p-books.com
The Ocean and its Wonders
by R.M. Ballantyne
Previous Part     1  2  3     Next Part
Home - Random Browse

Next year he sets forth again but merchants are not always punctual. The lading cannot be completed in time, or adverse winds render the setting sail unadvisable. At length, after a month or six weeks' delay, he proceeds on his voyage, and finds belt number one perhaps much the same as last year. He congratulates himself on his good fortune, and notes his observations; but in belt number two, the wind is somewhat modified, owing to its being later in the season,—it is rather against him. In number three it is right in his teeth, whereas last year it was quite in his favour. In number four, which we will suppose is the trade-wind belt (of which more hereafter), he finds the wind still easterly. Here, then, is the groundwork of confusion in our sailor's mind. He has not the remotest idea that in belt number one the wind blows chiefly, but not always, in one particular direction; that in number four it blows invariably in one way; and that in number three it is regularly irregular. In fact, he does not know that such belts exist at all, and his opportunities of observing are not sufficiently frequent or prolonged to enable him to ascertain anything with certainty.

Now, when we remember that in this imperfect experience of his he is still further misled by his frequently encountering local vicissitudes—such as storms and calms resulting from local and temporary causes—we see how confusion becomes worse confounded. No doubt he does gather some few crumbs of knowledge; but he is called on, perhaps, to change his scene of action. Another ship is given to him, another route entered on, and he ceases altogether to prosecute his inquiries in the old region. Or old age comes on; and even although he may have been beginning to have a few faint glimmerings as to laws and systems in his mind, he has not the power to make much of these. He dies; his knowledge is, to a very large extent, lost, and his log-books disappear, as all such books do, nobody knows or cares where.

Now this state of things has been changing during the last few years. Log-books are collected in thousands. The experiences of many men, in reference to the same spots in the same years, months, and even hours, are gathered, collated, and compared; and the result is, that although there are conflicting elements and contradictory appearances, order has been discovered in the midst of apparent confusion, and scientific men have been enabled to pierce through the chaos of littlenesses by which the world's vision has been hitherto obscured, and to lay bare many of those grand progressions of nature which move unvaryingly with stately step through space and time, as the river, with all its minor eddies and counter-currents, flows with unvarying regularity to the ocean.



CHAPTER SIX.

TRADE-WINDS—STORMS—THEIR EFFECTS—MONSOONS—THEIR VALUE—LAND AND SEA BREEZES—EXPERIMENTS—HURRICANES—THOSE OF 1801—ROTATORY STORMS—THEIR TERRIBLE EFFECTS—CHINA SEAS—HURRICANE IN 1837—WHIRLWINDS—WEIGHT OF ATMOSPHERE—VALUE OF ATMOSPHERIC CIRCULATION—HEIGHT OF ATMOSPHERE.

Before proceeding to speak of the power and the dreadful effects of wind, it is necessary to say a word or two about the trade-winds.

It is supposed that the "trades" derived their name from the fact of their being favourable to navigation, and, therefore, to trade. They consist of two belts of wind, one on each side of the equator, which blow always in the same direction.

In the last chapter it was explained that the heated atmosphere at the equator rises, and that the cooler atmosphere from the poles rushes in to supply its place. That which rushes from the south pole is, of course, a south wind, that from the north pole a north wind; but, owing to the Earth's motion on its axis from west to east, the one becomes a north-east, the other a south-east wind. These are the north-east and the South-east "trades." They blow regularly—sometimes gently, sometimes fiercely—all the year round. Between the two is a belt of calms and changeable breezes, varying from 150 to 500 miles broad— according to the time of the year—where there are frequent and violent squalls, of very short duration, accompanied with heavy rains. This region is called by seamen the "doldrums," and considerable trouble and difficulty do ships experience in crossing it.

It has already been explained that about latitude 30 degrees, the upper current of wind from the south descends. At the same point the upper current from the north also descends. They cut through each other, and the point where these two cut each other is the northern limit of the north-east trade-winds. The same explanation holds in regard to the southern limit of the south-east trades.

In the accompanying diagram the arrows within the circle point out the direction of the north-east and the south-east "trades" between the tropics of cancer and capricorn, and also the counter currents to the north and south of these, while the arrows around the circle show how counter currents meet and rise, or descend, and produce the calm belts.

We have hitherto enlarged chiefly on the grand currents of the atmosphere, and on those modifying causes and effects which are perpetual. Let us now turn to the consideration of those winds which are produced by local causes, and the effects of which are partial.

And here we are induced to revert to the Gulf Stream, which has been already referred to as a local disturber of the regular flow of the atmosphere. This immense body of heated water, passing through cold regions of the sea, has the effect of causing the most violent storms. The hurricanes of the West Indies are among the most violent in the world. We have read of one so violent that it "forced the Gulf Stream back to its sources, and piled up the water in the Gulf to the height of thirty feet. A vessel named the Ledbnry Snow attempted to ride it out. When it abated, she found herself high up on the dry land, having let go her anchor among the tree-tops of Elliott's quay! The Florida quays were inundated many feet; and it is said the scene presented in the Gulf Stream was never surpassed in awful sublimity on the ocean. The water thus dammed up rushed out with frightful velocity against the fury of the gale, producing a sea that beggared description."

The monsoons of the Indian Ocean are among the most striking and regular of the locally-caused winds. Before touching on their causes, let us glance at their effects. They blow for nearly six months in one direction, and for the other six in the opposite direction. At the period of their changing, terrific gales are frequent—gales such as we, in our temperate regions, never dream of.

What is termed the rainy season in India is the result of the south-west monsoon, which for four months in the year deluges the regions within its influence with rain.

The commencement of the south-west monsoon is described as being sublime and awful beyond description. Before it comes, the whole country is pining under the influence of long-continued drought and heat; the ground is parched and rent; scarcely a blade of verdure is to be seen except in the beds of rivers, where the last pools of water seem about to evaporate, and leave the land under the dominion of perpetual sterility. Man and beast pant for fresh air and cool water; but no cool breeze comes. A blast, as if from the mouth of a furnace, greets the burning cheek; no blessed drops descend; the sky is clear as a mirror, without a single cloud to mitigate the intensity of the sun's withering rays. At last, on some happy morning, small clouds are seen on the horizon. They may be no bigger than a man's hand, but they are blessed harbingers of rain. To those who know not what is coming, there seems at first no improvement on the previous sultry calms. There is a sense of suffocating heat in the atmosphere; a thin haze creeps over the sky, but it scarcely affects the broad glare of the sun.

At length the sky begins to change. The horizon becomes black. Great masses of dark clouds rise out of the sea. Fitful gusts of wind begin to blow, and as suddenly to cease; and these signs of coming tempest keep dallying with each other, as if to tantalise the expectant creation. The lower part of the sky becomes deep red, the gathering clouds spread over the heavens, and a deep gloom is cast upon the earth and sea.

And now the storm breaks forth. The violent gusts swell into a continuous, furious gale. Rain falls, not in drops, but in broad sheets. The black sea is crested with white foam, which is quickly swept up and mingled with the waters above; while those below heave up their billows, and rage and roar in unison with the tempest. On the land everything seems about to be uprooted and hurled to destruction. The tall straight cocoa-nut trees are bent over till they almost lie along the ground; the sand and dry earth are whirled up in eddying clouds, and everything movable is torn up and swept away.

To add to the dire uproar, thunder now peals from the skies in loud, continuous roars, and in sharp angry crashes, while lightning plays about in broad sheets all over the sky, the one following so close on the other as to give the impression of perpetual flashes and an unintermitting roar; the whole scene presenting an aspect so awful, that sinful man might well suppose the season of the Earth's probation had passed away, and that the Almighty were about to hurl complete destruction upon his offending creatures.

But far other intentions are in the breast of Him who rides upon the storm. His object is to restore, not to destroy—to gladden, not to terrify. This tempestuous weather lasts for some days, but at the end of that time the change that comes over the face of nature seems little short of miraculous. In the words of Mr Elphinstone, who describes from personal observation—"The whole earth is covered with a sudden but luxuriant verdure, the rivers are full and tranquil, the air is pure and delicious, and the sky is varied and embellished with clouds.

"The effect of this change is visible on all the animal creation, and can only be imagined in Europe by supposing the depth of a dreary winter to start at once into all the freshness and brilliancy of spring. From that time the rain falls at intervals for about a month, when it comes on again with great violence; and in July the rains are at their height. During the third month they rather diminish, but are still heavy. In September they gradually abate, and are often suspended till near the end of the month, when they depart amid thunders and tempests, as they came."

Such are the effects of the monsoons upon land and sea. Of course the terrific gales that usher them in and out could not be expected to pass without doing a good deal of damage, especially to shipping. But this is more than compensated by the facilities which they afford to navigation.

In many parts of the world, especially in the Indian Ocean, merchants calculate with certainty on these periodical winds. They despatch their ships with, say, the north-east monsoon, transact business in distant lands, and receive them back, laden with foreign produce, by the south-west monsoon. If there were no monsoons, the voyage from Canton to England could not be accomplished in nearly so short a time as it is at present.

And now as to the cause of monsoons. They are, for the most part, deflected trade-winds. And they owe their deflection to the presence of large continents. If there were no land near the equator, the trade-winds would always blow in the same manner right round the world; but the great continents, with their intensely-heated surfaces, cause local disturbance of the trade-winds. When a trade-wind is turned out of its course, it is regarded as a monsoon. For instance, the summer sun, beating on the interior plains of Asia, creates such intense heat in the atmosphere that it is more than sufficient to neutralise the forces which cause the trade-winds to blow. They are, accordingly, arrested and turned back. The great general law of the trades is in this region temporarily suspended, and the monsoons are created.

It is thus that the heated plains of Africa and Central America produce the monsoons of the Atlantic, the Pacific, and the Gulf of Mexico.

We think it unnecessary to explain minutely the causes that produce variation in the monsoons. Every intelligent reader will readily conceive how the change of seasons and varied configuration as well as unequal arrangement of land and water, will reverse, alter, and modify the direction and strength of the monsoons.

Land and sea breezes are the next species of wind to which we would direct attention. They occur in tropical countries, and owe their existence to the fact that the land is much more easily affected by sudden changes of temperature than the sea. Thus, the land in warm regions is much heated by the sun's rays during the day; the atmosphere over it becomes also heated, in virtue of which it rises: the cool atmosphere over the sea rushes in to supply its place, and forms the sea breeze: which occurs only during the day.

At night the converse of this takes place. Land heats and cools rapidly; water heats and cools slowly. After the sun sets, the cooling of the land goes on faster than that of the sea. In a short time the atmosphere over the land becomes cooler than that over the sea; it descends and flows off out to sea; thus forming the land breeze. It occurs only at night, and when the change from one to the other is taking place there is always a short period of calm. Land and sea breezes are of the greatest use in refreshing those regions which, without them, would be almost, if not altogether, uninhabitable.

In "The Tempest," an interesting work on the origin and phenomena of wind, published by the Society for Promoting Christian Knowledge, a curious and simple experiment is described, whereby the existence of upper and under currents of air and the action of land and sea breezes may be clearly seen and understood. We quote the passage:—

"The existence of the upper and under currents of air which mark the phenomena of the trade-winds, and of land and sea breezes, may be beautifully illustrated in two adjoining rooms, in one of which a good fire is burning, while in the other there is none. If the door between the two rooms be thrown open, the cold air will enter the heated room in a strong current, or, in other words, as a violent wind. At the same time the heated air of the warm room ascends and passes the contrary way into the cold room, at the upper part of the same doorway; while in the middle of this opening, exactly between the two currents, the air appears to have little or no motion. The best way to show this experiment is to introduce the flame of a candle into the doorway between a hot and a cold room. If the flame be held near the bottom of the doorway, where the air is most dense, it will be strongly drawn towards the heated room; and if held near the top of the door it will be drawn towards the cold room with somewhat less force; while midway between the top and bottom the flame will be scarcely disturbed.

"There is also another pretty experiment which illustrates well the theory of land and sea breezes. Take a large dish, fill it with cold water, and in the middle of this put a water-plate or a saucer filled with warm water. The first will represent the ocean, and the latter an island made hot by the rays of the sun, and rarefying the air above it. Take a lighted wax candle and blow it out; and, if the air of the room be still, on applying it successively to every side of the saucer, the smoke will be seen moving towards the saucer and rising over it, thus indicating the course of the air from sea to land. On reversing the experiment, by filling the saucer with cold water (to represent the island at night) and the dish with warm water, the land breeze will be shown by holding the smoking wick over the edge of the saucer; the smoke will then be wafted to the warmer air over the dish."

We have just tried the first of these experiments, with complete success. We would, however, recommend a piece of twisted brown paper, lighted and blown out, instead of a wax candle, because it gives out more smoke and is probably more obtainable on short notice. The experiment of the doorway, moreover, does not require that there should lie two rooms with a door between. We have found that the door of our study, which opens into a cold passage, serves the purpose admirably.

Were we treating chiefly of the atmosphere in this work, it would be necessary that we should enlarge on all the varieties of winds, with their causes, effects, and numerous modifications. But our main subject is the Ocean. The atmosphere, although it could not with justice have been altogether passed over, must hold a secondary place here; therefore we will conclude our remarks on it with a brief reference to hurricanes.

It has been ascertained that most of the great storms that sweep with devastating fury over the land and sea are not, as was supposed, rectilinear in their motion, but circular. They are, in fact, enormous whirlwinds, sometimes upwards of one hundred and fifty miles in diameter; and they not only whirl round their own centres, but advance steadily forward through space.

In the year 1831, a memorable and dreadful series of storms passed over some of the India Islands, and caused terrible havoc, especially in the island of Barbadoes. The peculiarity of these hurricanes was that they ravaged the different islands at different dates, and were therefore supposed to be different storms. Such, however, was not the case. It was one mighty cyclone, or circular storm,—a gigantic whirlwind,—which traversed that region at the rate of about sixteen miles an hour. It was not its progressive, but its rotatory motion, that constituted its terrible power. On the 10th of August it reached Barbadoes; on the 11th, the islands of Saint Vincent and Saint Lucia; on the 12th it touched the southern coast of Porto Rico; on the 13th it swept over part of Cuba; on the 14th it encountered Havanna; on the 17th it reached the northern shores of the Gulf of Mexico and travelled on to New Orleans, where it raged till the 18th. It thus, in six days, passed, as a whirlwind of destruction, over two thousand three hundred miles of land and sea. It was finally dissipated amid heavy rains.

The effect of a hurricane is well described by Washington Irving. "About mid-day," he says, "a furious gale sprang up from the east, driving before it dense volumes of cloud and vapour. Encountering another tempest from the west, it appeared as if a violent conflict ensued. The clouds were rent by incessant flashes, or rather streams, of lightning. At one time they were piled up high in the sky, at another they descended to the earth, filling the air with a baleful darkness, more impenetrable than the obscurity of midnight. Wherever the hurricane passed, whole tracts of forest were shivered and stripped of their leaves and branches; and trees of gigantic size, which resisted the blast, were torn up by the roots and hurled to a great distance. Groves were torn from the mountain-precipices, and vast masses of earth and rock precipitated into the valleys with terrific noise, choking the course of the rivers.

"The fearful sounds in the air and on the earth, the pealing thunder, the vivid lightning, the howling of the wind, the crash of falling trees and rocks, filled every one with affright, and many thought that the end of the world was at hand. Some fled to caverns for safety, for their frail houses were blown down, and the air was filled with the trunks and branches of trees, and even with fragments of rocks, carried along by the fury of the tempest. When the hurricane reached the harbour, it whirled the ships round as they lay at anchor, snapped their cables, and sunk three of them to the bottom with all who were on board. Others were driven about, dashed against each other, and tossed mere wrecks upon the shore by the swelling surges of the sea, which in some places rolled for three or four miles upon the land. This tempest lasted for three hours."

The China seas are the most frequently visited by severe tempests, or typhoons; yet of all vessels, the Chinese junks, as they are called, seem to be least adapted by their build for encountering such storms.

A terrible hurricane burst upon the China seas in the month of January 1837, as we learn from the "United Service Journal" of that year. An English vessel was exposed to it. The sea, rising in mountains around and over the ship's sides, hurled her rapidly on her passage homeward, when suddenly a wreck was discovered to the westward. The order to shorten sail was given, and promptly obeyed; and when they neared the wreck they found her to be a Chinese junk without mast or rudder—a helpless log on the breast of that boiling sea.

There were many Chinamen on deck vehemently imploring assistance. The exhibition of their joy on beholding the approach of the stranger was of the wildest and most extravagant nature; but it was doomed to be suddenly turned to despair, as the violence of the storm drove the ship past the wreck. It became necessary to put her on the other tack, a manoeuvre which the poor creatures construed into abandonment, and the air rang with the most agonising shrieks of misery. But hope was again raised, when a boat was lowered and a rope thrown on board for the purpose of towing the junk to the ship. This intention was frustrated by the windlass breaking. At sight of this one man, in a paroxysm of despair, jumped overboard after the rope; but he missed it. Being a good swimmer, he tried to reach the boat; but his feeble power could avail him nothing in the midst of such raging elements: he speedily sank to rise no more.

Another rope, however, was secured to the junk, and by means of it the rest of the crew (eighteen in number) were saved. Their gratitude was boundless. They almost worshipped the officers, the crew, and the vessel, prostrating themselves and kissing the feet of the former, and the very planks of the latter.

Well-built ships, however, are not always able to withstand the violence of rotatory storms. Instances occur in which the tightest built and best manned ships are destroyed as suddenly as the clumsiest of ill-managed junks. Not many years ago, a vessel was proceeding prosperously on her voyage, when signs of a coming tempest induced the wary captain to reduce, and, finally, to take in all sail. But his precautions were in vain. The storm burst on the devoted ship, and in a few minutes the masts went over the side, and the hull lay a total wreck upon the sea.

These hurricanes or cyclones, although in reality whirlwinds, are so large that man's eye cannot measure them, and it is only by scientific investigation that we have arrived at the knowledge of the fact. The whirlwind, properly so called, is a much smaller body of atmosphere. Sometimes we see miniature whirlwinds, even in our own temperate land, passing along a road in autumn, lifting the leaves and dust into the air and carrying them along in the form of a rotatory pillar. In other regions they exert a power quite equal to the tempest, though in a more limited space, overturning houses, uprooting trees, cutting a track twenty or thirty yards wide through the dense forest as thoroughly as if a thousand woodmen had been at work there for many years.

When whirlwinds pass from the land to the sea they create waterspouts; of which we shall have something to say in another chapter. Meanwhile, we think it may be interesting to give the following miscellaneous information regarding the atmosphere, gathered from the work of Dr Buist, who devoted much earnest study to the subject of atmospheric phenomena.

"The weight of the atmosphere is equal to that of a solid globe of lead sixty miles in diameter. Its principal elements are oxygen and nitrogen gases, with a vast quantity of water suspended in them in the shape of vapour; and, commingled with these, a quantity of carbon in the shape of fixed air, sufficient to restore from its mass many-fold the coal that now exists in the world. Water is not compressible or elastic; it may be solidified into ice or vaporised into steam: but the air is elastic and compressible. It may be condensed to any extent by pressure, or expanded to an infinite degree of tenuity by pressure being removed from it. It is not liable to undergo any changes in constitution beyond these, by any of the ordinary influences by which it is affected."

If the heating and cooling process—which we have described as being carried on between the equator and the poles—were to cease, we should have a furious hurricane rushing perpetually round the globe at the rate of one thousand miles an hour,—ten times the speed of the most violent tornado that has ever carried devastation over the surface of the earth.

The air, heated and dried as it sweeps over the arid surface of the soil, drinks up by day myriads of tons of moisture from the sea,—so much, indeed, that, were none restored to it, the surface of the ocean would be depressed eight or ten feet annually.

We do not certainly know the height of the atmosphere. It is said that its upper surface cannot lie nearer to us than fifty, and can scarcely be further off than five hundred, miles. "It surrounds us on all sides, yet we cannot see it; it presses on us with a weight of fifteen pounds on every square inch of the surface of our bodies—in other words, we are at all times sustaining a load of between seventy and one hundred tons of it on our persons—yet we do not feel it! Softer than the finest down, more impalpable than the lightest gossamer, it leaves the cobweb undisturbed, and, at times, scarcely stirs the most delicate flower that feeds on the dew it supplies; yet it bears the fleets of nations on its wings round the world, and crushes the most refractory substances with its weight. It bends the rays of the sun from their path to give us the aurora of the morning and the twilight of evening. It disperses and refracts their various tints to beautify the approach and the retreat of the orb of day. But for the atmosphere, sunshine would burst on us in a moment and fail us in the twinkling of an eye, removing us in an instant from midnight darkness to the blaze of noon."

We have written a good deal on this subject, yet the thousandth part has not been told of even the grand and more obvious operations of the atmosphere, much less the actions and results of its minor and invisible processes. Were we to descend with philosophers into the minuter laboratories of the world, and consider the permeating, ramifying, subtle part the atmosphere plays in the innumerable transformations that are perpetually going on around and within us, we should be constrained to feel more deeply than we have ever yet felt, that the works of the Creator are indeed wonderful beyond all expression or conception.



CHAPTER SEVEN.

WATERSPOUTS—CAUSES OF—APPEARANCE—ELECTRICITY—EXPERIMENTS—ARTIFICIAL WATERSPOUTS—SHOWERS OF FISH—MR. ELLIS ON WATERSPOUTS IN THE SOUTH SEAS.

We turn back now from the atmospheric to the aqueous ocean. Yet so intimate is the connection between the two, that we shall find it impossible to avoid occasional reference to the former.

Our present subject, waterspouts, obliges us to recur for a little to the atmosphere, which we dismissed, or attempted to dismiss, in the last chapter.

There is no doubt that waterspouts are to a great extent, if not altogether, due to the presence of electricity in the air. When the clouds have been raging for some time in the skies of tropical regions, rendering the darkness bright, and the air tremulous with their dread artillery, they seem to grow unusually thirsty; the ordinary means of water-supply through the atmosphere do not appear to be sufficient for the demand, or war-tax in the shape of water-spouts, that is levied on nature. The clouds therefore descend to the sea, and, putting down their dark tongues, lick up the water thirstily in the form of waterspouts.

These whirling pillars of water frequently appear in groups of several at a time. They are of various heights, sometimes ranging up to seven hundred yards, with a thickness of fifty yards, and are very dangerous to ships that happen to come within their influence.

That they are caused by electricity has been proved by experiment— miniature waterspouts have been produced by artificial means; and as Dr Bonzano of New York gives particular directions how the thing ought to be done, we quote his words for the benefit of those who happen to possess electrical machines.

"From the conductor of an electrical machine suspend, by a wire or chain, a small metallic ball (one of wood covered with tinfoil); and under the ball place a rather wide metallic basin, containing some oil of turpentine, at the distance of about three-quarters of an inch. If the handle of the machine be now turned slowly, the liquid in the basin will begin to move in different directions and form whirlpools. As the electricity on the conductor accumulates, the troubled liquid will elevate itself in the centre, and at last become attached to the ball. Draw off the electricity from the conductor, to let the liquid resume its position; a portion of the turpentine remains attached to the ball. Turn the handle again very slowly, and observe now the few drops adhering to the ball assume a conical shape, with the apex downward; while the liquid under it assumes also a conical shape, the apex upward, until both meet. As the liquid does not accumulate on the ball, there must necessarily be as great a current downward as upward, giving the column of liquid a rapid circular motion, which continues until the electricity from the conductor is nearly all discharged silently, or until it is discharged by a spark descending into the liquid. The same phenomena take place with oil or water. Using the latter liquid, the ball must be brought much nearer, or a much greater quantity of electricity is necessary to raise it.

"If, in this experiment, we let the ball swing to and fro, the little waterspout will travel over its immature sea, carrying its whirlpools along with it. When it breaks up, a portion of the liquid—and with it anything it may contain—remains attached to the ball. The fish, seeds, leaves, etcetera, that have fallen to the earth in rain-squalls, may have owed their elevation to the clouds to the same cause that attaches a few drops of the liquid, with its particles of impurities, to the ball."

There can be no doubt whatever that fish are carried up in waterspouts, because the descent of those creatures from the skies in rain is a well-established fact; and if they did not get there in waterspouts— which, when we consider it, seems most natural—then we are driven to the conclusion that their native region is the sky, which is by no means so natural or so probable. Many travellers have recorded the fact that small fish have descended in rain. In a letter written not long ago by a gentleman in Singapore we have the following account of a shower of fish:—

"We experienced a shock of earthquake here on the 16th February last. Its duration was about two minutes. Although it caused no damage, its undulatory motion was sufficiently strong to affect certain persons with a sensation akin to sea-sickness. It was followed by rain in torrents, on the 20th, 21st, and 22nd. On the latter day especially, we were, for half an hour, surrounded with water to a considerable depth. We could not see three yards before us. When the sun came out again, I saw a number of Malays and Chinese filling their baskets with fish contained in the pools formed by the rain.

"They told me the fish had 'fallen from heaven,' and three days later, when the pools were all dried up, there were still many dead fish lying about. As they lay in my court-yard, which is surrounded by a wall, they could not have been brought in by the overflowing of a torrent; indeed, there is none of any considerable size in the neighbourhood.

"The space covered by these fish might be about fifty acres, comprising the eastern part of the town. They were very lively, and seemed to be in good health."

The writer of the above suggests, with some degree of hesitation, that these fish were sucked up by waterspouts. We think that there need be no hesitation in the matter!

The appearance usually presented by a waterspout is that of a column of aqueous vapour reaching from the sea to the clouds, sometimes straight, more frequently a little bent, and thicker above and below than in the centre of the column.

Mr Ellis, the missionary, in his "Polynesian Researches," mentions having, with a companion, met and narrowly escaped being overwhelmed by several waterspouts, when passing on one occasion in an open boat between two islands about thirty miles apart. On the passage they were overtaken by a sudden and violent squall, which lasted several hours; and, in order to avoid being sunk, they tied their masts, oars, and sails in a bundle, and attaching a rope to them, and to the boat, cast them into the sea. Thus they lay, as it were, at anchor in the lee of this extemporised breakwater. It was but a feeble barrier, however, against so wild a storm, and the native boatmen were so overcome by fear, that they sat down in the bottom of the boat, and covered their eyes with their hands.

After a time the rain diminished, the sky began to clear, and the boat's crew to revive, when suddenly one of the men uttered a cry of consternation, and pointed to an object towards which all eyes were instantly turned. They beheld a large cylindrical waterspout, extending, like a massive column, from the ocean to the dark and impending clouds. It was not far distant, and seemed to move slowly towards the boat.

Had Mr Ellis had any doubt as to the danger of a waterspout, the extreme terror exhibited by the natives on this occasion must have removed it; for it was not probable that, just after escaping from the most imminent peril, they would fail back into a much more violent state of terror, unless former experience had given them too good reason to dread the presence of the object they now saw before them.

The roughness of the sea forbade their attempting to hoist a sail in order to avoid the waterspout. They were compelled, therefore, to summon all the resolution they possessed, to enable them calmly to await its approach, and put their trust in the arm of Jehovah.

The helm was in the hands of a seaman whose steadiness could be depended on. The natives were down in the bottom of the boat; they had given way to despair.

Two other waterspouts now came into view, and subsequently a third, if not more, so that they felt as if completely surrounded by them. Some were well defined, extending in an unbroken line from the sea to the sky, like pillars resting on the ocean as their basis, and supporting the clouds; others, assuming the shape of a funnel or inverted cone attached to the clouds, extended their sharp points to the ocean below. From the distinctness with which they were seen, it was judged that the furthest could not have been many miles distant. In some they imagined they could trace the spiral motion of the water as it was drawn up to the clouds, which were every moment being augmented in their portentous darkness. The sense of personal danger, Mr Ellis confesses, and the certainty of instant destruction if brought within their vortex, prevented a very careful observation of their appearance and accompanying phenomena.

The storm continued all day, and at intervals the party in the boat beheld, through the driving clouds and rain, one or other of those towering waterspouts; which, however, did not come nearer to them.

It is interesting to read the record left by a Christian missionary of his conflicting feelings on that terrible occasion. Mr Ellis believed that all hope of escape was over, and his mind went through that ordeal which must be the experience of every one who sees the steady approach of speedy death. He says that during those hours when he sat awaiting his doom, the thought of death itself did not make a deep impression. "The struggle, the gasp, as the wearied arm should attempt to resist the impetuous waves; the straining vision, that should linger on the last ray of retiring light, as the deepening veil of water would gradually conceal it for ever; and the rolling billows heaving over the sinking and dying body, which, perhaps ere life should be extinct, might become the prey of voracious inhabitants of the deep;"—these things caused scarcely a thought, compared with the immediate prospect of the disembodied spirit being ushered into the presence of its Maker; the account to be rendered, and the awful and unalterable destiny that would await it there. "These momentous objects," he says, "absorbed all the powers of the mind, and produced an intensity of feeling, which, for a long time, rendered me almost insensible to the storm, or the liquid columns which threatened our destruction."

It was now that the missionary could look back with deepest gratitude upon that mercy which had first brought him to a knowledge of the Saviour. "Him and Him alone," he adds, "I found to be a refuge, a rock in the storm of contending feelings, on which my soul could cast the anchor of its hope for pardon and acceptance before God... I could not but think how awful would have been my state, had I in that hour been ignorant of Christ, or had I neglected or despised the offers of his mercy. Our prayers were offered to Him who is a present help in every time of danger, for ourselves and those who sailed with us; and under these and similar exercises several hours passed away."

Those prayers were answered, for the waterspouts gradually disappeared, and the boat got safe to land.

In speaking of another waterspout, seen on a subsequent voyage, Mr Ellis tells us that it was well defined,—an unbroken column from the sea to the clouds, which on this occasion were neither dense nor lowering. Around the outside of the liquid cylinder was a kind of thick mist; and within, a substance resembling steam, ascending apparently with a spiral motion. The water at its base was considerably agitated with a whirling motion; while the spray which was thrown off from the circle formed by the lower part of the column, rose several feet above the level of the sea. It passed about a mile astern of the ship.

Occasionally, when passing nearer to a ship than was deemed safe, a waterspout has been dissipated by a cannon-shot, as represented in our engraving.

Such are the usual appearances and actions of waterspouts. They are not, however, properly named, being simply whirlwinds at sea, instead of whirlwinds on land. Professor Oersted suggests the name "storm-pillar," as being a more appropriate term.

It does not follow that a large ship would inevitably be destroyed if brought within the vortex of a waterspout; but it is certain that she would run the risk of being dismasted, and perhaps thrown on her beam-ends. Navigators have not had sufficient experience of the power of waterspouts to pronounce authoritatively on that point,—and it is to be hoped they never will.

Captain Beechy, in his narrative of a voyage to the Pacific, describes one into which his ship actually entered, and from which he received extremely rough handling before he was set free. But this might not have been a very large waterspout; and it is not absolutely certain whether he was quite within its vortex, or was merely brushed by the skirts of its outer garment.

Certain it is that waterspouts vary in size and in power; for we read of them passing from the sea to the land, and there rooting up trees, unroofing and overturning houses, dismounting cannon, emptying fish ponds, half emptying harbours, and otherwise exhibiting a degree of force that would undoubtedly sink the largest vessel that ever was built, if brought thoroughly to bear upon it.

The rate of motion in waterspouts varies. Sometimes they revolve slowly, sometimes with the utmost rapidity. They often produce violent noise, as, indeed, might be expected; and they are generally accompanied by thunder and lightning, though not invariably so, for they are sometimes observed when the heavens are clear and the sea calm.



CHAPTER EIGHT.

THE ARCTIC SEAS—THEIR CHARACTER, SCENERY, AND ATMOSPHERICAL ILLUSIONS.

There is a tendency on the part of most writers on the subject of Polar Regions—especially compilers—to dwell disproportionately on the gloomy side of the picture; insomuch that readers are led, not to over-estimate the grand and the terrible aspects of the polar oceans, but to under-estimate the sweet and the beautiful influences that at certain periods reign there.

We quarrel not with authors for dwelling on the tremendous and the awful. Too much cannot be said on these points; but while they do not by any means paint the dark side of their picture too black, they fail to touch in the lights with sufficient brilliancy. We have had some personal experience of the arctic regions, and have found it extremely difficult to get many persons—even educated men and women—to understand that there is a summer there, though a short one; that in many places it is an uncommonly hot and excessively brilliant summer; and that the sun, as if to make amends for its prolonged absence in winter, shines all night as well as all day, blazing on the crystal icebergs and pure snow (which never disappear from those seas) with a degree of splendour that renders the far north transcendently beautiful and pre-eminently attractive.

We admit freely that the prevailing character of arctic seas, during the greater part of the year, is dark, gloomy, forbidding. But this is the very reason why their brief but cheering smiles should be brought prominently into the foreground, and, if they cannot in justice be dwelt on long, at least be touched upon with emphasis.

Why, in some of our cyclopaedia accounts of the realms of "thick-ribbed ice," so much prominence is given to "the horrors and wide desolation of the scene," and so much graphic power is expended in working up the reader's imagination to a conception of the dreadful dangers and the appalling terrors that await the madman who should dare to venture within the arctic circle, that persons who have not been there might well be tempted to shrink in affright from the very contemplation of a region in which there does not appear to be one redeeming quality.

We repeat, that we do not think the one side of the picture has been too darkly painted,—but the other side has been painted too slightly.

At the same time, we would caution our readers against jumping to the opposite extreme. The dark side of the picture is in reality out of all proportion to the light. And we do not hesitate to state our confirmed opinion, that the arctic regions are more interesting to read about than pleasant to dwell in.

Having, then, defended the lights, let us commence our investigations with the shadows.

Those oceans lying within the arctic circle exhibit phenomena so grand, so wonderful, and so varied, that they claim distinct and separate treatment from the ocean as a whole. Here the extreme cold acts with such power, and produces such extraordinary results, that it is difficult to find words or similes by which to convey a just conception of nature's aspects to the general reader.

During nearly two-thirds of the year the arctic regions are under the absolute dominion of winter; and for many weeks of that bitter season they are shrouded with the mantle of a dark, sunless night. The entire ocean is locked in the embrace of a covering of ice many feet thick, so that its liquid aspect is thoroughly removed; and, owing to ice-masses scattered over its surface, together with mounds of drifted snow, it bears a much stronger resemblance to the land than to the sea. Gales of wind sometimes sweep over those frozen plains in bitter fury, hurling the snow into the air in vast eddying masses, and threatening destruction to any living creature that may chance to be exposed to them—not so much from their violence, however, as from the intense cold of the atmosphere which is put in motion. But in regard to gales, although there are no lack of them, they are neither so fierce nor so frequent as are those of the torrid zone.

It might be supposed that in such a climate animal life could scarcely exist; but such is not the case. The inhabitants of part of the arctic regions, named Esquimaux (more correctly Eskimos, with the accent on the last syllable), are a stout, hardy, healthy race and the polar bears, foxes, wolves, seals, musk-oxen, walruses, etcetera, that dwell there, seem to enjoy their existence just as much as do the animals of more favoured and warmer climes.

During the short but hot summer of the arctic regions, the immense masses of ice formed in winter are by no means cleared away. A great part of the heat of early summer (there is no season there that merits the name of spring) is spent in breaking up the solid crust of ice on the sea, a large proportion of which is carried south by the currents that flow to the equator, and melted long before they reach the temperate zones. But a considerable quantity of broken ice-masses get locked in narrow places or stranded on shallows; and although they undergo the process of melting the whole summer, they are not much diminished ere the returning frost stops the process and locks them in the new ice of a succeeding winter.

Thus there is no period of the year in which large quantities of ice may not be seen floating about in the arctic seas.

This fact it is that enables us to speak appropriately of the scenery of the Arctic Ocean. And assuredly this scenery of the ice is exceedingly and strikingly beautiful. The imagination cannot conceive the dazzling effect of a bright summer day in those regions, when the ocean is clear as glass, and ice-humps and ice-mountains of every shape and size are glittering in the sun's rays with intense brilliancy, while the delicate whiteness of these floating islands, and the magical atmospheric illusions by which they are frequently surrounded, render the scene pre-eminently fairy-like.

All the navigators who have penetrated into the arctic seas speak with enthusiasm of the splendour of floating ice-masses. They take the most curious and fantastic shapes; sometimes appearing like great cities of white marble, with domes and towers and spires in profusion; sometimes looming huge and grand like fortresses, and many of them with their summits overhanging so much as to suggest the idea that they are about to fall. This indeed, they often do, adding to the grandeur of the scene, and not a little to the danger, should ships chance to be in the neighbourhood.

The atmospheric illusions, before mentioned, are the result of different temperatures existing within a few miles of each other, and which are caused by the presence of large bodies of ice. The effect of this is to cause the ice-masses on the horizon to appear as if floating in the air, and to distort them into all sorts of shapes, even turning them upside down, and thus affording to an innovative mind a most ample and attractive field wherein to expatiate.

To ascertain the causes of facts and effects so curious must be interesting to all who have inquiring minds. We will, therefore, attempt to describe and account for arctic phenomena in the following chapters as simply as may be.



CHAPTER NINE.

FORMATION OF ICE—DANGERS OF DISRUPTING ICE—ANECDOTE—DRIFTING ICE— DRIFT OF THE "FOX"—"NIPPING" ANECDOTE—LOSS OF THE "BREADALBANE."

It is well known that when fresh water becomes so cold that its temperature is 32 degrees of Fahrenheit's scale, it loses its liquid form and becomes ice. A somewhat lower temperature than this is necessary to freeze salt water; the reason being, that greater force is required to expel the salt which the sea holds in solution,—which salt is always more or less expelled in the process of freezing.

Ice commences to form in the shape of needles, which shoot out at angles from each other. In smooth water, under the influence of intense cold, the process is rapid, and a thin cake soon covers the water, and increases in thickness hour by hour. But when the sea is agitated the process is retarded, and the fine needles are broken up into what arctic navigators call sludge. This, however, soon begins to cake, and is broken by the swell into small cakes; which, as they thicken, again unite, and are again broken up into larger masses. These masses, by rubbing against each other, have their edges slightly rounded up, and in this form receive the name of pancake ice.

When a quantity of ice covers the ocean in a wide level sheet of considerable extent, it is called an ice-field. Fields of this kind are often seen by navigators hundreds of miles in extent, and nearly thirty feet thick. Ice of such thickness, however, only shows five or six feet above water. When fields are broken by heavy ocean-swells, the edges are violently forced up, and fall in debris on the surface; thus hummocks or mounds are formed.

When field-ice breaks up under the influence of an ocean-swell, caused by a storm, the results are terrific.

An exceedingly graphic account of an incident of this kind is given by Dr Brown, in his "History of the Propagation of Christianity." He writes:—

"The missionaries met a sledge with Esquimaux, turning in from the sea, who threw out some hints that it might be as well for them to return. After some time, their own Esquimaux hinted that there was a ground-swell under the ice. It was then scarcely perceptible, except on lying down and applying the ear close to the ice, when a hollow, disagreeable, grating sound was heard ascending from the abyss. As the motion of the sea under the ice had grown more perceptible, they became alarmed, and began to think it prudent to keep close to the shore. The ice also had fissures in many places, some of which formed chasms of one or two feet; but as these are not uncommon in ice even in its best state, and the dogs easily leap over them, they are frightful only to strangers.

"As the wind rose to a storm, the swell had now increased so much that its effects on the ice were extraordinary, and really alarming. The sledges, instead of gliding smoothly along as on an even surface, sometimes ran with violence after the dogs, and sometimes seemed with difficulty to ascend a rising hill. Noises, too, like the report of cannon, were now distinctly heard in many directions, from the bursting of the ice at a distance. Alarmed at these frightful phenomena, our travellers drove with all haste towards the shore; and, as they approached it, the prospect before them was tremendous. The ice having burst loose from the rocks, was tossed to and fro, and broken in a thousand pieces against the precipices with a dreadful noise; which, added to the raging of the sea, the roaring of the wind, and the driving of the snow, so overpowered them as almost completely to deprive them of the use of their eyes and ears.

"To make the land was now the only resource that remained, but it was with the utmost difficulty that the frightened dogs could be driven forward; and as the whole body of the ice frequently sank below the summits of the rocks, and then rose above them, the only time for landing was the moment it gained the level of the coast—a circumstance which rendered the attempt extremely nice and hazardous.

"Both sledges, however, succeeded in gaining the shore, and were drawn up off the beach, though not without great difficulty. Scarcely had they reached it, when that part of the ice from which they had just escaped burst asunder, and the water, rushing up from beneath, instantly precipitated it into the ocean. In a moment, as if by a signal, the whole mass of ice for several miles along the coast, and extending as far as the eye could reach, began to break up, and to be overwhelmed by the waves. The spectacle was awfully grand. The immense fields of ice rising out of the ocean clashing against each other, and then plunging into the deep with a violence which no language can describe, and with a noise like the discharge of a thousand cannon, was a sight which must have filled the most unreflecting mind with feelings of solemnity.

"The Brethren were overwhelmed with amazement at their miraculous escape, and even the Esquimaux expressed gratitude to God for their deliverance."

Such is the terrible aspect in which field-ice is seen when broken up and converted into smaller masses or floes. When these lie closely together the mass is called pack-ice; in which shape it usually drifts away with the southern currents, and, separating as it travels south, is met with in loose floating masses, of every fantastic form. There is always, as we have said, a large quantity of floe and pack-ice in the polar seas, which becomes incorporated with the new ice of the succeeding winter; and not infrequently whale and discovery ships get frozen into the pack, and remain there as firmly embedded as if they lay high and dry on land. When the pack is thus re-frozen, it usually remains stationary; but there are occasions and circumstances in which the entire body of a pack drifts slowly southward even during the whole year; showing clearly that oceanic circulation is by no means arrested by the icy hand of the hyperborean winter.

A very remarkable drift of this kind is recorded by Captain McClintock of the Fox, which is worthy of being noticed here, as illustrative of the subject we are now considering and also as showing in a remarkable manner the awful dangers to which navigators may be exposed by the disruption of the pack in spring, and the wonderful, almost miraculous, manner in which they are delivered from imminent destruction.

In attempting to cross Baffin's Bay, by penetrating what is called the "middle ice," the Fox was beset, and finally frozen in for the winter; and here, although their voyage may be said to have just commenced, they were destined to spend many months in helpless inactivity and comparative peril and privation. Their little vessel lay in the centre of a field of ice of immense extent; so large, indeed, that they could not venture to undertake a journey to ascertain its limits. Yet this field slowly and steadily descended Baffin's Bay during the whole winter, and passed over no fewer than 1385 statute miles in the space of 242 days, during which period the Fox was firmly embedded in it!

It is with difficulty the mind can form any adequate conception of the position of those voyagers;—unable to move from their icy bed, yet constantly drifting over miles and miles of ocean; uncertain as to the where or the when of their deliverance from the pack; exposed to the terrible dangers of disrupting ice, and surrounded by the depressing gloom of the long arctic night.

At length deliverance came; but it came surrounded by terrors. In February, McClintock writes thus: "Daylight reveals to us evidences of vast ice-movements having taken place during the dark months, when we fancied all was still and quiet; and we now see how greatly we have been favoured, what innumerable chances of destruction we have unconsciously escaped. A few days ago, the ice suddenly cracked within ten yards of the ship, and gave her such a smart shock that every one rushed on deck with astonishing alacrity. One of these sudden disruptions occurred between me and the ship, when I was returning from the iceberg. The sun was just setting as I found myself cut off... At length I reached a place where the jagged edges of the floes met; so crossed, and got safely on board."

Again, in March, he says, "Last night the ice closed, shutting up our lane; but its opposite sides continued for several hours to move vast each other, rubbing off all projections, crushing and forcing out of the water masses four feet thick. Although one hundred and twenty yards distant, this pressure shook the ship and cracked the intervening ice."

Soon after that, a heavy gale burst upon them from the south-east, encircling them with snow-drift so dense that they could neither hear nor see what was going on twenty yards off. At night the ship became suddenly detached from her wintry bed, and heeled over to the storm, inducing them to believe that the whole pack had been broken in, and was pressing against them. This was not the case. A large mass of ice had protected them; but at a distance of about fifty yards, ice of four and a half feet thick had been crushed to atoms. Soon after, the protecting mass yielded, and the Fox received a nip which lifted her stern about a foot, while occasional groaning from her sturdy little hull replied to the wild surgings of the ice without.

But all this was as nothing compared with the scene of desperate turmoil and confusion which took place when the ice finally broke up, and a gale raised a fearful swell; so that the Fox found herself surrounded by huge masses, which tossed and ground against each other furiously, and any two of which pieces could have crushed in her sides as if she had been made of walnut shell. Gradually the pack opened out, and the vessel, by aid of wind and steam, was mercifully delivered from her dangerous position.

Before passing from the subject of risk to navigators to the consideration of other forms and aspects of polar ice, let us take a glance at an effectual case of nipping. There have been many partial and severe nips, the descriptions of which are all more or less graphic; but few ships have come so suddenly to the end of their career as did the Breadalbane, a small vessel that was used as a transport ship to the expedition in search of Sir John Franklin in 1852. One who was on board when it occurred thus describes it:—

Sunday, August 21st.—About ten minutes past four, the ice passing the ship awoke me, and the door of my cabin, from the pressure, opened. I hurriedly put on my clothes, and on getting on deck found some hands on the ice endeavouring to save the boats; but the latter were instantly crushed to pieces. They little thought, when using their efforts to save the boats, that the ship was in so perilous a situation.

I went forward to hail the Phoenix (another ship that was fortunately near) for men to save the boats; and whilst doing so, the ropes by which we were secured parted, and a heavy nip took us, making every timber creak, and the ship tremble all over. I looked in the main hold, and saw the beams giving way. I hailed those on the ice, and told them of our critical situation, they not for one moment suspecting it. I then rushed to my cabin, hauled out my portmanteau on deck, and roared like a bull to those in their beds to jump out and save their lives. The startling effect on them might be more easily imagined than described. On reaching the deck, those on the ice called out to me to jump over the side, that the ship was going over. I left my portmanteau, and jumped over the side on the loose ice, and with difficulty, and with the assistance of those on the ice, succeeded in getting on the unbroken part, with the loss of the slippers I had on when quitting the vessel, with wet feet, etcetera. The cold was little thought of at the exciting moment—life, not property, being the object to be saved.

"After being on the ice about five minutes, the timbers, etcetera, in the ship cracking up as matches would in the hand, it eased for a short time; and I, with some others, returned to the ship, with the view of saving some of our effects.

"Captain Inglefield now came running towards the ship, and ordered me to see if the ice was through it. On looking down into the hold, I saw all the beams, etcetera, falling about in a manner that would have been certain death to me had I ventured down there. But there was no occasion for that (I mean to ascertain the fact of the ice being through), it being too evident that the ship could not last many minutes. I then sounded the well, and found five feet in the hold; and, whilst in the act of sounding, a heavier nip than before pressed out the starboard bow, and the ice was forced right into the forecastle. Every one then abandoned the ship, with what few clothes they saved—some with only what they had on. The ship now began to sink fast, and from the time her bowsprit touched the ice until her mast-heads were out of sight, did not occupy above one minute and a half!

"It was a very sad and unceremonious way of being turned out of our ship. From the time the first nip took her, until her disappearance, did not occupy more than fifteen minutes."

Such is the account of the fate of the Breadalbane. While we read it, we cannot help feeling that many arctic ships must have perished in a similar manner. It is wonderful, nevertheless, how many of those that dare the dangers of the ice survive the conflict. Undoubtedly this is owing, to a large extent, to the fact that ships' bottoms are rounded; so that when a severe nip takes place, there is a tendency in the ice to slip under their rounded bottoms, and squeeze the vessels up out of the water. Were it not for this, few ships that have gone to those seas would ever have returned.

A catastrophe such as that which befell the Breadalbane shows the immense power of field-ice. Hundreds of somewhat similar incidents might be cited to illustrate this power; but we content ourselves with the selection of one instance, which exhibits it in a remarkable manner, and at the same time shows the way in which heavy vessels are sometimes forced out of the water.

In the year 1836, Captain Back commanded the Terror, which was sent out to make geographical discoveries in the polar regions, and spent the winter of that year in the ice. Few ships have undergone severer tests than did the Terror on that voyage. The severest treatment she experienced was in the spring, when the disruption of the winter ice began to take place. The evening of the 7th of March was specially fraught with danger. We quote the gallant commander's graphic account:—

"Ominous rushing sounds were heard far off to the north-east and north-west. These gradually drew nearer as the flood made its way, either under the compact bodies that withstood the shock, or along the cracks and openings—gaining in these latter a furious velocity, to which everything seemed to yield.

"It happened that there were several of these around the ship; and when they opened on us like so many conduits pouring their contents to a common centre, the concussion was absolutely appalling, rending the lining and bulkheads in every part, loosening some shores and stanchions, so that the slightest effort would have thrown them down, and compressing others with such force as to make the turpentine ooze out of their extremities. One fir plank, placed horizontally between the beams and the shores actually glittered with globules. At the same time the pressure was going on from the larboard side, where the three heaviest parts of the ruin of the floe remained, cracked here and there, but yet adhering in firm and solid bodies. These, of course, were irresistible; and after much groaning, splitting, and cracking, accompanied by sounds like the explosion of cannon, the ship rose fore and aft, and heeled over about ten degrees to starboard."

Again, on the 11th, Back says: "At this time she showed symptoms of suffering in the hull, which was evidently undergoing a severe ordeal. Inexplicable noises, in which the sharp sounds of splitting and the harsher ones of grinding were most distinct, came in quick succession, and then again stopped suddenly, leaving all so still that not even a breath was heard.

"In an instant the ship was felt to rise under our feet, and the roaring and rushing commenced with a deafening din alongside, abeam and astern, at one and the same instant. Alongside, the grinding masses held the ship tight as in a vice; while the overwhelming pressure of the entire body, advancing from the west, so wedged the stern and starboard quarter, that the greatest apprehensions were entertained for the stern-post and framework abaft.

"Some idea of the power exerted on this occasion may be gathered from this:—At the moment which I am now describing, the fore-part of the ship was literally buried as high as the flukes of the anchors in a dock of perpendicular walls of ice; so that, in that part, she might well have been thought immovable. Still, such was the force applied to her abaft, that after much cracking and perceptible yielding of the beams, which seemed to curve upwards, she actually rose by sheer pressure above the dock forward; and then, with sudden jerks, did the same abaft. During these convulsions, many of the carpenters and others stationed below were violently thrown down on the deck, as people are in an earthquake. It was a moment of intense suspense.

"On the 16th, another rush drove irresistibly on the larboard quarter and stern, and forcing the ship ahead, raised her on the ice. A chaotic ruin followed... The ship was careened fully four streaks, and sprang a leak as before. Scarcely were ten minutes left us for the expression of our astonishment that anything of human build could outlive such assaults, when another equally violent rush succeeded; and in its way toward the starboard quarter threw up a rolling wave thirty feet high, crowned by a blue square mass of many tons, resembling the entire side of a house, which, after hanging for some time in doubtful poise on the ridge, at length fell with a crash into the hollow, in which, as in a cavern, the after-part of the ship seemed embedded. It was, indeed, an awful crisis, rendered more frightful from the mistiness of the night and dimness of the moon.

"The poor ship cracked and trembled violently, and no one could say that the next minute would not be her last—and, indeed, his own too, for with her our means of safety would probably perish."

It is unnecessary to give additional instances of this kind, in order to show the terrible power of field-ice. Indeed, it requires little in the way of illumination to prove that masses of solid matter, many thousands of tons in weight, can, when in motion, utterly destroy the most powerful engines of human construction.

We shall now turn our attention to another, and a very prominent form, in which arctic ice presents itself—namely, that of icebergs.



CHAPTER TEN.

ICEBERGS—THEIR APPEARANCE AND FORMS—THEIR CAUSE—GLACIERS—THEIR NATURE AND ORIGIN—ANECDOTE OF SCORESBY—RISK AMONG ICEBERGS—MCCLURE'S EXPERIENCE.

There are not only ice-fields, ice-floes, etcetera, in the polar seas, but there are ice-mountains, or bergs.

It was long a matter of uncertainty as to where and how those immense mountains, that are met with occasionally at sea, were formed. We are now in a position to tell definitely where they originate, and how they are produced. They are not masses of frozen sea water. Their birth-place is in the valleys of the far north, and they are formed by the accumulation of the snows and ice of ages. This is a somewhat general way of stating the matter; but our subsequent explanations will, we trust, make our meaning abundantly clear.

Icebergs are found floating in great numbers in the arctic seas. They drift southward each spring with the general body of polar ice, and frequently travel pretty far south in the Atlantic before the heat of the water and atmosphere united accomplishes their dissolution. They sometimes travel as far south as Florida with the southerly current that flows along that coast; but the warm waters of the Gulf Stream, together with its northerly flow, form an impassable barrier between these ice-mountains and Europe.

Icebergs assume every variety of form, and almost every size. They sometimes resemble castles, sometimes churches with glittering spires, and sometimes the peaked and jagged mountains of Norway. They are also frequently seen in the form of immense misshapen and top-heavy masses.

In size they vary from one hundred to seven or eight hundred feet in height. One iceberg, seen by Ross in Baffin's Bay, was above two miles in length, nearly the same in width, and fifty feet high. But in stating this, we have not given the reader any idea of its vast proportions; for it is well known that all icebergs, or masses of ice, have a much greater proportion of their bulk under than above water—in other words, they sink very deep. The relative proportion that sinks depends on the nature of the ice. Of some kinds, there is usually ten times as much below as there is above water; of other kinds, there may be eight or five parts below. In all cases there is much more below than above so that a mountain of a hundred feet high—if afloat—may be safely calculated to be a mass of ice not far short of a thousand feet thick.

As these bergs float southward with the currents, they melt very rapidly. The heat of the sun and the action of the waves gradually round off the sharp angles and topple down the spires that characterised them in the land of their birth. The process of dissolution, too, is carried on internally; for rain and melted water on the surface percolates through the mass, rendering it porous. As the waves cut away the base, the centre of gravity is thrown out, and the whole berg turns over with a terrible crash. Sometimes loud reports like cannon-shots are heard, and the huge mountain splits asunder; while, not unfrequently, the whole berg falls into a heap of chaotic ruins, and floats away in a mass of smaller pieces which disappear gradually in their parent sea.

The formation of icebergs has, as we have said, puzzled mankind for many years. Their existence has long been known: for, even before men dared to venture their lives in the polar regions, navigators, in crossing the Atlantic Ocean, frequently met with these marble-like mountains; and, what is worse, sometimes ran at full speed against them, and were sunk with all on board. Bergs are frequently enveloped in dense fogs, caused by the cold atmosphere by which they are surrounded condensing the moisture of the warmer atmosphere which they encounter on their voyage southward; hence they are exceedingly dangerous to navigation. But now to speak of their formation.

Many of the great valleys of the far north are completely filled up with solid ice. Observe, we do not say that they are merely covered over with ice; they are absolutely filled up with it from top to bottom. Those ice-masses are known by the name of glaciers; and they are found in most of the elevated regions of the Earth,—on the Alps and the mountains of Norway, for instance,—but they exist in greater abundance about the poles than elsewhere.

Glaciers never melt. They have existed for unknown ages, probably since the world began; and they will, in all likelihood, continue to exist until the world comes to an end,—at least until the present economy of the world terminates. They began with the first fall of snow, and as falls of snow during the long winters of the polar regions are frequent and heavy, the accumulated masses are many feet deep, especially in places where drifts are gathered—sometimes fifteen, twenty, thirty, and even forty feet deep. The summer sun could not melt such drifts entirely. New snow was added each winter, until the valleys of the far north were filled up; and so they remain filled up to this day.

In order to understand the nature of glaciers clearly, let us turn back to those remote ages that rolled over this Earth long before man was created. Let us in spirit leap back to the time when no living creature existed, even before the great mastodon began to leave his huge foot-prints on the sands of time.

We have reached one of the large valleys of the arctic regions. It is solemn, grand, and still. No merry birds, no prowling creatures, are there to disturb the universal calm. The Creator has not yet formed the living creatures and pronounced them "very good." It is the world's first winter. As we look upward to the sky, we observe the first white snow-flakes falling gently to the ground. They reach it, and, for the first time, that valley is covered with a garment of virgin snow. The valley is upwards of two miles broad. It rises from the sea, and goes far back into the mountains, perhaps to the extent of ten or twelve miles. The mountains that flank it are five or six thousand feet high. We have seen such valleys in Norway, within the arctic circle. Before that first winter has passed, many and many a fall of snow has thickened and pressed down that first coat; and many a furious storm has caught up the snow from the mountain-tops and swept it into the valley, adding to and piling up the mass, and packing it firmly down.

Spring arrives. The short but warm arctic summer bursts upon that vale, melting the surface of the snow; and the water thus produced sinks through the mass, converting it into a sort of thick slush—half snow, half water,—not liquid, yet not solid; just solid enough to lie there apparently without motion; yet just liquid enough to creep by slow, absolutely imperceptible degrees, down the valley. The snow in all the mountain gorges is similarly affected: it creeps (it cannot be said to flow) out and joins that in the vale. But we cannot perceive any of the motion of which we are writing. The mass of snow seems to be as still and motionless as the rocks on which we stand; nay, if we choose we may walk on its hard surface almost without leaving the slightest print of our foot. But if we throw a large stone on the surface of the snow and mark the spot, and return again after many days, we shall find that the stone has descended the valley a short distance. We shall also observe that the snow has now a variety of markings on its surface; which might lead us to fancy, had we not known better, that it had once been a river, which, while raging down to the sea with all its curling rapids and whirling eddies, had been arrested in all instant by the ice-king and frozen solid,—in fact, it has all the graceful lines and forms of fluidity, with all the steady, motionless aspect of solidity. It really moves, this vast body of snow; but, like the hour hand of a watch, its motion cannot be recognised, though we should observe it with prolonged, unflagging attention. We have called it a vast body of snow, but this is only comparatively speaking. It will be vaster yet before we have done with it. At present it is but a thick semi-fluid covering, lying at the bottom of this ancient arctic vale.

The brief summer ends. Much of the winter snow has been melted and returned to the sea; but much, very much more, is still lying deep upon the ground. The world's second winter comes. The first frost effectually puts a stop to all the melting and moving that we have been describing. The snow-river no longer moves—it is arrested. The water no longer percolates through the snow—it is frozen. The mass is no longer semi-fluid—it is solid ice; and the first step in the process of a glacier's formation is begun.

Thereafter this process is continued from year to year, each winter adding largely to its bulk, each summer deducting slightly therefrom. The growing mass of ice ascends the mountain-sides, swallows the rocks and shrubs and trees in its progress, until its body becomes a thousand feet thick: the extreme summits of the mountain-peaks alone tower above the snowy waste, and the mass at the bottom is now, by the pressure of superincumbent masses, pure ice, hard and clear as crystal.

When the great glacier grows old it still maintains its stealthy downward motion during every summer. It has reached the shore, and has been pushed, like a huge white tongue, out into the sea.

"But what has all this to do with icebergs?" it may be inquired. Much, very much. It is common enough, in commenting on a child, to speak of the parent. The glacier is the mother of the iceberg.

When, in the world's early morning, the embryo glacier reached the sea, its thin edges were easily broken off by the waves; but as it increased and still further encroached, these edges became thicker and thicker, until at last a wall of pure ice, several hundred feet high, presented its glittering front to the ocean. It was hard and massive; the sun of summer had little effect on its frigid face, and it seemed to bid defiance to the sea itself. But things often are not what they seem. Each billow sapped its foundation; it soon began to overhang its base. At length the cohesion of the mass was not sufficient to sustain its weight. A rending, accompanied by sounds like heaven's artillery, took place; the crystal mountain bowed its brow and fell with thunderous crash upon the water; then, rocking slowly under the impulse of its dread plunge, the first iceberg floated off to sea!

It is right to remark here that this explanation is, to some extent, disputed—at least there is a difference of opinion as to the manner in which the iceberg leaves its parent glacier. There is no dispute as to its origin. This difference will be explained shortly in a quotation from Dr Kane's work; meanwhile, in support of the present theory, let us listen to the words of one who saw with his own eyes something similar to what has been described. Dr Scoresby, than whom a better man never explored the arctic seas, says:—

"In July 1818, I was particularly fortunate in witnessing one of the grandest effects which these polar glaciers ever present. A strong north-westerly swell, having for some hours been beating on the shore, had loosened a number of fragments attached to the iceberg, and various heaps of broken ice denoted recent shoots of the seaward edge. As we advanced towards it, with a view of proceeding close to its base, I observed a few little pieces fall from the top; and while my eye was fixed upon the place, an immense column, probably fifty feet square, and one hundred and fifty feet high, began to leave the parent ice at the top, and, leaning majestically forward, with an accelerated velocity fell, with an awful crash, into the sea.

"The water into which it plunged was converted into an appearance of vapour or smoke, like that from a furious cannonading. The noise was equal to that of thunder, which it nearly resembled. The column which fell was nearly square, and in magnitude resembled a church. It broke into thousands of pieces. This circumstance was a happy caution, for we might inadvertently have gone to the very base of the icy cliff from whence masses of considerable magnitude were continually breaking!"

Now, this incident suggests the probability, that, had the face of the glacier projected into deep water, the mass which broke off might have fallen into the sea without being broken to pieces, and might have floated away as a berg. We confess, however, to be partial to the view expressed by some writers, that the great glaciers continue year by year to thrust their thick tongues out to sea, until the projecting masses reach water sufficiently deep to float them, when they are quietly cracked off from their parent and carried away without any fall or plunge. The following remarks by Dr Kane will make this more clear. Writing of the iceberg, he says:

"So far from falling into the sea, broken by its weight from the parent glacier, it rises from the sea. The process is at once gradual and comparatively quiet. The idea of icebergs being discharged, so universal among systematic writers, and so recently admitted by myself, seems to me at variance with the regulated and progressive action of nature. Developed by such a process, the thousands of bergs which throng these seas should keep the air and water in perpetual commotion— one fearful succession of explosive detonations and propagated waves. But it is only the lesser masses falling into deep waters which could justify the popular opinion. The enormous masses of the Great Glacier [of Greenland] are propelled step by step, and year by year, until, reaching water capable of supporting them, they are floated off, to be lost in the temperatures of other regions...

"The height of the ice-wall at the nearest point was about three hundred feet, measured from the water's edge; and the unbroken right line of its diminishing perspective showed that this might be regarded as its constant measurement. It seemed, in fact, a great icy table-land, abutting with a clean precipice against the sea. This is, indeed, characteristic of all those arctic glaciers which issue from central reservoirs, or mers de glace, upon the fords or bays, and is strikingly in contrast with the dependent or hanging glacier of the ravines."

Elsewhere the same writer speaks of this glacier as a line of cliff, rising in a solid glassy wall to a height of three hundred feet above the water-level, and with an unfathomable depth below it; and its curved face, sixty miles in length, from Cape Agassiz to Cape Forbes, vanished into unknown space at not more than a single day's rail-road travel from the pole. The interior with which it communicated, and from which it issued, was an unsurveyed mer de glace, or sea of ice, of apparently boundless dimensions; and from one part of this great cliff he saw long lines of huge bergs floating slowly away.

Here, we think, is ice enough and of sufficient dimensions to account for the largest bergs that were ever beheld.

It will be at once seen, then, that icebergs, though found floating in the sea, are not necessarily of the sea. They are composed entirely of fresh water, and arctic ships can at any time procure a plentiful supply of good soft drinkable water from the pools that are formed in the hollows of the bergs.

The risk of approaching icebergs in the arctic regions is not so great as when they are found floating further south; because when in their native regions they are comparatively tough, whereas on their southern journeys they become more or less disintegrated—in fact, the blow of an axe is sometimes sufficient to cause a rent, which in its turn will induce other rents and failings asunder, so that the whole mass runs the risk of being entirely broken up. Hence the danger of ships, in certain circumstances, venturing to anchor to them. Nevertheless this is a common practice—sometimes a necessity—among discovery ships and whalers. It is a convenient practice too; for many a vessel has been saved from absolute destruction by getting under the lee of a good sound iceberg, where she has lain as safely, for the time being, as if in a harbour.

When Captain McClure was endeavouring to make the north-west passage in 1851, he was saved, from what appeared to be at least very probable destruction, by a small iceberg. On the 17th of September he writes:

"There were several heavy floes in the vicinity. One, full six miles in length, passed at the rate of two knots, crushing everything that impeded its progress, and grazed our starboard-bow. Fortunately there was but young ice upon the opposite side, which yielded to the pressure; had it otherwise occurred, the vessel must inevitably have been cut asunder. In the afternoon we secured to a moderately-sized iceberg, drawing eight fathoms, which appeared to offer a fair refuge, and from which we never afterwards parted."

To this lump of ice the ship clung with the tenacity of a bosom friend, and followed it, literally, through thick and thin! There is something almost ludicrous, as well as striking, in McClure's account of their connection with this bit of ice. It conveyed them to their furthest north-east position, and back round the Princess Royal Islands—passed the largest within five hundred yards—returned along the coast of Prince Albert's Land—and finally froze in at latitude 70 degrees 50 minutes north, longitude 117 degrees 55 minutes west, on the 30th September; during which circumnavigation they received many severe "nips," and were frequently driven close to the shore, from which their dear friend the iceberg, small though he was, kept them off.

Icebergs assume almost every conceivable form, and are seen of every size—sometimes, also, in great numbers. Scoresby mentions one occasion on which he was surrounded by bergs to the number of several hundreds.

Now, all this ice that we have been speaking of, besides being, in a secondary way, a passive agent in the affairs of man (chiefly in barring his progress northward), is one of the most potent agents in the economy of nature. It is the means by which the world is kept cool enough for man and beast to dwell in. The polar regions—north and south—are, as it were, the world's refrigerators; tempering the heated air of the south, and, in connection with the torrid zone, spreading throughout the Earth those beneficial influences which gladden the sphere of man's temporal existence.



CHAPTER ELEVEN.

ICE AN AGENT IN TRANSPORTING BOULDERS—HOW THIS COMES ABOUT—DR. KANE'S OBSERVATIONS—LONG NIGHT IN WINTER AND LONG DAY IN SUMMER—EXTREME DARKNESS—INFLUENCE ON DOGS—INTENSE COLD—EFFECT ON THE SEA.

There are many things in this world which, up to within a few years back, have been to men a source of surprise and mystery.

Some of these problems have been solved by recent travellers, and not a few of them are referable to polar oceans and ice.

In many parts of our coasts we find very striking and enormously large boulder-stones lying on the beach, perfectly isolated, and their edges rounded away like pebbles, as if they had been rolled on some antediluvian beach strewn with Titanic stones. These boulders are frequently found upon the loose sands of the sea-shore, far removed from any rocks or mountains from which they might be supposed to have been broken; and, more than that, totally different in their nature from the geological formations of the districts in which they are found. "Whence came these?" has been the question of the inquisitive of all ages, "and how came they there?"

There may, for aught we know to the contrary, be more than one answer to these questions; but there is at least one which is quite satisfactory as to how and whence at least some of them have come. Ice was the means of conveying these boulders to their present positions.

It has been said that once upon a time a large part of this country was under the dominion of ice, even as the polar regions and some of the mountains and valleys of Norway are at the present day; that the boulders we see in elevated places were conveyed thither by glacier action; and that when the glacial period passed away, they were left there on the hill-sides—sometimes almost on the mountain-tops. But this is not the question we are considering just now. We are now inquiring into the origin of those huge boulders that are found upon our coasts and on the coasts of other lands—boulders which could not have rolled down from the hills, for there are no hills at all near many of them; and those hills that are near some of them are of different geological formation.

This question will be answered at once, and one of the phenomena of arctic ice and oceanic agency will be exhibited, by reference to the recent discoveries of the celebrated arctic voyager, Dr Kane of the American Navy.

While wintering far beyond the head of Baffin's Bay, and beyond the most northerly point, in that direction, that had at that time been reached by any previous traveller, Dr Kane made many interesting observations and discoveries. He seems to have penetrated deep into the heart of Nature's northern secrets. Among other things, he ascertained the manner in which boulders are transported from their northern home.

The slow, creeping movement of glaciers, to which we have already referred, is one means whereby large boulders are formed. At the lower edge of one of the glaciers of Norway we saw boulders, thirty or forty feet in diameter, which had been rolled and forced, probably for ages, down the valley by the glacier, and thrust out on the sea-beach, where they lay with their angles and corners rubbed off and their surfaces rounded and smoothed as completely as those of the pebbles by which they were surrounded.

Had these boulders been formed in the arctic regions, they might have been thrust out upon the thick solid crust of the frozen sea, which in time would have been broken off and floated away; thus rafting the boulders to other shores. The formation of boulders, and their positions, are facts that we have seen. Their being carried out to sea by ice-rafts is a fact that Dr Kane has seen and recorded. On the wild rocky shores where his ship was set fast, there was a belt of ice lining the margin of the sea, which he termed the "ice-belt," or the "ice-foot." This belt never melted completely, and was usually fast to the shore. In fact it was that portion of the sea-ice which was left behind each spring when the general body of ice was broken up and swept away. Referring to this, he writes:

"The spot at which we landed I have called Cape James Kent. It was a lofty headland, and the land-ice which hugged its base was covered with rocks from the cliffs above. As I looked over this ice-belt, losing itself in the far distance, and covered with its millions of tons of rubbish, greenstones, limestones, chlorite, slates, rounded and angular, massive and ground to powder, its importance as a geological agent, in the transportation of drift, struck me with great force.

"Its whole substance was studded with these varied contributions from the shore; and further to the south, upon the now frozen waters of Marshall Bay, I could recognise raft after raft from the last year's ice-belt which had been caught by the winter, each one laden with its heavy freight of foreign material.

"The water torrents and thaws of summer unite with the tides in disengaging the ice-belt from the coast; but it is not uncommon for large bergs to drive against it and carry away the growths of many years. I have found masses that had been detached in this way, floating many miles out at sea—long, symmetrical tables, two hundred feet long by eighty broad, covered with large angular rocks and boulders, and seemingly impregnated throughout with detrited matter. These rafts in Marshall Bay were so numerous, that could they have melted as I saw them, the bottom of the sea would have presented a more curious study for the geologist than the boulder-covered lines of our middle latitudes. One boulder in particular had had its origin in a valley where rounded fragments of water-washed greenstone had been poured out by the torrents and frozen into the coast-ice of the belt. The attrition of subsequent matter had truncated the great egg-shaped rock, and worn its sides into a striated face, whose scratches still indicated the line of water-flow."

So, then, when we next meet with a huge isolated boulder on any of our flat beaches, we may gaze at it with additional interest, when we reflect that, perchance, it was carried thither by the ocean, countless ages ago, from the arctic regions, on a gigantic raft of ice; after having been, at a still more remote period, torn from its cliffs by some mighty glacier and slowly rolled and rounded, for hundreds of years perhaps down the scarred slopes of its native valley.

The primary cause of the intense and prolonged cold of the arctic regions is the shortness of the time during which they are under the influence of the sun's rays. For a few months in summer the sun shines brightly, but, owing to the position of the globe, obliquely on the poles. During part of that period it shines at mid-night as well as at mid-day. Put during the greater part of the year its beams throw but a feeble light there, and for several months in winter there is absolutely no day at all—nothing but one long dismal night of darkness, that seems as if the bright orb of day had vanished from the heavens for ever.

The length of this prolonged day in summer, and this dreary night in winter, depends, of course, upon latitude. The length of both increases as we approach the poles. The long daylight in summer is exceedingly delightful. We once saw the sun describe an almost unbroken circle in the sky for many days and nights, and had we been a few degrees further north we should have seen it describe an entire circle. As it was, it only disappeared for twenty minutes. It set about midnight, and in twenty minutes it rose again so that there was no night, not even twilight, but a bright, beautiful blazing day, for several weeks together.

Dr Kane describes the midnight sun thus: "On our road we were favoured with a gorgeous spectacle, which hardly any excitement of peril could have made us overlook. The midnight sun came out over the northern crest of the great berg, our late 'fast friend,' kindling variously-coloured fires on every part of its surface, and making the ice around us one great resplendency of gem-work—blazing carbuncles and rubies, and molten gold."

Very different indeed is the aspect of the winter night. Let the same authority speak, for he had great experience thereof.

On December 15th he writes: "We have lost the last vestige of our mid-day twilight. We cannot see print, and hardly paper. The fingers cannot be counted a foot front the eyes. Noonday and midnight are alike; and, except a vague glimmer on the sky, that seems to define the hill-outlines to the south, we have nothing to tell us that this arctic world of ours has a sun. In one week more we shall reach the midnight of the year...

"The influence of this long intense darkness was most depressing. Even our dogs, although the greater number of them were natives of the arctic circle, were unable to withstand it. Most of them died from an anomalous form of disease, to which I am satisfied, the absence of light contributed as much as extreme cold." Quoting from his journal he says: "I am so afflicted with the insomnia of this eternal night, that I rise at any time between midnight and noon. I went on deck this morning at five o'clock. It was absolutely dark; the cold not permitting a swinging lamp, there was not a glimmer came to me through the ice-crusted window-panes of the cabin. While I was feeling my way, half puzzled as to the best method of steering clear of whatever might be before me, two of my Newfoundland dogs put their cold noses against my hand, and instantly commenced the most exuberant antics of satisfaction. It then occurred to me how very dreary and forlorn must these poor animals be, at atmospheres 10 degrees above zero in-doors and 50 degrees below zero without—living in darkness, howling at an accidental light, as if it reminded them of the moon—and with nothing, either of instinct or sensation, to tell them of the passing hours, or to explain the long lost daylight. They shall see the lantern more frequently."

Yet this state of midnight darkness is not altogether unmitigated. There are a few ameliorating influences at work, the nature of some of which we will treat of in the next chapter. Among others, the moon frequently shines there with great brilliancy in winter. Dr Kane says that in October the moon had reached her greatest northern declination: "She is a glorious object. Sweeping around the heavens, at the lowest part of her curve she is still 14 degrees above the horizon. For eight days she has been making her circuit with nearly unvarying brightness. It is one of those sparkling nights that bring back the memory of sleigh-bells and songs and glad communings of hearts in lands that are far away."

But despite all the varied and transient beauties of the northern skies in winter, the long arctic night is undoubtedly depressing in the extreme. In these regions men speak of being able to read the thermometer on the 7th of November at noonday "without a light," as being matter for gratulation. The darkness still before them at that time would be of about three months' duration, and even then they would only get back to a species of twilight.

Previous Part     1  2  3     Next Part
Home - Random Browse