|
CONCLUDING REMARKS AND SUMMARY OF CHAPTER.
We do not know whether it is a general rule with seedling plants that the illumination of the upper part determines the curvature of the lower part. But as this occurred in the four species examined by us, belonging to such distinct families as the Gramineae, Cruciferae, and Chenopodeae, it is probably of common occurrence. It can hardly fail to be of service to seedlings, by aiding them to find the shortest path from the buried seed to the light, on nearly the same principle that the eyes of most of the lower crawling animals are seated at the anterior ends of their bodies. It is extremely doubtful whether with fully developed plants the illumination of one part ever affects the curvature of another part. The summits of 5 young plants of Asparagus officinalis (varying in height between 1.1 and 2.7 inches, and consisting of several short internodes) were covered with caps of tin-foil from 0.3 to 0.35 inch in depth; and the lower uncovered parts became as much curved towards a lateral light, as were the free seedlings in the same pots. Other seedlings of the same plant had their summits painted with Indian ink with the same negative result. Pieces of blackened paper were gummed to the edges and over the blades of some leaves on young plants of Tropaeolum majus and Ranunculus ficaria; these were then placed in a box before a window, and the petioles of the protected leaves became curved towards the light, as much as those of the unprotected leaves.
The foregoing cases with respect to seedling plants have been fully described, not only because the transmission of any effect from light is a new physiological fact, but because we think it tends to modify somewhat the current views on heliotropic movements. Until [page 485] lately such movements were believed to result simply from increased growth on the shaded side. At present it is commonly admitted* that diminished light increases the turgescence of the cells, or the extensibility of the cell-walls, or of both together, on the shaded side, and that this is followed by increased growth. But Pfeffer has shown that a difference in the turgescence on the two sides of a pulvinus,—that is, an aggregate of small cells which have ceased to grow at an early age,—is excited by a difference in the amount of light received by the two sides; and that movement is thus caused without being followed by increased growth on the more turgescent side.** All observers apparently believe that light acts directly on the part which bends, but we have seen with the above described seedlings that this is not the case. Their lower halves were brightly illuminated for hours, and yet did not bend in the least towards the light, though this is the part which under ordinary circumstances bends the most. It is a still more striking fact, that the faint illumination of a narrow stripe on one side of the upper part of the cotyledons of Phalaris determined the direction of the curvature of the lower part; so that this latter part did not bend towards the bright light by which it had been fully illuminated,
* Emil Godlewski has given ('Bot. Zeitung,' 1879, Nos. 6-9) an excellent account (p. 120) of the present state of the question. See also Vines in 'Arbeiten des Bot. Inst. in Wrzburg,' 1878, B. ii. pp. 114-147. Hugo de Vries has recently published a still more important article on this subject: 'Bot Zeitung,' Dec. 19th and 26th, 1879.
** 'Die Periodischen Bewegungen der Blattorgane,' 1875, pp. 7, 63, 123, etc. Frank has also insisted ('Die Naturliche wgerechte Richtung von Pflanzentheilen,' 1870, p. 53) on the important part which the pulvini of the leaflets of compound leaves play in placing the leaflets in a proper position with respect to the light. This holds good, especially with the leaves of climbing plants, which are carried into all sorts of positions, ill-adapted for the action of the light. [page 486]
but obliquely towards one side where only a little light entered. These results seem to imply the presence of some matter in the upper part which is acted on by light, and which transmits its effects to the lower part. It has been shown that this transmission is independent of the bending of the upper sensitive part. We have an analogous case of transmission in Drosera, for when a gland is irritated, the basal and not the upper or intermediate part of the tentacle bends. The flexible and sensitive filament of Dionaea likewise transmits a stimulus, without itself bending; as does the stem of Mimosa.
Light exerts a powerful influence on most vegetable tissues, and there can be no doubt that it generally tends to check their growth. But when the two sides of a plant are illuminated in a slightly different degree, it does not necessarily follow that the bending towards the illuminated side is caused by changes in the tissues of the same nature as those which lead to increased growth in darkness. We know at least that a part may bend from the light, and yet its growth may not be favoured by light. This is the case with the radicles of Sinapis alba, which are plainly apheliotropic; nevertheless, they grow quicker in darkness than in light.* So it is with many arial roots, according to Wiesner;** but there are other opposed cases. It appears, therefore, that light does not determine the growth of apheliotropic parts in any uniform manner.
We should bear in mind that the power of bending to the light is highly beneficial to most plants. There
* Francis Darwin, 'ber das Wachsthum negativ heliotropischer Wurzeln': 'Arbeiten des Bot. Inst. in Wrzburg,' B. ii., Heft iii., 1880, p. 521.
** 'Sitzb. der k. Akad. der Wissensch' (Vienna), 1880, p. 12. [page 487]
is therefore no improbability in this power having been specially acquired. In several respects light seems to act on plants in nearly the same manner as it does on animals by means of the nervous system.* With seedlings the effect, as we have just seen, is transmitted from one part to another. An animal may be excited to move by a very small amount of light; and it has been shown that a difference in the illumination of the two sides of the cotyledons of Phalaris, which could not be distinguished by the human eye, sufficed to cause them to bend. It has also been shown that there is no close parallelism between the amount of light which acts on a plant and its degree of curvature; it was indeed hardly possible to perceive any difference in the curvature of some seedlings of Phalaris exposed to a light, which, though dim, was very much brighter than that to which others had been exposed. The retina, after being stimulated by a bright light, feels the effect for some time; and Phalaris continued to bend for nearly half an hour towards the side which had been illuminated. The retina cannot perceive a dim light after it has been exposed to a bright one; and plants which had been kept in the daylight during the previous day and morning, did not move so soon towards an obscure lateral light as did others which had been kept in complete darkness.
Even if light does act in such a manner on the growing parts of plants as always to excite in them a tendency to bend towards the more illuminated side—a supposition contradicted by the foregoing experiments on seedlings and by all apheliotropic * Sachs has made some striking remarks to the same effect with respect to the various stimuli which excite movement in plants. See his paper 'Ueber orthotrope und plagiotrope Pflanzentheile,' 'Arb. des Bot. Inst. in Wrzburg,' 1879, B. ii. p. 282. [page 488]
organs—yet the tendency differs greatly in different species, and is variable in degree in the individuals of the same species, as may be seen in almost any pot of seedlings of a long cultivated plant.* There is therefore a basis for the modification of this tendency to almost any beneficial extent. That it has been modified, we see in many cases: thus, it is of more importance for insectivorous plants to place their leaves in the best position for catching insects than to turn their leaves to the light, and they have no such power. If the stems of twining plants were to bend towards the light, they would often be drawn away from their supports; and as we have seen they do not thus bend. As the stems of most other plants are heliotropic, we may feel almost sure that twining plants, which are distributed throughout the whole vascular series, have lost a power that their non-climbing progenitors possessed. Moreover, with Ipomoea, and probably all other twiners, the stem of the young plant, before it begins to twine, is highly heliotropic, evidently in order to expose the cotyledons or the first true leaves fully to the light. With the Ivy the stems of seedlings are moderately heliotropic, whilst those of the same plants when grown a little older
* Strasburger has shown in his interesting work ('Wirkung des Lichtes...auf Schwrmsporen,' 1878), that the movement of the swarm-spores of various lowly organised plants to a lateral light is influenced by their stage of development, by the temperature to which they are subjected, by the degree of illumination under which they have been raised, and by other unknown causes; so that the swarm-spores of the same species may move across the field of the microscope either to or from the light. Some individuals, moreover, appear to be indifferent to the light; and those of different species behave very differently. The brighter the light, the straighter is their course. They exhibit also for a short time the after-effects of light. In all these respects they resemble the higher plants. See, also, Stahl, 'Ueber den einfluss der Lichts auf die Bewegungs-erscheinungen der Schwrmsporen' Verh. d. phys.-med. Geselsshalft in Wrzburg, B. xii. 1878. [page 489]
are apheliotropic. Some tendrils which consist of modified leaves—organs in all ordinary cases strongly diaheliotropic—have been rendered apheliotropic, and their tips crawl into any dark crevice.
Even in the case of ordinary heliotropic movements, it is hardly credible that they result directly from the action of the light, without any special adaptation. We may illustrate what we mean by the hygroscopic movements of plants: if the tissues on one side of an organ permit of rapid evaporation, they will dry quickly and contract, causing the part to bend to this side. Now the wonderfully complex movements of the pollinia of Orchis pyramidalis, by which they clasp the proboscis of a moth and afterwards change their position for the sake of depositing the pollen-masses on the double stigma—or again the twisting movements, by which certain seeds bury themselves in the ground*—follow from the manner of drying of the parts in question; yet no one will suppose that these results have been gained without special adaptation. Similarly, we are led to believe in adaptation when we see the hypocotyl of a seedling, which contains chlorophyll, bending to the light; for although it thus receives less light, being now shaded by its own cotyledons, it places them—the more important organs—in the best position to be fully illuminated. The hypocotyl may therefore be said to sacrifice itself for the good of the cotyledons, or rather of the whole plant. But if it be prevented from bending, as must sometimes occur with seedlings springing up in an entangled mass of vegetation, the cotyledons themselves bend so as to face the light; the one farthest off rising
* Francis Darwin, 'On the Hygroscopic Mechanism,' etc., 'Transactions Linn. Soc.,' series ii. vol. i. p. 149, 1876. [page 490]
up, and that nearest to the light sinking down, or both twisting laterally.* We may, also, suspect that the extreme sensitiveness to light of the upper part of the sheath-like cotyledons of the Gramineae, and their power of transmitting its effects to the lower part, are specialised arrangements for finding the shortest path to the light. With plants growing on a bank, or thrown prostrate by the wind, the manner in which the leaves move, even rotating on their own axes, so that their upper surfaces may be again directed to the light, is a striking phenomenon. Such facts are rendered more striking when we remember that too intense a light injures the chlorophyll, and that the leaflets of several Leguminosae when thus exposed bend upwards and present their edges to the sun, thus escaping injury. On the other hand, the leaflets of Averrhoa and Oxalis, when similarly exposed, bend downwards.
It was shown in the last chapter that heliotropism is a modified form of circumnutation; and as every growing part of every plant circumnutates more or less, we can understand how it is that the power of bending to the light has been acquired by such a multitude of plants throughout the vegetable kingdom. The manner in which a circumnutating movement—that is, one consisting of a succession of irregular ellipses or loops—is gradually converted into a rectilinear course towards the light, has been already explained. First, we have a succession of ellipses with their longer axes directed towards the light, each of which
* Wiesner has made remarks to nearly the same effect with respect to leaves: 'Die undulirende Nutation der Internodien,' p. 6, extracted from B. lxxvii. (1878). Sitb. der k. Akad. der Wissensch. Wien. [page 491]
is described nearer and nearer to its source; then the loops are drawn out into a strongly pronounced zigzag line, with here and there a small loop still formed. At the same time that the movement towards the light is increased in extent and accelerated, that in the opposite direction is lessened and retarded, and at last stopped. The zigzag movement to either side is likewise gradually lessened, so that finally the course becomes rectilinear. Thus under the stimulus of a fairly bright light there is no useless expenditure of force.
As with plants every character is more or less variable, there seems to be no great difficulty in believing that their circumnutating movements may have been increased or modified in any beneficial manner by the preservation of varying individuals. The inheritance of habitual movements is a necessary contingent for this process of selection, or the survival of the fittest; and we have seen good reason to believe that habitual movements are inherited by plants. In the case of twining species the circumnutating movements have been increased in amplitude and rendered more circular; the stimulus being here an internal or innate one. With sleeping plants the movements have been increased in amplitude and often changed in direction; and here the stimulus is the alternation of light and darkness, aided, however, by inheritance. In the case of heliotropism, the stimulus is the unequal illumination of the two sides of the plant, and this determines, as in the foregoing cases, the modification of the circumnutating movement in such a manner that the organ bends to the light. A plant which has been rendered heliotropic by the above means, might readily lose this tendency, judging from the cases already given, as soon as it became useless or [page 492] injurious. A species which has ceased to be heliotropic might also be rendered apheliotropic by the preservation of the individuals which tended to circumnutate (though the cause of this and most other variations is unknown) in a direction more or less opposed to that whence the light proceeded. In like manner a plant might be rendered diaheliotropic. [page 493]
CHAPTER X.
MODIFIED CIRCUMNUTATION: MOVEMENTS EXCITED BY GRAVITATION.
Means of observation - Apogeotropism—Cytisus—Verbena—Beta—Gradual conversion of the movement of circumnutation into apogeotropism in Rubus, Lilium, Phalaris, Avena, and Brassica—Apogeotropism retarded by heliotropism—Effected by the aid of joints or pulvini—Movements of flower-peduncles of Oxalis—General remarks on apogeotropism—Geotropism— Movements of radicles—Burying of seed-capsules—Use of process—Trifolium subterraneum—Arachis—Amphicarpaea—Diageotropism—Conclusion
OUR object in the present chapter is to show that geotropism, apogeotropism, and diageotropism are modified forms of circumnutation. Extremely fine filaments of glass, bearing two minute triangles of paper, were fixed to the summits of young stems, frequently to the hypocotyls of seedlings, to flower-peduncles, radicles, etc., and the movements of the parts were then traced in the manner already described on vertical and horizontal glass-plates. It should be remembered that as the stems or other parts become more and more oblique with respect to the glasses, the figures traced on them necessarily become more and more magnified. The plants were protected from light, excepting whilst each observation was being made, and then the light, which was always a dim one, was allowed to enter so as to interfere as little as possible with the movement in progress; and we did not detect any evidence of such interference.
When observing the gradations between circumnu- [page 494] tation and heliotropism, we had the great advantage of being able to lessen the light; but with geotropism analogous experiments were of course impossible. We could, however, observe the movements of stems placed at first only a little from the perpendicular, in which case geotropism did not act with nearly so much power, as when the stems were horizontal and at right angles to the force. Plants, also, were selected which were but feebly geotropic or apogeotropic, or had become so from having grown rather old. Another plan was to place the stems at first so that they pointed 30 or 40o beneath the horizon, and then apogeotropism had a great amount of work to do before the stem was rendered upright; and in this case ordinary circumnutation was often not wholly obliterated. Another plan was to observe in the evening plants which during the day had become greatly curved heliotropically; for their stems under the gradually waning light very slowly became upright through the action of apogeotropism; and in this case modified circumnutation was sometimes well displayed.
[Apogeotropism.—Plants were selected for observation almost by chance, excepting that they were taken from widely different families. If the stem of a plant which is even moderately sensitive to apogeotropism be placed horizontally, the upper growing part bends quickly upwards, so as to become perpendicular; and the line traced by joining the dots successively made on a glass-plate, is generally almost straight. For instance, a young Cytisus fragrans, 12 inches in height, was placed so that the stem projected 10o beneath the horizon, and its course was traced during 72 h. At first it bent a very little downwards (Fig. 182), owing no doubt to the weight of the stem, as this occurred with most of the other plants observed, though, as they were of course circumnutating, the short downward lines were often oblique. After three-quarters of an hour the stem began to curve upwards, quickly during the first two hours, but much more slowly during the afternoon and night, [page 495] and on the following day. During the second night it fell a little, and circumnutated during the following day; but it also moved a short distance to the right, which was caused by a little light having been accidentally admitted on this side. The stem was now inclined 60o above the horizon, and had therefore risen 70o. With time allowed it would probably have become upright, and no doubt would have continued circumnutating. The sole remarkable feature in the figure here given is the straightness of the course pursued. The stem, however, did not move upwards at an equable rate, and it sometimes stood almost or quite still. Such periods probably represent attempts to circumnutate in a direction opposite to apogeotropism.
Fig. 182. Cytisus fragrans: apogeotropic movement of stem from 10o beneath to 60o above horizon, traced on vertical glass, from 8.30 A.M. March 12th to 10.30 P.M. 13th. The subsequent circumnutating movement is likewise shown up to 6.45 A.M. on the 15th. Nocturnal course represented, as usual, by a broken line. Movement not greatly magnified, and tracing reduced to two-thirds of original scale.
The herbaceous stem of a Verbena melindres (?) laid horizontally, rose in 7 h. so much that it could no longer be observed on the vertical glass which stood in front of the plant. The long line which was traced was almost absolutely straight. After the 7 h. it still continued to rise, but now circumnutated slightly. On the following day it stood upright, and circumnutated regularly, as shown in Fig. 82, given in the fourth chapter. The stems of several other plants which were highly sensitive to apogeotropism rose up in almost straight lines, and [page 496] then suddenly began to circumnutate. A partially etiolated and somewhat old hypocotyl of a seedling cabbage (2 3/4 inches in height) was so sensitive that when placed at an angle of only 23o from the perpendicular, it became vertical in 33 minutes. As it could not have been strongly acted upon by apogeotropism in the above slightly inclined position, we expected that it would have circumnutated, or at least have moved in a zigzag course. Accordingly, dots were made every 3 minutes; but, when these were joined, the line was nearly straight. After this hypocotyl had become upright it still moved onwards for half an hour in the same general direction, but in a zigzag manner. During the succeeding 9 h. it circumnutated regularly, and described 3 large ellipses. In this case apogeotropism, although acting at a very unfavourable angle, quite overcame the ordinary circumnutating movement.
Fig. 183. Beta vulgaris: apogeotropic movement of hypocotyl from 19o beneath horizon to a vertical position, with subsequent circumnutation, traced on a vertical and on a horizontal glass-plate, from 8.28 A.M. Sept. 28th to 8.40 A.M. 29th. Figure reduced to one-third of original scale.
The hypocotyls of Beta vulgaris are highly sensitive to apogeotropism. One was placed so as to project 19o beneath the horizon; it fell at first a very little (see Fig. 183), no doubt owing to its weight; but as it was circumnutating the line was [page 497] oblique. During the next 3 h. 8 m. it rose in a nearly straight line, passing through an angle of 109o, and then (at 12.3 P.M.) stood upright. It continued for 55 m. to move in the same general direction beyond the perpendicular, but in a zigzag course. It returned also in a zigzag line, and then circumnutated regularly, describing three large ellipses during the remainder of the day. It should be observed that the ellipses in this figure are exaggerated in size, relatively to the length of the upward straight line, owing to the position of the vertical and horizontal glass-plates. Another and somewhat old hypocotyl was placed so as to stand at only 31o from the perpendicular, in which position apogeotropism acted on it with little force, and its course accordingly was slightly zigzag.
The sheath-like cotyledons of Phalaris Canariensis are extremely sensitive to apogeotropism. One was placed so as to project 40o beneath the horizon. Although it was rather old and 1.3 inch in height, it became vertical in 4 h. 30 m., having passed through an angle of 130o in a nearly straight line. It then suddenly began to circumnutate in the ordinary manner. The cotyledons of this plant, after the first leaf has begun to protrude, are but slightly apogeotropic, though they still continue to circumnutate. One at this stage of development was placed horizontally, and did not become upright even after 13 h., and its course was slightly zigzag. So, again, a rather old hypocotyl of Cassia tora (1 1/4 inch in height) required 28 h. to become upright, and its course was distinctly zigzag; whilst younger hypocotyls moved much more quickly and in a nearly straight line.
When a horizontally placed stem or other organ rises in a zigzag line, we may infer from the many cases given in our previous chapters, that we have a modified form of circumnutation; but when the course is straight, there is no evidence of circumnutation, and any one might maintain that this latter movement had been replaced by one of a wholly distinct kind. This view seems the more probable when (as sometimes occurred with the hypocotyls of Brassica and Beta, the stems of Cucurbita, and the cotyledons of Phalaris) the part in question, after bending up in a straight course, suddenly begins to circumnutate to the full extent and in the usual manner. A fairly good instance of a sudden change of this kind—that is, from a nearly straight upward movement to one of circumnutation—is shown in Fig. 183; but more striking instances were occasionally observed with Beta, Brassica, and Phalaris.
We will now describe a few cases in which it may be [page 498] seen how gradually circumnutation becomes changed into apogeotropism, under circumstances to be specified in each instance.
Rubus idaeus (hybrid).—A young plant, 11 inches in height, growing in a pot, was placed horizontally; and the upward movement was traced during nearly 70 h.; but the plant, though growing vigorously, was not highly sensitive to apogeotropism, or it was not capable of quick movement, for during the above time it rose only 67o. We may see in the diagram (Fig. 184) that during the first day of 12 h. it rose in a nearly straight line. When placed horizontally, it was evidently circumnutating, for it rose at first a little, notwithstanding the weight of the stem, and then sank down; so that it did not start on its permanently upward course until 1 h. 25 m. had elapsed. On the second day, by which time it had risen considerably, and when apogeotropism acted on it with somewhat less power, its course during 15 h. was clearly zigzag, and the rate of the upward movement was not equable. During the third day, also of 15 h., when apogeotropism acted on it with still less power, the stem plainly circumnutated, for it moved during this day 3 times up and 3 times down, 4 times to the left and 4 to the right. But the course was so complex that it could hardly be traced on the glass. We can, however, see that the successively formed irregular ellipses rose higher and higher. Apogeotropism continued to act on the fourth morning, as the stem was still rising, though it now stood only 23o from the perpendicular. In this diagram the several stages may be followed by which an almost rectilinear, upward, apogeotropic course first becomes zigzag, and then changes into a circumnutating movement, with most of the successively formed, irregular ellipses directed upwards.
Fig 184: Rubus idaeus (hybrid): apogeotropic movement of stem, traced on a vertical glass during 3 days and 3 nights, from 10.40 A.M. March 18th to 8 A.M. 21st. Figure reduced to one-half of the original scale.
Lilium auratum.—A plant 23 inches in height was placed [page 499] horizontally, and the upper part of the stem rose 58o in 46 h., in the manner shown in the accompanying diagram (Fig. 185). We here see that during the whole of the second day of 15 h., the stem plainly circumnutated whilst bending upwards through apogeotropism. It had still to rise considerably, for when the last dot in the figure was made, it stood 32o from an upright position.
Fig. 185. Lilium auratum: apogeotropic movement of stem, traced on a vertical glass during 2 days and 2 nights, from 10.40 A.M. March 18th to 8 A.M. 20th. Figure reduced to one-half of the original scale.
Phalaris Canariensis.—A cotyledon of this plant (1.3 inch in height) has already been described as rising in 4 h. 30 m. from 40o beneath the horizon into a vertical position, passing through an angle of 130o in a nearly straight line, and then abruptly beginning to circumnutate. Another somewhat old cotyledon of the same height (but from which a true leaf had not yet protruded), was similarly placed at 40o beneath the horizon. For the first 4 h. it rose in a nearly straight course (Fig. 186), so that by 1.10 P.M. it was highly inclined, and now apogeotropism acted on it with much less power than before, and it began to zigzag. At 4.15 P.M. (i.e. in 7 h. from the commencement) it stood vertically, and afterwards continued to circumnutate in the usual manner about the same spot. Here then we have a graduated change from a straight upward apogeotropic course into circumnutation, instead of an abrupt change, as in the former case.
Avena sativa.—The sheath-like cotyledons, whilst young, are strongly apogeotropic; and some which were placed at 45o beneath the horizon rose 90o in 7 or 8 h. in lines almost absolutely straight. An oldish cotyledon, from which the first leaf began to [page 500] protrude whilst the following observations were being made, was placed at 10o beneath the horizon, and it rose only 59o in 24h. It behaved rather differently from any other plant, observed by us, for during the first 4 h. it rose in a line not far from straight; during the next 6 h. it circumnutated, that is, it descended and again ascended in a strongly marked zigzag course; it then resumed its upward movement in a moderately straight line, and, with time allowed, no doubt would have become upright. In this case, after the first 4 h., ordinary circumnutation almost completely conquered for a time apogeotropism.
Fig 186. Phalaris Canariensis: apogeotropic movement of cotyledon, traced on a vertical and horizontal glass, from 9.10 A.M. Sept. 19th to 9 A.M. 20th. Figure here reduced to one-fifth of original scale.
Brassica oleracea.—The hypocotyls of several young seedlings placed horizontally, rose up vertically in the course of 6 or 7 h. in nearly straight lines. A seedling which had grown in darkness to a height of 2 1/4 inches, and was therefore rather old and not highly sensitive, was placed so that the hypocotyl projected at between 30o and 40o beneath the horizon. The upper part alone became curved [page 501] upwards, and rose during the first 3 h. 10 m. in a nearly straight line (Fig. 187); but it was not possible to trace the upward movement on the vertical glass for the first 1 h. 10 m., so that the nearly straight line in the diagram ought to have been much longer. During the next 11 h. the hypocotyl circumnutated, describing irregular figures, each of which rose a little above the one previously formed. During the night and following early morning it continued to rise in a zigzag course, so that apogeotropism was still acting. At the close of our observations, after 23 h. (represented by the highest dot in the diagram) the hypocotyl was still 32o from the perpendicular. There can be little doubt that it would ultimately have become upright by describing an additional number of irregular ellipses, one above the other.
Fig 187. Brassica oleracea: apogeotropic movement of hypocotyl, traced on vertical glass, from 9.20 A.M., Sept. 12th to 8.30 A.M. 13th. The upper part of the figure is more magnified than the lower part. If the whole course had been traced, the straight upright line would have been much longer. Figure here reduced to one-third of the original scale.
Apogeotropism retarded by Heliotropism.—When the stem of any plant bends during the day towards a lateral light, the movement is opposed by apogeotropism; but as the light gradually wanes in the evening the latter power slowly gains the upper hand, and draws the stem back into a vertical position. Here then we have a good opportunity for observing how apogeotropism acts when very nearly balanced by an opposing force. For instance, the plumule of Tropaeolum majus (see former Fig. 175) moved towards the dim evening light in a slightly zigzag line until 6.45 P.M., it then returned on its course until [page 502] 10.40 P.M., during which time it zigzagged and described an ellipse of considerable size. The hypocotyl of Brassica oleracea (see former Fig. 173) moved in a straight line to the light until 5.15 P.M., and then from the light, making in its backward course a great rectangular bend, and then returned for a short distance towards the former source of the light; no observations were made after 7.10 P.M., but during the night it recovered its vertical position. A hypocotyl of Cassia tora moved in the evening in a somewhat zigzag line towards the failing light until 6 P.M., and was now bowed 20o from the perpendicular; it then returned on its course, making before 10.30 P.M. four great, nearly rectangular bends and almost completing an ellipse. Several other analogous cases were casually observed, and in all of them the apogeotropic movement could be seen to consist of modified circumnutation.
Apogeotropic Movements effected by the aid of joints or pulvini.—Movements of this kind are well known to occur in the Gramineae, and are effected by means of the thickened bases of their sheathing leaves; the stem within being in this part thinner than elsewhere.* According to the analogy of all other pulvini, such joints ought to continue circumnutating for a long period, after the adjoining parts have ceased to grow. We therefore wished to ascertain whether this was the case with the Gramineae; for if so, the upward curvature of their stems, when extended horizontally or laid prostrate, would be explained in accordance with our view—namely, that apogeotropism results from modified circumnutation. After these joints have curved upwards, they are fixed in their new position by increased growth along their lower sides.
Lolium perenne.—A young stem, 7 inches in height, consisting of 3 internodes, with the flower-head not yet protruded, was selected for observation. A long and very thin glass filament was cemented horizontally to the stem close above the second joint, 3 inches above the ground. This joint was subsequently proved to be in an active condition, as its lower side swelled much through the action of apogeotropism (in the manner described by De Vries) after the haulm had been fastened down for 24 h. in a horizontal position. The pot was
* This structure has been recently described by De Vries in an interesting article, 'Ueber die Aufrichtung des gelagerten Getreides,' in 'Landwirthschaftliche Jahrbcher,' 1880, p. 473. [page 503]
so placed that the end of the filament stood beneath the 2-inch object glass of a microscope with an eye-piece micrometer, each division of which equalled 1/500 of an inch. The end of the filament was repeatedly observed during 6 h., and was seen to be in constant movement; and it crossed 5 divisions of the micrometer (1/100 inch) in 2 h. Occasionally it moved forwards by jerks, some of which were 1/1000 inch in length, and then slowly retreated a little, afterwards again jerking forwards. These oscillations were exactly like those described under Brassica and Dionaea, but they occurred only occasionally. We may therefore conclude that this moderately old joint was continually circumnutating on a small scale.
Alopecurus pratensis.—A young plant, 11 inches in height, with the flower-head protruded, but with the florets not yet expanded, had a glass filament fixed close above the second joint, at a height of only 2 inches above the ground. The basal internode, 2 inches in length, was cemented to a stick to prevent any possibility of its circumnutating. The extremity of the filament, which projected about 50o above the horizon, was often observed during 24 h. in the same manner as in the last case. Whenever looked at, it was always in movement, and it crossed 30 divisions of the micrometer (3/50 inch) in 3 h.; but it sometimes moved at a quicker rate, for at one time it crossed 5 divisions in 1 h. The pot had to be moved occasionally, as the end of the filament travelled beyond the field of vision; but as far as we could judge it followed during the daytime a semicircular course; and it certainly travelled in two different directions at right angles to one another. It sometimes oscillated in the same manner as in the last species, some of the jerks forwards being as much as 1/1000 of an inch. We may therefore conclude that the joints in this and the last species of grass long continue to circumnutate; so that this movement would be ready to be converted into an apogeotropic movement, whenever the stem was placed in an inclined or horizontal position.
Movements of the Flower-peduncles of Oxalis carnosa, due to apogeotropism and other forces.—The movements of the main peduncle, and of the three or four sub-peduncles which each main peduncle of this plant bears, are extremely complex, and are determined by several distinct causes. Whilst the flowers are expanded, both kinds of peduncles circumnutate about the same spot, as we have seen (Fig. 91) in the fourth chapter. But soon after the flowers have begun to wither the sub- [page 504] peduncles bend downwards, and this is due to epinasty; for on two occasions when pots were laid horizontally, the sub-peduncles assumed the same position relatively to the main peduncle, as would have been the case if they had remained upright; that is, each of them formed with it an angle of about 40o. If they had been acted on by geotropism or apheliotropism (for the plant was illuminated from above), they would have directed themselves to the centre of the earth. A main peduncle was secured to a stick in an upright position, and one of the upright sub-peduncles which had been observed circumnutating whilst the flower was expanded, continued to do so for at least 24 h. after it had withered. It then began to bend downwards, and after 36 h. pointed a little beneath the horizon. A new figure was now begun (A, Fig. 188), and the sub-peduncle was traced descending in a zigzag line from 7.20 P.M. on the 19th to 9 A.M. on the 22nd. It now pointed almost perpendicularly downwards, and the glass filament had to be removed and fastened transversely across the base of the young capsule. We expected that the sub-peduncle would have been motionless in its new position; but it continued slowly to swing, like a pendulum, from side to side, that is, in a plane at right angles to that in which it had descended. This circumnutating movement was observed from 9 A.M. on 22nd to 9 A.M. 24th, as shown at B in the diagram. We were not able to observe this particular sub-peduncle any longer; but it would certainly have gone on circumnutating until the capsule was nearly ripe (which requires only a short time), and it would then have moved upwards.
The upward movement (C, Fig. 188) is effected in part by the whole sub-peduncle rising in the same manner as it had previously descended through epinasty—namely, at the joint where united to the main peduncle. As this upward movement occurred with plants kept in the dark and in whatever position the main peduncle was fastened, it could not have been caused by heliotropism or apogeotropism, but by hyponasty. Besides this movement at the joint, there is another of a very different kind, for the sub-peduncle becomes upwardly bent in the middle part. If the sub-peduncle happens at the time to be inclined much downwards, the upward curvature is so great that the whole forms a hook. The upper end bearing the capsule, thus always places itself upright, and as this occurs in darkness, and in whatever position the main peduncle may have been secured, [page 505] the upward curvature cannot be due to heliotropism or hyponasty, but to apogeotropism.
Fig. 188. Oxalis carnosa: movements of flower-peduncle, traced on a vertical glass: A, epinastic downward movement; B, circumnutation whilst depending vertically; C, subsequent upward movement, due to apogeotropism and hyponasty combined. [page 506]
In order to trace this upward movement, a filament was fixed to a sub-peduncle bearing a capsule nearly ripe, which was beginning to bend upwards by the two means just described. Its course was traced (see C, Fig 188) during 53 h., by which time it had become nearly upright. The course is seen to be strongly zigzag, together with some little loops. We may therefore conclude that the movement consists of modified circumnutation.
The several species of Oxalis probably profit in the following manner by their sub-peduncles first bending downwards and then upwards. They are known to scatter their seeds by the bursting of the capsule; the walls of which are so extremely thin, like silver paper, that they would easily be permeated by rain. But as soon as the petals wither, the sepals rise up and enclose the young capsule, forming a perfect roof over it as soon as the sub-peduncle has bent itself downwards. By its subsequent upward movement, the capsule stands when ripe at a greater height above the ground by twice the length of the sub-peduncle, than it did when dependent, and is thus able to scatter its seeds to a greater distance. The sepals, which enclose the ovarium whilst it is young, present an additional adaptation by expanding widely when the seeds are ripe, so as not to interfere with their dispersal. In the case of Oxalis acetosella, the capsules are said sometimes to bury themselves under loose leaves or moss on the ground, but this cannot occur with those of O. carnosa, as the woody stem is too high.
Oxalis acetosella.—The peduncles are furnished with a joint in
Fig. 189. Oxalis acetosella: course pursued by the upper part of a peduncle, whilst rising, traced from 11 A.M. June 1st to 9 A.M. 3rd. Figure here reduced to one-half of the original scale.
the middle, so that the lower part answers to the main peduncle, [page 507] and the upper part to one of the sub-peduncles of O. carnosa. The upper part bends downwards, after the flower has begun to wither, and the whole peduncle then forms a hook; that this bending is due to epinasty we may infer from the case of O. carnosa. When the pod is nearly ripe, the upper part straightens itself and becomes erect; and this is due to hyponasty or apogeotropism, or both combined, and not to heliotropism, for it occurred in darkness. The short, hooked part of the peduncle of a cleistogamic flower, bearing a pod nearly ripe, was observed in the dark during three days. The apex of the pod at first pointed perpendicularly down, but in the course of three days rose 90o, so that it now projected horizontally. The course during the two latter days is shown in Fig. 189; and it may be seen how greatly the peduncle, whilst rising, circumnutated. The lines of chief movement were at right angles to the plane of the originally hooked part. The tracing was not continued any longer; but after two additional days, the peduncle with its capsule had become straight and stood upright.]
Concluding Remarks on Apogeotropism.—When apogeotropism is rendered by any means feeble, it acts, as shown in the several foregoing cases, by increasing the always present circumnutating movement in a direction opposed to gravity, and by diminishing that in the direction of gravity, as well as that to either side. The upward movement thus becomes unequal in rate, and is sometimes interrupted by stationary periods. Whenever irregular ellipses or loops are still formed, their longer axes are almost always directed in the line of gravity, in an analogous manner as occurred with heliotropic movements in reference to the light. As apogeotropism acts more and more energetically, ellipses or loops cease to be formed, and the course becomes at first strongly, and then less and less zigzag, and finally rectilinear. From this gradation in the nature of the movement, and more especially from all growing parts, which alone (except when pulvini are present) are acted on by apogeotropism, con- [page 508] tinually circumnutating, we may conclude that even a rectilinear course is merely an extremely modified form of circumnutation. It is remarkable that a stem or other organ which is highly sensitive to apogeotropism, and which has bowed itself rapidly upwards in a straight line, is often carried beyond the vertical, as if by momentum. It then bends a little backwards to a point round which it finally circumnutates. Two instances of this were observed with the hypocotyls of Beta vulgaris, one of which is shown in Fig. 183, and two other instances with the hypocotyls of Brassica. This momentum-like movement probably results from the accumulated effects of apogeotropism. For the sake of observing how long such after-effects lasted, a pot with seedlings of Beta was laid on its side in the dark, and the hypocotyls in 3 h. 15 m. became highly inclined. The pot, still in the dark, was then placed upright, and the movements of the two hypocotyls were traced; one continued to bend in its former direction, now in opposition to apogeotropism, for about 37 m., perhaps for 48 m.; but after 61 m. it moved in an opposite direction. The other hypocotyl continued to move in its former course, after being placed upright, for at least 37 m.
Different species and different parts of the same species are acted on by apogeotropism in very different degrees. Young seedlings, most of which circumnutate quickly and largely, bend upwards and become vertical in much less time than do any older plants observed by us; but whether this is due to their greater sensitiveness to apogeotropism, or merely to their greater flexibility we do not know. A hypocotyl of Beta traversed an angle of 109o in 3 h. 8 m., and a cotyledon of Phalaris an angle of 130o in 4 h. 30 m. On the other hand, the stem of a herbaceous [page 509] Verbena rose 90o in about 24 h.; that of Rubus 67o, in 70 h.; that of Cytisus 70o, in 72 h.; that of a young American Oak only 37o, in 72 h. The stem of a young Cyperus alternifolius rose only 11o in 96 h.; the bending being confined to near its base. Though the sheath-like cotyledons of Phalaris are so extremely sensitive to apogeotropism, the first true leaves which protrude from them exhibited only a trace of this action. Two fronds of a fern, Nephrodium molle, both of them young and one with the tip still inwardly curled, were kept in a horizontal position for 46 h., and during this time they rose so little that it was doubtful whether there was any true apogeotropic movement.
The most curious case known to us of a difference in sensitiveness to gravitation, and consequently of movement, in different parts of the same organ, is that offered by the petioles of the cotyledons of Ipomoea leptophylla. The basal part for a short length where united to the undeveloped hypocotyl and radicle is strongly geotropic, whilst the whole upper part is strongly apogeotropic. But a portion near the blades of the cotyledons is after a time acted on by epinasty and curves downwards, for the sake of emerging in the form of an arch from the ground; it subsequently straightens itself, and is then again acted on by apogeotropism.
A branch of Cucurbita ovifera, placed horizontally, moved upwards during 7 h. in a straight line, until it stood at 40o above the horizon; it then began to circumnutate, as if owing to its trailing nature it had no tendency to rise any higher. Another upright branch was secured to a stick, close to the base of a tendril, and the pot was then laid horizontally in the dark. In this position the tendril circumnutated and made [page 510] several large ellipses during 14 h., as it likewise did on the following day; but during this whole time it was not in the least affected by apogeotropism. On the other hand, when branches of another Cucurbitaceous plant, Echinocytis lobata, were fixed in the dark so that the tendrils depended beneath the horizon, these began immediately to bend upwards, and whilst thus moving they ceased to circumnutate in any plain manner; but as soon as they had become horizontal they recommenced to revolve conspicuously.* The tendrils of Passiflora gracilis are likewise apogeotropic. Two branches were tied down so that their tendrils pointed many degrees beneath the horizon. One was observed for 8 h., during which time it rose, describing two circles, one above the other. The other tendril rose in a moderately straight line during the first 4 h., making however one small loop in its course; it then stood at about 45o above the horizon, where it circumnutated during the remaining 8 h. of observation.
A part or organ which whilst young is extremely sensitive to apogeotropism ceases to be so as it grows old; and it is remarkable, as showing the independence of this sensitiveness and of the circumnutating movement, that the latter sometimes continues for a time after all power of bending from the centre of the earth has been lost. Thus a seedling Orange bearing only 3 young leaves, with a rather stiff stem, did not curve in the least upwards during 24 h. whilst extended horizontally; yet it circumnutated all the time over a small space. The hypocotyl of a young seedling of Cassia tora, similarly placed, became vertical in 12 h.; that of an older seedling, 1 1/4 inch in height,
* For details see 'The Movements and Habits of Climbing Plants,' 1875, p. 131. [page 511]
became so in 28 h.; and that of another still older one, 1 inch in height, remained horizontal during two days, but distinctly circumnutated during this whole time.
When the cotyledons of Phalaris or Avena are laid horizontally, the uppermost part first bends upwards, and then the lower part; consequently, after the lower part has become much curved upwards, the upper part is compelled to curve backwards in an opposite direction, in order to straighten itself and to stand vertically; and this subsequent straightening process is likewise due to apogeotropism. The upper part of 8 young cotyledons of Phalaris were made rigid by being cemented to thin glass rods, so that this part could not bend in the least; nevertheless, the basal part was not prevented from curving upward. A stem or other organ which bends upwards through apogeotropism exerts considerable force; its own weight, which has of course to be lifted, was sufficient in almost every instance to cause the part at first to bend a little downwards; but the downward course was often rendered oblique by the simultaneous circumnutating movement. The cotyledons of Avena placed horizontally, besides lifting their own weight, were able to furrow the soft sand above them, so as to leave little crescentic open spaces on the lower sides of their bases; and this is a remarkable proof of the force exerted.
As the tips of the cotyledons of Phalaris and Avena bend upwards through the action of apogeotropism before the basal part, and as these same tips when excited by a lateral light transmit some influence to the lower part, causing it to bend, we thought that the same rule might hold good with apogeotropism. Consequently, the tips of 7 cotyledons of Phalaris were [page 512] cut off for a length in three cases of .2 inch and in the four other cases of .14, .12, .1, and .07 inch. But these cotyledons, after being extended horizontally, bowed themselves upwards as effectually as the unmutilated specimens in the same pots, showing that sensitiveness to gravitation is not confined to their tips.
GEOTROPISM.
This movement is directly the reverse of apogeotropism. Many organs bend downwards through epinasty or apheliotropism or from their own weight; but we have met with very few cases of a downward movement in sub-arial organs due to geotropism. We shall however, give one good instance in the following section, in the case of Trifolium subterraneum, and probably in that of Arachis hypogaea.
On the other hand, all roots which penetrate the ground (including the modified root-like petioles of Megarrhiza and Ipomoea leptophylla) are guided in their downward course by geotropism; and so are many arial roots, whilst others, as those of the Ivy, appear to be indifferent to its action. In our first chapter the movements of the radicles of several seedlings were described. We may there see (Fig. 1) how a radicle of the cabbage, when pointing vertically upwards so as to be very little acted on by geotropism, circumnutated; and how another (Fig. 2) which was at first placed in an inclined position bowed itself downwards in a zigzag line, sometimes remaining stationary for a time. Two other radicles of the cabbage travelled downwards in almost rectilinear courses. A radicle of the bean placed upright (Fig. 20) made a great sweep and zigzagged; but as it sank downwards and was more strongly acted on by geotropism, it moved in an [page 513] almost straight course. A radicle of Cucurbita, directed upwards (Fig. 26), also zigzagged at first, and described small loops; it then moved in a straight line. Nearly the same result was observed with the radicles of Zea mays. But the best evidence of the intimate connection between circumnutation and geotropism was afforded by the radicles of Phaseolus, Vicia, and Quercus, and in a less degree by those of Zea and Aesculus (see Figs. 18, 19, 21, 41, and 52); for when these were compelled to grow and slide down highly inclined surfaces of smoked glass, they left distinctly serpentine tracks.
[The Burying of Seed-capsules: Trifolium subterraneum.—The flower-heads of this plant are remarkable from producing only 3 or 4 perfect flowers, which are situated exteriorly. All the other many flowers abort, and are modified into rigid points, with a bundle of vessels running up their centres. After a time 5 long, elastic, claw-like projections, which represent the divisions of the calyx, are developed on their summits. As soon as the perfect flowers wither they bend downwards, supposing the peduncle to stand upright, and they then closely surround its upper part. This movement is due to epinasty, as is likewise the case with the flowers of T. repens. The imperfect central flowers ultimately follow, one after the other, the same course. Whilst the perfect flowers are thus bending down, the whole peduncle curves downwards and increases much in length, until the flower-head reaches the ground. Vaucher* says that when the plant is so placed that the heads cannot soon reach the ground, the peduncles grow to the extraordinary length of from 6 to 9 inches. In whatever position the branches may be placed, the upper part of the peduncle at first bends vertically upwards through heliotropism; but as soon as the flowers begin to wither the downward curvature of the whole peduncle commences. As this latter movement occurred in complete darkness, and with peduncles arising from upright and from dependent branches, it cannot be due to apheliotropism or to epinasty, but must be attributed to geotropism. Nineteen
* 'Hist. Phys. des Plantes d'Europe,' tom. ii. 1841, p. 106. [page 514]
upright flower-heads, arising from branches in all sorts of positions, on plants growing in a warm greenhouse, were marked with thread, and after 24 h. six of them were vertically dependent; these therefore had travelled through 180o in this time. Ten were extended sub-horizontally, and these had moved through about 90o. Three very young peduncles had as yet moved only a little downwards, but after an additional 24 h. were greatly inclined.
At the time when the flower-heads reach the ground, the younger imperfect flowers in the centre are still pressed closely together, and form a conical projection; whereas the perfect and imperfect flowers on the outside are upturned and closely surround the peduncle. They are thus adapted to offer as little resistance, as the case admits of, in penetrating the ground, though the diameter of the flower-head is still considerable. The means by which this penetration is effected will presently be described. The flower-heads are able to bury themselves in common garden mould, and easily in sand or in fine sifted cinders packed rather closely. The depth to which they penetrated, measured from the surface to the base of the head, was between 1/4 and inch, but in one case rather above 0.6 inch. With a plant kept in the house, a head partly buried itself in sand in 6 h.: after 3 days only the tips of the reflexed calyces were visible, and after 6 days the whole had disappeared. But with plants growing out of doors we believe, from casual observations, that they bury themselves in a much shorter time.
After the heads have buried themselves, the central aborted flowers increase considerably in length and rigidity, and become bleached. They gradually curve, one after the other, upwards or towards the peduncle, in the same manner as did the perfect flowers at first. In thus moving, the long claws on their summits carry with them some earth. Hence a flower-head which has been buried for a sufficient time, forms a rather large ball, consisting of the aborted flowers, separated from one another by earth, and surrounding the little pods (the product of the perfect flowers) which lie close round the upper part of the peduncle. The calyces of the perfect and imperfect flowers are clothed with simple and multicellular hairs, which have the power of absorption; for when placed in a weak solution of carbonate of ammonia (2 gr. to 1 oz. of water) their protoplasmic contents immediately became aggregated and afterwards displayed the usual slow movements. This clover generally [page 515] grows in dry soil, but whether the power of absorption by the hairs on the buried flower-heads is of any importance to them we do not know. Only a few of the flower-heads, which from their position are not able to reach the ground and bury themselves, yield seeds; whereas the buried ones never failed, as far as we observed, to produce as many seeds as there had been perfect flowers.
We will now consider the movements of the peduncle whilst
Fig. 190. Trifolium subterraneum: downward movement of peduncle from 19o beneath the horizon to a nearly vertically dependent position, traced from 11 A.M. July 22nd to the morning of 25th. Glass filament fixed transversely across peduncle, at base of flower-head.
curving down to the ground. We have seen in Chap. IV., Fig. 92, p. 225, that an upright young flower-head circumnutated conspicuously; and that this movement continued after the peduncle had begun to bend downwards. The same peduncle was observed when inclined at an angle of 19o above the horizon, and it circumnutated during two days. Another [page 516] which was already curved 36o beneath the horizon, was observed from 11 A.M. July 22nd to the 27th, by which latter date it had become vertically dependent. Its course during the first 12 h. is shown in Fig. 190, and its position on the three succeeding mornings until the 25th, when it was nearly vertical. During the first day the peduncle clearly circumnutated, for it moved 4 times down and 3 times up; and on each succeeding day, as it sank downwards, the same movement continued, but was only occasionally observed and was less strongly marked. It should be stated that these peduncles were observed under a double skylight in the house, and that they generally moved downwards very much more slowly than those on plants growing out of doors or in the greenhouse.
Fig. 191. Trifolium subterraneum: circumnutating movement of peduncle, whilst the flower-head was burying itself in sand, with the reflexed tips of the calyx still visible; traced from 8 A.M. July 26th to 9 A.M. on 27th. Glass filament fixed transversely across peduncle, near flower-head.
Fig. 192. Trifolium subterraneum: movement of same peduncle, with flower-head completely buried beneath the sand; traced from 8 A.M. to 7.15 P.M. on July 29th.
The movement of another vertically dependent peduncle with the flower-head standing half an inch above the ground, was traced, and again when it first touched the ground; in both cases irregular ellipses were described every 4 or 5 h. A peduncle on a plant which had been brought into the house, moved from an upright into a vertically dependent position in a single day; and here the course during the first 12 h. was nearly straight, but with a few well-marked zigzags which betrayed the essential nature of the movement. Lastly the circumnutation of a peduncle was traced during 51 h. whilst in the act of burying itself obliquely in a little heap of sand. After it had buried itself to such a depth that the tips of the sepals were alone visible, the above figure (Fig 191) was traced during 25 h. When the flower-head had completely disappeared beneath the sand, another tracing was made during 11 h. 45 m. (Fig. 192); and here again we see that the peduncle was circumnutating. [page 517]
Any one who will observe a flower-head burying itself, will be convinced that the rocking movement, due to the continued circumnutation of the peduncle, plays an important part in the act. Considering that the flower-heads are very light, that the peduncles are long, thin, and flexible, and that they arise from flexible branches, it is incredible that an object as blunt as one of these flower-heads could penetrate the ground by means of the growing force of the peduncle, unless it were aided by the rocking movement. After a flower-head has penetrated the ground to a small depth, another and efficient agency comes into play; the central rigid aborted flowers, each terminating in five long claws, curve up towards the peduncle; and in doing so can hardly fail to drag the head down to a greater depth, aided as this action is by the circumnutating movement, which continues after the flower-head has completely buried itself. The aborted flowers thus act something like the hands of the mole, which force the earth backwards and the body forwards.
It is well known that the seed-capsules of various widely distinct plants either bury themselves in the ground, or are produced from imperfect flowers developed beneath the surface. Besides the present case, two other well-marked instances will be immediately given. It is probable that one chief good thus gained is the protection of the seeds from animals which prey on them. In the case of T. subterraneum, the seeds are not only concealed by being buried, but are likewise protected by being closely surrounded by the rigid, aborted flowers. We may the more confidently infer that protection is here aimed at, because the seeds of several species in this same genus are protected in other ways;* namely, by the swelling and closure of the calyx, or by the persistence and bending down of the standard-petal, etc. But the most curious instance is that of T. globosum, in which the upper flowers are sterile, as in T. subterraneum, but are here developed into large brushes of hairs which envelop and protect the seed-bearing flowers. Nevertheless, in all these cases the capsules, with their seeds, may profit, as Mr. T. Thiselton Dyer has remarked,** by their being kept somewhat damp; and the advantage of such dampness perhaps throws light on the presence of the absorbent hairs on the buried flower-heads of T. subterraneum. According to Mr. Bentham, as quoted by Mr. Dyer,
* Vaucher, 'Hist. Phys. des Plantes d'Europe,' tom. ii. p. 110.
** See his interesting article in 'Nature,' April 4th, 1878, p. 446. [page 518]
the prostrate habit of Helianthemum prostratum "brings the capsules in contact with the surface of the ground, postpones their maturity, and so favours the seeds attaining a larger size." The capsules of Cyclamen and of Oxalis acetosella are only occasionally buried, and this only beneath dead leaves or moss. If it be an advantage to a plant that its capsules should be kept damp and cool by being laid on the ground, we have in these latter cases the first step, from which the power of penetrating the ground, with the aid of the always present movement of circumnutation, might afterwards have been gained.
Arachis hypogoea.—The flowers which bury themselves, rise from stiff branches a few inches above the ground, and stand upright. After they have fallen off, the gynophore, that is the part which supports the ovarium, grows to a great length, even to 3 or 4 inches, and bends perpendicularly downwards. It resembles closely a peduncle, but has a smooth and pointed apex, which contains the ovules, and is at first not in the least enlarged. The apex after reaching the ground penetrates it, in one case observed by us to a depth of 1 inch, and in another to 0.7 inch. It there becomes developed into a large pod. Flowers which are seated too high on the plant for the gynophore to reach the ground are said* never to produce pods.
The movement of a young gynophore, rather under an inch in length and vertically dependent, was traced during 46 H. by means of a glass filament (with sights) fixed transversely a little above the apex. It plainly circumnutated (Fig. 193) whilst increasing in length and growing downwards. It was then raised up, so as to be extended almost horizontally, and the terminal part curved itself downwards, following a nearly straight course during 12 h., but with one attempt to circumnutate, as shown in Fig. 194. After 24 h. it had become nearly vertical. Whether the exciting cause of the downward movement is geotropism or apheliotropism was not ascertained; but probably it is not apheliotropism, as all the gynophores grew straight down towards the ground, whilst the light in the hot-house entered from one side as well as from above. Another and older gynophore, the apex of which had nearly reached the ground, was observed during 3 days in the same manner as the first-mentioned short one; and it was found to be always circumnutating. During the first 34 h. it described a figure which
* 'Gard. Chronicle,' 1857, p. 566. [page 519]
represented four ellipses. Lastly, a long gynophore, the apex of which had buried itself to the depth of about half an inch, was
Fig. 193 Arachis hypogoea: circumnutation of vertically dependent young gynophore, traced on a vertical glass from 10 A.M. July 31st to 8 A.M. Aug. 2nd.
Fig. 194. Arachis hypogoea: downward movement of same young gynophore, after being extended horizontally; traced on a vertical glass from 8.30 A.M. to 8.30 P.M. Aug. 2nd.
pulled up and extended horizontally: it quickly began to curve downwards in a zigzag line; but on the following day the ter- [page 520] minal bleached portion was a little shrivelled. As the gynophores are rigid and arise from stiff branches, and as they terminate in sharp smooth points, it is probable that they could penetrate the ground by the mere force of growth. But this action must be aided by the circumnutating movement, for fine sand, kept moist, was pressed close round the apex of a gynophore which had reached the ground, and after a few hours it was surrounded by a narrow open crack. After three weeks this gynophore was uncovered, and the apex was found at a depth of rather above half an inch developed into a small, white, oval pod.
Amphicarpoea monoica.—This plant produces long thin shoots, which twine round a support and of course circumnutate. Early in the summer shorter shoots are produced from the lower parts of the plant, which grow perpendicularly downwards and penetrate the ground. One of these, terminating in a minute bud, was observed to bury itself in sand to a depth of 0.2 inch in 24 h. It was lifted up and fixed in an inclined position about 25o beneath the horizon, being feebly illuminated from above. In this position it described two vertical ellipses in 24 h.; but on the following day, when brought into the house, it circumnutated only a very little round the same spot. Other branches were seen to penetrate the ground, and were afterwards found running like roots beneath the surface for a length of nearly two inches, and they had grown thick. One of these, after thus running, had emerged into the air. How far circumnutation aids these delicate branches in entering the ground we do not know; but the reflexed hairs with which they are clothed will assist in the work. This plant produces pods in the air, and others beneath the ground; which differ greatly in appearance. Asa Gray says* that it is the imperfect flowers on the creeping branches near the base of the plant which produce the subterranean pods; these flowers, therefore, must bury themselves like those of Arachis. But it may be suspected that the branches which were seen by us to penetrate the ground also produce subterranean flowers and pods.]
DIAGEOTROPISM.
Besides geotropism and apogeotropism, there is, according to Frank, an allied form of movement,
* 'Manual of the Botany of the Northern United States,' 1856, p. 106. [page 521]
namely, "transverse-geotropism," or diageotropism, as we may call it for the sake of matching our other terms. Under the influence of gravitation certain parts are excited to place themselves more or less transversely to the line of its action.* We made no observations on this subject, and will here only remark that the position of the secondary radicles of various plants, which extend horizontally or are a little inclined downwards, would probably be considered by Frank as due to transverse-geotropism. As it has been shown in Chap. I. that the secondary radicles of Cucurbita made serpentine tracks on a smoked glass-plate, they clearly circumnutated, and there can hardly be a doubt that this holds good with other secondary radicles. It seems therefore highly probable that they place themselves in their diageotropic position by means of modified circumnutation.
Finally, we may conclude that the three kinds of movement which have now been described and which are excited by gravitation, consist of modified circumnutation. Different parts or organs on the same plant, and the same part in different species, are thus excited to act in a widely different manner. We can see no reason why the attraction of gravity should directly modify the state of turgescence and subsequent growth of one part on the upper side and of another part on the lower side. We are therefore led to infer that both geotropic, apogeotropic, and diageotropic movements, the purpose of which we can generally understand,
* Elfving has lately described ('Arbeiten des Bot. Instituts in Wrzburg,' B. ii. 1880, p. 489) an excellent instance of such movements in the rhizomes of certain plants. [page 522]
have been acquired for the advantage of the plant by the modification of the ever-present movement of circumnutation. This, however, implies that gravitation produces some effect on the young tissues sufficient to serve as a guide to the plant. [page 523]
CHAPTER XI.
LOCALISED SENSITIVENESS TO GRAVITATION, AND ITS TRANSMITTED EFFECTS.
General considerations—Vicia faba, effects of amputating the tips of the radicles—Regeneration of the tips—Effects of a short exposure of the tips to geotropic action and their subsequent amputation—Effects of amputating the tips obliquely—Effects of cauterising the tips—Effects of grease on the tips—Pisum sativum, tips of radicles cauterised transversely, and on their upper and lower sides—Phaseolus, cauterisation and grease on the tips—Gossypium—Cucurbita, tips cauterised transversely, and on their upper and lower sides—Zea, tips cauterised—Concluding remarks and summary of chapter—Advantages of the sensibility to geotropism being localised in the tips of the radicles.
CIESIELSKI states* that when the roots of Pisum, Lens and Vicia were extended horizontally with their tips cut off, they were not acted on by geotropism; but some days afterwards, when a new root-cap and vegetative point had been formed, they bent themselves perpendicularly downwards. He further states that if the tips are cut off, after the roots have been left extended horizontally for some little time, but before they have begun to bend downwards, they may be placed in any position, and yet will bend as if still acted on by geotropism; and this shows that some influence had been already transmitted to the bending part from the tip before it was amputated. Sachs repeated these experiments; he cut off a length of between .05 and 1 mm. (measured from the apex of the
* 'Abwartskrmmung der Wurzel,' Inaug. Dissert. Breslau, 1871, p. 29. [page 524]
vegetative point) of the tips of the radicles of the bean (Vicia faba), and placed them horizontally or vertically in damp air, earth, and water, with the result that they became bowed in all sorts of directions.* He therefore disbelieved in Ciesielski's conclusions. But as we have seen with several plants that the tip of the radicle is sensitive to contact and to other irritants, and that it transmits some influence to the upper growing part causing it to bend, there seemed to us to be no a priori improbability in Ciesielski's statements. We therefore determined to repeat his experiments, and to try others on several species by different methods.
Vicia faba.—Radicles of this plant were extended horizontally either over water or with their lower surfaces just touching it. Their tips had previously been cut off, in a direction as accurately transverse as could be done, to different lengths, measured from the apex of the root-cap, and which will be specified in each case. Light was always excluded. We had previously tried hundreds of unmutilated radicles under similar circumstances, and found that every one that was healthy became plainly geotropic in under 12 h. In the case of four radicles which had their tips cut off for a length of 1.5 mm., new root caps and new vegetative points were re-formed after an interval of 3 days 20 h.; and these when placed horizontally were acted on by geotropism. On some other occasions this regeneration of the tips and reacquired sensitiveness occurred within a somewhat shorter time. Therefore, radicles having their tips amputated should be observed in from 12 to 48 h. after the operation.
Four radicles were extended horizontally with their lower surfaces touching the water, and with their tips cut off for a length of only 0.5 mm.: after 23 h. three of them were still horizontal; after 47 h. one of the three became fairly geotropic; and after 70 h. the other two showed a trace of this action. The fourth radicle was vertically geotropic after 23 h.; but by an
* 'Arbeiten des Bot. Instituts in Wrzburg,' Heft. iii. 1873, p. 432. [page 525]
accident the root-cap alone and not the vegetative point was found to have been amputated; so that this case formed no real exception and might have been excluded.
Five radicles were extended horizontally like the last, and had their tips cut off for a length of 1 mm.; after 22-23 h., four of them were still horizontal, and one was slightly geotropic; after 48 h. the latter had become vertical; a second was also somewhat geotropic; two remained approximately horizontal; and the last or fifth had grown in a disordered manner, for it was inclined upwards at an angle of 65o above the horizon.
Fourteen radicles were extended horizontally at a little height over the water with their tips cut off for a length of 1.5 mm.; after 12 h. all were horizontal, whilst five control or standard specimens in the same jar were all bent greatly downwards. After 24 h. several of the amputated radicles remained horizontal, but some showed a trace of geotropism, and one was plainly geotropic, for it was inclined at 40o beneath the horizon.
Seven horizontally extended radicles from which the tips had been cut off for the unusual length of 2 mm. unfortunately were not looked at until 35 h. had elapsed; three were still horizontal, but to our surprise, four were more or less plainly geotropic.
The radicles in the foregoing cases were measured before their tips were amputated, and in the course of 24 h. they had all increased greatly in length; but the measurements are not worth giving. It is of more importance that Sachs found that the rate of growth of the different parts of radicles with amputated tips was the same as with unmutilated ones. Altogether twenty-nine radicles were operated on in the manner above described, and of these only a few showed any geotropic curvature within 24 h.; whereas radicles with unmutilated tips always became, as already stated, much bent down in less than half of this time. The part of the radicle which bends most lies at the distance of from 3 to 6 mm. from the tip, and as the bending part continues to grow after the operation, there does not seem any reason why it should not have been acted on by geotropism, unless its curvature depended on some influence transmitted from the tip. And we have clear evidence of such transmission in Ciesielski's experiments, which we repeated and extended in the following manner.
Beans were embedded in friable peat with the hilum downwards, and after their radicles had grown perpendicularly down for a length of from to 1 inch, sixteen were selected which [page 526] were perfectly straight, and these were placed horizontally on the peat, being covered by a thin layer of it. They were thus left for an average period of 1 h. 37 m. The tips were then cut off transversely for a length of 1.5 mm., and immediately afterwards they were embedded vertically in the peat. In this position geotropism would not tend to induce any curvature, but if some influence had already been transmitted from the tip to the part which bends most, we might expect that this part would become curved in the direction in which geotropism had previously acted; for it should be noted that these radicles being now destitute of their sensitive tips, would not be prevented by geotropism from curving in any direction. The result was that of the sixteen vertically embedded radicles, four continued for several days to grow straight downwards, whilst twelve became more or less bowed laterally. In two of the twelve, a trace of curvature was perceptible in 3 h. 30 m., counting from the time when they had first been laid horizontally; and all twelve were plainly bowed in 6 h., and still more plainly in 9 h. In every one of them the curvature was directed towards the side which had been downwards whilst the radicles remained horizontal. The curvature extended for a length of from 5 to, in one instance, 8 mm., measured from the cut-off end. Of the twelve bowed radicles five became permanently bent into a right angle; the other seven were at first much less bent, and their curvature generally decreased after 24 h., but did not wholly disappear. This decrease of curvature would naturally follow, if an exposure of only 1 h. 37 m. to geotropism, served to modify the turgescence of the cells, but not their subsequent growth to the full extent. The five radicles which were rectangularly bent became fixed in this position, and they continued to grow out horizontally in the peat for a length of about 1 inch during from 4 to 6 days. By this time new tips had been formed; and it should be remarked that this regeneration occurred slower in the peat than in water, owing perhaps to the radicles being often looked at and thus disturbed. After the tips had been regenerated, geotropism was able to act on them, so that they now became bowed vertically downwards. An accurate drawing (Fig. 195) is given on the opposite page of one of these five radicles, reduced to half the natural size.
We next tried whether a shorter exposure to geotropism would suffice to produce an after-effect. Seven radicles were extended horizontally for an hour, instead of 1 h. 37 m. as in the [page 527] former trial; and after their tips (1.5 mm. in length) had been amputated, they were placed vertically in damp peat. Of these, three were not in the least affected and continued for days to grow straight downwards. Four showed after 8 h. 30 m. a mere trace of curvature in the direction in which they had been acted on by geotropism; and in this respect they differed much from those which had been exposed for 1 h. 37 m., for many of the latter were plainly curved in 6 h. The curvature of one of these four radicles almost disappeared after 24 h. In the second, the curvature increased during two days and then decreased. the third radicle became permanently bent, so that its terminal part made an angle of about 45o with its original vertical direction. The fourth radicle became horizontal. These two, latter radicles continued during two more days to grow in the peat in the same directions, that is, at an angle of 45o beneath the horizon and horizontally. By the fourth morning new tips had been re-formed, and now geotropism was able to act on them again, and they became bent perpendicularly downwards, exactly as in the case of the five radicles described in the last paragraph and as is shown in (Fig. 195) here given.
Fig. 195. Vicia faba: radicle, rectangularly bent at A, after the amputation of the tip, due to the previous influence of geotropism. L, side of bean which lay on the peat, whilst geotropism acted on the radicle. A, point of chief curvature of the radicle, whilst standing vertically downwards. B, point of chief curvature after the regeneration of the tip, when geotropism again acted. C, regenerated tip.
Lastly, five other radicles were similarly treated, but were exposed to geotropism during only 45 m. After 8 h. 30 m. only one was doubtfully affected; after 24 h. two were just perceptibly curved towards the side which had been acted on by geotropism; after 48 h. the one first mentioned had a radius of curvature of 60 mm. That this curvature was due to the action of geotropism during the horizontal position of the radicle, was shown after 4 days, when a new tip had been re-formed, for it then grew perpendicularly downwards. We learn from this [page 528] case that when the tips are amputated after an exposure to geotropism of only 45 m., though a slight influence is sometimes transmitted to the adjoining part of the radicle, yet this seldom suffices, and then only slowly, to induce even moderately well-pronounced curvature.
In the previously given experiments on 29 horizontally extended radicles with their tips amputated, only one grew irregularly in any marked manner, and this became bowed upwards at an angle of 65o. In Ciesielski's experiments the radicles could not have grown very irregularly, for if they had done so, he could not have spoken confidently of the obliteration of all geotropic action. It is therefore remarkable that Sachs, who experimented on many radicles with their tips amputated, found extremely disordered growth to be the usual result. As horizontally extended radicles with amputated tips are sometimes acted on slightly by geotropism within a short time, and are often acted on plainly after one or two days, we thought that this influence might possibly prevent disordered growth, though it was not able to induce immediate curvature. Therefore 13 radicles, of which 6 had their tips amputated transversely for a length of 1.5 mm., and the other 7 for a length of only 0.5 mm., were suspended vertically in damp air, in which position they would not be affected by geotropism; but they exhibited no great irregularity of growth, whilst observed during 4 to 6 days. We next thought that if care were not taken in cutting off the tips transversely, one side of the stump might be irritated more than the other, either at first or subsequently during the regeneration of the tip, and that this might cause the radicle to bend to one side. It has also been shown in Chapter III. that if a thin slice be cut off one side of the tip of the radicle, this causes the radicle to bend from the sliced side. Accordingly, 30 radicles, with tips amputated for a length of 1.5 mm., were allowed to grow perpendicularly downwards into water. Twenty of them were amputated at an angle of 20o with a line transverse to their longitudinal axes; and such stumps appeared only moderately oblique. The remaining ten radicles were amputated at an angle of about 45o. Under these circumstances no less than 19 out of the 30 became much distorted in the course of 2 or 3 days. Eleven other radicles were similarly treated, excepting that only 1 mm. (including in this and all other cases the root-cap) was amputated; and of these only one grew much, and two others slightly [page 529] distorted; so that this amount of oblique amputation was not sufficient. Out of the above 30 radicles, only one or two showed in the first 24 h. any distortion, but this became plain in the 19 cases on the second day, and still more conspicuous at the close of the third day, by which time new tips had been partially or completely regenerated. When therefore a new tip is reformed on an oblique stump, it probably is developed sooner on one side than on the other: and this in some manner excites the adjoining part to bend to one side. Hence it seems probable that Sachs unintentionally amputated the radicles on which he experimented, not strictly in a transverse direction. |
|