|
Ingested food, passing down the alimentary tract, was absorbed as chyle from the intestine, collected by the portal vessel, and conveyed by it to the liver. That organ, the site of the innate heat in Galen's view, had the power of elaborating the chyle into venous blood and of imbuing it with a spirit or pneuma which is innate in all living substance, so long as it remains alive, the natural spirits ( {pneuma physikon}, spiritus naturalis of the mediaevals). Charged with this, and also with the nutritive material derived from the food, the venous blood is distributed by the liver through the veins which arise from it in the same way as the arteries from the heart. These veins carry nourishment and natural spirits to all parts of the body. Iecur fons venarum, the liver as the source of the veins, remained through the centuries the watchword of the Galenic physiology. The blood was held to ebb and flow continuously in the veins during life.
Now from the liver arose one great vessel, the hepatic vein, from division of which the others were held to come off as branches. Of these branches, one, our common vena cava, entered the right side of the heart. For the blood that it conveyed to the heart there were two fates possible. The greater part remained awhile in the ventricle, parting with its impurities and vapours, exhalations of the organs, which were carried off by the artery-like vein ( {phleps artêriôdês}, the mediaeval vena arterialis, our pulmonary artery) to the lung and then exhaled to the outer air. These impurities and vapours gave its poisonous and suffocating character to the breath. Having parted thus with its impurities, the venous blood ebbed back again from the right ventricle into the venous system. But for a small fraction of the venous blood that entered the right ventricle another fate was reserved. This small fraction of venous blood, charged still with the natural spirits derived from the liver, passed through minute channels in the septum between the ventricles and entered the left chamber. Arrived there, it encountered the external pneuma and became thereby elaborated into a higher form of spirit, the vital spirits ( {pneuma zôtikon}, spiritus vitalis), which is distributed together with blood by the arterial system to various parts of the body. In the arterial system it also ebbed and flowed, and might be seen and felt to pulsate there.
But among the great arterial vessels that sent forth arterial blood thus charged with vital spirits were certain vessels which ascended to the brain. Before reaching that organ they divided up into minute channels, the rete mirabile ( {plegma megiston thauma}), and passing into the brain became converted by the action of that organ into a yet higher type of spirits, the animal spirits ( {pneuma psychikon}, spiritus animalis), an ethereal substance distributed to the various parts of the body by the structures known to-day as nerves, but believed then to be hollow channels. The three fundamental faculties ( {dynameis}), the natural, the vital, and the animal, which brought into action the corresponding functions of the body, thus originated as an expression of the primal force or pneuma.
This physiology, we may emphasize, is not derived from an investigation of human anatomy. In the human brain there is no rete mirabile, though such an organ is found in the calf. In the human liver there is no hepatic vein, though such an organ is found in the dog. Dogs, calves, pigs, bears, and, above all, Barbary apes were freely dissected by Galen and were the creatures from which he derived his physiological ideas. Many of Galen's anatomical and physiological errors are due to his attributing to one creature the structures found in another, a fact that only very gradually dawned on the Renaissance anatomists.
The whole knowledge possessed by the world in the department of physiology from the third to the seventeenth century, nearly all the biological conceptions till the thirteenth, and most of the anatomy and much of the botany until the sixteenth century, all the ideas of the physical structure of living things throughout the Middle Ages, were contained in a small number of these works of Galen. The biological works of Aristotle and Theophrastus lingered precariously in a few rare manuscripts in the monasteries of the East; the total output of hundreds of years of Alexandrian and Pergamenian activities was utterly destroyed; the Ionian biological works, of which a sample has by a miracle survived, were forgotten; but these vast, windy, ill-arranged treatises of Galen lingered on. Translated into Latin, Syriac, Arabic, and Hebrew, they saturated the intellectual world of the Middle Ages. Commented on by later Greek writers, who were themselves in turn translated into the same list of languages, they were yet again served up under the names of such Greek writers as Oribasius, Paul of Aegina, or Alexander of Tralles.
What is the secret of the vitality of these Galenic biological conceptions? The answer can be given in four words. Galen is a teleologist; and a teleologist of a kind whose views happened to fit in with the prevailing theological attitude of the Middle Ages, whether Christian, Moslem, or Jewish. According to him everything which exists and displays activity in the human body originates in and is formed by an intelligent being and on an intelligent plan, so that the organ in structure and function is the result of that plan. 'It was the Creator's infinite wisdom which selected the best means to attain his beneficent ends, and it is a proof of His omnipotence that he created every good thing according to His design, and thereby fulfilled His will.'[43]
[43] A good instance of Galen's teleological point of view is afforded by his classical description of the hand in the {peri chreias tôn en anthrôpou sômati moriôn}, On the uses of the parts of the body of man, i. 1. This passage is available in English in a tract by Thomas Bellott, London, 1840.
After Galen there is a thousand years of darkness, and biology ceases to have a history. The mind of the Dark Ages turned towards theology, and such remains of Neoplatonic philosophy as were absorbed into the religious system were little likely to be of aid to the scientific attitude. One department of positive knowledge must of course persist. Men still suffered from the infirmities of the flesh and still sought relief from them. But the books from which that advice was sought had nothing to do with general principles nor with knowledge as such. They were the most wretched of the treatises that still masqueraded under the names of Hippocrates and Galen, mostly mere formularies, antidotaries, or perhaps at best symptom lists. And, when the depression of the western intellect had passed its worst, there was still no biological material on which it could be nourished.
The prevailing interest of the barbarian world, at last beginning to settle into its heritage of antiquity, was with Logic. Of Aristotle there survived in Latin dress only the Categories and the De interpretatione, the merciful legacy of Boethius, the last of the philosophers. Had a translation of Aristotle's Historia animalium or De generatione animalium survived, had a Latin version of the Hippocratic work On generation or of the treatises of Theophrastus On plants reached the earlier Middle Ages, the whole mental history of Europe might have been different and the rediscovery of nature might have been antedated by centuries. But this was a change of heart for which the world had long to wait; something much less was the earliest biological gift of Greece. The gift, when it came, came in two forms, one of which has not been adequately recognized, but both are equally her legacy. These two forms are, firstly, the well-known work of the early translators and, secondly, the tardily recognized work of certain schools of minor art.
The earliest biological treatises to become accessible in the west were rendered not from Greek but from Arabic.[44] The first of them was perhaps the treatise {peri myôn kinêseôs}, On movement of muscles of Galen, a work which contains more than its title suggests and indeed sets forth much of the Galenic physiological system. It was rendered into Latin from the Arabic of Joannitius (Hunain ibn Ishaq, 809-73), probably about the year 1200, by one Mark of Toledo. It attracted little attention, but very soon after biological works of Aristotle began to become accessible. The first was probably the fragment On plants. The Greek original of this is lost, and besides the Latin, only an Arabic version of a former Arabic translation of a Syriac rendering of a Greek commentary is now known! Such a work appeared from the hand of a translator known as Alfred the Englishman about 1220 or a little later. Neither it nor another work from the same translator, On the motion of the heart, which sought to establish the primacy of that organ on Aristotelian grounds, can be said to contain any of the spirit of the master.[45]
[44] The early European translations from the Arabic are tabulated with unparalleled learning by M. Steinschneider, 'Die Europäischen Uebersetzungen aus dem Arabischen bis Mitte des 17. Jahrhunderts', in the Sitzungsberichte der kais. Akad. der Wissenschaften in Wien, cxlix and cli, Vienna, 1904 and 1905.
[45] C. H. Haskins, 'The reception of Arabic science in England,' English Historical Review, London, 1915, p. 56.
A little better than these is the work of the wizard Michael the Scot (1175?-1234?). Roger Bacon tells us that Michael in 1230 'appeared [at Oxford], bringing with him the works of Aristotle in natural history and mathematics, with wise expositors, so that the philosophy of Aristotle was magnified among the Latins'.[46] Scott produced his work De animalibus about this date and he included in it the three great biological works of Aristotle, all rendered from an inferior Arabic version.[47] Albertus Magnus (1206-80) had not as yet a translation direct from the Greek to go upon for his great commentary on the History of animals, but he depended on Scott. The biological works of Aristotle were rendered into Latin direct from the Greek in the year 1260 probably by William of Moerbeke.[48] Such translations, appearing in the full scholastic age when everything was against direct observation, cannot be said to have fallen on a fertile ground. They presented an ordered account of nature and a good method of investigation, but those were gifts to a society that knew little of their real value.[49]
[46] Roger Bacon, Opus majus, edited by J. H. Bridges, 3 vols., London, 1897-1900. Vol. iii, p. 66.
[47] On the Aristotelian translations of Scott see A. H. Querfeld, Michael Scottus und seine Schrift, De secretis naturae, Leipzig, 1919; and C. H. Haskins, 'Michael Scot and Frederick II' in Isis, ii. 250, Brussels, 1922.
[48] J. G. Schneider, Aristotelis de animalibus historiae, Leipzig, 1811, p. cxxvi. L. Dittmeyer, Guilelmi Moerbekensis translatio commentationis Aristotelicae de generatione animalium, Dillingen, 1915. L. Dittmeyer, De animalibus historia, Leipzig, 1907.
[49] The subject of the Latin translations of Aristotle is traversed by A. and C. Jourdain, Recherches critiques sur l'âge des traductions latines d'Aristote, 2nd ed., Paris, 1843; M. Grabmann, Forschungen uber die lateinischen Aristoteles Ubersetzungen des XIII. Jahrhunderts, Münster i/W., 1916; and F. Wüstenfeld, Die Ubersetzungen arabischer Werke in das Lateinische seit dem XI. Jahrhundert, Göttingen, 1877.
Yet the advent of these texts was coincident with a returning desire to observe nature. Albert, with all his scholasticism, was no contemptible naturalist. He may be said to have begun first-hand plant study in modern times so far as literary records are concerned. His book De vegetabilibus contains excellent observations, and he is worthy of inclusion among the fathers of botany. In his vast treatise De animalibus, hampered as he is by his learning and verbosity, he shows himself a true observer and one who has absorbed something of the spirit of the great naturalist to whose works he had devoted a lifetime of study and on which he professes to be commenting. We see clearly the leaven of the Aristotelian spirit working, though Albert is still a schoolman. We may select for quotation a passage on the generation of fish, a subject on which some of Aristotle's most remarkable descriptions remained unconfirmed till modern times. These descriptions impressed Albert in the same way as they do the modern naturalist. To those who know nothing of the stimulating power of the Aristotelian biological works, Albert's description of the embryos of fish and his accurate distinction of their mode of development from that of birds, by the absence of an allantoic membrane in the one and its presence in the other, must surely be startling. Albert depends on Aristotle—a third-hand version of Aristotle—but does not slavishly follow him.
'Between the mode of development (anathomiam generationis) of birds' and fishes' eggs there is this difference: during the development of the fish the second of the two veins which extend from the heart [as described by Aristotle in birds] does not exist. For we do not find the vein which extends to the outer covering in the eggs of birds which some wrongly call the navel because it carries the blood to the exterior parts; but we do find the vein that corresponds to the yolk vein of birds, for this vein imbibes the nourishment by which the limbs increase.... In fishes as in birds, channels extend from the heart first to the head and the eyes, and first in them appear the great upper parts. As the growth of the young fish increases the albumen decreases, being incorporated into the members of the young fish, and it disappears entirely when development and formation are complete. The beating of the heart ... is conveyed to the lower part of the belly, carrying pulse and life to the inferior members.
'While the young [fish] are small and not yet fully developed they have veins of great length which take the place of the navel-string, but as they grow and develop, these shorten and contract into the body towards the heart, as we have said about birds. The young fish and the eggs are enclosed and in a covering, as are the eggs and young of birds. This covering resembles the dura mater [of the brain], and beneath it is another [corresponding therefore to the pia mater of the brain] which contains the young animal and nothing else.'[50]
[50] The enormous De Animalibus of Albert of Cologne is now available in an edition by H. Stadler, Albertus Magnus De Animalibus Libri XXVI nach der cölner Urschrift, 2 vols., Münster i/W., 1916-21. The quotation is translated from vol. i, pp. 465-6.
In the next century Conrad von Megenberg (1309-98) produced his Book of Nature, a complete work on natural history, the first of the kind in the vernacular, founded on Latin versions, now rendered direct from the Greek, of the Aristotelian and Galenic biological works. It is well ordered and opens with a systematic account of the structure and physiology of man as a type of the animal creation, which is then systematically described and followed by an account of plants. Conrad, though guided by Aristotle, uses his own eyes and ears, and with him and Albert the era of direct observation has begun.[51]
[51] Conrad's work is conveniently edited by H. Schultz, Das Buch der Natur von Conrad von Megenberg, die erste Naturgeschichte in deutscher Sprache, in Neu-Hochdeutsche Sprache bearbeitet, Greifswald, 1897. Conrad's work is based on that of Thomas of Cantimpré (1201-70).
But there was another department in which the legacy of Greece found an even earlier appreciation. For centuries the illustrations to herbals and bestiaries had been copied from hand to hand, continuing a tradition that had its rise with Greek artists of the first century B. C. But their work, copied at each stage without reference to the object, moved constantly farther from resemblance to the original. At last the illustrations became little but formal patterns, a state in which they remained in some late copies prepared as recently as the sixteenth century. But at a certain period a change set in, and the artist, no longer content to rely on tradition, appeals at last to nature. This new stirring in art corresponds with the new stirring in letters, the Arabian revival—itself a legacy of Greece, though sadly deteriorated in transit—that gave rise to scholasticism. In much of the beautiful carved and sculptured work of the French cathedrals the new movement appears in the earlier part of the thirteenth century. At such a place as Chartres we see the attempt to render plants and animals faithfully in stone as early as 1240 or before. In the easier medium of parchment the same tendency appears even earlier. When once it begins the process progresses slowly until the great recovery of the Greek texts in the fifteenth century, when it is again accelerated.
During the sixteenth century the energy of botanists and zoologists was largely absorbed in producing most carefully annotated and illustrated editions of Dioscorides and Theophrastus and accounts of animals, habits, and structure that were intended to illustrate the writings of Aristotle, while the anatomists explored the bodies of man and beast to confirm or refute Galen. The great monographs on birds, fishes, and plants of this period, ostensibly little but commentaries on Pliny, Aristotle, and Dioscorides, represent really the first important efforts of modern times at a natural history. They pass naturally into the encyclopaedias of the later sixteenth century, and these into the physiological works of the seventeenth. Aristotle was never a dead hand in Biology as he was in Physics, and this for the reason that he was a great biologist but was not a great physicist.
With the advance of the sixteenth century the works of Aristotle, and to a less extent those of Dioscorides and Galen, became the great stimulus to the foundation of a new biological science. Matthioli (1520-77), in his commentary on Dioscorides (first edition 1544), which was one of the first works of its type to appear in the vernacular, made a number of first-hand observations on the habits and structure of plants that is startling even to a modern botanist. About the same time Galenic physiology, expressed also in numerous works in the vulgar tongue and rousing the curiosity of the physicians, became the clear parent of modern physiology and comparative anatomy. But, above all, the Aristotelian biological works were fertilizers of the mind. It is very interesting to watch a fine observer such as Fabricius ab Acquapendente (1537-1619) laying the foundations of modern embryology in a splendid series of first-hand observations, treating his own great researches almost as a commentary on Aristotle. What an impressive contrast to the arid physics of the time based also on Aristotle! 'My purpose', says Fabricius, 'is to treat of the formation of the foetus in every animal, setting out from that which proceeds from the egg: for this ought to take precedence of all other discussion of the subject, both because it is not difficult to make out Aristotle's view of the matter, and because his treatise on the Formation of the Foetus from the egg is by far the fullest, and the subject is by much the most extensive and difficult.'[52]
[52] Hieronimo Fabrizio of Acquapendente, De formato foetu, Padua, 1604.
The industrious and careful Fabricius, with a wonderful talent for observation lit not by his own lamp but by that of Aristotle, bears a relation to the master much like that held by Aristotle's pupil in the flesh, Theophrastus. The works of the two men, Fabricius and Theophrastus, bear indeed a resemblance to each other. Both rely on the same group of general ideas, both progress in much the same ordered calm from observation to observation, both have an inspiration which is efficient and stimulating but below the greatest, both are enthusiastic and effective as investigators of fact, but timid and ineffective in drawing conclusions.
But Fabricius was more happy in his pupils than Theophrastus, for we may watch the same Aristotelian ideas fermenting in the mind of Fabricius's successor, the greatest biologist since Aristotle himself, William Harvey (1578-1657).[53] This writer's work On generation is a careful commentary on Aristotle's work on the same topic, but it is a commentary not in the old sense but in the spirit of Aristotle himself. Each statement is weighed and tested in the light of experience, and the younger naturalist, with all his reverence for Aristotle, does not hesitate to criticize his conclusions. He exhibits an independence of thought, an ingenuity in experiment, and a power of deduction that places his treatise as the middle term of the three great works on embryology of which the other members are those of Aristotle and Karl Ernst von Baer (1796-1876).[54]
[53] William Harvey, Exercitationes de generatione animalium, London, 1651.
[54] Karl Ernst von Baer, Ueber die Entwickelungsgeschichte der Thiere, Königsberg, 1828-37.
With the second half of the seventeenth century and during a large part of the eighteenth the biological works of Aristotle attracted less attention. The battle against the Aristotelian physics had been fought and won, but with them the biological works of Aristotle unjustly passed into the shadow that overhung all the idols of the Middle Ages.
The rediscovery of the Aristotelian biology is a modern thing. The collection of the vast wealth of living forms absorbed the energies of the generations of naturalists from Ray (1627-1705) and Willoughby (1635-72) to Réaumur (1683-1757) and Linnaeus (1707-1778) and beyond to the nineteenth century. The magnitude and fascination of the work seems almost to have excluded general ideas. With the end of this period and the advent of a more philosophical type of naturalist, such as Cuvier (1769-1832) and members of the Saint-Hilaire family, Aristotle came again to his own. Since the dawn of the nineteenth century, and since naturalists have been in a position to verify the work of Aristotle, his reputation as a naturalist has continuously risen. Johannes Müller (1801-58), Richard Owen (1804-92), George Henry Lewes (1817-78), William Ogle (1827-1912) are a few of the long line of those who have derived direct inspiration from his biological work. With improved modern methods of investigation the problems of generation have absorbed a large amount of biological attention, and interest has become specially concentrated on Aristotle's work on that topic which is perhaps, at the moment, more widely read than any biological treatise, ancient or modern, except the works of Darwin. That great naturalist wrote to Ogle in 1882: 'From quotations I had seen I had a high notion of Aristotle's merits, but I had not the most remote notion what a wonderful man he was. Linnaeus and Cuvier have been my two gods, though in very different ways, but they were mere schoolboys to old Aristotle.'
CHARLES SINGER.
MEDICINE
, .
{Hêrophilos de en tô Diaitêtikô kai sophian phêsin anepideikton kai technên adêlon kai ischyn anagôniston kai plouton achreion kai logon adynaton, hygieias apousês.}
Herophilos, a Greek philosopher and physician (c. 300 B. C.), has truly written 'that Science and Art have equally nothing to show, that Strength is incapable of effort, Wealth useless, and Eloquence powerless if Health be wanting'.[55] All peoples therefore have had their methods of treating those departures from health that we call disease, and among peoples of higher culture such methods have been reduced in most cases to something resembling a system. In antiquity, as now, a variety of such systems were in vogue, and those nations who practised the art of writing from an early date have left considerable records of their medical methods and doctrines. We may thus form a fairly good idea of the medical principles of the Mesopotamian, the Egyptian, the Iranian, the Indian, and the Chinese civilizations. Much in these systems, as in the medical procedure of more primitive tribes, was based upon some theory of disease which fitted in with a larger theory of the nature of evil. Of these theories the commonest was and is the demonic, the view that regards deviation from the normal state of health as due either to the attacks of supernatural beings or to their actual entry into the body of the sufferer. A medical system based on such a view is susceptible of great elaboration in a higher civilization, but not being founded on observation is hardly capable of indefinite development, for a point must ultimately be reached at which the mind recoils from complex conclusions far remote from observed phenomena. The medicine of the ancient and settled civilization of such a people as the Assyro-Babylonians, for instance, of which substantial traces have been recovered, is hardly, if at all, more effective, though far more systematized, than that of many a wild and unlettered tribe that may be observed to-day. Of such medicine as this we may give an account, but we can hardly write a history. We cannot establish those elements of continuity and of development from which alone history can be constructed.
[55] The works of Herophilus are lost. This fine passage has been preserved for us by Sextus Empiricus, a third-century physician, in his {pros tois mathêmatikous aitirrêtikoi}, which is in essence an attack on all positive philosophy. It is an entertaining fact that we should have to go to such a work for remains of the greatest anatomist of antiquity. The passage is in the section directed against ethical writers, xi. 50.
It is the distinction of the Greeks alone among the nations of antiquity that they practised a system of medicine based not on theory but on observation accumulated systematically as time went on. The claim can be made for the Greeks that some at least among them were deflected by no theory, were deceived by no theurgy, were hampered by no tradition in their search for the facts of disease and in their attempts at interpreting its phenomena. Only the Greeks among the ancients could look on their healers as physicians (= naturalists, {physis} = nature), and that word itself stands as a lasting reminder of their achievement.[56]
[56] The word {physikos}, though it passed over into Latin (Cicero) with the meaning naturalist, acquired the connotation of sorcerer among the later Greek writers. Perhaps the word physicianus was introduced to make a distinction from the charm-mongering physicus. In later Latin physicus and medicus are almost always interchangeable.
At a certain stage in the history of the Western world—the exact point in time may be disputed but the event is admitted by all—men turned to explore the treasures of the ancient wisdom and the whole mass of Greek medical learning was gradually laid before the student. That mass contained much dross, material that survived from early as from late Greek times which was hardly, if at all, superior to the debased compositions that circulated in the name of medicine in the middle centuries. But the recovered Greek medical writings also contained some material of the purest and most scientific type, and that material and the spirit in which it was written, form the debt of modern medicine to antiquity.
It is a debt the value of which cannot be exaggerated. The physicians of the revival of learning, and for long after, doubtless pinned their faith too much to the written word of their Greek forbears and sought to imprison the free spirit of Hippocrates and Galen in the rigid wall of their own rediscovered texts. The great medical pioneers of a somewhat later age, enraged by this attempt, the real nature of which was largely hidden from them, not infrequently revolted and rightly revolted against the bondage to the Greeks in which they had been brought up. Yet it is sure that these modern discoverers were the true inheritors of the Greeks. Without Herophilus we should have had no Harvey and the rise of physiology might have been delayed for centuries; had Galen's works not survived, Vesalius would never have reconstructed Anatomy, and Surgery too might have stayed behind with her laggard sister, Medicine; the Hippocratic collection was the necessary and acknowledged basis for the work of the greatest of modern clinical observers, Thomas Sydenham, and the teaching of Hippocrates and of his school is the substantial basis of instruction in the wards of a modern hospital. In the pages which follow we propose therefore to review the general character of medical knowledge in the best Greek period and to consider briefly how much of that great heritage remained accessible to the earlier modern physicians. The reader will thus be able to form some estimate of the degree to which the legacy has been passed on to our own times.
It is evident that among such a group of peoples as the Greeks, varying in state of civilization, in mental power, in geographical and economic position and in general outlook, the practice of medicine can have been by no means uniform. Without any method of centralizing medical education and standardizing teaching there was a great variety of doctrines and of practice in vogue among them, and much of this was on a low level of folk custom. Such lower grade material of Greek origin has come down to us in abundance, though much of it, curiously enough, from a later time. But the overwhelming mass of earlier Greek medical literature sets forth for us a pure scientific effort to observe and to classify disease, to make generalizations from carefully collected data, to explain the origin of disease on rational grounds, and to apply remedies, when possible, on a reasoned basis. We may thus rest fairly well assured that, despite serious and irreparable losses, we are still in possession of some of the very finest products of the Greek medical intellect.
There is ample evidence that the Greeks inherited, in common with many other peoples of Mediterranean and Asiatic origin, a whole system of magical or at least non-rational pharmacy and medicine from a remoter ancestry. Striking parallels can be drawn between these folk elements among the Greeks and the medical systems of the early Romans, as well as with the medicine of the Indian Vedas, of the ancient Egyptians, and of the earliest European barbarian writings. It is thus reasonable to suppose that these elements, when they appear in later Greek writings, represent more primitive folk elements working up, under the influence of social disintegration and consequent mental deterioration, through the upper strata of the literate Greek world. But with these elements, intensely interesting to the anthropologist, the psychologist, the ethnologist, and to the historian of religion, we are not here greatly concerned. Important as they are, they constitute no part of the special claim of the Greek people to distinction, but rather aid us in uniting the Greek mentality with that of other kindred peoples. Here we shall rather discuss the course of Greek scientific medicine proper, the type of medical doctrine and practice, capable of development in the proper sense of the word, that forms the basis of our modern system. We are concerned, in fact, with the earliest evolutionary medicine.
We need hardly discuss the first origins of Greek Medicine. The material is scanty and the conclusions somewhat doubtful and perhaps premature, for the discovery of a considerable fragment of the historical work of Menon, a pupil of Aristotle, containing a description of the views of some of the precursors of the Hippocratic school, renews a hope that more extended investigation may yield further information as to the sources and nature of the earliest Greek medical writings.[57] The study of Mesopotamian star-lore has linked it up with early Greek astronomical science. The efforts of cuneiform scholars have not, however, been equally successful for medicine, and on the whole the general tendency of modern research is to give less weight to Mesopotamian and more to Egyptian sources than had previously been admitted; thus very recently an Egyptian medical papyrus of about 1700 B. C. has been described which bears a distinct resemblance to some of the Hippocratic treatises.[58] A number of drugs, too, habitually used by the Greeks, such as Andropogon, Cardamoms, and Sesame orientalis, are of Indian origin. There are also the Minoan cultures to be considered, and though our knowledge is not yet sufficient to speak of the heritage that Greek medicine may or may not have derived from that source, it seems not improbable that Greek hygiene may here owe a debt.[59] Omitting, therefore, this early epoch, we pass direct to the later period, between the sixth and fourth centuries, from which documents have actually come down to us.
[57] This fragment has been published in vol. iii, part 1, of the Supplementum Aristotelicum by H. Diels as Anonymi Londinensis ex Aristotelis Iatricis Menonis et Aliis Medicis Eclogae, Berlin, 1893. See also H. Bekh and F. Spät, Anonymus Londinensis, Auszuge eines Unbekannten aus Aristoteles-Menons Handbuch der Medizin, Berlin, 1896.
[58] As we go to press there appears a preliminary account of the very remarkable Edwin Smith papyrus, see J. H. Breasted in Recueil d'études egyptologiques dédiées à la mémoire de Champollion, Paris 1922, and New York Historical Society Bulletin, 1922.
[59] It is tempting, also, to connect the Asclepian snake cult with the prominence of the serpent in Minoan religion.
The earliest medical school of which we have definite information is that of Cnidus, a Lacedaemonian colony in Asiatic Doris. Its origin may perhaps reach back to the seventh century B. C. We have actual records that the teachers of Cnidus were accustomed to collect systematically the phenomena of disease, of which they had produced a very complex classification, and we probably possess also several of their actual works. The physicians of Cos, their only contemporary critics whose writings have survived, considered that the Cnidian physicians paid too much attention to the actual sensations of the patient and to the physical signs of the disease. The most important of the Cnidian doctrines were drawn up in a series of Sentences or Aphorisms, and these, it appears, inculcated a treatment along Egyptian lines of the symptom or at most the disease, rather than the patient, a statement borne out by the contents of the gynaecological works of probable Cnidian origin included in the so-called 'Hippocratic Collection'. A few names of Cnidian physicians have, moreover, come down to us with titles of their works, and a later statement that they practised anatomy. There can be little doubt too that the Cnidian school drew also on Persian and Indian Medicine.
The origin of the school of the neighbouring island of Cos was a little later than that of Cnidus and probably dates from the sixth century B. C. Of the Coan school, or at least of the general tendencies that it represented, we have a magnificent and copious literary monument in the Corpus Hippocraticum, a collection which was probably put together in the early part of the third century B. C. by a commission of Alexandrian scholars at the order of the book-loving Ptolemy Soter (reigned 323-285 B. C.). The elements of which this collection is composed are of varying dates from the sixth to the fourth century B. C., and of varying value and origin, but they mainly represent the point of view of physicians of the eastern part of the Greek world in the fifth and fourth centuries.
The most obvious feature, the outstanding element that at once strikes the modern observer in these 'Coan' writings, is the enormous emphasis laid on the actual course of disease. 'It appears to me a most excellent thing', so opens one of the greatest of the Hippocratic works, 'for a physician to cultivate pronoia.[60] Foreknowing and foretelling in the presence of the sick the past, present, and future (of their symptoms) and explaining all that the patients are neglecting, he would be believed to understand their condition, so that men would have confidence to entrust themselves to his care.... Thus he would win just respect and be a good physician. By an earlier forecast in each case he would be more able to tend those aright who have a chance of surviving, and by foreseeing and stating who will die, and who will survive, he will escape blame....'[61]
[60] This word pronoia, as Galen explains ( {eis to Hippokratous prognôstikon}, K. xviii, B. p. 10), is not used in the philosophic sense, as when we ask whether the universe was made by chance or by pronoia, nor is it used quite in the modern sense of prognosis, though it includes that too. Pronoia in Hippocrates means knowing things about a patient before you are told them. See E. T. Withington, 'Some Greek medical terms with reference to Luke and Liddell and Scott,' Proceedings of the Royal Society of Medicine (Section of the History of Medicine), xiii, p. 124, London, 1920.
[61] Prognostics 1.
Just as the Cnidians by dividing up diseases according to symptoms over-emphasized diagnosis and over-elaborated treatment, so the Coans laid very great force on prognosis and adopted therefore a largely expectant attitude towards diseases. Both Cnidian and Coan physicians were held together by a common bond which was, historically if not actually, related to temple worship. Physicians leagued together in the name of a god, as were the Asclepiadae, might escape, and did escape, the baser theurgic elements of temple medicine. Of these they were as devoid as a modern Catholic physician might be expected to be free from the absurdities of Lourdes. But the extreme cult of prognosis among the Coans may not improbably be traced back to the medical lore of the temple soothsayers whose divine omens were replaced by indications of a physical nature in the patient himself.[62] We are tempted too to link it with that process of astronomical and astrological prognosis practised in the Mesopotamian civilizations from which Ionia imitated and derived so much. Religion had thus the same relation to medicine that it would have with a modern 'religious' medical man as suggesting the motive and determining the general direction of his practice though without influence on the details and method.
[62] There is a discussion of the relation of the Asclepiadae to temple practice in an article by E. T. Withington, 'The Asclepiadae and the Priest of Asclepius,' in Studies in the History and Method of Science, edited by Charles Singer, vol. ii, Oxford, 1921.
During the development of the Coan medical school along these lines in the sixth and fifth centuries, there was going on a most remarkable movement at the very other extreme of the Greek world. Into the course and general importance of Sicilian philosophy it is not our place to enter, but that extraordinary movement was not without its repercussion on medical theory and practice. Very important in this direction was Empedocles of Agrigentum (c. 500-c. 430 B. C.). His view that the blood is the seat of the 'innate heat', {emphyton thermon}, he took from folk belief—'the blood is the life'—and this innate heat he closely identified with soul. More profitable was his doctrine that breathing takes place not only through what are now known as the respiratory passages but also through the pores of the skin. His teaching led to a belief in the heart as the centre of the vascular system and the chief organ of the 'pneuma' which was distributed by the blood vessels. This pneuma was equivalent to both soul and life, but it was something more. It was identified with air and breath, and the pneuma could be seen to rise as shimmering steam from the shed blood of the sacrificial victim—for was not the blood its natural home? There was a pneuma, too, that interpenetrated the universe around us and gave it those qualities of life that it was felt to possess. Anaximenes (c. 610-c. 545 B. C.), an Ionian predecessor of Empedocles, may be said to have defined for us these functions of the pneuma; , {hoion hê psychê hê hêmetera aêr ousa synkratei hêmas, holon ton kosmon pneuma kai aêr periechei}, 'As our soul, being air, sustains us, so pneuma and air pervade the whole universe';[63] but it is the speculation of Empedocles himself that came to be regarded as the basis of the Pneumatic School in Medicine which had later very important developments.
[63] The works of Anaximenes are lost. This phrase of his, however, is preserved by the later writer Aetios.
Another early member of the Western school who made important contributions to medical doctrine—in which relation alone we need consider him—was Pythagoras of Samos (c. 580-c.490 B. C.). For him number, as the purest conception, formed the basis of philosophy. Unity was the symbol of perfection and corresponded to God Himself. The material universe was represented by 2, and was divided by the number 12, whence we have 3 worlds and 4 spheres. These in turn, according at least to the later Pythagoreans, give rise to the four elements, earth, air, fire, and water—a primary doctrine of medicine and of science derived perhaps from ancient Egypt and surviving for more than two millennia. The Pythagoreans taught, too, of the existence of an animal soul, an emanation of the soul of the universe. In all this we may distinguish the germ of that doctrine of the relation of man and universe, microcosm and macrocosm, which, suppressed as irrelevant in the Hippocratic works, reappears in the Platonic and especially in the Neoplatonic writings, and forms a very important dogma in later medicine.
A pupil of Pythagoras and an older contemporary of Empedocles was Alcmaeon of Croton (c. 500 B. C.), who began to construct a positive basis for medical science by the practice of dissection of animals, and discovered the optic nerves and the Eustachian tubes. He even extended his researches to Embryology, describing the head of the foetus as the first part to be developed—a justifiable deduction from appearances. Alcmaeon introduced also the doctrine that health depends on harmony, disease on discord of the elements within the body. Curiosity as to the distribution of the vessels was excited by Empedocles and Alcmaeon and led to further dissection, and Alcmaeon's pupils Acron (c. 480 B. C.) and Pausanias (c. 480 B. C.), and the later Philistion of Lokri,[64] the contemporary of Plato, all made anatomical investigations.
[64] For the work of these physicians see especially M. Wellmann, Fragmentsammlung der griechischen Aerzte, Bd. I, Berlin, 1901.
The views of Empedocles, and especially his doctrine that regarded the heart as the main site of the pneuma, though rejected by the Coan school as a whole, were not without influence on Ionia. Diogenes of Apollonia, the philosopher of pneumatism, a late fifth-century writer who must have been contemporary with Hippocrates the Great, himself made an investigation of the blood vessels; and the influence of the same school may be traced in a little work {peri kardiês}, On the heart, which is the best anatomical treatise of the Hippocratic Collection. This work describes the aorta and the pulmonary artery as well as the three valves at the root of each of the great vessels, and it speaks of experiments to test their validity. It treats of the pericardium and of the pericardial fluid and perhaps of the musculi papillares, and contrasts the thickness of the walls of right and left ventricles. The author considers that the left ventricle is empty of blood—as indeed it is after death—and is the source of the innate heat and of the absolute intelligence. These views fit in with the doctrines of Empedocles, so that we may perhaps even venture to regard this work as a surviving document of the Sicilian school. It is interesting to observe that we have here the first hint of human dissection, for the author tells us that the hearts of animals may be compared to that of man. The distinction of having been the first to write on human anatomy, as such, belongs however, probably to a later writer, Diocles, son of Archidamus of Carystus, who lived in the fourth century B. C.[65]
[65] Galen, {peri anatomikôn encheirêseôn}, On anatomical preparations, § 1, K. II, p. 282.
We may now turn to the Hippocratic Corpus as a whole. This collection consists of about 60 or 70 separate works, written at various periods and in various states of preservation. At best only a very small proportion of them can be attributed to Hippocrates, but the discussion of the general question of the 'genuineness' of the works is now admitted to be futile, for it is certain that we have no criteria whatever to determine whether or no a particular work be from the pen of the Father of Medicine, and the most we can ever say of such a treatise is that it appears to be of his school and in his spirit. Yet among the great gifts of this collection to our time and to all time are two which stand out above all others, the picture of a man, and the picture of a method.
The man is Hippocrates himself. Of the actual details of his life we know next to nothing. His period of greatest activity falls about 400 B. C. He seems to have led a wandering life. Born of a long line of physicians in the island of Cos, he exerted his activities in Thrace, Abdera, Delos, the Propontis (Cyzicus), Thasos, Thessaly (notably at Larissa and Meliboea), Athens, and elsewhere, dying at Larissa in extreme old age about the year 377 B. C. He had many pupils, among whom were his two sons Thessalus and Dracon, who also undertook journeys, his son-in-law Polybus, of whose works a fragment has been preserved for us by Aristotle,[66] together with three other Coans bearing the names Apollonius, Dexippus, and Praxagoras. This is practically all we know of him with certainty. But though this glimpse is very dim and distant, yet we cannot exaggerate the influence on the course of medicine and the value for physicians of all time of the traditional picture that was early formed of him and that may indeed well be drawn again from the works bearing his name. In beauty and dignity that figure is beyond praise. Perhaps gaining in stateliness what he loses in clearness, Hippocrates will ever remain the type of the perfect physician. Learned, observant, humane, with a profound reverence for the claims of his patients, but an overmastering desire that his experience shall benefit others, orderly and calm, disturbed only by anxiety to record his knowledge for the use of his brother physicians and for the relief of suffering, grave, thoughtful and reticent, pure of mind and master of his passions, this is no overdrawn picture of the Father of Medicine as he appeared to his contemporaries and successors. It is a figure of character and virtue which has had an ethical value to medical men of all ages comparable only to the influence exerted on their followers by the founders of the great religions. If one needed a maxim to place upon the statue of Hippocrates, none could be found better than that from the book {Parangeliai}, Precepts:
{ên gar parê philanthrôpiê paresti kai philotechniê}
'Where the love of man is, there also is love of the Art.'[67]
[66] Historia animalium, iii. 3, where it is ascribed to Polybus. The same passage is, however, repeated twice in the Hippocratic writings, viz. in the {peri physios anthrôpou}, On the nature of man, Littré, vi. 58, and in the {peri osteôn physios}, On the nature of bones, Littré, ix. 174.
[67] {Parangeliai}, § 6.
The numerous busts of him which have reached our time are no portraits. But the best of them are something much better and more helpful to us than any portrait. They are idealized representations of the kind of man a physician should be and was in the eyes of the best and wisest of the Greeks.[68]
[68] See Fig. 1.
The method of the Hippocratic writers is that known to-day as the 'inductive'. Without the vast scientific heritage that is in our own hands, with only a comparatively small number of observations drawn from the Coan and neighbouring schools, surrounded by all manner of bizarre oriental religions in which no adequate relation of cause and effect was recognized, and above all constantly urged by the exuberant genius for speculation of that Greek people in the midst of whom they lived and whose intellectual temptations they shared, they remain nevertheless, for the most part, patient observers of fact, sceptical of the marvellous and the unverifiable, hesitating to theorize beyond the data, yet eager always to generalize from actual experience; calm, faithful, effective servants of the sick. There is almost no type of mental activity known to us that was not exhibited by the Greeks and cannot be paralleled from their writings; but careful and constant return to verification from experience, expressed in a record of actual observations—the habitual method adopted in modern scientific departments—is rare among them except in these early medical authors.
The spirit of their practice cannot be better illustrated than by the words of the so-called 'Hippocratic oath'. That document, though of late date in its present form, throws a flood of light on the ethics of Greek medicine.
'I swear by Apollo the physician and Asclepius and Hygieia and Panacea, invoking all the gods and goddesses to be my witnesses, that I will fulfil this Oath and this written covenant to the best of my power and of my judgment.
'I will look upon him who shall have taught me this art even as on mine own parents; I will share with him my substance, and supply his necessities if he be in need; I will regard his offspring even as my own brethren, and will teach them this art, if they desire to learn it, without fee or covenant. I will impart it by precept, by lecture and by all other manner of teaching, not only to my own sons but also to the sons of him who has taught me, and to disciples bound by covenant and oath according to the law of the physicians, but to none other.
'The regimen I adopt shall be for the benefit of the patients to the best of my power and judgment, not for their injury or for any wrongful purpose. I will not give a deadly drug to any one, though it be asked of me, nor will I lead the way in such counsel; and likewise I will not give a woman a pessary to procure abortion. But I will keep my life and my art in purity and holiness. Whatsoever house I enter, I will enter for the benefit of the sick, refraining from all voluntary wrongdoing and corruption, especially seduction of male or female, bond or free. Whatsoever things I see or hear concerning the life of men, in my attendance on the sick or even apart from my attendance, which ought not to be blabbed abroad, I will keep silence on them, counting such things to be as religious secrets.
'If I fulfil this oath and confound it not, be it mine to enjoy life and art alike, with good repute among all men for all time to come; but may the contrary befall me if I transgress and violate my oath.'[69]
[69] Translation by Professor Arthur Platt.
Respected equally throughout the ages by Arab, Jew, and Christian, the oath remains the watchword of the profession of medicine.[70] The ethical value of such a declaration could not escape the attention even of a Byzantine formalist, and it is interesting to observe that in our oldest Greek manuscript of the Hippocratic text, dating from the tenth century, this magnificent passage is headed by the words 'from the oath of Hippocrates according as it may be sworn by a Christian.'[71]
[70] It must, however, be admitted that in the Hippocratic collection are breaches of the oath, e. g. in the induction of abortion related in {peri physios paidiou}. There is evidence, however, that the author of this work was not a medical practitioner.
[71] Rome Urbinas 64, fo. 116.
When we examine the Hippocratic corpus more closely, we discern that not only are the treatises by many hands, but there is not even a uniform opinion and doctrine running through them. This is well brought out by some of the more famous of the phrases of this remarkable collection. Thus a well-known passage from the Airs, Waters, and Places tells us that the Scythians attribute a certain physical disability to a god, 'but it appears to me', says the author, 'that these affections are just as much divine as are all others and that no disease is either more divine or more human than another, but that all are equally divine, for each of them has its own nature, and none of them arise without a natural cause.' But, on the other hand, the author of the great work on Prognostics advises us that when the physician is called in he must seek to ascertain the nature of the affections that he is treating, and especially 'if there be anything divine in the disease, and to learn a foreknowledge of this also.'[72] We may note too that this sentence almost immediately precedes what is perhaps the most famous of all the Hippocratic sentences, the description of what has since been termed the Hippocratic facies. This wonderful description of the signs of death may be given as an illustration of the habitual attitude of the Hippocratic school towards prognosis and of the very careful way in which they noted details:
'He [the physician] should observe thus in acute diseases: first, the countenance of the patient, if it be like to those who are in health, and especially if it be like itself, for this would be the best; but the more unlike to this, the worse it is; such would be these: sharp nose, hollow eyes, collapsed temples; ears cold, contracted, and their lobes turned out; skin about the forehead rough, distended, and parched; the colour of the whole face greenish or dusky. If the countenance be so at the beginning of the disease, and if this cannot be accounted for from the other symptoms, inquiry must be made whether he has passed a sleepless night; whether his bowels have been very loose; or whether he is suffering from hunger; and if any of these be admitted the danger may be reckoned as less; and it may be judged in the course of a day and night if the appearance of the countenance proceed from these. But if none of these be said to exist, and the symptoms do not subside in that time, be it known for certain that death is at hand.'[73]
[72] Kühlewein, i. 79, regards this as an interpolated passage.
[73] Littré, ii. 112; Kühlewein, i. 79. The texts vary: Kühlewein is followed except in the last sentence.
Again, in the work On the Art [of Medicine] we read: 'I hold it to be physicianly to abstain from treating those who are overwhelmed by disease',[74] a prudent if inhumane procedure among a people who might regard the doctor's powers as partaking of the nature of magic, and perhaps a wise course to follow at this day in some places not very far from Cos. Yet in the book On Diseases we are advised even in the presence of an incurable disease 'to give relief with such treatment as is possible'.[75]
[74] {Peri technês}, § 3.
[75] ' {Peri nousôn a'}, § 6.
Furthermore, works by authors of the Hippocratic school stand sometimes in a position of direct controversy with each other. Thus in the treatise On the Heart an experiment is set forth which is held to prove that a part at least of imbibed fluid passes into the cavity of the lung and thence to the parts of the body, a popular error in antiquity which recurs in Plato's Timaeus. This view, however, is specifically held to be fallacious by the author of the work On Diseases, who is supported by a polemical section in the surviving Menon fragment.
Passages like these have convinced all students that we have to deal in this collection with a variety of works written at different dates by different authors and under different conditions, a state that may be well understood when we reflect that among the Greeks medicine was a progressive study for a far longer period of time than has yet been the case in the Western world. An account of such a collection can therefore only be given in the most general fashion. The system or systems of medicine that we shall thus attempt to describe was in vogue up to the Alexandrian period, that is, to the beginning of the third century B. C.
Anatomy and physiology, the basis of our modern system, was still a very weak point in the knowledge of the pre-Alexandrians. The surface form of the body was intimately studied in connexion especially with fractures, but there is no evidence in the literature of the period of any closer acquaintance with human anatomical structure.[76] The same fact is well borne out by Greek Art, for in its noblest period the artist betrays no evidence of assistance derived from anatomization. Such evidence is not found until we come to sculpture of Alexandrian date, when the somewhat strained attitudes and exaggerated musculature of certain works of the school of Pergamon suggest that the artist derived hints, if not direct information, from anatomists who, we know, were active at that time. It is not improbable, however, that separate bones, if not complete skeletons, were commonly studied earlier, for the surgical works of the Hippocratic collection, and especially those on fractures and dislocations, give evidence of a knowledge of the relations of bones to each other and of their natural position in the body which could not be obtained, or only obtained with greatest difficulty, without this aid.
[76] A reference to dissection in the {peri arthrôn}, On the joints, § 1, appears to the present writer to be of Alexandrian date.
There are in the Hippocratic works a certain number of comparisons between human and animal structures that would have been made possible by surgical operations and occasional accidents. The view has been put forward that some anatomical knowledge was derived through the practice of augury from the entrails of sacrificial animals. It appears, however, improbable that a system so scientific and so little related to temple practice would have had much to learn from these sources, and, moreover, since we know that animals were actually dissected as early as the time of Alcmaeon it would be unnecessary to invoke the aid of the priests. The unknown author of the {peri topôn tôn kata anthrôpon}, On the sites of [diseases] in man, a work written about 400 B. C., declares indeed that 'physical structure is the basis of medicine', but the formal treatises on anatomy that we possess from Hippocratic times give the general anatomical standard of the corpus, and it is a very disappointing one. The tract On Anatomy, though probably of much later date (perhaps c. 330 B. C.), is inferior even to the treatise On the Heart (perhaps of about 400 B. C.).
Physiology and Pathology are almost as much in the background as anatomy in the Hippocratic collection. As a formal discipline and part of medical education we find no trace of these studies among the pre-Alexandrian physicians. But the meagreness of the number of ascertained facts did not prevent much speculation among a people eager to seek the causes of things. Of that speculation we learn much from the fragments of contemporary medical writers and philosophers, from the medical works of the Alexandrian period, and to some extent from the Hippocratic writings themselves. But the wiser and more sober among the writers of the Hippocratic corpus were bent on something other than the causes of things. Their pre-occupation was primarily with the suffering patient, and the best of them therefore excluded—and we may assume consciously—all but the rarest references to such speculation.
The general state of health of the body was considered by the Hippocratists to depend on the distribution of the four elements, earth, air, fire, and water, whose mixture (crasis) and cardinal properties, dryness, warmth, coldness, and moistness, form the body and its constituents. To these correspond the cardinal fluids, blood, phlegm, yellow bile and black bile. The fundamental condition of life is the innate heat, the abdication of which is death. This innate heat is greatest in youth when most fuel is therefore required, but gradually declines with age. Another necessity for the support of life is the pneuma which circulates in the vessels. All this may seem fanciful enough, but we may remember that the first half of the nineteenth century had waned before the doctrine of the humours which had then lasted for at least twenty-two centuries became obsolete, and perhaps it still survives in certain modern scientific developments. Moreover, the finest and most characteristic of the Hippocratic works either do not mention or but casually refer to these theories which are not essential to their main pre-occupation. Their task of observation of symptoms, of the separation of the essentials from the accidents of disease, and of generalization from experience could go on unaffected by any view of the nature of man and of the world. Even treatment, which must almost of necessity be based on some theory of causation, was little deflected by a view of elements and humours on which it was impossible to act directly, while therapeutics was further safeguarded from such influence by the doctrine of Nature as the healer of diseases, {nousôn physeis iêtroi}, the vis medicatrix naturae of the later Latin writers and of the present day.
Diseases are to be cured, in the Hippocratic view, by restoring the disturbed harmony in the relation of the elements and humours. These, in fact, tend naturally to an equilibrium and in most cases if left to themselves will be brought to this state by the natural tendency to recovery. The process is known as pepsis or, to give it the Latin form, coctio, and the turning-point at which the effects of this process exhibit themselves is the crisis, a term which, together with some of its original content, has still a place in medicine. Such a turning-point does in fact occur in many diseases, especially those of a zymotic character, on certain special days, though undue emphasis was laid by the Greek physicians upon the exact numerical character of the event. It was no unimportant duty of the physician to assist nature by bringing his remedies to bear at the critical times. If the crisis is wanting, or if the remedies are applied at the wrong moment, the disease may become incurable. But diseases were only immediately or proximately caused by disturbances in the balance or harmony of the humours. This was a mere hypothesis, as the Hippocratists themselves well knew. There were other more remote causes which came into the actual purview of the physician, conditions which he could and did study. Such conditions were, for instance, injudicious modes of life, exposure to climatic changes, advancing age, and the like. Many of these could be directly corrected. But for those that could not there were various therapeutic measures at hand.
That human bodies are and normally remain in a state of health, and that on the whole they tend to recover from disease, is an attitude so familiar to us to-day that we scarcely need to be reminded of it. We live some twenty-three centuries later than Hippocrates; for some sixteen of those centuries the civilized world thought that to retain health periodical bleedings and potions were necessary; for the last century or two we have been gradually returning on the Hippocratic position!
The chief glory of the Hippocratic collection regarded from the clinical point of view is perhaps the actual description of cases. A number of these—forty-two in all—have survived.[77] They are not only unique as a collection for nearly 2,000 years, but they are still to this day models of what succinct clinical records should be, clear and short, without a superfluous word, yet with all that is most essential, and exhibiting merely a desire to record the most important facts without the least attempt to prejudge the case. They illustrate to the full the Greek genius for seizing on the essential. The writer shows not the least wish to exalt his own skill. He seeks merely to put the data before the reader for his guidance under like circumstances. It is a reflex of the spirit of full honesty in which these men lived and worked that the great majority of the cases are recorded to have died. Two of this remarkable little collection may be given:
'The woman with quinsy, who lodged with Aristion: her complaint began in the tongue; voice inarticulate; tongue red and parched. First day, shivered, then became heated. Third day, rigor, acute fever; reddish and hard swelling on both sides of neck and chest; extremities cold and livid; respiration elevated; drink returned by the nose; she could not swallow; alvine and urinary discharges suppressed. Fourth day, all symptoms exacerbated. Fifth day, she died.'
[77] They are to be found as an Appendix to Books I and III of the Epidemics and embedded in Book III.
We probably have here to do with a case of diphtheria. The quinsy, the paralysis of the palate leading to return of the food through the nose, and the difficulty with speech and swallowing are typical results of this affection which was here complicated by a spread of the septic processes into the neck and chest, a not uncommon sequela of the disease. The rapid onset of the conditions is rather unusual, but may be explained if we regard the case as a mild and unnoticed diphtheria, subsequently complicated by paralysis and by secondary septic infection, for which reasons she came under observation.
'In Thasos, the wife of Delearces who lodged on the plain, through sorrow was seized with an acute and shivering fever. From first to last she always wrapped herself up in her bedclothes; kept silent, fumbled, picked, bored and gathered hairs [from the clothes]; tears, and again laughter; no sleep; bowels irritable, but passed nothing; when urged drank a little; urine thin and scanty; to the touch the fever was slight; coldness of the extremities. Ninth day, talked much incoherently, and again sank into silence. Fourteenth day, breathing rare, large, and spaced, and again hurried. Seventeenth day, after stimulation of the bowels she passed even drinks, nor could retain anything; totally insensible; skin parched and tense. Twentieth day, much talk, and again became composed, then voiceless; respiration hurried. Twenty-first day, died. Her respiration throughout was rare and large; she was totally insensible; always wrapped up in her bedclothes; throughout either much talk, or complete silence.'
This second case is in part a description of low muttering delirium, a common end of continued fevers such as, for instance, typhoid. The description closely resembles the condition known now in medicine as the 'typhoid state'. Incidentally the case contains a reference to a type of breathing common among the dying. The respiration becomes deep and slow, as it sinks gradually into quietude and becomes rarer and rarer until it seems to cease altogether, and then it gradually becomes more rapid and so on alternately. This type of breathing is known to physicians as 'Cheyne-Stokes' respiration in commemoration of two distinguished Irish physicians of the last century who brought it to the attention of medical men.[78] Recently it has been partially explained on a physiological basis. We may note that there is another and even better pen-picture of Cheyne-Stokes respiration in the Hippocratic collection. It is in the famous case of 'Philescos who lived by the wall and who took to his bed on the first day of acute fever'. About the middle of the sixth day he died and the physician notes that 'the respiration throughout was like that of a person recollecting himself and was large and rare'. Cheyne-Stokes breathing is admirably described as 'that of a person recollecting himself'.
[78] John Cheyne (1777-1836) described this type of respiration in the Dublin Hospital Reports, 1818, ii, p. 216. An extreme case of this condition had been described by Cheyne's namesake George Cheyne (1671-1743) as the famous 'Case of the Hon. Col. Townshend' in his English Malady, London, 1733. William Stokes (1804-78) published his account of Cheyne-Stokes breathing in the Dublin Quarterly Journal of the Medical Sciences, 1846, ii, p. 73.
Such records as these may be contrasted with certain others that have come down from Greek antiquity. We may instance two steles discovered at Epidaurus in 1885, bearing accounts of forty-four temple cures. The following two are fair samples of the cures there described:
'Aristagora of Troizen. She had tape-worm, and while she slept in the Temple of Asclepius at Troizen, she saw a vision. She thought that, as the god was not present, but was away in Epidaurus, his sons cut off her head, but were unable to put it back again. Then they sent a messenger to Asclepius asking him to come to Troizen. Meanwhile day came, and the priest actually saw her head cut off from the body. The next night Aristagora had a dream. She thought the god came from Epidaurus and fastened her head on to her neck. Then he cut open her belly, and stitched it up again. So she was cured.'
'A man had an abdominal abscess. He saw a vision, and thought that the god ordered the slaves who accompanied him to lift him up and hold him, so that his abdomen could be cut open. The man tried to get away, but his slaves caught him and bound him. So Asclepius cut him open, rid him of the abscess, and then stitched him up again, releasing him from his bonds. Straightway he departed cured, and the floor of the Abaton was covered with blood.'[79]
[79] The Epidaurian inscriptions are given by M. Fraenkel in the Corpus Inscriptionum Graecarum IV, 951-6, and are discussed by Mary Hamilton (Mrs. Guy Dickins), Incubation, St. Andrews, 1906, from whose translation I have quoted. Further inscriptions are given by Cavvadias in the Archaiologike Ephemeris, 1918, p. 155 (issued 1921).
In the records of almost all temple cures, a great number of which have survived in a wide variety of documents, an essential element is the process of {enkoimêsis}, incubation or temple sleep, usually in a special sleeping-place or Abaton. The process has a close parallel in certain modern Greek churches and in places of worship much further West; there are even traces of it in these islands, and it is more than probable that the Christian practice is descended by direct continuity from the pagan.[80] The whole character of the temple treatment was—and is—of a kind to suggest to the patient that he should dream of the god, an event which therefore usually takes place. Such treatment by suggestion is applicable only to certain classes of disease and is always liable to fall into the hands of fanatics and impostors. The difficulty that the honest practitioner encounters is that the sufferer, in the nature of the case, can hardly be brought to believe that his ailment is what in fact it is, a lesion of the mind. It is this which gives the miracle-monger his chance.
[80] We are almost told as much in the apocryphal Gospel of Nicodemus, § 1, a work probably composed about the end of the fourth century.
Examine for a moment the two cases from Epidaurus, which are quite typical of the series. We observe that the first is described simply as a case of 'tape-worm' without any justification for the diagnosis. It is not unfrequent nowadays for thin and anxious patients to state, similarly without justification, that they suffer from this condition. They attribute certain common gastric experiences to this cause of which perhaps they have learned from sensational advertisements, and then they ask cure for a condition which they themselves have diagnosed, but which has no existence in fact. Such a case is often appropriately treated by suggestion. Though the elaborateness of the suggestion in the temple cure is a little startling, yet it can easily be paralleled from the legends of the Christian saints. Moreover, we must remember that we are not here dealing with an account set down by the patient herself, but with an edificatory inscription put up by the temple officials.
In the second inscription, the man with an abdominal abscess, we have a much simpler state of affairs. It is evident that an operation was actually performed by the priest masquerading as Asclepius, while the patient was held down by the slaves. He is assured that all is a dream and departs cured with the tell-tale comment 'and the floor of the Abaton was covered with blood'.
These cases might be multiplied indefinitely without great profit for our particular theme, for in such matters there is no development, no evolution, no history. There can be no doubt that a very large part of Greek practice was on this level, as is a small part of modern medicine, but it is not a level with which we are here dealing and we shall therefore pass it by. But a word of caution must be added. Such temple worship has been compared with modern psycho-analysis. That method, like all methods, has doubtless been abused at times; but it is in essence, unlike the temple system, a purely scientific process by which the ultimate basis of the patient's delusions are laid bare and demonstrated to him.
There is indeed another side to these Asclepian temples. They gradually developed along the lines of our health resorts and developed many of the qualities—lovely and unlovely—that we associate with certain continental watering places. On the bad side they became gossiping centres or even something little better than brothels, as we may gather from the Mimes of Herondas. On the good side they formed a quiet refuge among beautiful and interesting surroundings where the sick, exhausted, and convalescent might gain the benefits that accrue from pure air, fine scenery, and a regular and regulated mode of life. It is more than probable too that the open air and manner of living benefited many cases of incipient phthisis.
Returning to the Hippocratic collection, the purely surgical treatises will be found no less remarkable than those of clinical observation. A very able surgeon, Francis Adams (1796-1861), who was eminent as a Greek scholar, gave it as his opinion in the middle of the nineteenth century that no systematic writer on surgery up to his time had given so good and so complete an account of certain dislocations, notably of the hip-joint, as that to be found in the Hippocratic collection. Some types of injury to the hip, as described in the Hippocratic writings, were certainly otherwise quite inadequately known until described by Sir Astley Cooper (1768-1841), himself a peculiarly Hippocratic character.[81] The verdict of Adams was probably just, though since his time the surgery of dislocations, aided especially by X-rays, has been enabled to pass very definitely beyond the Hippocratic position. Admirable, too, is the Hippocratic description of dislocation of the shoulder and of the jaw. In dislocation of hip, shoulder, or jaw, as in most similar lesions, there is considerable deformity produced. The nature and meaning of this deformity is described with remarkable exactness by the Hippocratic writer, who also sets forth the resulting disability. The principles and indeed the very details of treatment in these cases are, save for the use of an anaesthetic, practically identical with those of the present day. The processes are unfortunately not suitable for detailed quotation and description here, but they are of special interest since a graphic record of them has come down to us. There exists in the Laurentian Library at Florence a ninth-century Greek surgical manuscript which contains figures of surgeons reducing the dislocations in question. There is good reason to suppose that these miniatures are copied from figures first prepared in pre-Christian times many centuries earlier, and we may here see the actual processes of reduction of such fractures, as conducted by a surgeon of the direct Hippocratic tradition[82] (see Figs. 3, 4).
[81] Astley Paston Cooper, Treatise on Dislocations and Fractures of the Joints, London, 1822, and Observations on Fractures of the Neck and the Thighbone, &c., London, 1823.
[82] This famous manuscript is known as Laurentian, Plutarch 74, 7, and its figures have been reproduced by H. Schöne, Apollonius von Kitium, Leipzig, 1896.
In keeping with all this is most of the surgical work of the collection. We are almost startled by the modern sound of the whole procedure as we run through the rough note-book ' {kat' iêtreion}, Concerning the Surgery, or the more elaborate treatise {peri iêtrou}, On the Physician, where we may read minute directions for the preparation of the operating-room, and on such points as the management of light both artificial and natural, scrupulous cleanliness of the hands, the care and use of the instruments, with the special precautions needed when they are of iron, the decencies to be observed during the operation, the general method of bandaging, the placing of the patient, the use and abuse of splints, and the need for tidiness, order, and cleanliness. Many of these directions are enlarged upon in other surgical works of the collection, among which we find especially full instructions for bandaging and for the diagnosis and treatment of fractures and dislocations. A very fair representation of such a surgery as these works describe is to be found on a vase-painting of Attic origin of the earlier part of the fifth century, and, therefore, a generation before Hippocrates (see fig. 5). There are also several beautiful representations on vases of the actual processes of bandaging (fig. 6).
[Illustration: FIG. 5. A GREEK CLINIC OF ABOUT 480-470 B. C. From a vase-painting.
In the centre sits a physician holding a lancet and bleeding a patient from the median vein at the bend of the right elbow into a large open basin. Above and behind the physician are suspended three cupping vessels. To the right sits another patient awaiting his turn; his left arm is bandaged in the region of the biceps. The figure beyond him smells a flower, perhaps as a preservative against infection. Behind the physician stands a man leaning on a staff; he is wounded in the left leg, which is bandaged. By his side stands a dwarfish figure with disproportionately large head, whose body exhibits deformities typical of the developmental disease now known as Achondroplasia; in addition to these deformities we note that his body is hairy and the bridge of his nose sunken; on his back he carries a hare which is almost as tall as himself. Talking to the dwarf is a man leaning on a long staff, who has the remains of a bandage round his chest.
See E. Pottier, 'Une Clinique grecque au V^{e} siècle (vase antique du collection Peztel)', Fondation Eugène Piot, Monuments et Mémoires, xiii. 149, Paris, 1906. (Some of our interpretations differ from those of M. Pottier.)]
[Illustration: FIG. 6. A kylix from the Berlin Museum of about 490 B. C. It bears the inscription {SOSIAS EPOIÊSEN}, Sosias made (me), and represents Achilles bandaging Patroclus, the names of the two heroes being written round the margin. The painter is Euphronios, and the work is regarded as the masterpiece of that great artist. The left upper arm of Patroclus is injured, and Achilles is bandaging it with a two-rolled bandage, which he is trying to bring down to extend over the elbow. The treatment of the hands, a department in which Euphronios excelled, is particularly fine. Achilles was not a trained surgeon, and it will be observed, from the position of the two tails of the bandage, that he will have some difficulty when it comes to its final fastening!]
Among the surgical procedures of which descriptions are to be found in the Hippocratic writings are the opening of the chest for the condition known as empyema (accumulation of pus within the pleura frequently following pneumonia), and trephining the skull in cases of fracture of that part—two fundamental operations of modern surgery. Surgical art has advanced enormously in our own times, yet a text-book containing much that is useful to this day might be prepared from these surgical contents of the collection alone.
When we pass to the works on Medicine, in the restricted sense, we enter into a region more difficult and perhaps even more fascinating. We are no longer dealing with simple lesions of known origin, but with the effects of disease and degeneration, of the essential character of which the Hippocratic writers could in the nature of the case know very little. Rigidly guarding themselves from any attempt to explain disease by more immediate and hypothetical causes and thus diverting the reader's energies in the medically useless direction of vague speculation—the prevalent mental vice of the Greeks—the best of these physicians are content if they can put forward generalized conclusions from actually observed cases. Many of their thoughts have now become household words, and they have become so, largely as a direct heritage from these ancient physicians. But it must be remembered that ideas so familiar to us were with them the result of long and carefully recorded experience and are like nothing that we encounter in the medicine of other ancient nations. Such conclusions are best set forth perhaps in the wonderful book of the Aphorisms from which we may permit ourselves a few quotations:
'Life is short, and the Art long; the opportunity fleeting; experiment dangerous, and judgement difficult. Yet we must be prepared not only to do our duty ourselves, but also patient, attendants, and external circumstances must co-operate.'[83]
[83] The first lines are the source of the famous lines in Goethe's Faust:
'Ach Gott! die Kunst ist lang Und kurz ist unser Leben, Mir wird bei meinem kritischen Bestreben Doch oft um Kopf und Busen bang.'
In this one memorable paragraph, so condensed in the original as to be almost untranslatable, he who 'first separated medicine from philosophy' puts aside at once all speculative interest while in the actual presence of the sick. His whole energy is concentrated on the case in hand with that peculiar attitude, at once impersonal and intensely personal, that has since been the mark of the physician, and that has made of Medicine both a science and an art.
'For extreme diseases, extreme methods of cure.'[84]
'The aged endure fasting most easily; next adults; next young persons, and least of all children, and especially such as are the most lively.'
'Growing bodies have the most innate heat; they therefore require the most nourishment, and if they have it not they waste. In the aged there is little heat, and therefore they require little fuel, for it would be extinguished by much. Similarly fevers in the aged are not so acute, because their bodies are cold.'
'In disease sleep that is laborious is a deadly symptom; but if sleep relieves it is not deadly.'
'Sleep that puts an end to delirium is a good symptom.'
'If a convalescent eats well, but does not put on flesh, it is a bad symptom.'
'Food or drink which is a little less good but more palatable is to be preferred to such that is better but less palatable.'
'The old have generally fewer complaints than young; but those chronic diseases which do befall them generally never leave them.'
[84] The extreme of treatment refers in the original to the extreme restriction of diet, {es akribeiên}, but the meaning of the Aphorism has always been taken as more generalized.
Here we have a group of observations, some of which have become literally household words, nor is it difficult to understand how such sayings have passed from professional into lay keeping. This magnificent book of Aphorisms was very early translated into Latin, probably before and certainly not later than the sixth century of the Christian era, and thus became accessible throughout the West. Manuscripts of this Latin version, dating from the ninth and tenth centuries of our era, have survived in the actual places in which they were written, at Monte Cassino in Southern Italy and at Einsiedeln in Switzerland, and in 991 the book of Aphorisms was well known and closely studied at the Cathedral school of Chartres. From France the Aphorisms reached England, and they are mentioned in documents of the tenth or eleventh century. By now, too, the book had been translated into Syriac and later into Arabic and Hebrew, so that in the true mediaeval period it was known both East and West, and in the vernacular as well as the classical tongues. From the oriental dialects several further translations were again made into Latin. An enormous number of manuscripts of the work have survived in almost every Western dialect, and these show on the whole that the text has been surprisingly little tampered with. In the middle of the thirteenth century some of the better-known Aphorisms were absorbed into a very popular Latin poem that went forth in the name of the medical school of Salerno, though with a false ascription to a yet earlier date. The Salernitan poem, being itself translated into every European vernacular, further helped to bring Hippocrates into every home.
But by no means all the Aphorisms are of a kind that could well become absorbed into folk medicine. It is only those concerning frequently recurring states to which this fate could befall. The book contains also a number of notes on rare conditions seldom seen or noted save by medical men. Such are the following very acute observations:
'Spasm supervening on a wound is fatal.'
'Those seized with tetanus die within four days, or if they survive so long they recover.'
'A convulsion, or hiccup, supervening on a copious discharge of blood is bad.'
'If after severe and grave wounds no swelling appears, it is very serious.'
These four sentences all concern wounds. The first two refer to the disease tetanus, which is very liable to supervene on wounds fouled with earth, especially in hot and moist localities. The disease is characterized by a series of painful muscular contractions which in the more severe and fatal form may become a continuous spasm, a type that is referred to in the first sentence. It is true of tetanus that the later the onset after the wound is sustained the better the chance of recovery. This is brought out by the second sentence. The third and fourth sentences record untoward symptoms following a severe wound, now well recognized and watched for by every surgeon. There were, of course, innumerable illustrations of the truth of these Aphorisms in extensive wounds, especially those involving crushed limbs, in the late war.
'Phthisis occurs most commonly between the ages of eighteen and thirty-five.'
'Diarrha supervening on phthisis is mortal.'
The period given by the Aphorisms for the maximum frequency of onset of the disease is closely borne out by modern observations. The second Aphorism is equally valid; continued diarrha is a very frequent antecedent of the fatal event in chronic phthisis, and post-mortem examination has shown that secondary involvement of the bowel is an exceedingly common condition in this disease.
No less remarkable is the following saying: 'In jaundice it is a grave matter if the liver becomes indurated.' Jaundice is a common and comparatively trivial symptom following or accompanying a large variety of diseases. In and by itself it is of little importance and almost always disappears spontaneously. There is a small group of pathological conditions, however, in which this is not the case. The commonest and most important of these are the fatal affections of cirrhosis and cancer of the liver in which that organ may be felt to be enlarged and hardened. If therefore the liver can be so felt in a case of jaundice, it is, as the Aphorism says, of gravest import. Representations of such cases have actually come down to us from Greek times. Thus on a monument erected at Athens to the memory of a physician who died in the second century of the Christian era we may see the process of clinical examination (fig. 7). The physician is palpating the liver of a dwarfish figure whose swollen belly, wasted limbs, and anxious look tell of some such condition as that described in the Aphorism. The ridge caused by the enlarged liver can even be detected on the statue.
'We must attend to the appearances of the eyes in sleep as presented from below; for if a portion of the white be seen between the closing eyelids, and if this be not connected with diarrha or severe purging, it is a very bad and mortal symptom.' In this, the last Aphorism which we shall quote, we see the Hippocratic physician actually making his observations. Now during sleep the eyeball is turned upward, so that if the eye be then opened and examined only the white is seen. In the later stages of all wasting and chronic diseases the eyelids tend not to be closed during sleep. Such patients, as is well known, often die with the eyes open and sometimes exhibiting only the whites.
But the Hippocratic physician was not content to make only passive observation; he also took active measures to elicit the 'physical signs'. In modern times a large, perhaps the chief, task of the student of medicine is to acquire a knowledge of these so-called physical signs of disease, the tradition of which has been gradually rebuilt during the last three centuries. Among the most important measures in which he learns to acquire facility is that of auscultation. This useful process has come specially into vogue since the invention of the stethoscope in 1819 by Laennec, who derived valuable hints for it from the Hippocratic writings. Auscultation is several times mentioned and described by the Hippocratic physicians, who used the direct method of listening and not the mediate method devised by Laennec. There are, however, certain cases in which the modern physician still finds the older non-instrumental Hippocratic method superior. In the Hippocratic work {peri nousôn}, On diseases, we read of a case with fluid in the pleura that 'you will place the patient on a seat which does not move, an assistant will hold him by the shoulders, and you will shake him, applying the ear to the chest, so as to recognize on which side the sign occurs'. This sign is still used by physicians and is known as Hippocratic succussion. In another passage in the same work the symptoms of pleurisy are described and 'a creak like that of leather may be heard'. This is the well known pleuritic rub which the physician is accustomed to seek in such cases, and of which the creak of leather is an excellent representation.
Such quotations give an insight into the general method and attitude of the Hippocratics. Of an art such as medicine, which even in those times had a long and rational tradition behind it, it is impossible to give more than the merest glimpse in such a review as this. The actual practice is far too complex to set down briefly. This is especially the case with the ancient teaching as regards epidemic disease at which we must cursorily glance. The Hippocratic physicians and indeed all antiquity were as yet ignorant of the nature, and were but dimly aware of the existence, of infection.[85] For them acute disease was something imposed on the patient from outside, but how it reached him from outside and what it was that thus reached him they were still admittedly ignorant. In this dilemma they turned to prolonged observation and noted as a result of repeated experience that epidemic diseases in their world had characteristic seasonal and regional distributions. One country was not quite like another, nor was one season like another nor even one year like another. By a series of carefully collated observations as to how regions, seasons, and years differed from each other, they succeeded in laying the basis of a rational study of epidemiology which gave rise to the notion of an 'epidemic constitution' of the different years, a conception which was very fertile and stimulating to the great clinicians of the seventeenth and eighteenth centuries and is by no means without value even for the modern epidemiologist. The work of the modern fathers of epidemiology was consciously based on Hippocrates.
[85] The ancients knew almost nothing of infection as applied specifically to disease. All early peoples—including Greeks and Romans—believed in the transmission of qualities from object to object. Thus purity and impurity and good and bad luck were infections, and diseases were held to be infections in that sense. But there is little evidence in the belief of the special infectivity of disease as such in antiquity. Some few diseases are, however, unequivocally referred to as infectious in a limited number of passages, e. g. ophthalmia, scabies, and phthisis in the {peri diaphoras pyretôn}, On the differentiae of fevers, K. vii, p. 279. The references to infection in antiquity are detailed by C. and D. Singer, 'The scientific position of Girolamo Fracastoro', Annals of Medical History, vol. i, New York, 1917.
Before parting with the Hippocratic physician a word must be said as to his therapeutic means. His general armoury may be described as resembling that of the modern physician of about two generations ago. During those two generations we have, it is true, added to our list of effective remedies but, on the other hand, there has been by common consent a return to the Hippocratic simplicity of treatment. After rest and quiet the central factor in treatment was Dietetics. This science regarded the age—'Old persons use less nutriment than young'; the season—'In winter abundant nourishment is wholesome, in summer a more frugal diet'; the bodily condition—'Lean persons should take little food, but this little should be fat, fat persons on the other hand should take much food, but it should be lean'. Respect was also paid to the digestibility of different foods—'white meat is more easily digestible than dark'—and to their preparation. Water, barley water, and lime water were recommended as drinks. The dietetic principles of the Hippocratics, especially in connexion with fevers, are substantially those of the present day, and it may be said that the general medical tendency of the last generation in these matters has been an even closer approximation to the Hippocratic. 'The more we nourish unhealthy bodies the more we injure them'; 'The sick upon whom fever seizes with the greatest severity from the very outset, must at once subject themselves to a rigid diet'; 'Complete abstinence often acts well, if the strength of the patient can in any way sustain it'; yet 'We should examine the strength of the sick, to see whether they be in condition to maintain this spare diet to the crisis of the disease'. 'In the application of these rules we must always be mindful of the strength of the patient and of the course of each particular disease, as well as of the constitution and ordinary mode of life in each disease.'
Besides diet the Hippocratic physician had at his disposal a considerable variety of other remedies. Baths, inunctions, clysters, warm and cold suffusions, massage and gymnastic, as well as gentler exercise are among them. He probably employed cupping and bleeding rather too freely, and we have several representations of the instruments used for these operations (fig. 8). He was no great user of drugs and seldom names them except, we may note, in the works on the treatment of women, which are probably of Cnidian origin and whence the greater part of the 300 constituents of the Hippocratic pharmacopia are derived. Thus his list of drugs is small but several known to him are still used by us.
The work of these men may be summed up by saying that without dissection, without any experimental physiology or pathology, and without any instrumental aid they pushed the knowledge of the course and origin of disease as far as it is conceivable that men in such circumstances could push it. This was done as a process of pure scientific induction. Their surgery, though hardly based on anatomy, was grounded on the most carefully recorded experience. In therapeutics they allowed themselves neither to be deceived by false hopes nor led aside by vain traditions. Yet in diagnosis, prognosis, surgery and therapeutics alike they were in many departments unsurpassed until the nineteenth century, and to some of their methods we have reverted in the twentieth. Persisting throughout the ages as a more or less definite tradition, which attained clearer form during and after the sixteenth century, Hippocratic methods have formed the basis of all departments of modern advance.
But the history of Greek medicine did not end with the Hippocratic collection; in many respects it may indeed be held only to begin there; yet we never get again a glimpse of so high an ethical and professional standard as that which these works convey. From Alexandrian times onwards, too, the history of Greek medicine becomes largely a history of various schools of medical thought, each of which has only a partial view of the course and nature of medical knowledge. The unravelling of the course and teachings of these sects has long been a pre-occupation of professed medical historians, but the general reader can hardly take an interest in differences between the Dogmatists, Empirics, and Methodists whose doctrines are as dead as themselves. In this later Alexandrian and Hellenistic age the Greek intellect is no less active than before, but there is a change in the taste of the material. A general decay of the spirit is reflected in the medical as in the literary products of the time, and we never again feel that elevation of a beautiful and calmly righteous presence that breathes through the Hippocratic collection and gives it a peculiar aroma. |
|