|
V. AMPHITYPE.
This process is a discovery of Sir John Herschel and receives its name from the fact that both negative and positive photographs can be produced by one process. The positive pictures obtained by it have a perfect resemblance to impressions of engravings with common printer's ink. The process, although not yet fully carried out, promises to be of vast utility.
Paper proper for producing an amphitype picture may be prepared either with the ferro-tartrate or the ferro-citrate of the protoxide, or the peroxide of mercury, or of the protoxide of lead, by using creams of these salts, or by successive applications of the nitrates of the respective oxides, singly or in mixture, to the paper, alternating with solutions of the ammonia-tartrate or the ammonia-citrate of iron, the latter solution being last applied, and in more or less excess. I purposely avoid stating proportions, as I have not yet been able to fix upon any which certainly succeed. Paper so prepared and dried takes a negative picture, in a time varying from half an hour to five or six hours, according to the intensity of the light; and the impression produced varies in apparent force from a faint and hardly perceptible picture to one of the highest conceivable fulness and richness both of tint and detail, the color being in this case a superb velvety brown. This extreme richness of effect is not produced unless lead be present, either in the ingredients used, or in the paper itself. It is not, as I originally supposed, due to the presence of free tartaric acid. The pictures in this state are not permanent. They fade in the dark, though with very different degrees of rapidity, some (especially if free tartaric or citric acid be present) in a few days, while others remain for weeks unimpaired, and require whole years for their total obliteration. But though entirely faded out in appearance, the picture is only rendered dormant, and may be restored, changing its character from negative to positive, and its colors from brown to black, (in the shadows), by the following process:—A bath being prepared by pouring a small quantity of solution of pernitrate of mercury into a large quantity of water, and letting the subnitrated precipitates subside, the picture may be immersed in it, (carefully and repeatedly clearing off all air bubbles,) and allowed to remain till the picture (if any where visible,) is entirely destroyed; or if faded, till it is judged sufficient from previous experience; a term which is often marked by the appearance of a feeble positive picture, of a bright yellow hue, on the pale yellow ground of the paper. A long time (several weeks) is often required for this, but heat accelerates the action, and it is often completed in a few hours. In this state the picture is to be very thoroughly rinsed and soaked in pure warm water, and then dried. It is then to be well ironed with a smooth iron, heated so as barely not to injure the paper, placing it, for greater security against scorching, between clean smooth paper. If then the process have been successful, a perfectly black positive picture is at once developed. At first it most commonly happens that the whole picture is sooty or dingy to such a degree that it is condemned as spoiled, but on keeping it between the leaves of a book, especially in a moist atmosphere, by extremely slow degrees this dinginess disappears, and the picture disengages itself with continually increasing sharpness and clearness, and acquires the exact effect of a copper-plate engraving on a paper more or less tinted with a pale yellow.
I ought to observe, that the best and most uniform specimens which I have procured have been on paper previously washed with certain preparations of uric acid, which is a very remarkable and powerful photographic element. The intensity of the original negative picture is no criterion of what may be expected in the positive. It is from the production by one and the same action of light, of either a positive or negative picture according to the subsequent manipulations, that I have designated the process, thus generally sketched out, by the term Amphitype,—a name suggested by Mr. Talbot, to whom I communicated this singular result; and to this process or class of processes (which I cannot doubt when pursued will lead to some very beautiful results,) I propose to restrict the name in question, though it applies even more appropriately to the following exceedingly curious and remarkable one, in which silver is concerned:
At the last meeting I announced a mode of producing, by means of a solution of silver, in conjunction with ferro-tartaric acid, a dormant picture brought into a forcible negative impression by the breath or moist air. (See Cyanotype.) The solution then described, and which had at that time been prepared some weeks, I may here incidentally remark, has retained its limpidity and photogenic properties, quite unimpaired during the whole year since elapsed, and is now as sensitive as ever,—a property of no small value. Now, when a picture (for example an impression from an engraving) is taken on paper washed with this solution, it shows no sign of a picture on its back, whether that on its face is developed or not; but if, while the actinic influence is still fresh upon the face, (i.e., as soon as it is removed from the light), the back be exposed for a very few seconds to the sunshine, and then removed to a gloomy place, a positive picture, the exact complement of the negative one on the other side, though wanting of course in sharpness if the paper be thick, slowly and gradually makes its appearance there, and in half an hour or an hour acquires a considerable intensity. I ought to mention that the "ferro-tartaric acid" in question is prepared by precipitating the ferro-tartrate of ammonia (ammonia-tartrate of iron) by acetate of lead, and decomposing the precipitate by dilute sulphuric acid. When lead is used in the preparation of Amphitype paper, the parts upon which the light has acted are found to be in a very high degree rendered water proof.—Sir J. Herschel.
This process is a new invention of our countryman, J. A. Whipple, Esq., of Boston, and has been patented by M. A. Root, Esq., of Philadelphia. It will be seen, however, from the previous pages of my work that Mr. Root is mistaken in regard to his being the first improvement patented in this country, although it is unquestionably the first by an American. Of this improvement Mr. Root says:
VI. "CRAYON DAGUERREOTYPE."
"The improvement to which you refer is denominated "The Crayon Daguerreotype." This invention made by Mr. J. A. Whipple, is the only improvement in Daguerreotyping, I believe, for which Letters Patent for the United States were ever issued. The pictures produced by this process—which is of the simplest description imaginable—have the appearance and effect of very fine "Crayon Drawings," from which the improvement takes its name. Some of our most distinguished artists have given it their unqualified admiration. Among them, our Mezzotinto Engravers, especially John Sartain, Esq., who, from his rich embellishments to most of the leading Magazines and Annuals of the country, as well as from the celebrity of the superb Magazine which bears his name, is so well known and so well qualified to judge of its merits. As an auxiliary to the artist, in furnishing heads to the Magazines, or other works, it is invaluable; the great object which it accomplishes being to give a finer effect and more distinct expression to all the features—the whole power of the instrument being directed to, and confined to the head."
"The late hour at which this subject has been brought to our notice prevents so full a description as we would otherwise have been glad to furnish. The New England States have been disposed of; negotiations for any of the others can be made through M. A. Root, 140 Chestnut street, Philadelphia."
"A series of beautiful portraits are about being prepared by the "Crayton Process" for the express purpose of being placed on the exhibition at the "Art Union," when amateurs, artists, and the public generally will have an opportunity of witnessing its effect. We are especially gratified with this striking improvement, from the advantages which it promises to the Daguerrean art."
"It is admirably designed to excite a new interest on the subject through the community, and in this way—and from its tendency to render the art more generally useful, and to elevate and distinguish it—to make it to all a matter of more general importance."
"Yours respectfully, "M. A. ROOT."
In our second edition, we hope—with Mr. Root's permission—to lay the whole process before the public, although our artists must bear in mind that Mr. Root's patent secures to him the exclusive right of its application.
CHAP. XI.
ON THE PROBABILITY OF PRODUCING COLORED PICTURES BY THE SOLAR RADIATIONS—PHOTOGRAPHIC DEVIATIONS—LUNAR PICTURES—DRUMMOND LIGHT.
Having before noticed the fact that some advances had been made towards taking Daguerreotypes in color, by means of solar rays, and expressed the hope that the day was not far distant when this might be accomplished, I here subjoin Mr. Hunt's remarks on this subject.
Mr. Biot, in 1840, speaking of Mr. Fox Talbot's beautiful calotype pictures, considers as an illusion "the hope to reconcile, not only the intensity but the tints of the chemical impressions produced by radiations, with the colors of the object from which these radiations emanated." It is true that three years have passed away, and we have not yet produced colored images; yet I am not inclined to consider the hope as entirely illusive.
It must be remembered that the color of bodies depends entirely upon the arrangement of their molecules. We have numerous very beautiful experiments in proof of this. The bi-niodide of mercury is a fine scarlet when precipitated. If this precipitate is heated between plates of glass, it is converted into crystals of a fine sulphur yellow, which remain of that color if undisturbed, but which becomes very speedily scarlet if touched with any pointed instrument. This very curious optical phenomena has been investigated by Mr. Talbot and by Mr. Warrington. Perfectly dry sulphate of copper is white; the slightest moisture turns it blue. Muriate of cobalt is of a pale pink color; a very slight heat, by removing a little moisture, changes it to a green. These are a few instances selected from many which might be given.
If we receive a prismatic spectrum on some papers, we have evidence that the molecular or chemical disturbance bears some relation to the color of each ray, or, in other words, that colored light so modifies the action of ENERGIA that the impression it makes is in proportion to the color of the light it accompanies, and hence there results a molecular arrangement capable of reflecting colors differently. Some instances have been given in which the rays impressed correspond with the colors of the luminous rays in a very remarkable manner.* One of the most decided cases is that of the paper prepared with the fluoride of soda and nitrate of silver. Sir John Herschel was, however, the first to obtain any good specimens of photographically impressed prismatic colorations.
* See Mr. Hunt's "Researches on Light."
It was noticed by Daguerre that a red house gave a reddish image on his iodized silver plate in the camera obscura; and Mr. Talbot observed, very early in his researches, that the red of a colored print was copied of a red color, on paper spread with the chloride of silver.**
** In 1842, I had shown me a picture of a house in the Bowery, which had been repaired a few days previous, and in the wall a red brick left. This brick was brought out on the Daguerreotype plate of precisely the same color as the brick itself. The same artist also exhibited to me, the full length portrait of a gentleman who were a pair of pantaloons having a blue striped figure. This blue stripe was fully brought out, of the same color, in the picture.—AMER. ED.
"In 1840 I communicated to Sir John Herschel some very curious results obtained by the use of colored media, which he did me the honor of publishing in one of his memoirs on the subject from which I again copy it."
"A paper prepared with muriate of barytes and nitrate of silver, allowed to darken whilst wet in the sunshine to a chocolate color, was placed under a frame containing a red, a yellow, a green, and a blue glass. After a week's exposure to diffused light, it became red under the red glass, a dirty yellow under the yellow glass, a dark green under the green, and a light olive under the blue.
"The above paper washed with a solution of salt of iodine, is very sensitive to light, and gives a beautiful picture. A picture thus taken was placed beneath the above glasses, and another beneath four flat bottles containing colored fluids. In a few days, under the red glass and fluid, the picture became a dark blue, under the yellow a light blue, under the green it remained unchanged, whilst under the blue it became a rose red, which in about three weeks changed into green. Many other experiments of a similar nature have been tried since that time with like results.
"In the summer of 1843, when engaged in some experiments on papers prepared according to the principles of Mr. Talbot's calotype, I had placed in a camera obscura a paper prepared with the bromide of silver and gallic acid. The camera embraced a picture of a clear blue sky, stucco-fronted houses, and a green field. The paper was unavoidably exposed for a longer period than was intended—about fifteen minutes,—a very beautiful picture was impressed, which, when held between the eye and the light, exhibited a curious order of colors. The sky was of a crimson hue, the houses of a slaty blue, and the green fields of a brick red tint. Surely these results appear to encourage the hope, that we may eventually arrive at a process by which external nature may be made to impress its images on prepared surfaces, in all the beauty of their native coloration."
PHOTOGRAPHIC DEVIATIONS.
Before taking leave of the subject of photogenic drawing, I must mention one or two facts, which may be of essential service to operators.
It has been observed by Daguerre, and others, in Europe, and probably by some of our own artists, that the sun two hours after it has passed the meridian, is much less effective in the photographic process, than it is two hours previous to its having reached that point. This may depend upon an absorptive power of the air, which may reasonably be supposed to be more charged with vapor two hours before noon. The fuse of the hygrometer may possibly establish the truth or falsity of this supposition. The fact, however, of a better result being produced before noon being established, persons wishing their portraits taken, will see the advantage of obtaining an early sitting, if they wish good pictures. On the other hand, if the supposition above mentioned prove true, a too early sitting must be avoided.
If we take a considerable thickness of a dense purple fluid, as, for instance, a solution of the ammonia-sulphate of copper, we shall find that the quantity of light is considerably diminished, at least four-fifths of the luminous rays being absorbed, while the chemical rays permeate it with the greatest facility, and sensitive preparations are affected by its influence, notwithstanding the deficiency of light, nearly as powerfully as if exposed to the undecomposed sunbeams.
It was first imagined that under the brilliant sun and clear skies of the south, photographic pictures would be produced with much greater quickness than they could be in the atmosphere of Paris. It is found, however, that a much longer time is required. Even in the clear and beautiful light of the higher Alps, it has been proved that the production of the photographic picture requires many minutes more, even with the most sensitive preparations, than it does in London. It has also been found that under the brilliant light of Mexico, twenty minutes, and half an hour, are required to produce effects which in England would occupy but a minute; and travellers engaged in copying the antiquities of Yucatan have on several occasions abandoned the use of the photographic camera, and taken to their sketch books. Dr. Draper* has observed a similar difference between the chemical action of light in New York and Virginia. This can be only explained by the supposition that the intensity of the light and heat of these climes interferes with the action of the ENERGIC rays on those sensitive preparations which are employed.
* I would here take occasion to remark that our country man, Dr. Draper, is very frequently quoted by Mr. Hunt in his "Researches."
LUNAR PICTURES—DRUMMOND LIGHT.
The Roman Astronomers state that they have procured Daguerreotype impressions of the Nebula of the sword of Orion. Signor Rondini has a secret method of receiving photographic images on lithographic stone; on such a prepared stone they have succeeded in impressing an image of the Nebula and its stars; "and from that stone they have been enabled to take impressions on paper, unlimited in number, of singular beauty, and of perfect precision." Experiments have, however, proved that "no heating power exists in the moon's rays, and that lunar light will not act chemically upon the iduret of silver."
It was at one time supposed that terrestrial or artificial light possessed no chemical rays, but this is incorrect—Mr. Brande discovered that although the concentrated light of the moon, or the light even of olefiant gas, however intense, had no effect on chloride of silver, or on a mixture of chloride and hydrogen, yet the light emitted by electerized charcoal blackens the salt. At the Royal Polytechnic Institution pictures have been taken by means of sensitive paper acted upon by the Drummond Light; but it must of course be distinctly understood, that they are inferior to those taken by the light of the sun, or diffused daylight.
If our operators could manage to produce good pictures in this way they would put money in their pockets, as many who cannot find time during the day would resort to their rooms at night. I throw out the hint in hopes some one will make the experiment.
I have learned, since the above was written, that an operator in Boston succeeded a short time since in procuring very good pictures by the aid of the Drummond Light; but that the intensity of the light falling directly upon the sitter's face caused great difficulty, and he abandoned it. This may, probably, be remedied by interposing a screen of very thin tissue paper tinged slightly of a bluish color.
CHAP. XII.
ON COLORING DAGUERREOTYPES.
Nearly, if not quite all the various colors used in painting may be made from the five primitive colors, black, white, blue, red and yellow, but for the Daguerrean artist it would be the best policy to obtain such as are required by their art already prepared. In a majority of cases, the following will be found sufficient, viz.
Carmine. Prussian Blue. White. Chrome Yellow, Gamboge, Yellow Ochre; or all three.* *Gamboge is best for drapery; Ochre for the face. Light Red. Indigo. Burnt Sienna. Bistre, or Burnt Umber.
If, in coloring any part of a lady's or gentleman's apparel, it is found necessary to produce other tints and shades, the following combinations may be used:
Orange—Mix yellow with red, making it darker or lighter by using more or less red.
Purple—This is made with Prussian blue, or indigo and red. Carmine and Prussian blue producing the richest color, which may be deepened in the shadows by a slight addition of indigo or brown.
Greens—Prussian blue and gamboge makes a very fine green, which may be varied to suit the taste of the sitter or operator, by larger portions of either, or by adding white, burnt sienna, indigo, and red, as the case may require. These combinations, under different modifications, give almost endless varieties of green.
Brown—May be made of different shades of umber, carmine and lamp-black.
Neutral tint—Is composed of indigo and lamp-black.
Crimson—Mix carmine and white, deepening the shaded parts of the picture with additional carmine.
Flesh Color—The best representative of flesh color is light red, brightened in the more glowing or warmer parts, with carmine, softened off in the lighter portions with white, and shaded with purple and burnt sienna.
Lead Color—Mix indigo and white in proportions to suit.
Scarlet—Carmine and light red.
For Jewelry cups of gold and silver preparations accompany each box for Daguerreotypists, or may be procured separately.
The method of laying colors on Daguerreotypes is one of considerable difficulty, inasmuch as they are used in the form of perfectly dry impalpable powder. The author of this little work is now experimenting, in order, if possible, to discover some more easy, artistic and unexceptionable method. If successful, the result will be published in a future edition.
The rules we shall give for coloring Daguerreotypes depends, and are founded, upon those observed in miniature painting, and are intended more as hints to Daguerrean artists, in hopes of leading them to attempt improvements, than as instructions wholly to be observed.
The writer is confident that some compound or ingredient may yet be discovered which, when mixed with the colors, will give a more delicate, pleasing, and natural appearance to the picture than is derived from the present mode of laying them on, which in his estimation is more like plastering than coloring.
IN COLORING DAGUERREOTYPES, the principal shades of the head are to be made with bistre, mixed with burnt sienna, touching some places with a mixture of carmine and indigo. The flesh tints are produced by the use of light red, deepened towards the shaded parts with yellow ochre, blue and carmine mixed with indigo, while the warmer, or more highly colored parts have a slight excess of carmine or lake. Color the shades about the mouth and neck with yellow ochre, blue, and a very little carmine, heightening the color of the lips with carmine and light red, letting the light red predominate on the upper, and the carmine on the lower lip; the shades in the corner of the mouth being touched slightly with burnt sienna, mixed with carmine.
In coloring the eyes, the artist will of course be guided by nature, observing a very delicate touch in laying on the colors, so as to preserve as much transparency as possible. A slight touch of blue—ultramarine would be best if it would adhere to the Daguerreotype plate—in the whites of the eye near the iris, will produce a good effect.
In coloring the heads of men it will be necessary to use the darker tints with more freedom, according to the complexion of the sitter. For women, the warmer tints should predominate, and in order to give that transparency so universal with the softer sex—and which gives so much loveliness and beauty to the face—a little white may be judiciously intermingled with the red tints about the lighter portions of the face.
In taking a picture of a lady with light or auburn hair, by the Daguerrean process, much of the beauty of the face is destroyed, on account of the imperfect manner in which light conveys the image of light objects to the spectrum of the camera. This may be obviated in some measure by proper coloring. To do this, touch the shaded parts with burnt sienna and bistre, filling up the lighter portions with yellow ochre, delicate touches of burnt sienna, and in those parts which naturally have a bluish tint, add very delicate touches of purple—so delicate in fact as hardly to be perceived. The roots of the hair at the forehead should also be touched with blue, and the eyebrows near the temples made of a pinkish tint.
The chin of a woman is nearly of the same color as the cheeks in the most glowing parts. In men it is stronger, and of a bluish tint, in order to produce the effect given by the beard.
In portraits of women—the middle tints on the side of the light, which are perceived on the bosom and arms, are made of a slight mixture of ochre, blue and lake, (or carmine), to which add, on the shaded sides, ochre, bistre and purple, the latter in the darker parts. The tints of the hands should be the same as the other parts of the flesh, the ends of the fingers being a little pinkish and the nails of a violet hue. If any portion of the fleshy parts is shaded by portions of the dress, or by the position of the hand, this shade should be colored with umber mixed with purple.
TO COLOR THE DRAPERY.—Violet Velvet—Use purple made of Prussian blue and carmine, touching up the shaded parts with indigo blue.
Green Velvet—Mix Prussian blue and red-orpiment, shade with purple, and touch up the lights with a little white.
Red Velvet—Mix a very little brown with carmine, shading with purple, marking the lights in the strongest parts with pure carmine, and touch the most brilliant slightly with white.
White Feathers—May be improved by delicately touching the shaded parts with a little blue mixed with white. White muslin, linen, lace, satin, silk, etc., may also be colored in the same way, being careful not to lay the color on too heavily.
FURS—Red Furs may be imitated by using light red and a little masticot, shaded with umber. Gray Furs—black and white mixed and shaded with bistre. Sable—white shaded lightly with yellow ochre.
These few directions are quite sufficient for the art, and it is quite unnecessary for me to pursue the subject further. I would, however, remark that the Daguerreotypists would find it greatly to their advantage to visit the studies of our best artists, our public galleries of paintings, and statuary, and wherever else they can obtain a sight of fine paintings, and study the various styles of coloring, attitudes, folds of drapery and other points of the art. In coloring Daguerreotypes, artists will find the magnifying glass of much advantage in detecting any imperfections in the plate or in the image, which may be remedied by the brush. In selecting brushes choose those most susceptible of a fine point, which may be ascertained by wetting them between the lips, or in a glass of water.
CHAP. XIII.
THE PHOTOGRAPHOMETER.
The last number (for March, 1849) of the London Art-Journal, gives the following description of a recent improvement in Photographic Manipulation, and as I am desirous of furnishing everything new in the art, I stop the press to add it, entire, to my work.
"Since the photographic power of the solar rays bears no direct relation to their luminous influence, it becomes a question of considerable importance to those who practice the beautiful art of photography, to have the means of readily measuring the ever changing activity of this force. Several plans more or less successful, have been devised by Sir John Herschel, Messrs. Jordan, Shaw and Hunt. The instrument, however, which is now brought forward by Mr. Claudet, who is well known as one of our most successful Daguerreotypists, appears admirably suited to all those purposes which the practical man requires. The great difficulty which continually annoys the photographic amateur and artist, is the determination of the sensibility of each tablet employed, relatively to the amount of radiation, luminous and chemical, with which he is working. With the photographometer of Mr. Claudet this is easily ascertained. The following woodcuts and concise description will sufficiently indicate this useful and simple apparatus.
"For an instrument of this kind it is important in the first place to have a motion always uniform, without complicated or expensive mechanism. This is obtained by means founded upon the principle of the fall of bodies sliding down an inclined plane. The sensitive surface is exposed to the light by the rapid and uniform passage of a metal plate, A, B, (Fig. 31,) having openings of different length, which follow a geometric progression. It is evident that the exposure to light will be the same for each experiment, because the plate furnished with the proportional openings falls always with the same rapidity, the height of the fall being constant, and the angle of the inclined plane the same. Each opening of this moveable plate allows the light to pass during the same space of time, and the effect upon the sensitive surface indicates exactly the intensity of the chemical rays. The rapidity of the fall may be augmented or diminished by altering the inclination of the plane by means of a graduated arc, C, D, (Fig. 30,) furnished with a screw, E, by which it may be fixed at any angle. The same result may be obtained by modifying the height of the fall or the weight of the moveable plate. The photogenic surface, whether it be the Daguerreotype plate, the Talbotype paper, or any other preparation sensitive to light, is placed near the bottom of the inclined plane, F. It is covered by a thin plate of metal, pierced with circular holes, which correspond to the openings of the moveable plate at the moment of the passage of the latter, during which the sensitive surface receives the light wherever the circular holes leave it exposed.
"The part of the apparatus which contains the sensitive surface is an independent frame, and it slides from a dark box into an opening on the side of the inclined plane.
"A covering of black cloth impermeable to light is, attached to the sides of the moveable plate, enveloping the whole inclined plane, rolling freely over two rollers, R, R, placed the one at the upper and the other at the lower part of the inclined plane. This cloth prevents the light striking the sensitive surface before and after the passage of the moveable plate.
"It will be seen that this apparatus enables the experimentalist to ascertain with great precision the exact length of time which is required to produce a given amount of actinic change upon any sensitive photographic surface, whether on metal or paper. Although at present some calculation is necessary to determine the difference between the time which is necessary for exposure in direct radiation, and to the action of the secondary radiations of the camera obscura; this is, however, a very simple matter, and it appears to us exceedingly easy to adapt an instrument of this description to the camera itself.
"By this instrument Mr. Claudet has already determined many very important points. Among others, he has proved that on the most sensitive Daguerreotype plate an exposure of .0001 part of a second is sufficient to produce a decided effect.
"Regarding photography as an auxiliary aid to the artist of no mean value, we are pleased to record a description of an instrument which, without being complicated, promises to be exceedingly useful. In this opinion we are not singular; at a recent meeting of the Photographic Club, to which this instrument was exhibited, it was with much real satisfaction that we learned that several of our most eminent artists were now eager and most successful students in Photography. The beautiful productions of the more prominent members of this club excited the admiration of all, particularly the copies of architectural beauties, and small bits of landscape, by Messrs. Cundell and Owen. We think that now the artist sees the advantage he may derive from the aid of science, that both will gain by the union."
I hope the above description will induce our townsman, Mr. Roach, to successfully produce an instrument that will meet the wants of our artists in that part of the Daguerrean process referred to.
FINIS.
INDEX.
Accelerating Liquids. 65 Amphitype. 116 Anthotype. 113 Apparatus. Daguerreotype. 43 Calotype 97 Photogenic 87 Application of Photogenic Drawing. 95 Applying the Sensitive. 64
Bringing out the Picture. 71 Bromine Box. 51 Chloride of 68 Roach's Tripple Compound of 67 water. 65 Bromide of Iodine. 67 of Lime. 68 Paper. 91 of silver. 35 Brushes. 88 Buff Sticks. 60
Calotype process. 97 paper. Exposure in Camera of 100 Pictures. Bringing out ib. Fixing 101 Camera. Description of the 43 Stand. 49 Woodbridge's ib. Calotype. 50 Voigtlander 45 Chloride of Bromine. 68 of Gold. 36 to make a solution of 75 of Iodine. 66 of Silver. 31 Chromatype. 112 Chrysotype. 106 Cleaning and Polishing the plate. 61 Coating Boxes. 51 Color Boxes. 53 Colored Daguerreotypes on Copper. 77 Coloring the Picture. 76 Daguerreotypes. 129 Concave Mirrors. 19 Convex Mirrors 19 Corchorus Japonica. 37 Crayon Daguerreotypes. 120 Cyanotype 109
Daguerreotype Apparatus. 43 Process. 61 Plates. 62 Daguerreotypes. Crayon 77 on paper 81 Dedication. iii Definitions of terms used in optics, 15 Different methods of preparing photogenic paper. 89 Directions for use of Galvanic Battery. 58 Distilled water 88 Drummond light. 128 Dry Sensitive. 68 Drying apparatus. 72
Effects of light on bodies 25 Energiatype 111 Etching Daguerreotypes. 83
Fifth operation. Fixing the picture. 61 First operation. Cleaning the plate 61 Fluoric acid. 69 Fourth operation-Bringing out the picture. 71 Funnels. 53
Galvanic Battery. 57 Solution for use of 58 Gilding stand. 53 the picture. 74 Gold. Chloride of 36 To make solution of 75 Hyposulphite; or Salt of 74 Preparation of. 36 Gurney's Sensitive. 67
Head Rests. 57 Hints and Suggestions. 39 History of Photography. 3 Hungarian Liquid. 69 Hygrometers. 55 Hyposulphite of Gold. 74 of Soda. 28
Instantaneous pictures by means of Galvanism. 77 Introduction. i Iodine, Dry 64 Chloride of 66 Bromide of 67 Box. 51 Iodide of silver. 32 Ioduret of silver. 33 Iodize the Plate. To 64 Iodized Paper for Calotypes. To prepare 98 To prepare for the Camera ib.
Lamps, Spirit 53 Light. Theory on 14 Motion of 16 Reflection of 17 Refraction of 20 on bodies. Effects of 25 Prismatic analysis of 22 Lime, Bromide of 68 Lunar Pictures. 127
Mead's Accelerator. 68 Mercury Bath 50
Nitrate of Silver. 89
Oxide of Silver. 29 On coloring Daguerreotypes 129 On the probability of Producing colored Photographs. 123
Paper. blotting; or bibulous, 88 Daguerreotypes. 81 preparation of 89 suitable for Photographs. 87 Photogenic drawing on ib Photographic principle, the 22 Photographic process on paper. 92 drawing. Application of 95 To fix the 93 deviations. 126 Photographometer, The 135 Plate Support. 59 Blocks. 50 Vice. 51 Poppy, The Red 37 Porcelain dishes. 59 Positive Calotype 104 Preface. v Preparation of Iodized Paper. 98 of Gold. 36 Prismatic Spectrum. 22 Analysis of Light. ib
Reflection of Light. 17 Refraction of Light. 20 Roach's Tripple Compound of Bromine. 67
Sand Clock. 70 Sealing paper. To make 77 Second operation. 94 Sensitive. ib Silver. Bromide of 35 Chloride of 31 Iodide of 32 Ioduret of 33 Nitrate of 89 Oxide of 28 Solution of Chloride of 59 Sixth operation. 74 Soda Hyposulphite of 72 Solar and Stellar Light. 21 Still for purifying water, 54 Submitting the Plate to the action of Light 69 Synopsis of Mr. Hunt's Treatise on Light, 29
Talbotype Camera. 50 Theory on Light. 14 Third operation. 69
Wall Flower. 37
THE END |
|