p-books.com
The New Physics and Its Evolution
by Lucien Poincare
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

Consider the barrel of a pump placed in a vacuum and closed by a piston at each end, and let us introduce between these a certain mass of air. The two pistons, through the elastic force of the gas, repel each other with a force which, according to the law of Mariotte, varies in inverse ratio to the distance. The method favoured by Ampere would first of all allow this law of repulsion between the two pistons to be discovered, even if the existence of a gas enclosed in the barrel of the pump were unsuspected; and it would then be natural to localize the potential energy of the system on the surface of the two pistons. But if the phenomenon is more carefully examined, we shall discover the presence of the air, and we shall understand that every part of the volume of this air could, if it were drawn off into a recipient of equal volume, carry away with it a fraction of the energy of the system, and that consequently this energy belongs really to the air and not to the pistons, which are there solely for the purpose of enabling this energy to manifest its existence.

Faraday made, in some sort, an equivalent discovery when he perceived that the electrical energy belongs, not to the coatings of the condenser, but to the dielectric which separates them. His audacious views revealed to him a new world, but to explore this world a surer and more patient method was needed.

Maxwell succeeded in stating with precision certain points of Faraday's ideas, and he gave them the mathematical form which, often wrongly, impresses physicists, but which when it exactly encloses a theory, is a certain proof that this theory is at least coherent and logical.[23]

[Footnote 23: It will no doubt be a shock to those whom Professor Henry Armstrong has lately called the "mathematically-minded" to find a member of the Poincare family speaking disrespectfully of the science they have done so much to illustrate. One may perhaps compare the expression in the text with M. Henri Poincare's remark in his last allocution to the Academie des Sciences, that "Mathematics are sometimes a nuisance, and even a danger, when they induce us to affirm more than we know" (Comptes-rendus, 17th December 1906).]

The work of Maxwell is over-elaborated, complex, difficult to read, and often ill-understood, even at the present day. Maxwell is more concerned in discovering whether it is possible to give an explanation of electrical and magnetic phenomena which shall be founded on the mechanical properties of a single medium, than in stating this explanation in precise terms. He is aware that if we could succeed in constructing such an interpretation, it would be easy to propose an infinity of others, entirely equivalent from the point of view of the experimentally verifiable consequences; and his especial ambition is therefore to extract from the premises a general view, and to place in evidence something which would remain the common property of all the theories.

He succeeded in showing that if the electrostatic energy of an electromagnetic field be considered to represent potential energy, and its electrodynamic the kinetic energy, it becomes possible to satisfy both the principle of least action and that of the conservation of energy; from that moment—if we eliminate a few difficulties which exist regarding the stability of the solutions—the possibility of finding mechanical explanations of electromagnetic phenomena must be considered as demonstrated. He thus succeeded, moreover, in stating precisely the notion of two electric and magnetic fields which are produced in all points of space, and which are strictly inter-connected, since the variation of the one immediately and compulsorily gives birth to the other.

From this hypothesis he deduced that, in the medium where this energy is localized, an electromagnetic wave is propagated with a velocity equal to the relation of the units of electric mass in the electromagnetic and electrostatic systems. Now, experiments made known since his time have proved that this relation is numerically equal to the speed of light, and the more precise experiments made in consequence—among which should be cited the particularly careful ones of M. Max Abraham—have only rendered the coincidence still more complete.

It is natural henceforth to suppose that this medium is identical with the luminous ether, and that a luminous wave is an electromagnetic wave—that is to say, a succession of alternating currents, which exist in the dielectric and even in the void, and possess an enormous frequency, inasmuch as they change their direction thousands of billions of times per second, and by reason of this frequency produce considerable induction effects. Maxwell did not admit the existence of open currents. To his mind, therefore, an electrical vibration could not produce condensations of electricity. It was, in consequence, necessarily transverse, and thus coincided with the vibration of Fresnel; while the corresponding magnetic vibration was perpendicular to it, and would coincide with the luminous vibration of Neumann.

Maxwell's theory thus establishes a close correlation between the phenomena of the luminous and those of the electromagnetic waves, or, we might even say, the complete identity of the two. But it does not follow from this that we ought to regard the variation of an electric field produced at some one point as necessarily consisting of a real displacement of the ether round that point. The idea of thus bringing electrical phenomena back to the mechanics of the ether is not, then, forced upon us, and the contrary idea even seems more probable. It is not the optics of Fresnel which absorbs the science of electricity, it is rather the optics which is swallowed up by a more general theory. The attempts of popularizers who endeavour to represent, in all their details, the mechanism of the electric phenomena, thus appear vain enough, and even puerile. It is useless to find out to what material body the ether may be compared, if we content ourselves with seeing in it a medium of which, at every point, two vectors define the properties.

For a long time, therefore, we could remark that the theory of Fresnel simply supposed a medium in which something periodical was propagated, without its being necessary to admit this something to be a movement; but we had to wait not only for Maxwell, but also for Hertz, before this idea assumed a really scientific shape. Hertz insisted on the fact that the six equations of the electric field permit all the phenomena to be anticipated without its being necessary to construct one hypothesis or another, and he put these equations into a very symmetrical form, which brings completely in evidence the perfect reciprocity between electrical and magnetic actions. He did yet more, for he brought to the ideas of Maxwell the most striking confirmation by his memorable researches on electric oscillations.

Sec. 4. ELECTRICAL OSCILLATIONS

The experiments of Hertz are well known. We know how the Bonn physicist developed, by means of oscillating electric discharges, displacement currents and induction effects in the whole of the space round the spark-gap; and how he excited by induction at some point in a wire a perturbation which afterwards is propagated along the wire, and how a resonator enabled him to detect the effect produced.

The most important point made evident by the observation of interference phenomena and subsequently verified directly by M. Blondlot, is that the electromagnetic perturbation is propagated with the speed of light, and this result condemns for ever all the hypotheses which fail to attribute any part to the intervening media in the propagation of an induction phenomenon.

If the inducing action were, in fact, to operate directly between the inducing and the induced circuits, the propagation should be instantaneous; for if an interval were to occur between the moment when the cause acted and the one when the effect was produced, during this interval there would no longer be anything anywhere, since the intervening medium does not come into play, and the phenomenon would then disappear.

Leaving on one side the manifold but purely electrical consequences of this and the numerous researches relating to the production or to the properties of the waves—some of which, those of MM. Sarrazin and de la Rive, Righi, Turpain, Lebedeff, Decombe, Barbillon, Drude, Gutton, Lamotte, Lecher, etc., are, however, of the highest order—I shall only mention here the studies more particularly directed to the establishment of the identity of the electromagnetic and the luminous waves.

The only differences which subsist are necessarily those due to the considerable discrepancy which exists between the durations of the periods of these two categories of waves. The length of wave corresponding to the first spark-gap of Hertz was about 6 metres, and the longest waves perceptible by the retina are 7/10 of a micron.[24]

[Footnote 24: See footnote 3.]

These radiations are so far apart that it is not astonishing that their properties have not a perfect similitude. Thus phenomena like those of diffraction, which are negligible in the ordinary conditions under which light is observed, may here assume a preponderating importance. To play the part, for example, with the Hertzian waves, which a mirror 1 millimetre square plays with regard to light, would require a colossal mirror which would attain the size of a myriametre[25] square.

[Footnote 25: I.e., 10,000 metres.—ED.]

The efforts of physicists have to-day, however, filled up, in great part, this interval, and from both banks at once they have laboured to build a bridge between the two domains. We have seen how Rubens showed us calorific rays 60 metres long; on the other hand, MM. Lecher, Bose, and Lampa have succeeded, one after the other, in gradually obtaining oscillations with shorter and shorter periods. There have been produced, and are now being studied, electromagnetic waves of four millimetres; and the gap subsisting in the spectrum between the rays left undetected by sylvine and the radiations of M. Lampa now hardly comprise more than five octaves—that is to say, an interval perceptibly equal to that which separates the rays observed by M. Rubens from the last which are evident to the eye.

The analogy then becomes quite close, and in the remaining rays the properties, so to speak, characteristic of the Hertzian waves, begin to appear. For these waves, as we have seen, the most transparent bodies are the most perfect electrical insulators; while bodies still slightly conducting are entirely opaque. The index of refraction of these substances tends in the case of great wave-lengths to become, as the theory anticipates, nearly the square root of the dielectric constant.

MM. Rubens and Nichols have even produced with the waves which remain phenomena of electric resonance quite similar to those which an Italian scholar, M. Garbasso, obtained with electric waves. This physicist showed that, if the electric waves are made to impinge on a flat wooden stand, on which are a series of resonators parallel to each other and uniformly arranged, these waves are hardly reflected save in the case where the resonators have the same period as the spark-gap. If the remaining rays are allowed to fall on a glass plate silvered and divided by a diamond fixed on a dividing machine into small rectangles of equal dimensions, there will be observed variations in the reflecting power according to the orientation of the rectangles, under conditions entirely comparable with the experiment of Garbasso.

In order that the phenomenon be produced it is necessary that the remaining waves should be previously polarized. This is because, in fact, the mechanism employed to produce the electric oscillations evidently gives out vibrations which occur on a single plane and are subsequently polarized.

We cannot therefore entirely assimilate a radiation proceeding from a spark-gap to a ray of natural light. For the synthesis of light to be realized, still other conditions must be complied with. During a luminous impression, the direction and the phase change millions of times in the vibration sensible to the retina, yet the damping of this vibration is very slow. With the Hertzian oscillations all these conditions are changed—the damping is very rapid but the direction remains invariable.

Every time, however, that we deal with general phenomena which are independent of these special conditions, the parallelism is perfect; and with the waves, we have put in evidence the reflexion, refraction, total reflexion, double reflexion, rotatory polarization, dispersion, and the ordinary interferences produced by rays travelling in the same direction and crossing each other at a very acute angle, or the interferences analogous to those which Wiener observed with rays of the contrary direction.

A very important consequence of the electromagnetic theory foreseen by Maxwell is that the luminous waves which fall on a surface must exercise on this surface a pressure equal to the radiant energy which exists in the unit of volume of the surrounding space. M. Lebedeff a few years ago allowed a sheaf of rays from an arc lamp to fall on a deflection radiometer,[26] and thus succeeded in revealing the existence of this pressure. Its value is sufficient, in the case of matter of little density and finely divided, to reduce and even change into repulsion the attractive action exercised on bodies by the sun. This is a fact formerly conjectured by Faye, and must certainly play a great part in the deformation of the heads of comets.

[Footnote 26: By this M. Poincare appears to mean a radiometer in which the vanes are not entirely free to move as in the radiometer of Crookes but are suspended by one or two threads as in the instrument devised by Professor Poynting.—ED.]

More recently, MM. Nichols and Hull have undertaken experiments on this point. They have measured not only the pressure, but also the energy of the radiation by means of a special bolometer. They have thus arrived at numerical verifications which are entirely in conformity with the calculations of Maxwell.

The existence of these pressures may be otherwise foreseen even apart from the electromagnetic theory, by adding to the theory of undulations the principles of thermodynamics. Bartoli, and more recently Dr Larmor, have shown, in fact, that if these pressures did not exist, it would be possible, without any other phenomenon, to pass heat from a cold into a warm body, and thus transgress the principle of Carnot.

Sec. 5. THE X RAYS

It appears to-day quite probable that the X rays should be classed among the phenomena which have their seat in the luminous ether. Doubtless it is not necessary to recall here how, in December 1895, Roentgen, having wrapped in black paper a Crookes tube in action, observed that a fluorescent platinocyanide of barium screen placed in the neighbourhood, had become visible in the dark, and that a photographic plate had received an impress. The rays which come from the tube, in conditions now well known, are not deviated by a magnet, and, as M. Curie and M. Sagnac have conclusively shown, they carry no electric charge. They are subject to neither reflection nor refraction, and very precise and very ingenious measurements by M. Gouy have shown that, in their case, the refraction index of the various bodies cannot be more than a millionth removed from unity.

We knew from the outset that there existed various X rays differing from each other as, for instance, the colours of the spectrum, and these are distinguished from each other by their unequal power of passing through substances. M. Sagnac, particularly, has shown that there can be obtained a gradually decreasing scale of more or less absorbable rays, so that the greater part of their photographic action is stopped by a simple sheet of black paper. These rays figure among the secondary rays discovered, as is known, by this ingenious physicist. The X rays falling on matter are thus subjected to transformations which may be compared to those which the phenomena of luminescence produce on the ultra-violet rays.

M. Benoist has founded on the transparency of matter to the rays a sure and practical method of allowing them to be distinguished, and has thus been enabled to define a specific character analogous to the colour of the rays of light. It is probable also that the different rays do not transport individually the same quantity of energy. We have not yet obtained on this point precise results, but it is roughly known, since the experiments of MM. Rutherford and M'Clung, what quantity of energy corresponds to a pencil of X rays. These physicists have found that this quantity would be, on an average, five hundred times larger than that brought by an analogous pencil of solar light to the surface of the earth. What is the nature of this energy? The question does not appear to have been yet solved.

It certainly appears, according to Professors Haga and Wind and to Professor Sommerfeld, that with the X rays curious experiments of diffraction may be produced. Dr Barkla has shown also that they can manifest true polarization. The secondary rays emitted by a metallic surface when struck by X rays vary, in fact, in intensity when the position of the plane of incidence round the primary pencil is changed. Various physicists have endeavoured to measure the speed of propagation, but it seems more and more probable that it is very nearly that of light.[27]

[Footnote 27: See especially the experiments of Professor E. Marx (Vienna), Annalen der Physik, vol. xx. (No. 9 of 1906), pp. 677 et seq., which seem conclusive on this point.—ED.]

I must here leave out the description of a crowd of other experiments. Some very interesting researches by M. Brunhes, M. Broca, M. Colardeau, M. Villard, in France, and by many others abroad, have permitted the elucidation of several interesting problems relative to the duration of the emission or to the best disposition to be adopted for the production of the rays. The only point which will detain us is the important question as to the nature of the X rays themselves; the properties which have just been brought to mind are those which appear essential and which every theory must reckon with.

The most natural hypothesis would be to consider the rays as ultra-violet radiations of very short wave-length, or radiations which are in a manner ultra-ultra-violet. This interpretation can still, at this present moment, be maintained, and the researches of MM. Buisson, Righi, Lenard, and Merrit Stewart have even established that rays of very short wave-lengths produce on metallic conductors, from the point of view of electrical phenomena, effects quite analogous to those of the X rays. Another resemblance results also from the experiments by which M. Perreau established that these rays act on the electric resistance of selenium. New and valuable arguments have thus added force to those who incline towards a theory which has the merit of bringing a new phenomenon within the pale of phenomena previously known.

Nevertheless the shortest ultra-violet radiations, such as those of M. Schumann, are still capable of refraction by quartz, and this difference constitutes, in the minds of many physicists, a serious enough reason to decide them to reject the more simple hypothesis. Moreover, the rays of Schumann are, as we have seen, extraordinarily absorbable,—so much so that they have to be observed in a vacuum. The most striking property of the X rays is, on the contrary, the facility with which they pass through obstacles, and it is impossible not to attach considerable importance to such a difference.

Some attribute this marvellous radiation to longitudinal vibrations, which, as M. Duhem has shown, would be propagated in dielectric media with a speed equal to that of light. But the most generally accepted idea is the one formulated from the first by Sir George Stokes and followed up by Professor Wiechert. According to this theory the X rays should be due to a succession of independent pulsations of the ether, starting from the points where the molecules projected by the cathode of the Crookes tube meet the anticathode. These pulsations are not continuous vibrations like the radiations of the spectrum; they are isolated and extremely short; they are, besides, transverse, like the undulations of light, and the theory shows that they must be propagated with the speed of light. They should present neither refraction nor reflection, but, under certain conditions, they may be subject to the phenomena of diffraction. All these characteristics are found in the Roentgen rays.

Professor J.J. Thomson adopts an analogous idea, and states the precise way in which the pulsations may be produced at the moment when the electrified particles forming the cathode rays suddenly strike the anticathode wall. The electromagnetic induction behaves in such a way that the magnetic field is not annihilated when the particle stops, and the new field produced, which is no longer in equilibrium, is propagated in the dielectric like an electric pulsation. The electric and magnetic pulsations excited by this mechanism may give birth to effects similar to those of light. Their slight amplitude, however, is the cause of there here being neither refraction nor diffraction phenomena, save in very special conditions. If the cathode particle is not stopped in zero time, the pulsation will take a greater amplitude, and be, in consequence, more easily absorbable; to this is probably to be attributed the differences which may exist between different tubes and different rays.

It is right to add that some authors, notwithstanding the proved impossibility of deviating them in a magnetic field, have not renounced the idea of comparing them with the cathode rays. They suppose, for instance, that the rays are formed by electrons animated with so great a velocity that their inertia, conformably with theories which I shall examine later, no longer permit them to be stopped in their course; this is, for instance, the theory upheld by Mr Sutherland. We know, too, that to M. Gustave Le Bon they represent the extreme limit of material things, one of the last stages before the vanishing of matter on its return to the ether.

Everyone has heard of the N rays, whose name recalls the town of Nancy, where they were discovered. In some of their singular properties they are akin to the X rays, while in others they are widely divergent from them.

M. Blondlot, one of the masters of contemporary physics, deeply respected by all who know him, admired by everyone for the penetration of his mind, and the author of works remarkable for the originality and sureness of his method, discovered them in radiations emitted from various sources, such as the sun, an incandescent light, a Nernst lamp, and even bodies previously exposed to the sun's rays. The essential property which allows them to be revealed is their action on a small induction spark, of which they increase the brilliancy; this phenomenon is visible to the eye and is rendered objective by photography.

Various other physicists and numbers of physiologists, following the path opened by M. Blondlot, published during 1903 and 1904 manifold but often rather hasty memoirs, in which they related the results of their researches, which do not appear to have been always conducted with the accuracy desirable. These results were most strange; they seemed destined to revolutionise whole regions not only of the domain of physics, but likewise of the biological sciences. Unfortunately the method of observation was always founded on the variations in visibility of the spark or of a phosphorescent substance, and it soon became manifest that these variations were not perceptible to all eyes.

No foreign experimenter has succeeded in repeating the experiments, while in France many physicists have failed; and hence the question has much agitated public opinion. Are we face to face with a very singular case of suggestion, or is special training and particular dispositions required to make the phenomenon apparent? It is not possible, at the present moment, to declare the problem solved; but very recent experiments by M. Gutton and a note by M. Mascart have reanimated the confidence of those who hoped that such a scholar as M. Blondlot could not have been deluded by appearances. However, these last proofs in favour of the existence of the rays have themselves been contested, and have not succeeded in bringing conviction to everyone.

It seems very probable indeed that certain of the most singular conclusions arrived at by certain authors on the subject will lapse into deserved oblivion. But negative experiments prove nothing in a case like this, and the fact that most experimenters have failed where M. Blondlot and his pupils have succeeded may constitute a presumption, but cannot be regarded as a demonstrative argument. Hence we must still wait; it is exceedingly possible that the illustrious physicist of Nancy may succeed in discovering objective actions of the N rays which shall be indisputable, and may thus establish on a firm basis a discovery worthy of those others which have made his name so justly celebrated.

According to M. Blondlot the N rays can be polarised, refracted, and dispersed, while they have wavelengths comprised within .0030 micron, and .0760 micron—that is to say, between an eighth and a fifth of that found for the extreme ultra-violet rays. They might be, perhaps, simply rays of a very short period. Their existence, stripped of the parasitical and somewhat singular properties sought to be attributed to them, would thus appear natural enough. It would, moreover, be extremely important, and lead, no doubt, to most curious applications; it can be conceived, in fact, that such rays might serve to reveal what occurs in those portions of matter whose too minute dimensions escape microscopic examination on account of the phenomena of diffraction.

From whatever point of view we look at it, and whatever may be the fate of the discovery, the history of the N rays is particularly instructive, and must give food for reflection to those interested in questions of scientific methods.

Sec. 6. THE ETHER AND GRAVITATION

The striking success of the hypothesis of the ether in optics has, in our own days, strengthened the hope of being able to explain, by an analogous representation, the action of gravitation.

For a long time, philosophers who rejected the idea that ponderability is a primary and essential quality of all bodies have sought to reduce their weight to pressures exercised in a very subtle fluid. This was the conception of Descartes, and was perhaps the true idea of Newton himself. Newton points out, in many passages, that the laws he had discovered were independent of the hypotheses that could be formed on the way in which universal attraction was produced, but that with sufficient experiments the true cause of this attraction might one day be reached. In the preface to the second edition of the Optics he writes: "To prove that I have not considered weight as a universal property of bodies, I have added a question as to its cause, preferring this form of question because my interpretation does not entirely satisfy me in the absence of experiment"; and he puts the question in this shape: "Is not this medium (the ether) more rarefied in the interior of dense bodies like the sun, the planets, the comets, than in the empty spaces which separate them? Passing from these bodies to great distances, does it not become continually denser, and in that way does it not produce the weight of these great bodies with regard to each other and of their parts with regard to these bodies, each body tending to leave the most dense for the most rarefied parts?"

Evidently this view is incomplete, but we may endeavour to state it precisely. If we admit that this medium, the properties of which would explain the attraction, is the same as the luminous ether, we may first ask ourselves whether the action of gravitation is itself also due to oscillations. Some authors have endeavoured to found a theory on this hypothesis, but we are immediately brought face to face with very serious difficulties. Gravity appears, in fact, to present quite exceptional characteristics. No agent, not even those which depend upon the ether, such as light and electricity, has any influence on its action or its direction. All bodies are, so to speak, absolutely transparent to universal attraction, and no experiment has succeeded in demonstrating that its propagation is not instantaneous. From various astronomical observations, Laplace concluded that its velocity, in any case, must exceed fifty million times that of light. It is subject neither to reflection nor to refraction; it is independent of the structure of bodies; and not only is it inexhaustible, but also (as is pointed out, according to M. Hannequin, by an English scholar, James Croll) the distribution of the effects of the attracting force of a mass over the manifold particles which may successively enter the field of its action in no way diminishes the attraction it exercises on each of them respectively, a thing which is seen nowhere else in nature.

Nevertheless it is possible, by means of certain hypotheses, to construct interpretations whereby the appropriate movements of an elastic medium should explain the facts clearly enough. But these movements are very complex, and it seems almost inconceivable that the same medium could possess simultaneously the state of movement corresponding to the transmission of a luminous phenomenon and that constantly imposed on it by the transmission of gravitation.

Another celebrated hypothesis was devised by Lesage, of Geneva. Lesage supposed space to be overrun in all directions by currents of ultramundane corpuscles. This hypothesis, contested by Maxwell, is interesting. It might perhaps be taken up again in our days, and it is not impossible that the assimilation of these corpuscles to electrons might give a satisfactory image.[28]

[Footnote 28: M. Sagnac (Le Radium, Jan. 1906, p. 14), following perhaps Professors Elster and Geitel, has lately taken up this idea anew.—ED.]

M. Cremieux has recently undertaken experiments directed, as he thinks, to showing that the divergences between the phenomena of gravitation and all the other phenomena in nature are more apparent than real. Thus the evolution in the heart of the ether of a quantity of gravific energy would not be entirely isolated, and as in the case of all evolutions of all energy of whatever kind, it should provoke a partial transformation into energy of a different form. Thus again the liberated energy of gravitation would vary when passing from one material to another, as from gases into liquids, or from one liquid to a different one.

On this last point the researches of M. Cremieux have given affirmative results: if we immerse in a large mass of some liquid several drops of another not miscible with the first, but of identical density, we form a mass representing no doubt a discontinuity in the ether, and we may ask ourselves whether, in conformity with what happens in all other phenomena of nature, this discontinuity has not a tendency to disappear.

If we abide by the ordinary consequences of the Newtonian theory of potential, the drops should remain motionless, the hydrostatic impulsion forming an exact equilibrium to their mutual attraction. Now M. Cremieux remarks that, as a matter of fact, they slowly approach each other.

Such experiments are very delicate; and with all the precautions taken by the author, it cannot yet be asserted that he has removed all possibility of the action of the phenomena of capillarity nor all possible errors proceeding from extremely slight differences of temperature. But the attempt is interesting and deserves to be followed up.

Thus, the hypothesis of the ether does not yet explain all the phenomena which the considerations relating to matter are of themselves powerless to interpret. If we wished to represent to ourselves, by the mechanical properties of a medium filling the whole of the universe, all luminous, electric, and gravitation phenomena, we should be led to attribute to this medium very strange and almost contradictory characteristics; and yet it would be still more inconceivable that this medium should be double or treble, that there should be two or three ethers each occupying space as if it were alone, and interpenetrating it without exercising any action on one another. We are thus brought, by a close examination of facts, rather to the idea that the properties of the ether are not wholly reducible to the rules of ordinary mechanics.

The physicist has therefore not yet succeeded in answering the question often put to him by the philosopher: "Has the ether really an objective existence?" However, it is not necessary to know the answer in order to utilize the ether. In its ideal properties we find the means of determining the form of equations which are valid, and to the learned detached from all metaphysical prepossession this is the essential point.



CHAPTER VII

A CHAPTER IN THE HISTORY OF SCIENCE: WIRELESS TELEGRAPHY

Sec. 1

I have endeavoured in this book to set forth impartially the ideas dominant at this moment in the domain of physics, and to make known the facts essential to them. I have had to quote the authors of the principal discoveries in order to be able to class and, in some sort, to name these discoveries; but I in no way claim to write even a summary history of the physics of the day.

I am not unaware that, as has often been said, contemporary history is the most difficult of all histories to write. A certain step backwards seems necessary in order to enable us to appreciate correctly the relative importance of events, and details conceal the full view from eyes which are too close to them, as the trees prevent us from seeing the forest. The event which produces a great sensation has often only insignificant consequences; while another, which seemed at the outset of the least importance and little worthy of note, has in the long run a widespread and deep influence.

If, however, we deal with the history of a positive discovery, contemporaries who possess immediate information, and are in a position to collect authentic evidence at first hand, will make, by bringing to it their sincere testimony, a work of erudition which may be very useful, but which we may be tempted to look upon as very easy of execution. Yet such a labour, even when limited to the study of a very minute question or of a recent invention, is far from being accomplished without the historian stumbling over serious obstacles.

An invention is never, in reality, to be attributed to a single author. It is the result of the work of many collaborators who sometimes have no acquaintance with one another, and is often the fruit of obscure labours. Public opinion, however, wilfully simple in face of a sensational discovery, insists that the historian should also act as judge; and it is the historian's task to disentangle the truth in the midst of the contest, and to declare infallibly to whom the acknowledgments of mankind should be paid. He must, in his capacity as skilled expert, expose piracies, detect the most carefully hidden plagiarisms, and discuss the delicate question of priority; while he must not be deluded by those who do not fear to announce, in bold accents, that they have solved problems of which they find the solution imminent, and who, the day after its final elucidation by third parties, proclaim themselves its true discoverers. He must rise above a partiality which deems itself excusable because it proceeds from national pride; and, finally, he must seek with patience for what has gone before. While thus retreating step by step he runs the risk of losing himself in the night of time.

An example of yesterday seems to show the difficulties of such a task. Among recent discoveries the invention of wireless telegraphy is one of those which have rapidly become popular, and looks, as it were, an exact subject clearly marked out. Many attempts have already been made to write its history. Mr J.J. Fahie published in England as early as 1899 an interesting work entitled the History of Wireless Telegraphy; and about the same time M. Broca published in France a very exhaustive work named La Telegraphie sans fil. Among the reports presented to the Congres international de physique (Paris, 1900), Signor Righi, an illustrious Italian scholar, whose personal efforts have largely contributed to the invention of the present system of telegraphy, devoted a chapter, short, but sufficiently complete, of his masterly report on Hertzian waves, to the history of wireless telegraphy. The same author, in association with Herr Bernhard Dessau, has likewise written a more important work, Die Telegraphie ohne Draht; and La Telegraphie sans fil et les ondes Electriques of MM. J. Boulanger and G. Ferrie may also be consulted with advantage, as may La Telegraphie sans fil of Signor Dominico Mazotto. Quite recently Mr A. Story has given us in a little volume called The Story of Wireless Telegraphy, a condensed but very precise recapitulation of all the attempts which have been made to establish telegraphic communication without the intermediary of a conducting wire. Mr Story has examined many documents, has sometimes brought curious facts to light, and has studied even the most recently adopted apparatus.

It may be interesting, by utilising the information supplied by these authors and supplementing them when necessary by others, to trace the sources of this modern discovery, to follow its developments, and thus to prove once more how much a matter, most simple in appearance, demands extensive and complex researches on the part of an author desirous of writing a definitive work.

Sec. 2

The first, and not the least difficulty, is to clearly define the subject. The words "wireless telegraphy," which at first seem to correspond to a simple and perfectly clear idea, may in reality apply to two series of questions, very different in the mind of a physicist, between which it is important to distinguish. The transmission of signals demands three organs which all appear indispensable: the transmitter, the receiver, and, between the two, an intermediary establishing the communication. This intermediary is generally the most costly part of the installation and the most difficult to set up, while it is here that the sensible losses of energy at the expense of good output occur. And yet our present ideas cause us to consider this intermediary as more than ever impossible to suppress; since, if we are definitely quit of the conception of action at a distance, it becomes inconceivable to us that energy can be communicated from one point to another without being carried by some intervening medium. But, practically, the line will be suppressed if, instead of constructing it artificially, we use to replace it one of the natural media which separate two points on the earth. These natural media are divided into two very distinct categories, and from this classification arise two series of questions to be examined.

Between the two points in question there are, first, the material media such as the air, the earth, and the water. For a long time we have used for transmissions to a distance the elastic properties of the air, and more recently the electric conductivity of the soil and of water, particularly that of the sea.

Modern physics leads us on the other hand, as we have seen, to consider that there exists throughout the whole of the universe another and more subtle medium which penetrates everywhere, is endowed with elasticity in vacuo, and retains its elasticity when it penetrates into a great number of bodies, such as the air. This medium is the luminous ether which possesses, as we cannot doubt, the property of being able to transmit energy, since it itself brings to us by far the larger part of the energy which we possess on earth and which we find in the movements of the atmosphere, or of waterfalls, and in the coal mines proceeding from the decomposition of carbon compounds under the influence of the solar energy. For a long time also before the existence of the ether was known, the duty of transmitting signals was entrusted to it. Thus through the ages a double evolution is unfolded which has to be followed by the historian who is ambitious of completeness.

Sec. 3

If such an historian were to examine from the beginning the first order of questions, he might, no doubt, speak only briefly of the attempts earlier than electric telegraphy. Without seeking to be paradoxical, he certainly ought to mention the invention of the speaking-trumpet and other similar inventions which for a long time have enabled mankind, by the ingenious use of the elastic properties of the natural media, to communicate at greater distances than they could have attained without the aid of art. After this in some sort prehistoric period had been rapidly run through, he would have to follow very closely the development of electric telegraphy. Almost from the outset, and shortly after Ampere had made public the idea of constructing a telegraph, and the day after Gauss and Weber set up between their houses in Goettingen the first line really used, it was thought that the conducting properties of the earth and water might be made of service.

The history of these trials is very long, and is closely mixed up with the history of ordinary telegraphy; long chapters for some time past have been devoted to it in telegraphic treatises. It was in 1838, however, that Professor C.A. Steinheil of Munich expressed, for the first time, the clear idea of suppressing the return wire and replacing it by a connection of the line wire to the earth. He thus at one step covered half the way, the easiest, it is true, which was to lead to the final goal, since he saved the use of one-half of the line of wire. Steinheil, advised, perhaps, by Gauss, had, moreover, a very exact conception of the part taken by the earth considered as a conducting body. He seems to have well understood that, in certain conditions, the resistance of such a conductor, though supposed to be unlimited, might be independent of the distance apart of the electrodes which carry the current and allow it to go forth. He likewise thought of using the railway lines to transmit telegraphic signals.

Several scholars who from the first had turned their minds to telegraphy, had analogous ideas. It was thus that S.F.B. Morse, superintendent of the Government telegraphs in the United States, whose name is universally known in connection with the very simple apparatus invented by him, made experiments in the autumn of 1842 before a special commission in New York and a numerous public audience, to show how surely and how easily his apparatus worked. In the very midst of his experiments a very happy idea occurred to him of replacing by the water of a canal, the length of about a mile of wire which had been suddenly and accidentally destroyed. This accident, which for a moment compromised the legitimate success the celebrated engineer expected, thus suggested to him a fruitful idea which he did not forget. He subsequently repeated attempts to thus utilise the earth and water, and obtained some very remarkable results.

It is not possible to quote here all the researches undertaken with the same purpose, to which are more particularly attached the names of S.W. Wilkins, Wheatstone, and H. Highton, in England; of Bonetti in Italy, Gintl in Austria, Bouchot and Donat in France; but there are some which cannot be recalled without emotion.

On the 17th December 1870, a physicist who has left in the University of Paris a lasting name, M. d'Almeida, at that time Professor at the Lycee Henri IV. and later Inspector-General of Public Instruction, quitted Paris, then besieged, in a balloon, and descended in the midst of the German lines. He succeeded, after a perilous journey, in gaining Havre by way of Bordeaux and Lyons; and after procuring the necessary apparatus in England, he descended the Seine as far as Poissy, which he reached on the 14th January 1871. After his departure, two other scholars, MM. Desains and Bourbouze, relieving each other day and night, waited at Paris, in a wherry on the Seine, ready to receive the signal which they awaited with patriotic anxiety. It was a question of working a process devised by the last-named pair, in which the water of the river acted the part of the line wire. On the 23rd January the communication at last seemed to be established, but unfortunately, first the armistice and then the surrender of Paris rendered useless the valuable result of this noble effort.

Special mention is also due to the experiments made by the Indian Telegraph Office, under the direction of Mr Johnson and afterwards of Mr W.F. Melhuish. They led, indeed, in 1889 to such satisfactory results that a telegraph service, in which the line wire was replaced by the earth, worked practically and regularly. Other attempts were also made during the latter half of the nineteenth century to transmit signals through the sea. They preceded the epoch when, thanks to numerous physicists, among whom Lord Kelvin undoubtedly occupies a preponderating position, we succeeded in sinking the first cable; but they were not abandoned, even after that date, for they gave hopes of a much more economical solution of the problem. Among the most interesting are remembered those that S.W. Wilkins carried on for a long time between France and England. Like Cooke and Wheatstone, he thought of using as a receiver an apparatus which in some features resembles the present receiver of the submarine telegraph. Later, George E. Dering, then James Bowman and Lindsay, made on the same lines trials which are worthy of being remembered.

But it is only in our own days that Sir William H. Preece at last obtained for the first time really practical results. Sir William himself effected and caused to be executed by his associates—he is chief consulting engineer to the General Post Office in England— researches conducted with much method and based on precise theoretical considerations. He thus succeeded in establishing very easy, clear, and regular communications between various places; for example, across the Bristol Channel. The long series of operations accomplished by so many seekers, with the object of substituting a material and natural medium for the artificial lines of metal, thus met with an undoubted success which was soon to be eclipsed by the widely-known experiments directed into a different line by Marconi.

It is right to add that Sir William Preece had himself utilised induction phenomena in his experiments, and had begun researches with the aid of electric waves. Much is due to him for the welcome he gave to Marconi; it is certainly thanks to the advice and the material support he found in Sir William that the young scholar succeeded in effecting his sensational experiments.

Sec. 4

The starting-point of the experiments based on the properties of the luminous ether, and having for their object the transmission of signals, is very remote; and it would be a very laborious task to hunt up all the work accomplished in that direction, even if we were to confine ourselves to those in which electrical reactions play a part. An electric reaction, an electrostatic influence, or an electromagnetic phenomenon, is transmitted at a distance through the air by the intermediary of the luminous ether. But electric influence can hardly be used, as the distances it would allow us to traverse would be much too restricted, and electrostatic actions are often very erratic. The phenomena of induction, which are very regular and insensible to the variations of the atmosphere, have, on the other hand, for a long time appeared serviceable for telegraphic purposes.

We might find, in a certain number of the attempts just mentioned, a partial employment of these phenomena. Lindsay, for instance, in his project of communication across the sea, attributed to them a considerable role. These phenomena even permitted a true telegraphy without intermediary wire between the transmitter and the receiver, at very restricted distances, it is true, but in peculiarly interesting conditions. It is, in fact, owing to them that C. Brown, and later Edison and Gilliland, succeeded in establishing communications with trains in motion.

Mr Willoughby S. Smith and Mr Charles A. Stevenson also undertook experiments during the last twenty years, in which they used induction, but the most remarkable attempts are perhaps those of Professor Emile Rathenau. With the assistance of Professor Rubens and of Herr W. Rathenau, this physicist effected, at the request of the German Ministry of Marine, a series of researches which enabled him, by means of a compound system of conduction and induction by alternating currents, to obtain clear and regular communications at a distance of four kilometres. Among the precursors also should be mentioned Graham Bell; the inventor of the telephone thought of employing his admirable apparatus as a receiver of induction phenomena transmitted from a distance; Edison, Herr Sacher of Vienna, M. Henry Dufour of Lausanne, and Professor Trowbridge of Boston, also made interesting attempts in the same direction.

In all these experiments occurs the idea of employing an oscillating current. Moreover, it was known for a long time—since, in 1842, the great American physicist Henry proved that the discharges from a Leyden jar in the attic of his house caused sparks in a metallic circuit on the ground floor—that a flux which varies rapidly and periodically is much more efficacious than a simple flux, which latter can only produce at a distance a phenomenon of slight intensity. This idea of the oscillating current was closely akin to that which was at last to lead to an entirely satisfactory solution: that is, to a solution which is founded on the properties of electric waves.

Sec. 5

Having thus got to the threshold of the definitive edifice, the historian, who has conducted his readers over the two parallel routes which have just been marked out, will be brought to ask himself whether he has been a sufficiently faithful guide and has not omitted to draw attention to all essential points in the regions passed through.

Ought we not to place by the side, or perhaps in front, of the authors who have devised the practical appliances, those scholars who have constructed the theories and realised the laboratory experiments of which, after all, the apparatus are only the immediate applications? If we speak of the propagation of a current in a material medium, can one forget the names of Fourier and of Ohm, who established by theoretical considerations the laws which preside over this propagation? When one looks at the phenomena of induction, would it not be just to remember that Arago foresaw them, and that Michael Faraday discovered them? It would be a delicate, and also a rather puerile task, to class men of genius in order of merit. The merit of an inventor like Edison and that of a theorist like Clerk Maxwell have no common measure, and mankind is indebted for its great progress to the one as much as to the other.

Before relating how success attended the efforts to utilise electric waves for the transmission of signals, we cannot without ingratitude pass over in silence the theoretical speculations and the work of pure science which led to the knowledge of these waves. It would therefore be just, without going further back than Faraday, to say how that illustrious physicist drew attention to the part taken by insulating media in electrical phenomena, and to insist also on the admirable memoirs in which for the first time Clerk Maxwell made a solid bridge between those two great chapters of Physics, optics and electricity, which till then had been independent of each other. And no doubt it would be impossible not to evoke the memory of those who, by establishing, on the other hand, the solid and magnificent structure of physical optics, and proving by their immortal works the undulatory nature of light, prepared from the opposite direction the future unity. In the history of the applications of electrical undulations, the names of Young, Fresnel, Fizeau, and Foucault must be inscribed; without these scholars, the assimilation between electrical and luminous phenomena which they discovered and studied would evidently have been impossible.

Since there is an absolute identity of nature between the electric and the luminous waves, we should, in all justice, also consider as precursors those who devised the first luminous telegraphs. Claude Chappe incontestably effected wireless telegraphy, thanks to the luminous ether, and the learned men, such as Colonel Mangin, who perfected optical telegraphy, indirectly suggested certain improvements lately introduced into the present method.

But the physicist whose work should most of all be put in evidence is, without fear of contradiction, Heinrich Hertz. It was he who demonstrated irrefutably, by experiments now classic, that an electric discharge produces an undulatory disturbance in the ether contained in the insulating media in its neighbourhood; it was he who, as a profound theorist, a clever mathematician, and an experimenter of prodigious dexterity, made known the mechanism of the production, and fully elucidated that of the propagation of these electromagnetic waves.

He must naturally himself have thought that his discoveries might be applied to the transmission of signals. It would appear, however, that when interrogated by a Munich engineer named Huber as to the possibility of utilising the waves for transmissions by telephone, he answered in the negative, and dwelt on certain considerations relative to the difference between the periods of sounds and those of electrical vibrations. This answer does not allow us to judge what might have happened, had not a cruel death carried off in 1894, at the age of thirty-five, the great and unfortunate physicist.

We might also find in certain works earlier than the experiments of Hertz attempts at transmission in which, unconsciously no doubt, phenomena were already set in operation which would, at this day, be classed as electric oscillations. It is allowable no doubt, not to speak of an American quack, Mahlon Loomis, who, according to Mr Story, patented in 1870 a project of communication in which he utilised the Rocky Mountains on one side and Mont Blanc on the other, as gigantic antennae to establish communication across the Atlantic; but we cannot pass over in silence the very remarkable researches of the American Professor Dolbear, who showed, at the electrical exhibition of Philadelphia in 1884, a set of apparatus enabling signals to be transmitted at a distance, which he described as "an exceptional application of the principles of electrostatic induction." This apparatus comprised groups of coils and condensers by means of which he obtained, as we cannot now doubt, effects due to true electric waves.

Place should also be made for a well-known inventor, D.E. Hughes, who from 1879 to 1886 followed up some very curious experiments in which also these oscillations certainly played a considerable part. It was this physicist who invented the microphone, and thus, in another way, drew attention to the variations of contact resistance, a phenomenon not far from that produced in the radio-conductors of Branly, which are important organs in the Marconi system. Unfortunately, fatigued and in ill-health, Hughes ceased his researches at the moment perhaps when they would have given him final results.

In an order of ideas different in appearance, but closely linked at bottom with the one just mentioned, must be recalled the discovery of radiophony in 1880 by Graham Bell, which was foreshadowed in 1875 by C.A. Brown. A luminous ray falling on a selenium cell produces a variation of electric resistance, thanks to which a sound signal can be transmitted by light. That delicate instrument the radiophone, constructed on this principle, has wide analogies with the apparatus of to-day.

Sec. 6

Starting from the experiments of Hertz, the history of wireless telegraphy almost merges into that of the researches on electrical waves. All the progress realised in the manner of producing and receiving these waves necessarily helped to give rise to the application already indicated. The experiments of Hertz, after being checked in every laboratory, and having entered into the strong domain of our most certain knowledge, were about to yield the expected fruit.

Experimenters like Sir Oliver Lodge in England, Righi in Italy, Sarrazin and de la Rive in Switzerland, Blondlot in France, Lecher in Germany, Bose in India, Lebedeff in Russia, and theorists like M.H. Poincare and Professor Bjerknes, who devised ingenious arrangements or elucidated certain points left dark, are among the artisans of the work which followed its natural evolution.

It was Professor R. Threlfall who seems to have been the first to clearly propose, in 1890, the application of the Hertzian waves to telegraphy, but it was certainly Sir W. Crookes who, in a very remarkable article in the Fortnightly Review of February 1892, pointed out very clearly the road to be followed. He even showed in what conditions the Morse receiver might be applied to the new system of telegraphy.

About the same period an American physicist, well known by his celebrated experiments on high frequency currents—experiments, too, which are not unconnected with those on electric oscillations,—M. Tesla, demonstrated that these oscillations could be transmitted to more considerable distances by making use of two vertical antennae, terminated by large conductors.

A little later, Sir Oliver Lodge succeeded, by the aid of the coherer, in detecting waves at relatively long distances, and Mr Rutherford obtained similar results with a magnetic indicator of his own invention.

An important question of meteorology, the study of atmospheric discharges, at this date led a few scholars, and more particularly the Russian, M. Popoff, to set up apparatus very analogous to the receiving apparatus of the present wireless telegraphy. This comprised a long antenna and filings-tube, and M. Popoff even pointed out that his apparatus might well serve for the transmission of signals as soon as a generator of waves powerful enough had been discovered.

Finally, on the 2nd June 1896, a young Italian, born in Bologna on the 25th April 1874, Guglielmo Marconi, patented a system of wireless telegraphy destined to become rapidly popular. Brought up in the laboratory of Professor Righi, one of the physicists who had done most to confirm and extend the experiments of Hertz, Marconi had long been familiar with the properties of electric waves, and was well used to their manipulation. He afterwards had the good fortune to meet Sir William (then Mr) Preece, who was to him an adviser of the highest authority.

It has sometimes been said that the Marconi system contains nothing original; that the apparatus for producing the waves was the oscillator of Righi, that the receiver was that employed for some two or three years by Professor Lodge and Mr Bose, and was founded on an earlier discovery by a French scholar, M. Branly; and, finally, that the general arrangement was that established by M. Popoff.

The persons who thus rather summarily judge the work of M. Marconi show a severity approaching injustice. It cannot, in truth, be denied that the young scholar has brought a strictly personal contribution to the solution of the problem he proposed to himself. Apart from his forerunners, and when their attempts were almost unknown, he had the very great merit of adroitly arranging the most favourable combination, and he was the first to succeed in obtaining practical results, while he showed that the electric waves could be transmitted and received at distances enormous compared to those attained before his day. Alluding to a well-known anecdote relating to Christopher Columbus, Sir W. Preece very justly said: "The forerunners and rivals of Marconi no doubt knew of the eggs, but he it was who taught them to make them stand on end." This judgment will, without any doubt, be the one that history will definitely pronounce on the Italian scholar.

Sec. 7

The apparatus which enables the electric waves to be revealed, the detector or indicator, is the most delicate organ in wireless telegraphy. It is not necessary to employ as an indicator a filings-tube or radio-conductor. One can, in principle, for the purpose of constructing a receiver, think of any one of the multiple effects produced by the Hertzian waves. In many systems in use, and in the new one of Marconi himself, the use of these tubes has been abandoned and replaced by magnetic detectors.

Nevertheless, the first and the still most frequent successes are due to radio-conductors, and public opinion has not erred in attributing to the inventor of this ingenious apparatus a considerable and almost preponderant part in the invention of wave telegraphy.

The history of the discovery of radio-conductors is short, but it deserves, from its importance, a chapter to itself in the history of wireless telegraphy. From a theoretical point of view, the phenomena produced in those tubes should be set by the side of those studied by Graham Bell, C.A. Brown, and Summer Tainter, from the year 1878 onward. The variations to which luminous waves give rise in the resistance of selenium and other substances are, doubtless, not unconnected with those which the electric waves produce in filings. A connection can also be established between this effect of the waves and the variations of contact resistance which enabled Hughes to construct the microphone, that admirable instrument which is one of the essential organs of telephony.

More directly, as an antecedent to the discovery, should be quoted the remark made by Varley in 1870, that coal-dust changes in conductivity when the electromotive force of the current which passes through it is made to vary. But it was in 1884 that an Italian professor, Signor Calzecchi-Onesti, demonstrated in a series of remarkable experiments that the metallic filings contained in a tube of insulating material, into which two metallic electrodes are inserted, acquire a notable conductivity under different influences such as extra currents, induced currents, sonorous vibrations, etc., and that this conductivity is easily destroyed; as, for instance, by turning the tube over and over.

In several memoirs published in 1890 and 1891, M. Ed. Branly independently pointed out similar phenomena, and made a much more complete and systematic study of the question. He was the first to note very clearly that the action described could be obtained by simply making sparks pass in the neighbourhood of the radio-conductor, and that their great resistance could be restored to the filings by giving a slight shake to the tube or to its supports.

The idea of utilising such a very interesting phenomenon as an indicator in the study of the Hertzian waves seems to have occurred simultaneously to several physicists, among whom should be especially mentioned M. Ed. Branly himself, Sir Oliver Lodge, and MM. Le Royer and Van Beschem, and its use in laboratories rapidly became quite common.

The action of the waves on metallic powders has, however, remained some what mysterious; for ten years it has been the subject of important researches by Professor Lodge, M. Branly, and a very great number of the most distinguished physicists. It is impossible to notice here all these researches, but from a recent and very interesting work of M. Blanc, it would seem that the phenomenon is allied to that of ionisation.

Sec. 8

The history of wireless telegraphy does not end with the first experiments of Marconi; but from the moment their success was announced in the public press, the question left the domain of pure science to enter into that of commerce. The historian's task here becomes different, but even more delicate; and he will encounter difficulties which can be only known to one about to write the history of a commercial invention.

The actual improvements effected in the system are kept secret by the rival companies, and the most important results are patriotically left in darkness by the learned officers who operate discreetly in view of the national defence. Meanwhile, men of business desirous of bringing out a company proclaim, with great nourish of advertisements, that they are about to exploit a process superior to all others.

On this slippery ground the impartial historian must nevertheless venture; and he may not refuse to relate the progress accomplished, which is considerable. Therefore, after having described the experiments carried out for nearly ten years by Marconi himself, first across the Bristol Channel, then at Spezzia, between the coast and the ironclad San Bartolommeo, and finally by means of gigantic apparatus between America and England, he must give the names of those who, in the different civilised countries, have contributed to the improvement of the system of communication by waves; while he must describe what precious services this system has already rendered to the art of war, and happily also to peaceful navigation.

From the point of view of the theory of the phenomena, very remarkable results have been obtained by various physicists, among whom should be particularly mentioned M. Tissot, whose brilliant studies have thrown a bright light on different interesting points, such as the role of the antennae. It would be equally impossible to pass over in silence other recent attempts in a slightly different groove. Marconi's system, however improved it may be to-day, has one grave defect. The synchronism of the two pieces of apparatus, the transmitter and the receiver, is not perfect, so that a message sent off by one station may be captured by some other station. The fact that the phenomena of resonance are not utilised, further prevents the quantity of energy received by the receiver from being considerable, and hence the effects reaped are very weak, so that the system remains somewhat fitful and the communications are often disturbed by atmospheric phenomena. Causes which render the air a momentary conductor, such as electrical discharges, ionisation, etc., moreover naturally prevent the waves from passing, the ether thus losing its elasticity.

Professor Ferdinand Braun of Strasburg has conceived the idea of employing a mixed system, in which the earth and the water, which, as we have seen, have often been utilised to conduct a current for transmitting a signal, will serve as a sort of guide to the waves themselves. The now well-known theory of the propagation of waves guided by a conductor enables it to be foreseen that, according to their periods, these waves will penetrate more or less deeply into the natural medium, from which fact has been devised a method of separating them according to their frequency. By applying this theory, M. Braun has carried out, first in the fortifications of Strasburg, and then between the island of Heligoland and the mainland, experiments which have given remarkable results. We might mention also the researches, in a somewhat analogous order of ideas, by an English engineer, Mr Armstrong, by Dr Lee de Forest, and also by Professor Fessenden.

Having thus arrived at the end of this long journey, which has taken him from the first attempts down to the most recent experiments, the historian can yet set up no other claim but that of having written the commencement of a history which others must continue in the future. Progress does not stop, and it is never permissible to say that an invention has reached its final form.

Should the historian desire to give a conclusion to his labour and answer the question the reader would doubtless not fail to put to him, "To whom, in short, should the invention of wireless telegraphy more particularly be attributed?" he should certainly first give the name of Hertz, the genius who discovered the waves, then that of Marconi, who was the first to transmit signals by the use of Hertzian undulations, and should add those of the scholars who, like Morse, Popoff, Sir W. Preece, Lodge, and, above all, Branly, have devised the arrangements necessary for their transmission. But he might then recall what Voltaire wrote in the Philosophical Dictionary:

"What! We wish to know what was the exact theology of Thot, of Zerdust, of Sanchuniathon, of the first Brahmins, and we are ignorant of the inventor of the shuttle! The first weaver, the first mason, the first smith, were no doubt great geniuses, but they were disregarded. Why? Because none of them invented a perfected art. The one who hollowed out an oak to cross a river never made a galley; those who piled up rough stones with girders of wood did not plan the Pyramids. Everything is made by degrees and the glory belongs to no one."

To-day, more than ever, the words of Voltaire are true: science becomes more and more impersonal, and she teaches us that progress is nearly always due to the united efforts of a crowd of workers, and is thus the best school of social solidarity.



CHAPTER VIII

THE CONDUCTIVITY OF GASES AND THE IONS

Sec. 1. THE CONDUCTIVITY OF GASES

If we were confined to the facts I have set forth above, we might conclude that two classes of phenomena are to-day being interpreted with increasing correctness in spite of the few difficulties which have been pointed out. The hypothesis of the molecular constitution of matter enables us to group together one of these classes, and the hypothesis of the ether leads us to co-ordinate the other.

But these two classes of phenomena cannot be considered independent of each other. Relations evidently exist between matter and the ether, which manifest themselves in many cases accessible to experiment, and the search for these relations appears to be the paramount problem the physicist should set himself. The question has, for a long time, been attacked on various sides, but the recent discoveries in the conductivity of gases, of the radioactive substances, and of the cathode and similar rays, have allowed us of late years to regard it in a new light. Without wishing to set out here in detail facts which for the most part are well known, we will endeavour to group the chief of them round a few essential ideas, and will seek to state precisely the data they afford us for the solution of this grave problem.

It was the study of the conductivity of gases which at the very first furnished the most important information, and allowed us to penetrate more deeply than had till then been possible into the inmost constitution of matter, and thus to, as it were, catch in the act the actions that matter can exercise on the ether, or, reciprocally, those it may receive from it.

It might, perhaps, have been foreseen that such a study would prove remarkably fruitful. The examination of the phenomena of electrolysis had, in fact, led to results of the highest importance on the constitution of liquids, and the gaseous media which presented themselves as particularly simple in all their properties ought, it would seem, to have supplied from the very first a field of investigation easy to work and highly productive.

This, however, was not at all the case. Experimental complications springing up at every step obscured the problem. One generally found one's self in the presence of violent disruptive discharges with a train of accessory phenomena, due, for instance, to the use of metallic electrodes, and made evident by the complex appearance of aigrettes and effluves; or else one had to deal with heated gases difficult to handle, which were confined in receptacles whose walls played a troublesome part and succeeded in veiling the simplicity of the fundamental facts. Notwithstanding, therefore, the efforts of a great number of seekers, no general idea disengaged itself out of a mass of often contradictory information.

Many physicists, in France particularly, discarded the study of questions which seemed so confused, and it must even be frankly acknowledged that some among them had a really unfounded distrust of certain results which should have been considered proved, but which had the misfortune to be in contradiction with the theories in current use. All the classic ideas relating to electrical phenomena led to the consideration that there existed a perfect symmetry between the two electricities, positive and negative. In the passing of electricity through gases there is manifested, on the contrary, an evident dissymmetry. The anode and the cathode are immediately distinguished in a tube of rarefied gas by their peculiar appearance; and the conductivity does not appear, under certain conditions, to be the same for the two modes of electrification.

It is not devoid of interest to note that Erman, a German scholar, once very celebrated and now generally forgotten, drew attention as early as 1815 to the unipolar conductivity of a flame. His contemporaries, as may be gathered from the perusal of the treatises on physics of that period, attached great importance to this discovery; but, as it was somewhat inconvenient and did not readily fit in with ordinary studies, it was in due course neglected, then considered as insufficiently established, and finally wholly forgotten.

All these somewhat obscure facts, and some others—such as the different action of ultra-violet radiations on positively and negatively charged bodies—are now, on the contrary, about to be co-ordinated, thanks to the modern ideas on the mechanism of conduction; while these ideas will also allow us to interpret the most striking dissymmetry of all, i.e. that revealed by electrolysis itself, a dissymmetry which certainly can not be denied, but to which sufficient attention has not been given.

It is to a German physicist, Giese, that we owe the first notions on the mechanism of the conductivity of gases, as we now conceive it. In two memoirs published in 1882 and 1889, he plainly arrives at the conception that conduction in gases is not due to their molecules, but to certain fragments of them or to ions. Giese was a forerunner, but his ideas could not triumph so long as there were no means of observing conduction in simple circumstances. But this means has now been supplied in the discovery of the X rays. Suppose we pass through some gas at ordinary pressure, such as hydrogen, a pencil of X rays. The gas, which till then has behaved as a perfect insulator,[29] suddenly acquires a remarkable conductivity. If into this hydrogen two metallic electrodes in communication with the two poles of a battery are introduced, a current is set up in very special conditions which remind us, when they are checked by experiments, of the mechanism which allows the passage of electricity in electrolysis, and which is so well represented to us when we picture to ourselves this passage as due to the migration towards the electrodes, under the action of the field, of the two sets of ions produced by the spontaneous division of the molecule within the solution.

[Footnote 29: At least, so long as it is not introduced between the two coatings of a condenser having a difference of potential sufficient to overcome what M. Bouty calls its dielectric cohesion. We leave on one side this phenomenon, regarding which M. Bouty has arrived at extremely important results by a very remarkable series of experiments; but this question rightly belongs to a special study of electrical phenomena which is not yet written.]

Let us therefore recognise with J.J. Thomson and the many physicists who, in his wake, have taken up and developed the idea of Giese, that, under the influence of the X rays, for reasons which will have to be determined later, certain gaseous molecules have become divided into two portions, the one positively and the other negatively electrified, which we will call, by analogy with the kindred phenomenon in electrolysis, by the name of ions. If the gas be then placed in an electric field, produced, for instance, by two metallic plates connected with the two poles of a battery respectively, the positive ions will travel towards the plate connected with the negative pole, and the negative ions in the contrary direction. There is thus produced a current due to the transport to the electrodes of the charges which existed on the ions.

If the gas thus ionised be left to itself, in the absence of any electric field, the ions, yielding to their mutual attraction, must finally meet, combine, and reconstitute a neutral molecule, thus returning to their initial condition. The gas in a short while loses the conductivity which it had acquired; or this is, at least, the phenomenon at ordinary temperatures. But if the temperature is raised, the relative speeds of the ions at the moment of impact may be great enough to render it impossible for the recombination to be produced in its entirety, and part of the conductivity will remain.

Every element of volume rendered a conductor therefore furnishes, in an electric field, equal quantities of positive and negative electricity. If we admit, as mentioned above, that these liberated quantities are borne by ions each bearing an equal charge, the number of these ions will be proportional to the quantity of electricity, and instead of speaking of a quantity of electricity, we could use the equivalent term of number of ions. For the excitement produced by a given pencil of X rays, the number of ions liberated will be fixed. Thus, from a given volume of gas there can only be extracted an equally determinate quantity of electricity.

The conductivity produced is not governed by Ohm's law. The intensity is not proportional to the electromotive force, and it increases at first as the electromotive force augments; but it approaches asymptotically to a maximum value which corresponds to the number of ions liberated, and can therefore serve as a measure of the power of the excitement. It is this current which is termed the current of saturation.

M. Righi has ably demonstrated that ionised gas does not obey the law of Ohm by an experiment very paradoxical in appearance. He found that, the greater the distance of the two electrode plates from each, the greater may be, within certain limits, the intensity of the current. The fact is very clearly interpreted by the theory of ionisation, since the greater the length of the gaseous column the greater must be the number of ions liberated.

One of the most striking characteristics of ionised gases is that of discharging electrified conductors. This phenomenon is not produced by the departure of the charge that these conductors may possess, but by the advent of opposite charges brought to them by ions which obey the electrostatic attraction and abandon their own electrification when they come in contact with these conductors.

This mode of regarding the phenomena is extremely convenient and eminently suggestive. It may, no doubt, be thought that the image of the ions is not identical with objective reality, but we are compelled to acknowledge that it represents with absolute faithfulness all the details of the phenomena.

Other facts, moreover, will give to this hypothesis a still greater value; we shall even be able, so to speak, to grasp these ions individually, to count them, and to measure their charge.

Sec. 2. THE CONDENSATION OF WATER-VAPOUR BY IONS

If the pressure of a vapour—that of water, for instance—in the atmosphere reaches the value of the maximum pressure corresponding to the temperature of the experiment, the elementary theory teaches us that the slightest decrease in temperature will induce a condensation; that small drops will form, and the mist will turn into rain.

In reality, matters do not occur in so simple a manner. A more or less considerable delay may take place, and the vapour will remain supersaturated. We easily discover that this phenomenon is due to the intervention of capillary action. On a drop of liquid a surface-tension takes effect which gives rise to a pressure which becomes greater the smaller the diameter of the drop.

Pressure facilitates evaporation, and on more closely examining this reaction we arrive at the conclusion that vapour can never spontaneously condense itself when liquid drops already formed are not present, unless forces of another nature intervene to diminish the effect of the capillary forces. In the most frequent cases, these forces come from the dust which is always in suspension in the air, or which exists in any recipient. Grains of dust act by reason of their hygrometrical power, and form germs round which drops presently form. It is possible to make use, as did M. Coulier as early as 1875, of this phenomenon to carry off the germs of condensation, by producing by expansion in a bottle containing a little water a preliminary mist which purifies the air. In subsequent experiments it will be found almost impossible to produce further condensation of vapour.

But these forces may also be of electrical origin. Von Helmholtz long since showed that electricity exercises an influence on the condensation of the vapour of water, and Mr C.T.R. Wilson, with this view, has made truly quantitative experiments. It was rapidly discovered after the apparition of the X rays that gases that have become conductors, that is, ionised gases, also facilitate the condensation of supersaturated water vapour.

We are thus led by a new road to the belief that electrified centres exist in gases, and that each centre draws to itself the neighbouring molecules of water, as an electrified rod of resin does the light bodies around it. There is produced in this manner round each ion an assemblage of molecules of water which constitute a germ capable of causing the formation of a drop of water out of the condensation of excess vapour in the ambient air. As might be expected, the drops are electrified, and take to themselves the charge of the centres round which they are formed; moreover, as many drops are created as there are ions. Thereafter we have only to count these drops to ascertain the number of ions which existed in the gaseous mass.

To effect this counting, several methods have been used, differing in principle but leading to similar results. It is possible, as Mr C.T.R. Wilson and Professor J.J. Thomson have done, to estimate, on the one hand, the weight of the mist which is produced in determined conditions, and on the other, the average weight of the drops, according to the formula formerly given by Sir G. Stokes, by deducting their diameter from the speed with which this mist falls; or we can, with Professor Lemme, determine the average radius of the drops by an optical process, viz. by measuring the diameter of the first diffraction ring produced when looking through the mist at a point of light.

We thus get to a very high number. There are, for instance, some twenty million ions per centimetre cube when the rays have produced their maximum effect, but high as this figure is, it is still very small compared with the total number of molecules. All conclusions drawn from kinetic theory lead us to think that in the same space there must exist, by the side of a molecule divided into two ions, a thousand millions remaining in a neutral state and intact.

Mr C.T.R. Wilson has remarked that the positive and negative ions do not produce condensation with the same facility. The ions of a contrary sign may be almost completely separated by placing the ionised gas in a suitably disposed field. In the neighbourhood of a negative disk there remain hardly any but positive ions, and against a positive disk none but negative; and in effecting a separation of this kind, it will be noticed that condensation by negative ions is easier than by the positive.

It is, consequently, possible to cause condensation on negative centres only, and to study separately the phenomena produced by the two kinds of ions. It can thus be verified that they really bear charges equal in absolute value, and these charges can even be estimated, since we already know the number of drops. This estimate can be made, for example, by comparing the speed of the fall of a mist in fields of different values, or, as did J.J. Thomson, by measuring the total quantity of electricity liberated throughout the gas.

At the degree of approximation which such experiments imply, we find that the charge of a drop, and consequently the charge borne by an ion, is sensibly 3.4 x 10^{-10} electrostatic or 1.1 x 10^{-20} electromagnetic units. This charge is very near that which the study of the phenomena of ordinary electrolysis leads us to attribute to a univalent atom produced by electrolytic dissociation.

Such a coincidence is evidently very striking; but it will not be the only one, for whatever phenomenon be studied it will always appear that the smallest charge we can conceive as isolated is that mentioned. We are, in fact, in presence of a natural unit, or, if you will, of an atom of electricity.

We must, however, guard against the belief that the gaseous ion is identical with the electrolytic ion. Sensible differences between those are immediately apparent, and still greater ones will be discovered on closer examination.

As M. Perrin has shown, the ionisation produced by the X-rays in no way depends on the chemical composition of the gas; and whether we take a volume of gaseous hydrochloric acid or a mixture of hydrogen and chlorine in the same condition, all the results will be identical: and chemical affinities play no part here.

We can also obtain other information regarding ions: we can ascertain, for instance, their velocities, and also get an idea of their order of magnitude.

By treating the speeds possessed by the liberated charges as components of the known speed of a gaseous current, Mr Zeleny measures the mobilities, that is to say, the speeds acquired by the positive and negative charges in a field equal to the electrostatic unit. He has thus found that these mobilities are different, and that they vary, for example, between 400 and 200 centimetres per second for the two charges in dry gases, the positive being less mobile than the negative ions, which suggests the idea that they are of greater mass.[30]

[Footnote 30: A full account of these experiments, which were executed at the Cavendish Laboratory, is to be found in Philosophical Transactions, A., vol. cxcv. (1901), pp. 193 et seq.—ED.]

M. Langevin, who has made himself the eloquent apostle of the new doctrines in France, and has done much to make them understood and admitted, has personally undertaken experiments analogous to those of M. Zeleny, but much more complete. He has studied in a very ingenious manner, not only the mobilities, but also the law of recombination which regulates the spontaneous return of the gas to its normal state. He has determined experimentally the relation of the number of recombinations to the number of collisions between two ions of contrary sign, by studying the variation produced by a change in the value of the field, in the quantity of electricity which can be collected in the gas separating two parallel metallic plates, after the passage through it for a very short time of the Roentgen rays emitted during one discharge of a Crookes tube. If the image of the ions is indeed conformable to reality, this relation must evidently always be smaller than unity, and must tend towards this value when the mobility of the ions diminishes, that is to say, when the pressure of the gas increases. The results obtained are in perfect accord with this anticipation.

On the other hand, M. Langevin has succeeded, by following the displacement of the ions between the parallel plates after the ionisation produced by the radiation, in determining the absolute values of the mobilities with great precision, and has thus clearly placed in evidence the irregularity of the mobilities of the positive and negative ions respectively. Their mass can be calculated when we know, through experiments of this kind, the speed of the ions in a given field, and on the other hand—as we can now estimate their electric charge—the force which moves them. They evidently progress more slowly the larger they are; and in the viscous medium constituted by the gas, the displacement is effected at a speed sensibly proportional to the motive power.

At the ordinary temperature these masses are relatively considerable, and are greater for the positive than for the negative ions, that is to say, they are about the order of some ten molecules. The ions, therefore, seem to be formed by an agglomeration of neutral molecules maintained round an electrified centre by electrostatic attraction. If the temperature rises, the thermal agitation will become great enough to prevent the molecules from remaining linked to the centre. By measurements effected on the gases of flames, we arrive at very different values of the masses from those found for ordinary ions, and above all, very different ones for ions of contrary sign. The negative ions have much more considerable velocities than the positive ones. The latter also seem to be of the same size as atoms; and the first-named must, consequently, be considered as very much smaller, and probably about a thousand times less.

Thus, for the first time in science, the idea appears that the atom is not the smallest fraction of matter to be considered. Fragments a thousand times smaller may exist which possess, however, a negative charge. These are the electrons, which other considerations will again bring to our notice.

Sec. 3. HOW IONS ARE PRODUCED

It is very seldom that a gaseous mass does not contain a few ions. They may have been formed from many causes, for although to give precision to our studies, and to deal with a well ascertained case, I mentioned only ionisation by the X rays in the first instance, I ought not to give the impression that the phenomenon is confined to these rays. It is, on the contrary, very general, and ionisation is just as well produced by the cathode rays, by the radiations emitted by radio-active bodies, by the ultra-violet rays, by heating to a high temperature, by certain chemical actions, and finally by the impact of the ions already existing in neutral molecules.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse