p-books.com
The People's Common Sense Medical Adviser in Plain English
by R. V. Pierce
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 ... 26     Next Part
Home - Random Browse

As we rise in the scale of organization, animals are more completely developed, and greater economy is displayed in their preservation. The germ passes from the ovary into an organ prepared for its reception and growth, to which, after fecundation, it becomes attached, and where it remains until sufficiently developed to maintain respiratory life. This organ is called the womb, or uterus, and is peculiar to most mammalia. This mode of reproduction is termed viviparous generation.

The kangaroo and oppossum are provided with a pouch attached to the abdomen, which receives the young born at an early stage of development. They remain in contact with the mammae, from which they obtain their nourishment, until their growth is sufficiently completed to maintain an independent existence. This is called marsupial generation. The variety of reproduction which is most interesting, is that of the human species, and is called viviparous generation. It includes the functions of copulation, fecundation, gestation, parturition, and lactation.

For the full and perfect development of mankind, both mental and physical chastity is necessary. The health demands abstinence from unlawful intercourse. Therefore children should not be allowed to read impure works of fiction, which tend to inflame the mind and excite the passions. Only in total abstinence from illicit pleasures is there moral safety and health, while integrity, peace, and happiness, are the conscious rewards of virtue. Impurity travels downward with intemperance, obscenity, and corrupting diseases, to degradation and death. A dissolute, licentious, free-and-easy life is filled with the dregs of human suffering, iniquity, and despair. The penalties which follow a violation of the law of chastity are found to be severe and swiftly retributive.



The union of the sexes in holy matrimony is a law of nature finding sanction in both morals and legislation. Even some of the lower animals unite in this union for life, and instinctively observe the law of conjugal fidelity with a consistency which might put to blush other animals more highly endowed. It is important to discuss this subject and understand our social evils, as well as the unnatural desires of the sexes, which must be controlled or they lead to ruin. Sexual propensities are possessed by all, and they must be held in abeyance, until they are exercised for legitimate purposes. Hence parents ought to understand the value of mental and physical labor to elevate and strengthen the intellectual and moral faculties of their children, to develop the muscular system and direct the energies of the blood into healthful channels. Vigorous employment of mind and body engrosses the vital energies and diverts them from undue excitement of the sexual desires.



Sexual generation by pairing individuals is the most economical mode of propagating the species. The lower orders of animals possess wonderful multiplicative powers and their faculty for reproduction is offset by various destructive forces. The increased ability for self-maintenance implies diminished reproductive energy; hence the necessity for greater economy and safety in rearing the young. As certain larvae and insects increase, the birds which feed upon them become more numerous. When this means of support becomes inadequate, these same birds diminish in number in proportion to the scarcity of their food. Many have remarked that very prolific seasons are followed by unusual mortality, just as periods of uncommon prosperity precede those of severe disaster.

The increased mental and moral cultivation of mankind imposes upon them the necessity for greater physical culture. "Wiser and weaker," is a trite saying, and means that the exercise of the higher nature discloses the equivalent necessity of culturing the body, in order to support the increasing expenditures of the former. Mental and moral discipline are essential for a proper understanding how to provide for the body, for physical training increases the capacity of the individual for self-preservation. Constant vigilance is the price of health as well as of liberty.

It is an interesting physiological fact that, while the growth and development of the individual are rapidly progressing, the reproductive powers remain almost inactive, and that the commencement of reproduction not only indicates an arrest of growth, but, in a great measure, contributes toward it. From infancy to puberty, the body and its individual organs, structurally as well as functionally, are in a state of gradual and progressive evolution. Men and women generally increase in stature until the twenty-fifth year, and it is safe to assume that perfection of function is not established until maturity of bodily development is completed. Solidity and strength are represented in the organization of the male, grace, and beauty in that of the female. His broad shoulders represent physical power and the right of dominion, while her bosom is the symbol of love and nutrition. The father encounters hardships, struggles against difficulties, and braves dangers to provide for his household; the mother tenderly supplies the infant's wants, finding relief and pleasure in imparting nourishment, and surrounds helpless infancy with an affection which is unwearied in its countless ministering attentions. Her maternal functions are indicated by greater breadth of the hips. Physical differences so influence their mental natures, that, "before experience has opened their eyes, the dreams of the young man and maiden differ." The development of either is in close sympathy with their organs of reproduction. Any defect of the latter impairs our fair ideal, and detracts from those qualities which impart excellence, and crown the character with perfections. Plainly has Nature marked out, in the organization, very different offices to be performed by the sexes, and has made these distinctions fundamental.

Likewise, Nature expresses the intention of reproduction by giving to plants and animals distinctive organs for this purpose. These are endowed with exquisite sensibility, so that their proper exercise produces enjoyment beneficial to both. Excessive sexual indulgence not only prostrates the nervous system, enfeebles the body, and drains the blood of its vivifying elements, but is inconsistent with intellectual activity, morality, and spiritual development. The most entrancing delights and consummate enjoyments are of the emotive order, ideal, abstract, and pure, so inspiring that they overpower the grosser sensual pleasures and diffuse their own sweet chastity and refining influence over all the processes of life.

Hence, the gratification of the sexual instincts should always be moderate. It should be regulated by the judgment and will, and kept within the bounds of health. No person has a moral right to carry this indulgence so far as to produce injurious consequences to either party, and he who cannot refrain from it is in no proper condition to propagate his species. In all culture there must be self-control, and the practice of self-denial at the command of love and justice is always a virtue. Self-government is the polity of our people, and we point with pride and laudable exultation to our political maxims, laws, and free institutions. The family is the prototype of society. If self-restraint be practiced in the marital relation, then the principle of self-control will carry health, strength, and morality into all parts of the commonwealth. The leading characteristics of any nation are but the reflection of the traits of its individual members, and thus the family truly typifies the practical morality and enduring character of a people.

OVULATION.

The Ovaries are those essential parts of the generative system of the human female in which the ova are matured. There are two ovaries, one on each side of the uterus, and connected with it by the Fallopian tubes; they are ovoidal bodies about an inch in diameter, and furnish the germs or ovules. These latter are very minute, seldom measuring 1/120 of an inch in diameter, and frequently are not more than half that size. The ovaries develop with the growth of the female, so that, finally, at the pubescent period, they ripen and liberate an ovum, or germ vesicle, which is carried into the uterine cavity through the Fallopian tubes. With the aid of the microscope, we find that these ova are composed of granular substance, in which is found a miniature yolk surrounded by a transparent membrane, called the zona pellucida. This yolk contains a germinal vesicle in which can be discovered a nucleus, called the germinal spot. The process of the growth of the ovaries is very gradual, and their function of ripening and discharging an ovum every month into the Fallopian tubes and uterus is not developed until between the twelfth and fifteenth years.

This period, which indicates, by the feelings and ideas, the desires and will, that the subjects are capable of procreation, is called puberty. The mind acquires new and more delicate perceptions, the person becomes plumper, the mammae enlarge, and there is grace and perfection in every movement, a conscious completeness for those relations of life for which this function prepares them. The period of puberty is also indicated by

MENSTRUATION.

The catamenial discharge naturally follows the ripening and liberation of an ovum, and as the ovaries furnish one of these each month, this monthly flow is termed the menses (the plural of the Latin word mensis, which signifies a month). The menstrual flow continues from three to five days, and is merely the exudation of ordinary venous blood through the mucous lining of the cavity of the uterus. At this time, the nervous system of females is much more sensitive, and from the fact that there is greater aptitude to conception immediately before and after this period, it is supposed that the sexual feeling is then the strongest. When impregnation occurs immediately before the appearance of the menses, their duration is generally shortened, but not sufficiently to establish the suspicion that conception has taken place. The germ is the contribution of the female, which provides the conditions which only require the vivifying principle of the sperm for the development of another being. The period of aptitude for conception terminates at the time both ovulation and menstruation cease, which, unless brought about earlier by disease, usually occurs about the forty-fifth year of her age.

FECUNDATION.

Since in the beginning God created male and female, and said unto them, "Be fruitful, and multiply, and replenish the earth," it is evident that what was originated by creation must be continued by procreation. The process of generation the reader will find described on pages 12 and 13. Then commences a wonderful series of transforming operations, rudimentary changes preliminary to the formation of tissues, structures and functions, which finally qualify the organism for independent existence. The ovum, when expelled from the ovary, enters the fimbriated, or fringe-like extremity of the Fallopian tube, to commence at once its descent to the uterus. The process of passing through this minute tube varies in different animals. In birds and reptiles, the bulk of the expelled ova is so great as to completely fill up the tube, and it is assisted in its downward course, partly by its own weight and partly by the peristaltic action of the muscular coat of the canal. In the human subject, however, the ova are so minute that nature has supplied a special agent for their direct transmission; otherwise they might be retained, and not reach their destination. Accordingly, the fimbriated, trumpet-shaped extremity of the Fallopian tubes, which is nearest to the ovaries, and, consequently from the ovary first receives the ovum when expelled; is provided with a series of small hairs, termed cilia, forming the lining or basement membrane of the tubes, and, the movements of these cilia being towards the uterus, transmit, by their vibrating motion, the ovum from the ovary, through the Fallopian tubes, to the uterus.

The mature ovum, however, is not by itself capable of being converted into the embryo. It requires fecundation by the spermatic fluid of the male, and this may take place immediately on the expulsion of the ovum from the ovary, or during its passage through the Fallopian tube, or, according to Bischoff, Coste, and others, in the cavity of the uterus, or even upon the surface of the ovary. Should impregnation, however, fail, the ovum gradually loses its vitality, and is eventually expelled by the uterine secretions. It occasionally happens that the descent of the impregnated ovum is arrested, and the formation of the embryo commences in the ovary. This is termed ovarian pregnancy. Or again, the ovum may be arrested in its passage through the Fallopian tube, causing what is termed tubal pregnancy; or, after it has been expelled from the ovary, it may fail to be received by the fimbriated extremity, and escape into the cavity of the abdomen, forming what has been termed ventral pregnancy. If the microscopic germ lodges in some slight interstice of fiber, during its passage through the walls of the uterus, it may be detained long enough to fix itself there, and when this occurs, it is termed interstitial pregnancy. All these instances of extra-uterine pregnancy may necessitate the employment of surgical skill, in order that they may terminate with safety to the mother. Their occurrence, however, is very rare.

The intense nervous excitement produced by the act of coition is immediately followed by a corresponding degree of depression, and a too frequent repetition of it is necessarily injurious to health. The secretions of the seminal fluid being, like other secretions, chiefly under the influence of the nervous system, an expenditure of them requires a corresponding renewal. This renewal greatly taxes the corporeal powers, inducing lassitude, nervousness, and debility. It is a well known fact that the highest degree of mental and bodily vigor is inconsistent with more than a moderate indulgence in sexual intercourse.

To ensure strength, symmetry, and high intellectual culture in the human race, requires considerable care. Consideration should be exercised in the choice of a companion for life. Constitutional as well as hereditary ailments demand our closest attention. Age has also its judicious barriers. As before stated, when reproduction commences, growth, as a rule, ceases, therefore, it is inexpedient that matrimony should be consummated before the parties have arrived at mature stature.

PREVENTION OF CONCEPTION.

Much has been written upon the question whether married people have a right to decline the responsibilities of wedlock. The practice of inducing abortion is not only immoral but criminal, because it is destructive to both the health of the mother and the life of the embryo being. If both the parties to a marriage be feeble, or if they be not temperamentally adapted to each other, so that their children would be deformed, insane, or idiotic, then to beget offspring would be a flagrant wrong. If the mother is already delicate, possessing feeble constitutional powers, she is inadequate to the duties of maternity, and it is not right to lay such burdens upon her. Self-preservation is the first law of nature, which all ought to respect. The woman may be able to discharge the duties of a loving wife and companion, when she cannot fulfill those of child-bearing. If the husband love his wife as he ought, he will resign all the pleasure necessary to secure her exemption from the condition of maternity. It seems to us, that it is a great wickedness, unpardonable even, to be so reckless of consequences, and so devoid of all feeling, as to expose a frail, feeble, affectionate woman to those perils which almost insure her death. To enforce pregnancy under such circumstances is a crime. Every true man, therefore, should rather practice self-control and forbearance, than entail on his wife such certain misery, if not danger to life.

Undoubtedly, the trial is great, but if a sacrifice be required, let the husband forbear the gratification of passions which will assuredly be the means of developing in his delicate wife symptoms that may speedily hurry her into a premature grave. Before she has recovered from the effects of bearing, nursing, and rearing one child, ere she has regained proper tone and vigor of body and mind, she is unexpectedly overtaken, surprised by the manifestation of symptoms which again indicate pregnancy. Children thus begotten are not apt to be hardy and long-lived. From the love that parents feel for their posterity, from their wishes for their success, from their hopes that they may be useful from every consideration for their future well-being, let them exercise precaution and forbearance, until the wife becomes sufficiently healthy and enduring to bequeath her own vital stamina to the child she bears.

From what has been said on this subject, it behooves the prudent husband to weigh well the injurious, nay criminal results which may follow his lust. Let him not endanger the health, and it may be the life, of his loving and confiding wife through a lack of self-denial. Let him altogether refrain, rather than be the means of untold misery and, perhaps, the destruction of the person demanding his most cherished love and protection. On so important a subject, we feel we should commit an unpardonable wrong were we not to speak thus plainly and openly. An opportunity has been afforded us, which it would be reprehensible to neglect. We shall indeed feel we have been amply rewarded, if these suggestive remarks of ours tend in any way to remove or alleviate the sufferings of an uncomplaining and loving wife. Our sympathies, always susceptible to the conditions of sorrow and suffering, have been enlisted to give faithfully, explicitly, and plainly, warnings of danger and exhortations to prudence and nothing remains for us but to maintain the principles of morality, and leave to the disposal of a wise and overruling Providence the mystery of all seemingly untoward events. In every condition of life, evils arise, and most of those which are encountered are avoidable. Humanity should be held accountable for those evils which it might, but does not shun.

By a statute of the national government, prevention of pregnancy is considered a punishable offense; whereas every physician is instructed by our standard writers and lecturers on this subject, that not only prevention is necessary in many instances, but even abortion must sometimes be produced in order to save the mother's life. As we view the matter, the law of the national government asserts the ruling principle, and the exceptions to it must be well established by evidence, in order to fully justify such procedure. The family physician may, with the concurrence of other medical counselors, be justified, in rare cases, in advising means for the prevention of conception, but he should exercise this professional duty only when the responsibility is shared by other members of the profession, and the circumstances fully and clearly warrant such a practice.

After fecundation, the length of time before conception takes place is variously estimated. Should impregnation occur at the ovary or within the Fallopian tubes, usually about a week elapses before the fertilized germ enters the uterus, so that ordinarily the interval between the act of insemination and that of conception varies from eight to fourteen days.

DOUBLE CONCEPTION.

If two germs be evolved simultaneously, each may be impregnated by spermatozoa, and a twin pregnancy be the result. This is by no means a rare occurrence. It is very unusual, however, to have one birth followed by another after an interval of three or four months, and each babe present the evidences of full maturity. Perhaps such occurrences may be accounted for on the supposition that the same interval of time elapses between the impregnation of the two germs as there is difference observed in their birth; that after the act of insemination, sperm was carried to each ovary; that one had matured a germ ready for fecundation, then impregnation and conception immediately followed, and the decidua of the uterus hermetically sealed both Fallopian tubes, and thus securely retained the sperm within the other Fallopian canal. The stimulus of the sperm so pent up causes that ovary to mature a germ, although it may do so slowly, and after two or three months it is perfected, fertilized, and a second conception occurs within the uterus. If each embryo observe a regular period of growth and each be born at maturity, there must be an interval of two or three months between their births. But it is far more common for the parturition of the first, displaying signs of full maturity, to coincide with the birth of a second which is immature and which cannot sustain respiratory life. The birth of the latter is brought about prematurely, by the action of the uterus in expelling the matured child.

UTERINE PREGNANCY.

There are many who manifest a laudable desire to understand the physiology of conception, the changes which take place, and the order of their natural occurrence. When impregnation takes place at the ovaries or within the Fallopian tubes, there is exuded upon the inner surface of the womb a peculiar nutritious substance. It flows out of the minute porous openings surrounding the termination of the Fallopian tube within the uterine cavity, and, thus, is in readiness to receive the germ, and retain it there until it becomes attached. Undoubtedly, the germ imbibes materials from this matter for its nurture and growth. This membranous substance is termed the decidua, and disappears after conception is insured. Two membranes form around the embryo; the inner one is called the amnion, the outer one the chorion. Both serve for the protection of the embryo, and the inner one contains the liquor amnii, in which it floats during intra-uterine life. Immediately after conception, the small glands in the neck of the uterus usually throw out a sticky secretion, filling the canal, or uniting its sides, so that nothing can enter or leave the uterine cavity.

The fertilized ovum rapidly develops. After its conception it imbibes nourishment, and there is a disposition in fluids to pass into it, through its delicately-organized membranes. If this process is not involuntary, it is, at all events, at the convenience and use of the developing germ. After three months the embryo is termed the foetus. Its fluids are then so much more highly organized, that some of them are tinged with sanguine hues, and thenceforward acquire the characteristics of red blood. Out of red blood, blood-vessels are formed, and from the incipient development of the heart follow faint lines of arteries, and the engineers of nutrition survey a circulatory system, perfecting the vascular connections by supplementing the arteries with a complete net-work of veins and capillaries.

THE PLACENTA OR AFTERBIRTH.

Whenever conception occurs, a soft, spongy substance is formed between the uterus and the growing ovum, called the placenta. It is composed of membrane, cellular tissue, blood-vessels, and connecting filaments. The principal use of this organ seems to be to decarbonate the blood of the foetus, and to supply it with oxygen. It performs the same function for the foetus that the lungs do for the organism after birth. It allows the blood of the foetus to come into very close contact with that of the mother, from which it receives a supply of oxygen, and to which it gives up carbonic acid. This interchange of gases takes place in the placenta, or between it and the uterus, through the intervening membranes. This decarbonating function requires the agency of the maternal lungs, for the purpose of oxygenating the mother's blood.

The placenta is attached to the uterus by simple adhesion. True, in some instances, morbid adhesion takes place, or a growing together in consequence of inflammation, but the natural junction is one merely of contact, the membranes of the placenta spreading out upon the cavity of the uterus, so that, finally, the former may be entirely removed without a particle of disturbance or injury to the latter. Formerly, it was supposed that the placental vessels penetrated into the substance of the uterus. We know now there is no such continuation of the vessels of the one into the other. The decarbonation of the blood requires the placental and uterine membranes to be in contact with each other.

If the union were vascular, the mother's blood would circulate in the foetal body, and the impulses of the maternal heart might prove too strong for the delicate organism of the embryo. Besides, the separation of the placenta from the uterus might prove fatal to both parent and offspring. The placenta is only a temporary organ, and when its functions are no longer required, it is easily and safely removed.

THE UMBILICAL CORD.

The foetal blood is transmitted to and fro between the body of the child and the placenta, by a cord which contains two arteries and one vein. This is called the umbilical cord, because it enters the body at the middle of the abdominal region, or umbilicus. It is composed, also, of its own proper membranous sheath, or skin, and cellular tissues, besides the blood-vessels. Two months after pregnancy, this cord can be seen, when it commences to grow rapidly.

QUICKENING.

Not until the mother feels motion is she said to be quick with child. That is, the child must be old and strong enough to communicate a physical impulse, which the mother can distinctly perceive, before it is regarded as having received life. This is a fallacy, for the germ has to be endowed with life before organization can begin. The act of impregnation communicates the vital principle, and from that moment it starts upon its career of development. A long period elapses after this occurs before it can make the mother feel its motions. Before quickening, the attempt to destroy the foetus is not considered so grave a crime by our laws, but after this quickening takes place, it is deemed a felony.

THE RIGHT TO TERMINATE PREGNANCY.

The expediency and the moral right to prematurely terminate pregnancy must be admitted when weighty and sufficient reasons for it exist. Such a course should never be undertaken, however, without the advice and approval of the family physician, and, whenever it is possible, the counsel of another medical practitioner should be obtained. There may be so great a malformation of the pelvic bones as to preclude delivery at full term, or, as in some instances, the pregnant condition may endanger the life of the mother, because she is not able to retain nourishment upon the stomach. In such cases only, is interference warranted, and even then the advice of some well-informed physician should be first obtained, to make sure that the life of the mother is endangered before so extreme a measure is resorted to.

Those who are qualified for maternal duties should not undertake to defeat the intentions of nature, simply because they love ease and dislike responsibility. Such persons may be considered genteel ladies, but, practically, they are indifferent to the claims of society and posterity. How such selfishness contrasts with the glorious, heroic, Spartan spirit of the young woman who consulted us in reference to the acceptance of a tempting offer of marriage! She was below medium size and delicately organized. She hesitated in her answer, because she was uncertain as to her duty to herself, and to her proposed husband, and on account of the prospective contingencies of matrimony. After she was told that it was doubtful whether she could discharge the obligations of maternity with safety to herself, and yet that she might prove to her intended husband a true and valuable wife, she quickly answered, her black eyes radiant with the high purpose of her soul: "If I assent to this offer, I shall accept the condition and its consequences also, even if pregnancy be my lot and I know it will cost me my life!" She acceded to the proposal, and years found them one in happiness; then a daughter was born, but the bearing and nursing were too much for her delicate constitution, and she continued to sink until she found rest in the grave. Of all her beautiful and noble sayings, none reflect more moral grandeur of spirit than the one in which she expressed her purpose to prove true to posterity.

THE SIGNS OF PREGNANCY.

The symptoms which indicate pregnancy are cessation of the menses, enlargement of the mammae, nausea, especially in the morning, distention of the abdomen, and movement of the foetus. A married woman has reason to suspect that she may have conceived, when, at the proper time, she fails to menstruate, especially when she knows that she is liable to become pregnant. A second menstrual failure strengthens this suspicion, although there are many other causes which might prevent the appearance of the menses, such as disease of the uterus, general debility, or taking cold, and all of these should be taken into account. In the absence of all apparent influences calculated to obstruct the menses, the presumption ordinarily is that pregnancy is the cause of their non-appearance. The evidence is still more conclusive when the mammae and abdomen enlarge after experiencing morning sickness. Notwithstanding all these symptoms, the audible sound of the heart, or the movements of the foetus, are the only infallible signs of a pregnant condition.

THE DURATION OF PREGNANCY.

The ordinary duration of pregnancy is about forty weeks, or 280 days. It is difficult to foretell exactly when a pregnancy will be completed, for it cannot be known precisely when it began. Some gestations are more protracted than others, but the average duration is the time we have given. A very reasonable way to compute the term, is to reckon three months back from the day when the menses ceased and then add five days to that time, which will be the date of the expected time of confinement. It is customary, also, for women to count from the middle of the month after the last appearance of the menses, and then allow ten lunar months for the term. This computation generally proves correct, except in those instances in which conception takes place immediately before the fast appearance of the catamenia. A few women can forecast the time of labor from the occurrence of quickening, by allowing eighteen weeks for the time which has elapsed since conception, and twenty-two more for the time yet to elapse before the confinement. With those in whom quickening occurs regularly in a certain week of pregnancy, this calculation may prove nearly correct.

The English law fixes no precise limit for the legitimacy of the child. In France a child is regarded as lawfully begotten if born within three hundred days after the death or departure of the husband. There are a sufficient number of cases on record to show that gestation may be prolonged two, and even three, weeks beyond the ordinary, or average term. The variation of time may be thus accounted for: after insemination, a considerable interval elapses before fecundation takes place, and the passage of the fertilized germ from the ovary to the uterus is also liable to be retarded. There are many circumstances and conditions which might serve to diminish its ordinary rate of progress, and postpone the date of conception. This would materially lengthen the apparent time of gestation.

It is likewise difficult to determine the shortest period at which gestation may terminate, and the child be able to survive. A child may be born and continue to live for some months, after twenty-four or twenty-five weeks of gestation; it was so decided, at least, in an ecclesiastical trial.

We have not the space to describe minutely, or at length, the formation and growth of the foetal structures, and trace them separately from their origin to their completion at the birth of the child. The student of medicine must gain information by consulting large works and exhaustive treatises on this interesting subject.

What trifling contingencies defeat vitality! Conception may be prevented by acrid secretions, the result of disease of the reproductive organs. Leucorrheal matter may destroy the vitalizing power of the sperm-cells. There are many ways, even after impregnation, of compromising the existence of the frail embryo. Accidents, injuries, falls, blows, acute diseases, insufficient nutrition and development, in fact, a great variety of occurrences may destroy the life of the embryo, or foetus. After birth, numerous diseases menace the child. By what constant care must it ever be surrounded, and how often is it snatched from the very jaws of death!

What, then, is man but simply a germ, evolving higher powers, and destined for a purer and nobler existence! His latent life secretly emerges from mysterious obscurity, is incarnated, and borne upon the flowing stream of time to a spiritual destination—to realms of immortality! As he nears those ever-blooming shores, the eye of faith, illuminated by the inspired word, dimly discerns the perennial glories. Quickened by Faith, Hope, and Love, his spirit is transplanted into the garden of paradise, the Eden of happiness, redeemed, perfected, and made glorious in the divine image of Him who hath said, "I am the Way, the Truth, and the LIFE."

* * * * *



PART II.

HYGIENE.



CHAPTER I.

HYGIENE DEFINED.—PURE AIR.

The object of hygiene is the preservation of health. Hitherto, we have considered, at some length, the science of functions, or Physiology, and now, under the head of Hygiene, we will give an outline of the means of maintaining the functional integrity of the system. It is difficult to avoid including under this head Preventive Medicine, the special province of which is to abate, remove, or destroy the many causes of disease.

The Greeks bestowed divine honors upon Aesculapius, because he remedied the evils of mankind and healed the sick. The word hygiene is derived from Hygeia, the name of the Greek goddess of health. As male and female are made one in wedlock, so Medicine and Hygiene, restoration and preservation, are inseparably united.

Hygiene inculcates sanitary discipline, medicine, remedial discipline; hygiene prescribes healthful agencies, medical theory and practice, medicinal agencies; hygiene ministers with salubrious and salutary agents, medicine assuages with rectifying properties and qualities; hygiene upholds and sustains, medical practice corrects and heals; the one is preservative and conservative, the other curative and restorative. These discriminations are as radical as health and sickness, as distinct as physiology and pathology, and to confound them is as unnatural as to look for the beauties of health in the chamber of sickness.

The true physician brings to his aid Physiology, Hygiene, and Medicine, and combines the science of the former with the art of the latter, that restoration may be made permanent, and the health preserved by the aid of hygiene. But when any one makes Hygiene exclusively the physician, or deals wholly in hygienic regulations with little respect for physiology, or lavishly advertises with hygienic prefixes, we may at once consider it a display, not of genuine scientific knowledge, but only of the ignorance of a quack. Some of the modern twaddle about health is a conglomeration of the poorest kind of trash, expressing and inculcating more errors and whims than it does common sense. Many persons dilate upon these subjects with amazing flippancy, their mission seeming to be to traduce the profession rather than to act as help-mates and assistants. We do not believe that there is any real argument going on between the educated members of the medical profession but rather that the senseless clamor we occasionally hear comes only from the stampede of some routed, demoralized company of quacks.

In the following pages we shall introduce to the reader's attention several important hygienic subjects, although there are many more that ought to receive special notice. Such as we do mention, demand universal attention, because a disregard of the conditions which we shall enumerate, is fraught with great danger. Our lives are lengthened or shortened by the observance or neglect of the rules of common sense, and these do not require any great personal sacrifice, or the practice of absurd precautions.

PURE AIR FOR RESPIRATION.

Ordinary atmospheric air contains nearly 2,100 parts of oxygen and 7,900 of nitrogen, and about three parts of carbonic acid, in 10,000 parts; expired air contains about 470 parts of carbonic acid, and only between 1500 and 1600 parts of oxygen, while the quantity of nitrogen undergoes little or no alteration. Thus air which has been breathed has lost about five per cent. of oxygen and has gained nearly five per cent. of carbonic acid. In addition the expired air contains a greater or less quantity of highly decomposable animal matter, and, however dry the atmospheric air may be, the expired air is always saturated with watery vapor, and, no matter what the temperature of the external air may be, that of the exhaled air is always nearly as warm as the blood. An adult man on a average breathes about sixteen times in a minute and at every inspiration takes in about thirty cubic inches of air, and at every expiration exhales about the same amount. Hence, it follows that about 16-2/3 cubic feet of air are passed through the lungs of an adult man every hour, and deprived of oxygen and charged with carbonic acid to the amount of nearly five per cent. The more nearly the composition of the external air approaches that of the expired air, the slower will be the diffusion of carbonic acid outwards and of oxygen inwards, and the more charged with carbonic acid and deficient in oxygen will the blood in the lungs become. Asphyxia takes place whenever the proportion of carbonic acid in the external air reaches ten per cent., providing the oxygen is diminished in like proportion, and it does not matter whether this condition of the external air is produced by shutting out fresh air from a room or by increasing the number of persons who are consuming the same air; or by permitting the air to be deprived of oxygen by combustion by a fire. A deficiency of oxygen and an accumulation of carbonic acid in the atmosphere, produce injurious effects, however, long before the asphyxiating point is attained. Headache, drowsiness, and uneasiness occur when less than one per cent. of the oxygen of the atmosphere is replaced by other matters, and the constant breathing of such an atmosphere lowers vitality and predisposes to disease.

Therefore, every human being should be supplied, by proper ventilation, with a sufficient supply of fresh air. Every adult individual ought to have at least 800 cubic feet of air-space to himself, and this space ought to communicate freely with the external atmosphere by means of direct or indirect channels. Hence, a sleeping-room for one adult person should not be less than nine by ten feet in breadth and length and nine feet in height. What occurred in the Black Hole at Calcutta is an excellent illustration of the effect of vitiated air. One hundred and forty-six Englishmen were confined in a room eighteen feet square, with two small windows on one side to admit air. Ten hours after their imprisonment, only twenty-three were alive.

VENTILATION OF SCHOOL ROOMS. The depression and faintness from which many students suffer, after being confined in a poorly ventilated school room, is clearly traceable to vitiated air, while the evil is often ascribed to excessive mental exertion. The effect of ventilation upon the health of students is a subject of universal interest to parents and educators, and at present is receiving the marked attention of school authorities. Dr. F. Windsor, of Winchester, Mass., made a few pertinent remarks upon this subject in the annual report of the State Board of Health, of Massachusetts, 1874. One of the institutions, which was spoken of in the report of 1873, as a model, in the warming and ventilation of which much care had been bestowed, was visited in December, 1873. He reports as follows: "I visited several of the rooms, and found the air in all, offensive to the smell, the odor being such as one would imagine old boots, dirty clothes, and perspiration would make if boiled down together;" again, in the new model school-house the hot air enters at two registers in the floor on one side, and makes (or is supposed to make) its exit by a ventilator at the floor, on the other side of the room." The master said "the air was supposed to have some degree of intelligence, and to know that the ventilator was its proper exit." Thorough ventilation has been neglected by many school officials on account of the increased expense it causes. In our climate, during seven months at least, pure atmospheric air must be paid for. The construction of vertical ducts, the extra amount of fuel, and the attendant expenditures are the objections which, in the opinion of many persons, outweigh the health and happiness of the future generation. It is necessary for the proper ventilation of our school rooms that an adequate supply of fresh air should be admitted, which should be warmed before being admitted to the room, and which should be discharged as contaminated, after its expiration. The proper ventilation of the school room consists in the warming and introduction of fresh air from without, and the discharge of the expired and unwholesome air from within. This may be accomplished by means of doors, windows, chimneys, and finally by ventilators placed, one near the level of the floor, and the other near the ceiling of the room. The ventilators ought to be arranged on the opposite sides of the room, in order to insure a current, and an abundant supply of air. When trustees and patrons realize that pure air is absolutely essential to health, and that their children are being slowly poisoned by the foul air of school rooms, then they will construct our halls of learning with a due regard for the laws of hygiene, and students will not droop under their tasks on account of the absence of Nature's most bountiful gift, pure air.

VENTILATION OF FACTORIES AND WORKSHOPS. This is a subject which demands the immediate attention of manufacturers and employers. The odors of oil, coal gas, and animal products, render the air foul and stagnant, and often give rise to violent diseases among the operatives. From two to four hundred persons are often confined in workshops six hundred feet long, with no means of ventilation except windows on one side only. The air is breathed and re-breathed, until the operatives complain of languor and headache, which they attribute to overwork. The real cause of the headache is the inhalation of foul air at every expansion of the lungs. If the proprietors would provide efficient means for ventilating their workshops, the cost of construction would be repaid with compound interest, in the better health of their operatives and the consequent increase of labor. Our manufacturers must learn and practice the great principle of political economy, namely, that the interests of the laborer and employer are mutual.

VENTILATION OF OUR DWELLINGS. Not less important is the ventilation of our dwellings; each apartment should be provided with some channel for the escape of the noxious vapors constantly accumulating. Most of the tenements occupied by the poor of our cities are literally dens of poison. Their children inhale disease with their earliest breath. What wonder that our streets are filled with squalid, wan-visaged children! Charity, indeed, visits these miserable homes, bringing garments and food to their half-famished inmates; but she has been slow to learn that fresh air is just as essential to life as food or clothing. Care should be taken by the public authorities of every city, that its tenement houses do not degenerate into foul hovels, like those of the poor English laborer, so graphically portrayed by Dickens. But ill-ventilated rooms are not found exclusively in the abodes of the poor. True, in the homes of luxury, the effect of vitiated air is modified by food, etc. Men of wealth give far more attention to the architecture and adornment of their houses, to costly decorations and expensive furniture, than to proper ventilation. Farmers, too, are careless in the construction of their cottages. Their dwellings are often built, for convenience, in too close proximity to the barn. Because they do not construct a suitable sewer or drain, the filth and refuse food is thrown out of the back door, where it accumulates and undergoes putrefaction; the vitiated air penetrates the interior of the house, and, there being no means of ventilation, it remains to be breathed by the occupants. The result is, that for the sake of saving a few dollars, which ought to be expended in the construction of necessary flues and sewers, the farmer often sees the child he prizes far more than his broad acres gradually decline, or suddenly fall a victim to fevers or malignant disease. Parents, make your homes healthy, let in the pure, fresh air and bright sunlight, so that your conscience may never upbraid you with being neglectful of the health and lives of your little ones.

SITE FOR HOMES.

MALARIA. When about to construct our residences, besides securing proper ventilation and adequate drainage, we ought to select the location for a home on dry soil. Low levels, damp surroundings, and marshy localities not only breed malaria and fevers, but are a prolific cause of colds, coughs, and consumption. Care should be taken not to locate a dwelling where the natural currents of air, or high winds, will be likely to bring the poison of decayed vegetable matter from low lands. Certain brooks, boggy land, ponds, foggy localities, too much shade, all these are favorable to the development of disease. Then the walls of a building should be so constructed as to admit air between the exterior and interior surfaces, otherwise the interior of the house will be damp and unwholesome. In the dead of winter in northern latitudes the house ought to be kept slightly tempered with warmth, both night and day, a condition very favorable to the introduction and change of atmospheric currents. The invigorating tendencies of a dry, pure atmosphere are remarkably beneficial, while air charged with moisture and decay is exceedingly baneful, introducing diseases under various forms.

Neither should the dwelling be shaded by dense foliage. The dampness of the leaves tends to attract malaria. Trees growing a little distance from the house, however, obstruct the transmission of unhealthy vapors arising beyond them. Malaria generally lurks near the surface of the earth, and seems to be more abundant in the night time. Persons sleeping in the upper story of a house may escape its morbid influence, while those occupying apartments on the lower floor, become affected.

DAMP CELLARS.

Damp cellars, under residences, are a fruitful cause of disease. Dr. Sanford B. Hunt, in an article in the Newark Daily Advertiser, speaking of the recent epidemic of diphtheria in New York City, says:

"Pestilences that come bodily, like cholera, are faced and beaten by sanitary measures. Those which come more subtly need for their defeat only a higher detective ability and a closer study of causes, many of which are known, but hidden under the cellars of our houses, and which at last are only preventable by public authority and at public expense in letting out the imprisoned dampness which saturates the earth on which our dwellings are built. Where wood rots, men decay. This is clearly shown in the sanitary map printed in the Times. In the great district surrounding Central Park, and which participates in its drainage system, there are no cases. On the whole line of Fifth Avenue there are none. The exempt districts are clearly defined by the character of the soil, drainage, and sewerage, and by the topography, which either has natural or artificial drainage, but most of which is so dry that only surface-water and house-filth—which does not exist in those palaces—can affect the health of the residents. But in the tenement houses and on the made lands where running streams have been filled in and natural springs choked up by earth fillings, diphtheria finds a nidus in which to develop itself. The sanitary map coincides precisely with the topographic map made by Gen. Viele. Where he locates buried springs and water-courses, there we find the plague spots of diphtheria and in the same places, on previous maps prepared by the Board of Health, we find other low types and stealthy diseases, such as typhoid and irruptive fevers, and there we shall find them again when the summer and autumnal pestilences have yielded place to those which belong to the indoor poisoned air in the winter. The experience of other cities, notably London and Dublin, once plague spots and now as healthy as any spot on earth, proves that most of the causations of disease are within the control of the competent sanitary engineer, even in localities crowded beyond American knowledge, and houses built upon soil saturated for centuries with the offal of successive and uncleanly generations. Wet earth, kept wet by the boiling up of imprisoned springs, is a focus of disease. Dry earth is one of the most perfect deodorizers, the best of oxydizers and absorbents, destroying the germs of disease with wonderful certainty. On those two facts rests the theory of public hygiene."

DUST AND DISEASE.

The air we breathe is heavily loaded with minute particles of floating dust, their presence being revealed only by intense local illumination. Professor Tyndall says: "solar light, in passing through a dark room, reveals its track by illuminating the dust floating in the air. 'The sun,' says Daniel Culverwell, 'discovers atoms, though they be invisible by candle-light, and makes them dance naked in his beams.'"

After giving the details and results of a series of experiments in which he attempted to extract the dust from the air of the Royal Institute by passing it through a tube containing fragments of glass wetted with concentrated sulphuric acid, and thence through a second tube containing fragments of marble wetted with a strong solution of caustic potash, which experiments were attended with perfect failure, the Professor continues, "I tried to intercept this floating matter in various ways; and on the day just mentioned, prior to sending the air through the drying apparatus, I carefully permitted it to pass over the tip of a spirit-lamp flame. The floating matter no longer appeared, having been burnt up by the flame. It was, therefore, of organic origin. I was by no means prepared for this result; for I had thought that the dust of our air was, in great part, inorganic and non-combustile." In a foot note he says, "according to an analysis kindly furnished me by Dr. Percy, the dust collected from the walls of the British Museum contains fully fifty per cent of inorganic matter. I have every confidence in the results of this distinguished chemist; they show that the floating dust of our rooms is, as it were, winnowed from the heavier matter." Again he says: "the air of our London rooms is loaded with this organic dust, nor is the country air free from its presence. However ordinary daylight may permit it to disguise itself, a sufficiently powerful beam causes dust suspended in air to appear almost as a semi-solid. Nobody could, in the first instance, without repugnance, place the mouth at the illuminated focus of the electric beam and inhale the thickly-massed dust revealed there. Nor is the repugnance abolished by the reflection that, although we do not see the floating particles, we are taking them into our lungs every hour and minute of our lives." "The notion was expressed by Kircher and favored by Linnaeus, that epidemic diseases are due to germs which float in the atmosphere, enter the body, and produce disturbance by the development within the body of parasitic life. While it was struggling against great odds, this theory found an expounder and a defender in the President of this institution. At a time when most of his medical brethren considered it a wild dream, Sir Henry Holland contended that some form of the germ-theory was probably true." Professor Tyndall proposes means by the application of which air loaded with noxious particles may be freed from them before entering the air passages. The following embodies his suggestions on this point:

COTTON-WOOL RESPIRATOR.

"I now empty my lungs as perfectly as possible, and placing a handful of cotton-wool against my mouth and nostrils, inhale through it. There is no difficulty in thus filling the lungs with air. On expiring this air through a glass tube, its freedom from floating matter is at once manifest. From the very beginning of the act of expiration the beam is pierced by a black aperture. The first puff from the lungs abolishes the illuminated dust, and puts a patch of darkness in its place; and the darkness continues throughout the entire course of the expiration. When the tube is placed below the beam and moved to and fro, the same smoke-like appearance as that obtained with a flame is observed. In short, the cotton-wool, when used in sufficient quantity, and with due care, completely intercepts the floating matter on its way to the lungs.

The application of these experiments is obvious. If a physician wishes to hold back from the lungs of his patient, or from his own, the germs or virus by which contagious disease is propagated, he will employ a cotton-wool respirator. If perfectly filtered, attendants may breathe the air unharmed. In all probability the protection of the lungs and mouth will be the protection of the entire system. For it is exceedingly probable that the germs which lodge in the air-passages, or find their way with the saliva into the stomach with its absorbent system, are those which sow in the body epidemic disease. If this be so, then disease can be warded off by carefully prepared filters of cotton-wool. I should be most willing to test their efficacy in my own person. But apart from all doubtful applications, it is perfectly certain that various noxious trades in England may be rendered harmless by the use of such filters. I have had conclusive evidence of this from people engaged in such trades. A form of respirator devised by Mr. Garrick, a hotel proprietor in Glasgow, in which inhalation and exhalation occur through two different valves, the one permitting the air to enter through the cotton-wool, and the other permitting the exit of the air direct into the atmosphere, is well adapted for this purpose. But other forms might readily be devised."

LIGHT AND HEALTH.

Our dwellings ought freely to admit the sunlight. Diseases which have baffled the skill of physicians have been known to yield when the patients were removed from dark rooms to light and cheerful apartments. Lavoisier placed light, as an agent of health, even before pure air. Plants which grow in the shade are slender and weak, and children brought up in dark rooms are pale, sallow, and rickety. It is a bad practice to avoid the sunlight through fear of spoiling the complexion, since the sun's rays are necessary to give to it the delicate tints of beauty and health. Air is necessary for the first inspiration and the last expiration of our lives, but the purity and healthfulness of the atmosphere depend upon the warming rays of the sun, while our bodies require light in order that their functions may be properly performed. We know that without solar light, there can be no proper vegetable growth, and it is equally necessary for the beauty and perfection of animal development. Our dwellings should therefore be well lighted and made as bright and cheerful as possible. Women who curtain the windows, soften the light, and tint the room with some mellow shade, may do so in order to hide their own faulty complexions. The skin of persons confined in dungeons or in deep mines becomes pale or sickly yellow, the blood grows watery, the skin blotches, and dropsy often intervenes. On the other hand, invalids carried out from darkened chambers into the bright sunlight are stimulated, the skin browns, nutrition becomes more active, the blood improves, and they become convalescent. Light is especially necessary for the healthy growth of children. There is nothing more beautiful and exhilarating than the glorious sunlight. Let its luminous, warming, and physiological forces come freely into our dwellings, enter into the chemistry of life, animate the spirits, and pervade our homes and our hearts with its joy-inspiring and health-imparting influences.

* * * * *



CHAPTER II.

FOOD. BEVERAGES. ALCOHOLIC LIQUORS. CLOTHING.

The human body is continually undergoing changes, which commence with the earliest dawn of existence and end only with death. The old and worn-out materials are constantly being removed to make room for the new. Growth and development, as well as the elimination of worn-out and useless matter, continually require new supplies, which are to be derived from our food. To fulfill these demands it is necessary that the nutriment should be of the proper quality, and of sufficient variety to furnish all the constituents of the healthy body. In order that food may be of utility, like other building materials, it must undergo preparation; the crude substance must be worked up into proper condition and shape for use, in other words, it must be digested. But this does not end the process of supply, each different substance must be taken by the different bands of workmen, after due preparation in the workshop, to its appropriate locality in the structure, and there fitted into its proper place; this is assimilation. In reality it becomes a portion of the body, and is advantageous in maintaining the symmetry and usefulness of the part to which it is assigned; this constitutes the ultimate object of food, nutrition.

EATING is the process of receiving the food into the mouth, i.e., prehension; mastication and insalivation—minutely dividing and mixing it with the saliva; deglutition—conveying it to the stomach. Plenty of time should be taken at meals to thoroughly masticate the food and mix it with the saliva, which, being one of the natural solvents, favors its farther solution by the juices of the stomach; the healthy action of the digestive powers is favored by tranquility of mind, agreeable associations, and pleasant conversation while eating. It is proverbial of the American people that they bolt their food whole, washing it down with various fluids, thus forcing the stomach to perform not only its own duties, but also those of the teeth and salivary glands. This manner of dispatching food, which should go through the natural process above described, is not without its baleful consequences, for the Americans are called a nation of dyspeptics.

Eating slowly, masticating the food thoroughly, and drinking but moderately during meals, will allow the juices of the stomach to fulfill their proper function, and healthy digestion and nutrition will result. If the food is swallowed nearly whole, not only will a longer time be required for its solution, but frequently it will ferment and begin to decay before nutritive transformation can be effected, even when the gastric juice is undiluted with the fluids which the hurried eater imbibes during his meal.

REGULARITY OF MEALS cannot be too strongly insisted upon. The stomach, as well as other parts of the body, must have intervals of rest or its energies are soon exhausted, its functions impaired, and dyspepsia is the result. Nothing of the character of food should ever be taken except at regular meal times. Some persons are munching cakes, apples, nuts, candies, etc., at all hours, and then wonder why they have weak stomachs. They take their meals regularly, and neither eat rapidly nor too much, and yet they are troubled with indigestion. The truth is they keep their stomachs almost constantly at work, and hence tired out, which is the occasion of the annoyance and distress they experience.

EATING TOO MUCH. It should always be remembered that the nutrition of our bodies does not depend upon the amount eaten, but upon the amount that is digested. Eating too much is nearly as bad as swallowing the food whole. The stomach is unable to digest all of it, and it ferments and gives rise to unpleasant results. The unnatural distention of the stomach with food causes it to press upon the neighboring organs, interfering with the proper performance of their functions, and, if frequently repeated, gives rise to serious disease. People more frequently eat too much than too little, and to omit a meal when the stomach is slightly deranged is frequently the best medicine. It is an excellent plan to rise from the table before the desire for food is quite satisfied.

LATE SUPPERS. It is generally conceded that late suppers are injurious, and should never be indulged in. Persons who dine late have little need of food after their dinner, unless they are kept up until a late hour. In such cases a moderate meal may be allowed, but it should be eaten two or three hours before retiring. Those who dine in the middle of the day should have supper, but sufficiently early so that a proper length of time may elapse before going to bed, in order that active digestion may not be required during sleep. On the other hand, it is not advisable to go wholly without this meal, but the food eaten should be light, easily digestible, and moderate in quantity. Persons who indulge in hearty suppers at late hours, usually experience a poor night's rest, and wake the next morning unrefreshed, with a headache and a deranged stomach. Occasionally more serious consequences follow; gastric disorders result, apoplexy is induced; or, perhaps, the individual never wakes.

FEEDING INFANTS. For at least six or seven months after birth, the most appropriate food for an infant is its mother's milk, which, when the parent is healthy, is rich in all the elements necessary for its growth and support. Next to the mother's milk, that of a healthy nurse should be preferred; in the absence of both, milk from a cow that has recently calved is the most natural substitute, in the proportion of one part water to two parts milk, slightly sweetened. The milk used should be from but one cow. All sorts of paps, gruels, panadas, cordials, laxatives, etc., should be strictly prohibited, for their employment as food cannot be too severely censured. Vomiting, diarrhea, colic, green stools, griping, etc., are the inevitable results of their continued use. The child should be fed at regular intervals, of about two hours, and be limited to a proper amount each time, which, during the first month, is about two ounces. From 11 P.M. to 5 A.M. the child should be nursed but once. As the child grows older the intervals should be lengthened, and the amount taken at a time gradually increased. The plan of gorging the infant's stomach with food every time it cries, cannot be too emphatically condemned.

After the sixth or seventh month, in addition to milk, bits of bread may be allowed, the quantity being slowly increased, thus permitting the diet to change gradually from fluid to solid food, so that, when the teeth are sufficiently developed for mastication, the child has become accustomed to various kinds of nourishment. Over-feeding, and continually dosing the child with cordial, soothing syrups, etc., are the most fruitful sources of infant mortality, and should receive the condemnation of every mother in the land.

PREPARATION OF FOOD. The production of pure blood requires that all the food selected should be rich in nutritious elements, and well cooked. To announce a standard by which all persons shall be guided in the selection and preparation of their food is impossible. Especially is this the case in a country the inhabitants of which represent almost every nation on the face of the globe. Travelers are aware that there is as much diversity in the articles of food and methods of cookery, among the various nationalities, as in the erection of their dwellings, and in their mental characteristics. In America we have a conglomeration of all these peoples; and for a native American to lay down rules of cookery for his German, French, English, Welsh, and Irish neighbors, or vice versa, is useless, for they will seldom read them, and, therefore, cannot profit by them. There are, however, certain conditions recognized by the hygienic writers of every nation. The adequate nutrition of the organic tissues demands a plentiful supply of pure blood, or the digestive apparatus will become impaired, the mental processes deranged, and the entire bony and muscular systems will lose their strength and elasticity, and be incapacitated for labor.

DIFFERENT KINDS OF FOOD REQUIRED. The different periods and circumstances of life require their appropriate food, and the welfare of mankind demands that it should supply both the inorganic and organic substances employed in the development of every tissue. The inorganic elements employed in our construction, of which Phosphorus, Sulphur, Soda, Iron, Lime, and Potash are the most important, are not considered as aliments, but are found in the organic kingdom, variously arranged and combined with organic materials in sufficient quantities for ordinary purposes. When, however, from any cause, a lack of any of these occurs, so that their relative normal proportions are deranged, the system suffers, and restoration to a healthy condition can only be accomplished by supplying the deficiency; this may be done by selecting the article of food richest in the element which is wanting, or by introducing it as a medicine. It must be remembered that those substances which enter into the construction of the human fabric, are not promiscuously employed by nature, but that each and every one is destined to fulfill a definite indication.

Lime enters largely into the formation of bone, either as a phosphate or a carbonate, and is required in much greater quantities in early life, while the bone is undergoing development, than afterwards. In childhood the bones are composed largely of animal matter, being pliable and easily moulded. For this reason the limbs of young children bend under the weight of their bodies, and unless care is taken they become bow-legged and distorted. Whenever there is a continued deficiency of the earthy constituents, disease of the bones ensues. Therefore, during childhood, and particularly during the period of dentition, or teething, the food should be nutritious and at the same time contain a due proportion of lime, which is preferable in the form of a phosphate. When it cannot be furnished by the food, it should be supplied artificially. Delayed, prolonged, and tedious dentition generally arises from a deficiency of lime.

With the advance of age it accumulates, and the bone becomes hard, inelastic, and capable of supporting heavy weights. Farther on, as in old age, the animal matter of bone becomes diminished, and lime takes its place, so that the bones become brittle and are easily broken. Lime exists largely in hard water, and to a greater or less extent in milk, and in nearly all foods except those of an acid character.

Phosphorus exists in various combinations in different parts of the body, particularly in the brain and nervous system. Persons who perform a large amount of mental labor require more phosphorus than those engaged in other pursuits. It exists largely in the hulls of wheat, in fish, and in eggs. It should enter to a considerable extent into the diet of brain workers, and the bread consumed by them should be made of unbolted flour.

Sulphur, Iron, Soda, and Potash are all necessary in the various tissues of the body, and deficiency of any one of them, for any considerable length of time, results in disease. They are all supplied, variously arranged and combined, in both animal and vegetable food; in some articles they exist to a considerable extent, in others in much smaller quantities. Sulphur exists in eggs and in the flesh of animals, and often in water. Iron exists in the yolk of eggs, in flesh, and in several vegetables. Soda is supplied in nearly all food, and largely in common salt, which is a composition of sodium and hydrochloric acid, the latter entering into the gastric juice. Potash exists, in some form or other, in sufficient quantities for health, in both vegetable and animal food.

CLASSES OF FOOD. All kinds of food substances may be divided into four classes. Proteids, Fats, Amyloids, and Minerals. Proteids are composed of the four elements, carbon, hydrogen, oxygen, and nitrogen, sometimes combined with sulphur and phosphorus. In this class are included the gluten of flour; the albumen, or white of eggs; and the serum of the blood; the fibrin of the blood; syntonin, the chief constituent of muscle and flesh, and casein, one of the chief constituents of cheese, and many other similar, but less frequent substances.

Fats are composed of carbon, hydrogen, and oxygen only, and contain more hydrogen than would be required to form water if united with the oxygen which they contain. All vegetable and animal oils and fatty matters are included in this class.

Amyloids consist of substances which are also composed of carbon, oxygen, and hydrogen only; but they contain just enough hydrogen to produce water when combined with their oxygen, or two parts of hydrogen to one of oxygen. This division includes sugar, starch, dextrine, and gum. The above three classes of food-stuffs are only obtained through the activity of living organisms, vegetable or animal, and have been, therefore, appropriately termed by Prof. Huxley, vital food-stuffs.

The mineral food-stuffs may, as we have seen, be procured from either the living or the non-living world. They include water and various earthy, metallic, and alkaline salts.

VARIETY OF FOOD NECESSARY. No substance can serve permanently for food except it contains a certain quantity of proteid matter in the shape of albumen, fibrin, casein, etc., and, on the other hand, any substance containing proteid matter in a shape in which it can be readily assimilated, may serve as a permanent vital food-stuff. Every substance, which is to serve as a permanent food, must contain a sufficient quantity, ready-made, of this most important and complex constituent of the body. In addition, it must also contain a sufficient quantity of the mineral ingredients which enter into the composition of the body. Its power of supporting life and maintaining the weight and composition of the body remains unaltered, whether it contains fats or amyloids or not. The secretion of urea, and, consequently, the loss of nitrogen, goes on continually, and the body, therefore, must necessarily waste unless the supply of proteid matter is constantly renewed, since this is the only class of foods that contains nitrogen in any considerable quantity. There can be no absolute necessity for any other food-stuffs but those containing the proteid and mineral elements of the body. From what has been said, it will readily be seen that whether an animal be carnivorous or herbivorous, it begins to starve as soon as its vital food-stuffs consist only of amyloids, or fats, or both. It suffers from what has been termed nitrogen starvation, and if proteid matters are withheld entirely, it soon dies. In such a case, and still more in the case of an animal which is entirely deprived of vital food, the organism, as long as it continues to live, feeds upon itself, the waste products necessarily being formed at the expense of its own body.

Although proteid matter is the essential element of food, and under certain circumstances may be sufficient of itself to support the body, it is a very uneconomical food. The white of an egg, which may be taken as a type of the proteids, contains about fifteen per cent. of nitrogen, and fifty-three per cent. of carbon; therefore, a man feeding upon this, would take in about three and a half times as much carbon as nitrogen. It has been proved that a healthy, adult man, taking a fair amount of exercise and maintaining his weight and body temperature, eliminates about thirteen times as much carbon as nitrogen. However, if he is to get his necessary quantity, about 4000 grains of carbon, out of albumen, he must eat 7,547 grains of that substance; but this quantity of albumen contains nearly four times as much nitrogen as he requires. In other words, it takes about four pounds of lean meat, free from fat, to furnish 4,000 grains of carbon, the quantity required, whereas one pound yields the requisite quantity of nitrogen. Thus a man restricted exclusively to a proteid diet, must take an enormous quantity of it. This would involve a large amount of unnecessary physiological labor, to comminute, dissolve, and absorb the food, and to excrete the superfluous nitrogenous matter. Unproductive labor should be avoided as much in physiological as in political economy. The universal practice of subsisting on a mixed diet, in which proteids are mixed with fats or amyloids, is therefore justifiable.

Fats contain about 80 per cent. of carbon, and amyloids about 40 per cent. We have seen that there is sufficient nitrogen in a pound of meat free from fat, to supply a healthy adult man for twenty-four hours, but that it contains only one-fourth of the quantity of carbon required. About half a pound of fat, or one pound of sugar, will supply the quantity of carbon necessary. The fat, if properly subdivided, and the sugar, by reason of its solubility, pass with great ease into the circulation, the physiological labor, consequently, being reduced to a minimum.

Several common articles of diet contain in themselves all the necessary elements. Thus, butchers' meat ordinarily contains from 30 to 50 per cent. of fat; and bread contains the proteid, gluten, and the amyloids, starch and sugar, together with minute quantities of fat. However, on account of the proportion in which these proteid and other components of the body exist in these substances, neither of them, by itself is such a physiologically economical food, as it is when combined with the other in the proportion of three to eight, or three quarters of a pound of meat to two pounds of bread a day.

It is evident that a variety of food is necessary for health. Animals fed exclusively upon one class, or upon a single article of diet, droop and die; and in the human family we know that the constant use of one kind of diet causes disgust, even when not very long continued. Consequently, we infer that the welfare of man demands that his food be of sufficient variety to supply his body with all of its component parts. If this is not done the appetite is deranged, and often craves the very article which is necessary to supply the deficiency. After the component parts of the organism have assimilated the nutritious elements of particular kinds of food for a certain length of time, they lose the power of effecting the necessary changes for proper nutrition, and a supply of other material is imperatively demanded. When the diet has been long restricted to proteids, consisting largely of salt meats, fresh vegetables and fruits containing the organic acids, become indispensable; otherwise, the scorbutic condition, or scurvy, is almost sure to be developed. Fresh vegetables and fruits should be eaten in considerable quantities at the proper seasons.

VALUE OF ANIMAL FOOD. The principal animal food used in this country consists of Pork, Mutton, Beef, and Fish. Beef and mutton are rich in muscle-producing material. Although pork is extensively produced in some portions of this country, and enters largely into the diet of some classes, yet its use, except in winter, is not to be encouraged. The same amount of beef would give far greater returns in muscular power.

In addition to the meats mentioned, Wild Game furnishes palatable, nutritious, and easily-digested food. Domestic Fowls, when young, are excellent, and with the exception of geese and ducks, are easily digested. Wild Birds are considered much healthier food than those which are domesticated. All of these contain more or less of the elements which enter into the composition of the four classes of foods.

VEGETABLE FOODS. Wheat is rich in all the elements which compose the four classes, and, when the flour is unbolted, it is one of the best articles for supplying all the elements.

Barley stands next to wheat in nourishing qualities, but is not so palatable.

Oats are rich in all the elements necessary for nutrition. Oatmeal is a favorite article of diet among the Scotch, and, judging from their hardy constitutions, their choice is well founded. In consequence of the large proportion of phosphorus which they contain, they are capable of furnishing a large amount of nourishment for the brain.

Rye is nutritious, but it is not so rich in tissue-forming material.

Indian Corn is an article well known and extensively used throughout the United States, and is a truly valuable one, capable of being prepared in a great variety of ways for food. It contains more carbon than wheat, and less nitrogen and phosphorus, though enough of both to be extremely valuable.

Rice is rather meagre in nutriment; it contains but little phosphorous matter, with less carbon than other cereals, and is best and most generally employed as a diet in tropical countries.

Beans and Peas are rich in nutritious matter, and furnish the manual laborer with a cheap and wholesome diet.

The Potato is the most valuable of all fresh vegetables grown in temperate climates. Its flavor is very agreeable, and it contains very important nutritive and medicinal qualities, and is eaten almost daily by nearly every family in North America. Until very recently it, with the addition of a little butter-milk or skim-milk, constituted almost the sole diet of the Irish people. The average composition of the potato is stated by Dr. Smith to be as follows: Water 75 per cent., nitrogen 2.1, starch 18.8, sugar 3.2, fat 0.2, salts 0.7. The relative values of different potatoes may be ascertained very correctly by weighing them in the hand, for the heavier the tuber the more starch it contains.

Turnip and Cabbage are 92.5 per cent. water, and, consequently, poor in nutrition, though they are very palatable. The solid portions of cabbage, however, are rich in albumen.

It is evident that the quantity necessary to maintain the system in proper condition must be greatly modified by the habits of life, the condition of the organism, the age, the sex, and the climate. The daily loss of substance which must be replaced by material from without, as we have seen, is very great. In addition to the loss of carbon and nitrogen, about four and a half pounds of water are removed from the system in twenty-four hours, and it is necessary that about this quantity should be introduced into the system in some form or other, however much it may be adulterated. Professor Dalton states: "From experiments performed while living on an exclusive diet of bread, fresh meat, and butter, with coffee and water for drink, we have found that the entire quantity of food required during twenty-four hours by a man in full health and taking free exercise in the open air is as follows:

Meat, . . . . . . 16 oz., or 1.03 lb. avoir. Bread, . . . . . . 19 " 1.19 " " Butter or fat, . . . 31/2 " 0.22 " " Water, . . . . . 52 fluid oz., 3.38 " "

That is to say, rather less than two and a half pounds of solid food, and rather over three pounds of liquid food."

CLIMATE exerts an important influence on the quantity and quality of food required by the system. In northern latitudes the inhabitants are exposed to extreme cold and require an abundant supply of food, and especially that which contains a large amount of fat. On this account fat meat is taken in large quantities and with a relish. The quantity of food consumed by the natives of the Arctic zone is almost incredible. The Russian Admiral, Saritcheff, relates that one of the Esquimaux in his presence devoured a mass of boiled rice and butter which weighed twenty-eight pounds, at a single meal, and Dr. Hayes states that usually the daily ration of an Esquimau is from twelve to fifteen pounds of meat, one-third of which is fat, and on one occasion he saw a man eat ten pounds of walrus flesh at a single meal. The intense cold creates a constant craving for fatty articles of food, and some members of his own party were in the habit of drinking the contents of the oil-kettle with great apparent relish.

DIGESTIBILITY OF FOOD. Unless an article of diet can be digested it is of no value, no matter how rich it may be in nutriment. The quantity of food taken, will influence to a considerable extent, the time consumed in its digestion. The stomachs of all are not alike in this respect, and the subject of time has been a difficult one to determine. The experiments of Dr. Beaumont with the Canadian, St. Martin, who accidentally discharged the contents of a loaded gun into his stomach, creating an external opening through which the process of digestion could be observed, have furnished us with the following table, which is correct enough to show relatively, if not absolutely, the time required for the digestion of various articles:

====================================================== ARTICLES OF DIET. Mode of Hours. Min. Preparation. Milk........................ Boiled...... 2 00 " ........................ Raw......... 2 15 Eggs, fresh................. " ......... 2 00 " " ................. Whipped..... 1 30 " " ................. Roasted..... 2 15 " " ................. Soft boiled. 3 00 " " ................. Hard boiled. 3 30 " " ................. Fried....... 3 30 Custard..................... Baked....... 2 45 Codfish, cured, dry......... Boiled...... 2 00 Trout, salmon, fresh........ " ......... 1 30 Trout, salmon, fresh........ Fried....... 1 30 Bass, striped, " ........ Broiled..... 3 00 Flounder, " ........ Fried....... 3 30 Catfish, " ........ " ......... 3 30 Salmon, salted.............. Boiled...... 4 00 Oysters, fresh.............. Raw......... 2 55 " " .............. Roasted..... 3 15 " " .............. Stewed...... 3 30 Venison steak............... Broiled..... 1 35 Pig, sucking................ Roasted..... 2 30 Lamb, fresh................. Broiled..... 2 30 Beef, fresh, lean, dry...... Roasted..... 3 30 " with mustard, etc........ Boiled...... 3 10 " " salt only........... " ...... 3 36 " " " " ........... Fried....... 4 00 " fresh, lean, rare........ Roasted..... 3 00 Beefsteak................... Broiled..... 3 00 Mutton, fresh............... " ..... 3 00 " " ............... Boiled...... 3 00 " " ............... Roasted..... 3 15 Veal, fresh................. Broiled..... 4 00 " " ................. Fried....... 4 30 Porksteak................... Broiled..... 3 15 Pork, fat and lean.......... Roasted..... 5 15 " recently salted....... Raw......... 3 00 " " " ....... Stewed...... 3 00 " " " ....... Broiled..... 3 15

ARTICLES OF DIET. Mode of Preparation. Hours/Min. - - Pork, recently salted - Fried 4 15 " " " - Boiled - 4 30 Turkey, wild - Roasted 2 18 " tame - " 2 30 " " - Boiled 2 25 Goose, wild Roasted - 2 30 Chickens, full-grown - Fricasseed 2 45 Fowls, domestic Boiled 4 00 " " Roasted - 4 00 Ducks, tame " - 4 00 " wild " - 4 30 Soup, barley - Boiled 1 30 " bean - " 3 00 " chicken " 3 00 " mutton - " 3 30 " oyster - " 3 30 " beef, vegetables, and bread " 4 00 " marrow-bones - " 4 15 Pig's feet, soused - " 1 00 Tripe, soused " 1 00 Brains, animal - " 1 45 Spinal marrow, animal " 2 40 Liver, beef, fresh - Broiled - 2 00 Heart, animal Fried - 4 00 Cartilage Boiled 4 15 Tendon - " 5 30 Hash, meat, and vegetables Warmed 2 30 Sausage, fresh - Broiled - 3 20 Gelatine - Boiled 2 30 Cheese, old, strong Raw - 3 30 Green corn and beans - Boiled 3 45 Beans, pod - " 2 30 Parsnips - " 2 30 Potatoes - Roasted - 2 30 " - Baked - 2 30 " - Boiled 2 30 Cabbage, head Raw - 2 30 " " with vinegar " - 2 00 " " Boiled 4 30 Carrot, orange - " 3 13 Turnips, flat " 3 30 Beets " 3 45 Bread, corn Baked - 3 15 " wheat, fresh " - 3 30 Apples, sweet, mellow Raw - 1 30 " sour - " - 2 00 " " hard - " - 2 50

Milk is more easily digested than almost any other article of food. It is very nutritious, and, on account of the variety of the elements which it contains, it is extremely valuable an article of diet, especially when the digestive powers are weakened, as in fevers, or during convalescence from any acute disease. Eggs are also very nutritious and easily digested. Whipped eggs are digested and assimilated with great ease. Fish, as a rule, are more speedily digested than is the flesh of warm-blooded animals. Oysters, especially when taken raw, are very easily digested. We have known dyspeptics who were unable to digest any other kind of animal food, to subsist for a considerable period upon raw oysters. The flesh of mammalia seems to be more easily digested than that of birds. Beef, mutton, lamb, and venison are easily digested, while fat roast pork and veal are digested with difficulty. According to the foregoing table vegetables were digested in about the same time as ordinary animal food, but it should be remembered that a great part of the digestion of these is effected in the small intestine. Soups are, as a rule, very quickly digested. The time required for the digestion of bread is about the same as that required for the digestion of ordinary meats. Boiled cabbage is one of the most difficult substances to digest.

COOKERY. "Cookery," says Mrs. Owen, "Is the art of turning every morsel to the best use; it is the exercise of skill, thought, and ingenuity to make every particle of food yield the utmost nourishment and pleasure, of which it is capable." We are indebted to this practical woman for many valuable suggestions in this art; and some of our recommendations are drawn from her experience.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 ... 26     Next Part
Home - Random Browse