) they were obliged to stop work and were encouraged to leave their seats and get a complete change of occupation by walking around and talking, etc.

In one respect no doubt some people will say that these girls were brutally treated. They were seated so far apart that they could not conveniently talk while at work.

Shortening their hours of labor, however, and providing so far as we knew the most favorable working conditions made it possible for them to really work steadily instead of pretending to do so.

And it is only after this stage in the reorganization is reached, when the girls have been properly selected and on the one hand such precautions have been taken as to guard against the possibility of over-driving them, while, on the other hand, the temptation to slight their work has been removed and the most favorable working conditions have been established, that the final step should be taken which insures them what they most want, namely, high wages, and the employers what they most want, namely, the maximum output and best quality of work, -which means a low labor cost.

This step is to give each girl each day a carefully measured task which demands a full day's work from a competent operative, and also to give her a large premium or bonus whenever she accomplishes this task.

This was done in this case through establishing what is known as differential rate piece work. *begin footnote* See paper read before the American Society of Mechanical Engineers, by Fred. W. Taylor, Vol. XVI, p. 856, entitled "Piece Rate System." *end footnote* Under this system the pay of each girl was increased in proportion to the quantity of her output and also still more in proportion to the accuracy of her work.

As will be shown later, the differential rate (the lots inspected by the over-inspectors forming the basis for the differential) resulted in a large gain in the quantity of work done and at the same time in a marked improvement in the quality.

Before they finally worked to the best advantage it was found to be necessary to measure the output of each girl as often as once every hour, and to send a teacher to each individual who was found to be falling behind to find what was wrong, to straighten her out, and to encourage and help her to catch up.

There is a general principle back of this which should be appreciated by all of those who are especially interested in the management of men.

A reward, if it is to be effective in stimulating men to do their best work, must come soon after the work has been done. But few men are able to look forward for more than a week or perhaps at most a month, and work hard for a reward which they are to receive at the end of this time.

The average workman must be able to measure what he has accomplished and clearly see his reward at the end of each day if he is to do his best. And more elementary characters, such as the young girls inspecting bicycle balls, or children, for instance, should have proper encouragement either in the shape of personal attention from those over them or an actual reward in sight as often as once an hour.

This is one of the principal reasons why cooperation or "profit-sharing" either through selling stock to the employees or through dividends on wages received at the end of the year, etc., have been at the best only mildly effective in stimulating men to work hard. The nice time which they are sure to have to-day if they take things easily and go slowly proves more attractive than steady hard work with a possible reward to be shared with others six months later. A second reason for the inefficiency of profit-sharing schemes had been that no form of cooperation has yet been devised in which each individual is allowed free scope for his personal ambition. Personal ambition always has been and will remain a more powerful incentive to exertion than a desire for the general welfare. The few misplaced drones, who do the loafing and share equally in the profits, with the rest, under cooperation are sure to drag the better men down toward their level.

Other and formidable difficulties in the path of cooperative schemes are, the equitable division of the profits, and the fact that, while workmen are always ready to share the profits, they are neither able nor willing to share the losses. Further than this, in many cases, it is neither right nor just that they should share either the profits or the losses, since these may be due in great part to causes entirely beyond their influence or control, and to which they do not contribute.

To come back to the girls inspecting bicycle balls, however, the final outcome of all the changes was that thirty-five girls did the work formerly done by one hundred and twenty. And that the accuracy of the work at the higher speed was two-thirds greater than at the former slow speed.

The good that came to the girls was, First. That they averaged from 80 to 100 per cent higher wages than they formerly received.

Second. Their hours of labor were shortened from 10 1/2 to 8 1/2 per day, with a Saturday half holiday. And they were given four recreation periods properly distributed through the day, which made overworking impossible for a healthy girl.

Third. Each girl was made to feel that she was the object of especial care and interest on the part of the management, and that if anything went wrong with her she could always have a helper and teacher in the management to lean upon.

Fourth. All young women should be given two consecutive days of rest (with pay) each month, to be taken whenever they may choose. It is my impression that these girls were given this privilege, although I am not quite certain on this point.

The benefits which came to the company from these changes were:

First. A substantial improvement in the quality of the product.

Second. A material reduction in the cost of inspection, in spite of the extra expense involved in clerk work, teachers, time study, over-inspectors, and in paying higher wages.

Third. That the most friendly relations existed between the management and the employees, which rendered labor troubles of any kind or a strike impossible.

These good results were brought about by many changes which substituted favorable for unfavorable working conditions. It should be appreciated, however, that the one element which did more than all of the others was, the careful selection of girls with quick perception to replace those whose perceptions were slow—(the substitution of girls with a low personal coefficient for those whose personal coefficient was high)—the scientific selection of the workers.

The illustrations have thus far been purposely confined to the more elementary types of work, so that a very strong doubt must still remain as to whether this kind of cooperation is desirable in the case of more intelligent mechanics, that is, in the case of men who are more capable of generalization, and who would therefore be more likely, of their own volition, to choose the more scientific and better methods. The following illustrations will be given for the purpose of demonstrating the fact that in the higher classes of work the scientific laws which are developed are so intricate that the high-priced mechanic needs (even more than the cheap laborer) the cooperation of men better educated than himself in finding the laws, and then in selecting, developing, and training him to work in accordance with these laws. These illustrations should make perfectly clear our original proposition that in practically all of the mechanic arts the science which underlies each workman's act is so great and amounts to so much that the workman who is best suited to actually doing the work is incapable, either through lack of education or through insufficient mental capacity, of understanding this science.

A doubt, for instance, will remain in the minds perhaps of most readers (in the case of an establishment which manufactures the same machine, year in and year out, in large quantities, and in which, therefore, each mechanic repeats the same limited series of operations over and over again), whether the ingenuity of each workman and the help which he from time to time receives from his foreman will not develop such superior methods and such a personal dexterity that no scientific study which could be made would result in a material increase in efficiency.

A number of years ago a company employing about three hundred men, which had been manufacturing the same machine for ten to fifteen years, sent for us to report as to whether any gain could be made through the introduction of scientific management. Their shops had been run for many years under a good superintendent and with excellent foremen and workmen, on piece work. The whole establishment was, without doubt, in better physical condition than the average machine-shop in this country. The superintendent was distinctly displeased when told that through the adoption of task management the output, with the same number of men and machines, could be more than doubled. He said that he believed that any such statement was mere boasting, absolutely false, and instead of inspiring him with confidence, he was disgusted that any one should make such an impudent claim. He, however, readily assented to the proposition that he should select any one of the machines whose output he considered as representing the average of the shop, and that we should then demonstrate on this machine that through scientific methods its output could be more than doubled.

The machine selected by him fairly represented the work of the shop. It had been run for ten or twelve years past by a first-class mechanic who was more than equal in his ability to the average workmen in the establishment. In a shop of this sort in which similar machines are made over and over again, the work is necessarily greatly subdivided, so that no one man works upon more than a comparatively small number of parts during the year. A careful record was therefore made, in the presence of both parties, ox the time actually taken in finishing each of the parts which this man worked upon. The total time required by him to finish each piece, as well as the exact speeds and feeds which he took, were noted and a record was kept of the time which he took in setting the work in the machine and removing it. After obtaining in this way a statement of what represented a fair average of the work done in the shop, we applied to this one machine the principles of scientific management.

By means of four quite elaborate slide-rules, which have been especially made for the purpose of determining the all-round capacity of metal-cutting machines, a careful analysis was made of every element of this machine in its relation to the work in hand. Its Pulling power at its various speeds, its feeding capacity, and its proper speeds were determined by means of the slide-rules, and changes were then made in the countershaft and driving pulleys so as to run it at its proper speed. Tools, made of high-speed steel, and of the proper shapes, were properly dressed, treated, and ground. (It should be understood, however, that in this case the high-speed steel which had heretofore been in general use in the shop was also used in our demonstration.) A large special slide-rule was then made, by means of which the exact speeds and feeds were indicated at which each kind of work could be done in the shortest possible time in this particular lathe. After preparing in this way so that the workman should work according to the new method, one after another, pieces of work were finished in the lathe, corresponding to the work which had been done in our preliminary trials, and the gain in time made through running the machine according to scientific principles ranged from two and one-half times the speed in the slowest instance to nine times the speed in the highest.

The change from rule-of-thumb management to scientific management involves, however, not only a study of what is the proper speed for doing the work and a remodeling of the tools and the implements in the shop, but also a complete change in the mental attitude of all the men in the shop toward their work and toward their employers. The physical improvements in the machines necessary to insure large gains, and the motion, study followed by minute study with a stop-watch of the time in which each workman should do his work, can be made comparatively quickly. But the change in the mental attitude and in the habits of the three hundred or more workmen can be brought about only slowly and through a long series of object-lessons, which finally demonstrates to each man the great advantage which he will gain by heartily cooperating in his every-day work with the men in the management. Within three years, however, in this shop, the output had been more than doubled per man and per machine. The men had been carefully selected and in almost all cases promoted from a lower to a higher order of work, and so instructed by their teachers (the functional foremen) that they were able to earn higher wages than ever before. The average increase in the daily earnings of each man was about 35 per cent., while, at the same time, the sum total of the wages paid for doing a given amount of work was lower than before. This increase in the speed of doing the work, of course, involved a substitution of the quickest hand methods for the old independent rule-of-thumb methods, and an elaborate analysis of the hand work done by each man. (By hand work is meant such work as depends upon the manual dexterity and speed of a workman, and which is independent of the work done by the machine.) The time saved by scientific hand work was in many cases greater even than that saved in machine-work.

It seems important to fully explain the reason why, with the aid of a slide-rule, and after having studied the art of cutting metals, it was possible for the scientifically equipped man, who had never before seen these particular jobs, and who had never worked on this machine, to do work from two and one-half to nine times as fast as it had been done before by a good mechanic who had spent his whole time for some ten to twelve years in doing this very work upon this particular machine. In a word, this was possible because the art of cutting metals involves a true science of no small magnitude, a science, in fact, so intricate that it is impossible for any machinist who is suited to running a lathe year in and year out either to understand it or to work according to its laws without the help of men who have made this their specialty. Men who are un-familiar with machine-shop work are prone to look upon the manufacture of each piece as a special problem, independent of any other kind of machine-work. They are apt to think, for instance, that the problems connected with making the parts of an engine require the especial study, one may say almost the life study, of a set of engine-making mechanics, and that these problems are entirely different from those which would be met with in machining lathe or planer parts. In fact, however, a study of those elements which are peculiar either to engine parts or to lathe parts is trifling, compared with the great study of the art, or science, of cutting metals, upon a knowledge of which rests the ability to do really fast machine-work of all kinds.

The real problem is how to remove chips fast from a casting or a forging, and how to make the piece smooth and true in the shortest time, and it matters but little whether the piece being worked upon is part, say, of a marine engine, a printing-press, or an automobile. For this reason, the man with the slide rule, familiar with the science of cutting metals, who had never before seen this particular work, was able completely to distance the skilled mechanic who had made the parts of this machine his specialty for years.

It is true that whenever intelligent and educated men find that the responsibility for making progress in any of the mechanic arts rests with them, instead of upon the workmen who are actually laboring at the trade, that they almost invariably start on the road which leads to the development of a science where, in the past, has existed mere traditional or rule-of-thumb knowledge. When men, whose education has given them the habit of generalizing and everywhere looking for laws, find themselves confronted with a multitude of problems, such as exist in every trade and which have a general similarity one to another, it is inevitable that they should try to gather these problems into certain logical groups, and then search for some general laws or rules to guide them in their solution. As has been pointed out, however, the underlying principles of the management of "initiative and incentive," that is, the underlying philosophy of this management, necessarily leaves the solution of all of these problems in the hands of each individual workman, while the philosophy of scientific management places their solution in the hands of the management. The workman's whole time is each day taken in actually doing the work with his hands, so that, even if he had the necessary education and habits of generalizing in his thought, he lacks the time and the opportunity for developing these laws, because the study of even a simple law involving say time study requires the cooperation of two men, the one doing the work while the other times him with a stop-watch. And even if the workman were to develop laws where before existed only rule-of-thumb knowledge, his personal interest would lead him almost inevitably to keep his discoveries secret, so that he could, by means of this special knowledge, personally do more work than other men and so obtain higher wages.

Under scientific management, on the other hand, it becomes the duty and also the pleasure of those who are engaged in the management not only to develop laws to replace rule of thumb, but also to teach impartially all of the workmen who are under them the quickest ways of working. The useful results obtained from these laws are always so great that any company can well afford to pay for the time and the experiments needed to develop them. Thus under scientific management exact scientific knowledge and methods are everywhere, sooner or later, sure to replace rule of thumb, whereas under the old type of management working in accordance with scientific laws is an impossibility. The development of the art or science of cutting metals is an apt illustration of this fact. In the fall of 1880, about the time that the writer started to make the experiments above referred to, to determine what constitutes a proper day's work for a laborer, he also obtained the permission of Mr. William Sellers, the President of the Midvale Steel Company, to make a series of experiments to determine what angles and shapes of tools were the best for cutting steel, and also to try to determine the proper cutting speed for steel. At the time that these experiments were started it was his belief that they would not last longer than six months, and, in fact, if it had been known that a longer period than this would be required, the permission to spend a considerable sum of money in making them would not have been forthcoming.

A 66-inch diameter vertical boring-mill was the first machine used in making these experiments, and large locomotive tires, made out of hard steel of uniform quality, were day after day cut up into chips in gradually learning how to make, shape, and use the cutting tools so that they would do faster work. At the end of six months sufficient practical information had been obtained to far more than repay the cost of materials and wages which had been expended in experimenting. And yet the comparatively small number of experiments which had been made served principally to make it clear that the actual knowledge attained was but a small fraction of that which still remained to be developed, and which was badly needed by us, in our daily attempt to direct and help the machinists in their tasks.

Experiments in this field were carried on, with occasional interruption, through a period of about 26 years, in the course of which ten different experimental machines were especially fitted up to do this work. Between 30,000 and 50,000 experiments were carefully recorded, and many other experiments were made, of which no record was kept. In studying these laws more than 800,000 pounds of steel and iron was cut up into chips with the experimental tools, and it is estimated that from $150,000 to $200,000 was spent in the investigation.

Work of this character is intensely interesting to any one who has any love for scientific research. For the purpose of this paper, however, it should be fully appreciated that the motive power which kept these experiments going through many years, and which supplied the money and the opportunity for their accomplishment, was not an abstract search after scientific knowledge, but was the very practical fact that we lacked the exact information which was needed every day, in order to help our machinists to do their work in the best way and in the quickest time.

All of these experiments were made to enable us to answer correctly the two questions which face every machinist each time that he does a piece of work in a metal-cutting machine, such as a lathe, planer, drill press, or miring machine. These two questions are:

In order to do the work in the quickest time, At what cutting speed shall I run my machine? and What feed shall I use?

They sound so simple that they would appear to call for merely the trained judgment of any good mechanic. In fact, however, after working 26 years, it has been found that the answer in every case involves the solution of an intricate mathematical problem, in which the effect of twelve independent variables must be determined.

Each of the twelve following variables has an important effect upon the answer. The figures which are given with each of the variables represent the effect of this element upon the cutting speed.

For example, after the first variable (A) we quote,

"The proportion is as I in the case of semi-hardened steel or chilled iron to 100 in the case of a very soft, low-carbon steel." The meaning of this quotation is that soft steel can be cut 100 times as fast as the hard steel or chilled iron. The ratios which are given, then, after each of these elements, indicate the wide range of judgment which practically every machinist has been called upon to exercise in the past in determining the best speed at which to run the machine and the best feed to use.

(A) The quality of the metal which is to be cut; i.e., its hardness or other qualities which affect the cutting speed. The proportion is as 1 in the case of semi-hardened steel or chilled iron to 100 in the case of very soft, low-carbon steel.

(B) The chemical composition of the steel from which the tool is made, and the heat treatment of the tool. The proportion is as 1 in tools made from tempered carbon steel to 7 in the best high-speed tools.

(C) The thickness of the shaving, or, the thickness of the spiral strip or band of metal which is to be removed by the tool. The proportion is as 1 with thickness of shaving 3/16 of an inch to 3 1/2 with thickness of shaving 1/64 of an inch.

(D) The shape or contour of the cutting edge of the tool. The proportion is as 1 in a thread tool to 6 in a broad-nosed cutting tool.

(E) Whether a copious stream of water or other cooling medium is used on the tool. The proportion is as 1 for tool running dry to 1.41 for tool cooled by a copious stream of water.

(F) The depth of the cut. The proportion is as 1 with 1/2 inch depth of cut to 1.36 with 1/8 inch depth of cut.

(G) The duration of the cut, i.e., the time which a tool must last under pressure of the shaving without being reground. The proportion is as 1 when tool is to be ground every 1 1/2 hours to 1.20 when tool is to be ground every 20 minutes.

(H) The lip and clearance angles of the tool. The proportion is as 1 with lip angle of 68 degrees to 1.023 with lip angle of 61 degrees.

(J) The elasticity of the work and of the tool on account of producing chatter. The proportion is as 1 with tool chattering to 1.15 with tool running smoothly.

(K) The diameter of the casting or forging which is being cut.

(L) The pressure of the chip or shaving upon the cutting surface of the tool.

(M) The pulling power and the speed and feed changes of the machine.

It may seem preposterous to many people that it should have required a period of 26 years to investigate the effect of these twelve variables upon the cutting speed of metals. To those, however, who have had personal experience as experimenters, it will be appreciated that the great difficulty of the problem lies in the fact that it contains so many variable elements. And in fact the great length of time consumed in making each single experiment was caused by the difficulty of holding eleven variables constant and uniform throughout the experiment, while the effect of the twelfth variable was being investigated. Holding the eleven variables constant was far more difficult than the investigation of the twelfth element.

As, one after another, the effect upon the cutting speed of each of these variables was investigated, in order that practical use could be made of this knowledge, it was necessary to find a mathematical formula which expressed in concise form the laws which had been obtained. As examples of the twelve formulae which were developed, the three following are given:

P = 45,000 D 14/15 F 3/4

V = 90/T 1/8

V = 11.9/ (F 0.665(48/3 D) 0.2373 + (2.4 / (18 + 24D))

After these laws had been investigated and the various formulae which mathematically expressed them had been determined, there still remained the difficult task of how to solve one of these complicated mathematical problems quickly enough to make this knowledge available for every-day use. If a good mathematician who had these formula before Mm were to attempt to get the proper answer (i.e., to get the correct cutting speed and feed by working in the ordinary way) it would take him from two to six hours, say, to solve a single problem; far longer to solve the mathematical problem than would be taken in most cases by the workmen in doing the whole job in his machine. Thus a task of considerable magnitude which faced us was that of finding a quick solution of this problem, and as we made progress in its solution, the whole problem was from time to time presented by the writer to one after another of the noted mathematicians in this country. They were offered any reasonable fee for a rapid, practical method to be used in its solution. Some of these men merely glanced at it; others, for the sake of being courteous, kept it before them for some two or three weeks. They all gave us practically the same answer: that in many cases it was possible to, solve mathematical problems which contained four variables, and in some cases problems with five or six variables, but that it was manifestly impossible to solve a problem containing twelve variables in any other way than by the slow process of "trial and error."

A quick solution was, however, so much of a necessity in our every-day work of running machine-shops, that in spite of the small encouragement received from the mathematicians, we continued at irregular periods, through a term of fifteen years, to give a large amount of time searching for a simple solution. Four or five men at various periods gave practically their whole time to this work, and finally, while we were at the Bethlehem Steel Company, the slide-rule was developed which is illustrated on Folder No. 11 of the paper "On the Art of Cutting Metals," and is described in detail in the paper presented by Mr. Carl G. Barth to the American Society of Mechanical Engineers, entitled "Slide-rules for the Machine-shop, as a part of the Taylor System of Management" (Vol. XXV of The Transactions of the American Society of Mechanical Engineers). By means of this slide-rule, one of these intricate problems can be solved in less than a half minute by any good mechanics whether he understands anything about mathematics or not, thus making available for every-day, practical use the years of experimenting on the art of cutting metals. This is a good illustration of the fact that some way can always be found of making practical, everyday use of complicated scientific data, which appears to be beyond the experience and the range of the technical training of ordinary practical men. These slide-rules have been for years in constant daily use by machinists having no knowledge of mathematics.

A glance at the intricate mathematical formula (see page 109) which represent the laws of cutting metals should clearly show the reason why it is impossible for any machinist, without the aid of these laws, and who depends upon his personal experience, correctly to guess at the answer to the two questions,

What speed shall I use?

What feed shall I use?

even though he may repeat the same piece of work many times.

To return to the case of the machinist who had been working for ten to twelve years in machining the same pieces over and over again, there was but a remote chance in any of the various kinds of work which this man did that he should hit upon the one best method of doing each piece of work out of the hundreds of possible methods which lay before him. In considering this typical case, it must also be remembered that the metal-cutting machines throughout our machine-shops have practically all been speeded by their makers by guesswork, and without the knowledge obtained through a study of the art of cutting metals. In the machine-shops systematized by us we have found that there is not one machine in a hundred which is speeded by its makers at anywhere near the correct cutting speed. So that, in order to compete with the science of cutting metals, the machinist, before he could use proper speeds, would first have to put new pulleys on the countershaft of his machine, and also make in most cases changes in the shapes and treatment of his tools, etc. Many of these changes are matters entirely beyond his control, even if he knows what ought to be done.

If the reason is clear to the reader why the rule-of-thumb knowledge obtained by the machinist who is engaged on repeat work cannot possibly compete with the true science of cutting metals, it should be even more apparent why the high-class mechanic, who is called upon to do a great variety of work from day to day, is even less able to compete with this science. The high-class mechanic who does a different kind of work each day, in order to do each job in the quickest time, would need, in addition to a thorough knowledge of the art of cutting metals, a vast knowledge and experience in the quickest way of doing each kind of hand work. And the reader, by calling to mind the gain which was made by Mr. Gilbreth through his motion and time study in laying bricks, will appreciate the great possibilities for quicker methods of doing all kinds of hand work which lie before every tradesman after he has the help which comes from a scientific motion and time study of his work.

For nearly thirty years past, time-study men connected with the management of machine-shops have been devoting their whole time to a scientific motion study, followed by accurate time study, with a stop-watch, of all of the elements connected with the machinist's work. When, therefore, the teachers, who form one section of the management, and who are cooperating with the working men, are in possession both of the science of cutting metals and of the equally elaborate motion-study and time-study science connected with this work, it is not difficult to appreciate why even the highest class mechanic is unable to do his best work without constant daily assistance from his teachers. And if this fact has been made clear to the reader, one of the important objects in writing this paper will have been realized.

It is hoped that the illustrations which have been given make it apparent why scientific management must inevitably in all cases produce overwhelmingly greater results, both for the company and its employees, than can be obtained with the management of "initiative and incentive." And it should also be clear that these results have been attained, not through a marked superiority in the mechanism of one type of management over the mechanism of another, but rather through the substitution of one set of underlying principles for a totally different set of principles, by the substitution of one philosophy for another philosophy in industrial management.

To repeat then throughout all of these illustrations, it will be seen that the useful results have hinged mainly upon (1) the substitution of a science for the individual judgment of the workman; (2) the scientific selection and development of the workman, after each man has been studied, taught, and trained, and one may say experimented with, instead of allowing the workmen to select themselves and develop in a haphazard way; and (3) the intimate cooperation of the management with the workmen, so that they together do the work in accordance with the scientific laws which have been developed, instead of leaving the solution of each problem in the hands of the individual workman. In applying these new principles, in place of the old individual effort of each workman, both sides share almost equally in the daily performance of each task, the management doing that part of the work for which they are best fitted, and the workmen the balance.

It is for the illustration of this philosophy that this paper has been written, but some of the elements involved in its general principles should be further discussed.

The development of a science sounds like a formidable undertaking, and in fact anything like a thorough study of a science such as that of cutting metals necessarily involves many years of work. The science of cutting metals, however, represents in its complication, and in the time required to develop it, almost an extreme case in the mechanic arts. Yet even in this very intricate science, within a few months after starting, enough knowledge had been obtained to much more than pay for the work of experimenting. This holds true in the case of practically all scientific development in the mechanic arts. The first laws developed for cutting metals were crude, and contained only a partial knowledge of the truth, yet this imperfect knowledge was vastly better than the utter lack of exact information or the very imperfect rule of thumb which existed before, and it enabled the workmen, with the help of the management, to do far quicker and better work.

For example, a very short time was needed to discover one or two types of tools which, though imperfect as compared with the shapes developed years afterward, were superior to all other shapes and kinds in common use. These tools were adopted as standard and made possible an immediate increase in the speed of every machinist who used them. These types were superseded in a comparatively short time by still other tools which remained standard until they in their turn made way for later improvements.

[Footnote: Time and again the experimenter in the mechanic arts will find himself face to face with the problem as to whether he had better make immediate practical use of the knowledge which he has attained, or wait until some positive finality in his conclusions has been reached, He recognizes clearly the fact that he has already made some definite progress, but sees the possibility (even the probability) of still further improvement. Each particular case must of course be independently considered, but the general conclusion we have reached is that in most instances it wise to put one's conclusions as soon as possible to the rigid test of practical use. The one indispensable condition for such a test, however, is that the experimenter shall have full opportunity, coupled with sufficient authority, to insure a thorough and impartial trial. And this, owing to the almost universal prejudice in favor of the old, and to the suspicion of the new, is difficult to get.]

The science which exists in most of the mechanic arts is, however, far simpler than the science of cutting metals. In almost all cases, in fact, the laws or rules which are developed are so simple that the average man would hardly dignify them with the name of a science. In most trades, the science is developed through a comparatively simple analysis and time study of the movements required by the workmen to do some small part of his work, and this study is usually made by a man equipped merely with a stop-watch and a properly ruled notebook. Hundreds of these "time-study men" are now engaged in developing elementary scientific knowledge where before existed only rule of thumb. Even the motion study of Mr. Gilbreth in bricklaying (described on pages 77 to 84) involves a much more elaborate investigation than that which occurs in most cases. The general steps to be taken in developing a simple law of this class are as follows:

First. Find, say, 10 or 15 different men (preferably in as many separate establishments and different parts of the country) who are especially skilful in doing the particular work to be analyzed.

Second. Study the exact series of elementary operations or motions which each of these men uses in doing the work which is being investigated, as well as the implements each man uses.

Third. Study with a stop-watch the time required to make each of these elementary movements and then select the quickest way of doing each element of the work.

Fourth. Eliminate all false movements, slow movements, and useless movements.

Fifth. After doing away with all unnecessary movements, collect into one series the quickest and best movements as well as the best implements.

This one new method, involving that series of motions which can be made quickest and best, is then substituted in place of the ten or fifteen inferior series which were formerly in use. This best method becomes standard, and remains standard, to be taught first to the teachers (or functional foremen) and by them to every workman in the establishment until it is superseded by a quicker and better series of movements. In this simple way one element after another of the science is developed.

In the same way each type of implement used in a trade is studied. Under the philosophy of the management of "initiative and incentive" each work-man is called upon to use his own best judgment, so as to do the work in the quickest time, and from this results in all cases a large variety in the shapes and types of implements which are used for any specific purpose. Scientific management requires, first, a careful investigation of each of the many modifications of the same implement, developed under rule of thumb; and second, after a time study has been made of the speed attainable with each of these implements, that the good points of several of them shall be united in a single standard implement, which will enable the workman to work faster and with greater ease than he could before. This one implement, then, is adopted as standard in place of the many different kinds before in use, and it remains standard for all workmen to use until superseded by an implement which has been shown, through motion and time study, to be still better.

With this explanation it will be seen that the development of a science to replace rule of thumb is in most cases by no means a formidable under-taking, and that it can be accomplished by ordinary, every-day men without any elaborate scientific training; but that, on the other hand, the successful use of even the simplest improvement of this kind calls for records, system, and cooperation where in the past existed only individual effort.

There is another type of scientific investigation which has been referred to several times in this paper, and which should receive special attention, namely, the accurate study of the motives which influence men. At first it may appear that this is a matter for individual observation and judgment, and is not a proper subject for exact scientific experiments. It is true that the laws which result from experiments of this class, owing to the fact that the very complex organism—the human being—is being experimented with, are subject to a larger number of exceptions than is the case with laws relating to material things. And yet laws of this kind, which apply to a large majority of men, unquestionably exist, and when clearly defined are of great value as a guide in dealing with men. In developing these laws, accurate, carefully planned and executed experiments, extending through a term of years, have been made, similar in a general way to the experiments upon various other elements which have been referred to in this paper. Perhaps the most important law belonging to this class, in its relation to scientific management, is the effect which the task idea has upon the efficiency of the workman. This, in fact, has become such an important element of the mechanism of scientific management, that by a great number of people scientific management has come to be known as "task management."

There is absolutely nothing new in the task idea. Each one of us will remember that in his own case this idea was applied with good results in his school-boy days. No efficient teacher would think of giving a class of students an indefinite lesson to learn. Each day a definite, clear-cut task is set by the teacher before each scholar, stating that he must learn just so much of the subject; and it is only by this means that proper, systematic progress can be made by the students. The average boy would go very slowly if, instead of being given a task, he were told to do as much as he could. All of us are grown-up children, and it is equally true that the average workman will work with the greatest satisfaction, both to himself and to his employer, when he is given each day a definite task which he is to perform in a given time, and which constitutes a proper day's work for a good workman. This furnishes the workman with a clear-cut standard, by which he can throughout the day measure his own progress, and the accomplishment of which affords him the greatest satisfaction.

The writer has described in other papers a series of experiments made upon workmen, which have resulted in demonstrating the fact that it is impossible, through any long period of time, to get work-men to work much harder than the average men around them, unless they are assured a large and a permanent increase in their pay. This series of experiments, however, also proved that plenty of workmen can be found who are willing to work at their best speed, provided they are given this liberal increase in wages. The workman must, however, be fully assured that this increase beyond the average is to be permanent. Our experiments have shown that the exact percentage of increase required to make a workman work at his highest speed depends upon the kind of work which the man is doing.

It is absolutely necessary, then, when workmen are daily given a task which calls for a high rate of speed on their part, that they should also be insured the necessary high rate of pay whenever they are successful. This involves not only fixing for each man his daily task, but also paying him a large bonus, or premium, each time that he succeeds in doing his task in the given time. It is difficult to appreciate in full measure the help which the proper use of these two elements is to the workman in elevating him to the highest standard of efficiency and speed in his trade, and then keeping him there, unless one has seen first the old plan and afterward the new tried upon the same man. And in fact until one has seen similar accurate experiments made upon various grades of workmen engaged in doing widely different types of work. The remarkable and almost uniformly good results from the correct application of the task and the bonus must be seen to be appreciated.

These two elements, the task and the bonus (which, as has been pointed out in previous papers, can be applied in several ways), constitute two of the most important elements of the mechanism of scientific management. They are especially important from the fact that they are, as it were, a climax, demanding before they can be used almost all of the other elements of the mechanism; such as a planning department, accurate time study, standardization of methods and implements, a routing system, the training of functional foremen or teachers, and in many cases instruction cards slide-rules, etc. (Referred to later in rather more detail on page 129.)

The necessity for systematically teaching workmen how to work to the best advantage has been several times referred to. It seems desirable, therefore, to explain in rather more detail how this teaching is done. In the case of a machine-shop which is managed under the modern system, detailed written instructions are the best way of doing each piece of work are prepared in advance, by men in the planning department. These instructions represent the combined work of several men in the planning room, each of whom has his own specialty, or function. One of them, for instance, is a specialist on the proper speeds and cutting tools to be used. He uses the slide-rules which have been above described as an aid, to guide him in obtaining proper speeds, etc. Another man analyzes the best and quickest motions to be made by the workman in setting the work up in the machine and removing it, etc. Still a third, through the time-study records which have been accumulated, makes out a timetable giving the proper speed for doing each element of the work. The directions of all of these men, however, are written on a single instruction card, or sheet.

These men of necessity spend most of their time in the planning department, because they must be close to the records and data which they continually use in their work, and because this work requires the use of a desk and freedom from interruption. Human nature is such, however, that many of the workmen, if left to themselves, would pay but little attention to their written instructions. It is necessary, therefore, to provide teachers (called functional foremen) to see that the workmen both understand and carry out these written instructions.

Under functional management, the old-fashioned single foreman is superseded by eight different men, each one of whom has his own special duties, and these men, acting as the agents for the planning department (see paragraph 234 to 245 of the paper entitled "Shop Management"), are the expert teachers, who are at all times in the shop, helping, and directing the workmen. Being each one chosen for his knowledge and personal skill in his specialty, they are able not only to tell the workman what he should do, but in case of necessity they do the work themselves in the presence of the workman, so as to show him not only the best but also the quickest methods.

One of these teachers (called the inspector) sees to it that he understands the drawings and instructions for doing the work. He teaches him how to do work of the right quality; how to make it fine and exact where it should be fine, and rough and quick where accuracy is not required,—the one being just as important for success as the other. The second teacher (the gang boss) shows him how to set up the job in his machine, and teaches him to make all of his personal motions in the quickest and best way. The third (the speed boss) sees that the machine is run at the best speed and that the proper tool is used in the particular way which will enable the machine to finish its product in the shortest possible time. In addition to the assistance given by these teachers, the workman receives orders and help from four other men; from the "repair boss" as to the adjustment, cleanliness, and general care of his machine, belting, etc.; from the "time clerk," as to everything relating to his pay and to proper written reports and returns; from the "route clerk," as to the order in which he does his work and as to the movement of the work from one part of the shop to another; and, in case a workman gets into any trouble with any of his various bosses, the "disciplinarian" interviews him.

It must be understood, of course, that all workmen engaged on the same kind of work do not require the same amount of individual teaching and attention from the functional foremen. The men who are new at a given operation naturally require far more teaching and watching than those who have been a long time at the same kind of jobs.

Now, when through all of this teaching and this minute instruction the work is apparently made so smooth and easy for the workman, the first impression is that this all tends to make him a mere automaton, a wooden man. As the workmen frequently say when they first come under this system, "Why, I am not allowed to think or move without some one interfering or doing it for me!" The same criticism and objection, however, can be raised against all other modern subdivision of labor. It does not follow, for example, that the modern surgeon is any more narrow or wooden a man than the early settler of this country. The frontiersman, however, had to be not only a surgeon, but also an architect, house-builder, lumberman, farmer, soldier, and doctor, and he had to settle his law cases with a gun. You would hardly say that the life of the modern surgeon is any more narrowing, or that he is more of a wooden man than the frontiersman. The many problems to be met and solved by the surgeon are just as intricate and difficult and as developing and broadening in their way as were those of the frontiersman.

And it should be remembered that the training of the surgeon has been almost identical in type with the teaching and training which is given to the workman under scientific management. The surgeon, all through his early years, is under the closest supervision of more experienced men, who show him in the minutest way how each element of his work is best done. They provide him with the finest implements, each one of which has been the subject of special study and development, and then insist upon his using each of these implements in the very best way. AR of this teaching, however, in no way narrows him. On the contrary he is quickly given the very best knowledge of his predecessors; and, provided (as he is, right from the start) with standard implements and methods which represent the best knowledge of the world up to date, he is able to use his own originality and ingenuity to make real additions to the world's knowledge, instead of reinventing things which are old. In a similar way the workman who is cooperating with his many teachers under scientific management has an opportunity to develop which is at least as good as and generally better than that which he had when the whole problem was "up to him" and he did his work entirely unaided.

If it were true that the workman would develop into a larger and finer man without all of this teaching, and without the help of the laws which have been formulated for doing his particular job, then it would follow that the young man who now comes to college to have the help of a teacher in mathematics, physics, chemistry, Latin, Greek, etc., would do better to study these things unaided and by himself. The only difference in the two cases is that students come to their teachers, while from the nature of the work done by the mechanic under scientific management, the teachers must go to him. What really happens is that, with the aid of the science which is invariably developed, and through the instructions from his teachers, each workman of a given intellectual capacity is enabled to do a much higher, more interesting, and finally more developing and more profitable kind of work than he was before able to do. The laborer who before was unable to do anything beyond, perhaps, shoveling and wheeling dirt from place to place, or carrying the work from one part of the shop to another, is in many cases taught to do the more elementary machinist's work, accompanied by the agreeable surroundings and the interesting variety and higher wages which go with the machinist's trade. The cheap machinist or helper, who before was able to run perhaps merely a drill press, is taught to do the more intricate and higher priced lathe and planer work, while the highly skilled and more intelligent machinists become functional foremen and teachers. And so on, right up the line.

Previous Part     1  2  3     Next Part
Home - Random Browse