|
{288} The distinction between faculty and instinct corresponds in some degree to that between perception of a stimulus and a specific reaction. I imagine that the author would have said that the sensitiveness to light possessed by a plant is faculty, while instinct decides whether the plant curves to or from the source of illumination.
{289} <Note in the original in an unknown handwriting.> At the time when corn was pitched in the market instead of sold by sample, the geese in the town fields of Newcastle used to know market day and come in to pick up the corn spilt.
{290} Macculloch and others.
{291} I can find no reference to the transandantes sheep in Darwin's published work. He was possibly led to doubt the accuracy of the statement on which he relied. For the case of the sheep returning to their birth-place see p. 17, note 4.{Note 91}
Fourthly, with respect to the combs of the hive-bee{292}; here again we must look to some faculty or means by which they make their hexagonal cells, without indeed we view these instincts as mere machines. At present such a faculty is quite unknown: Mr Waterhouse supposes that several bees are led by their instinct to excavate a mass of wax to a certain thinness, and that the result of this is that hexagons necessarily remain. Whether this or some other theory be true, some such means they must possess. They abound, however, with true instincts, which are the most wonderful that are known. If we examine the little that is known concerning the habits of other species of bees, we find much simpler instincts: the humble bee merely fills rude balls of wax with honey and aggregates them together with little order in a rough nest of grass. If we knew the instinct of all the bees, which ever had existed, it is not improbable that we should have instincts of every degree of complexity, from actions as simple as a bird making a nest, and rearing her young, to the wonderful architecture and government of the hive-bee; at least such is possible, which is all that I am here considering.
{292} Origin, Ed. i. p. 224, vi. p. 342.
Finally, I will briefly consider under the same point of view one other class of instincts, which have often been advanced as truly wonderful, namely parents bringing food to their young which they themselves neither like nor partake of{293};—for instance, the common sparrow, a granivorous bird, feeding its young with caterpillars. We might of course look into the case still earlier, and seek how an instinct in the parent, of feeding its young at all, was first derived; but it is useless to waste time in conjectures on a series of gradations from the young feeding themselves and being slightly and occasionally assisted in their search, to their entire food being brought to them. With respect to the parent bringing a different kind of food from its own kind, we may suppose either that the remote stock, whence the sparrow and other congenerous birds have descended, was insectivorous, and that its own habits and structure have been changed, whilst its ancient instincts with respect to its young have remained unchanged; or we may suppose that the parents have been induced to vary slightly the food of their young, by a slight scarcity of the proper kind (or by the instincts of some individuals not being so truly developed), and in this case those young which were most capable of surviving were necessarily most often preserved, and would themselves in time become parents, and would be similarly compelled to alter their food for their young. In the case of those animals, the young of which feed themselves, changes in their instincts for food, and in their structure, might be selected from slight variations, just as in mature animals. Again, where the food of the young depends on where the mother places her eggs, as in the case of the caterpillars of the cabbage-butterfly, we may suppose that the parent stock of the species deposited her eggs sometimes on one kind and sometimes on another of congenerous plants (as some species now do), and if the cabbage suited the caterpillars better than any other plant, the caterpillars of those butterflies, which had chosen the cabbage, would be most plentifully reared, and would produce butterflies more apt to lay their eggs on the cabbage than on the other congenerous plants.
{293} This is an expansion of an obscure passage in the Essay of 1842, p. 19.
However vague and unphilosophical these conjectures may appear, they serve, I think, to show that one's first impulse utterly to reject any theory whatever, implying a gradual acquirement of these instincts, which for ages have excited man's admiration, may at least be delayed. Once grant that dispositions, tastes, actions or habits can be slightly modified, either by slight congenital differences (we must suppose in the brain) or by the force of external circumstances, and that such slight modifications can be rendered inheritable,—a proposition which no one can reject,—and it will be difficult to put any limit to the complexity and wonder of the tastes and habits which may possibly be thus acquired.
Difficulties in the acquirement by Selection of complex corporeal structures.
After the past discussion it will perhaps be convenient here to consider whether any particular corporeal organs, or the entire structure of any animals, are so wonderful as to justify the rejection prima facie of our theory{294}. In the case of the eye, as with the more complicated instincts, no doubt one's first impulse is to utterly reject every such theory. But if the eye from its most complicated form can be shown to graduate into an exceedingly simple state,—if selection can produce the smallest change, and if such a series exists, then it is clear (for in this work we have nothing to do with the first origin of organs in their simplest forms{295}) that it may possibly have been acquired by gradual selection of slight, but in each case, useful deviations{296}. Every naturalist, when he meets with any new and singular organ, always expects to find, and looks for, other and simpler modifications of it in other beings. In the case of the eye, we have a multitude of different forms, more or less simple, not graduating into each other, but separated by sudden gaps or intervals; but we must recollect how incomparably greater would the multitude of visual structures be if we had the eyes of every fossil which ever existed. We shall discuss the probable vast proportion of the extinct to the recent in the succeeding Part. Notwithstanding the large series of existing forms, it is most difficult even to conjecture by what intermediate stages very many simple organs could possibly have graduated into complex ones: but it should be here borne in mind, that a part having originally a wholly different function, may on the theory of gradual selection be slowly worked into quite another use; the gradations of forms, from which naturalists believe in the hypothetical metamorphosis of part of the ear into the swimming bladder in fishes{297}, and in insects of legs into jaws, show the manner in which this is possible. As under domestication, modifications of structure take place, without any continued selection, which man finds very useful, or valuable for curiosity (as the hooked calyx of the teazle, or the ruff round some pigeons' necks), so in a state of nature some small modifications, apparently beautifully adapted to certain ends, may perhaps be produced from the accidents of the reproductive system, and be at once propagated without long-continued selection of small deviations towards that structure{298}. In conjecturing by what stages any complicated organ in a species may have arrived at its present state, although we may look to the analogous organs in other existing species, we should do this merely to aid and guide our imaginations; for to know the real stages we must look only through one line of species, to one ancient stock, from which the species in question has descended. In considering the eye of a quadruped, for instance, though we may look at the eye of a molluscous animal or of an insect, as a proof how simple an organ will serve some of the ends of vision; and at the eye of a fish as a nearer guide of the manner of simplification; we must remember that it is a mere chance (assuming for a moment the truth of our theory) if any existing organic being has preserved any one organ, in exactly the same condition, as it existed in the ancient species at remote geological periods.
{294} The difficulties discussed in the Origin, Ed. i. p. 171, vi. p. 207, are the rarity of transitional varieties, the origin of the tail of the giraffe; the otter-like polecat (Mustela vison); the flying habit of the bat; the penguin and the logger-headed duck; flying fish; the whale-like habit of the bear; the woodpecker; diving petrels; the eye; the swimming bladder; Cirripedes; neuter insects; electric organs.
Of these, the polecat, the bat, the woodpecker, the eye, the swimming bladder are discussed in the present Essay, and in addition some botanical problems.
{295} In the Origin, Ed. vi. p. 275, the author replies to Mivart's criticisms (Genesis of Species, 1871), referring especially to that writer's objection "that natural selection is incompetent to account for the incipient stages of useful structures."
{296} <The following sentence seems to have been intended for insertion here> "and that each eye throughout the animal kingdom is not only most useful, but perfect for its possessor."
{297} Origin, Ed. i. p. 190, vi. p. 230.
{298} This is one of the most definite statements in the present Essay of the possible importance of sports or what would now be called mutations. As is well known the author afterwards doubted whether species could arise in this way. See Origin, Ed. v. p. 103, vi. p. 110, also Life and Letters, vol. iii. p. 107.
The nature or condition of certain structures has been thought by some naturalists to be of no use to the possessor{299}, but to have been formed wholly for the good of other species; thus certain fruit and seeds have been thought to have been made nutritious for certain animals—numbers of insects, especially in their larval state, to exist for the same end—certain fish to be bright coloured to aid certain birds of prey in catching them, &c. Now could this be proved (which I am far from admitting) the theory of natural selection would be quite overthrown; for it is evident that selection depending on the advantage over others of one individual with some slight deviation would never produce a structure or quality profitable only to another species. No doubt one being takes advantage of qualities in another, and may even cause its extermination; but this is far from proving that this quality was produced for such an end. It may be advantageous to a plant to have its seeds attractive to animals, if one out of a hundred or a thousand escapes being digested, and thus aids dissemination: the bright colours of a fish may be of some advantage to it, or more probably may result from exposure to certain conditions in favourable haunts for food, notwithstanding it becomes subject to be caught more easily by certain birds.
{299} See Origin, Ed. i. p. 210, vi. p. 322, where the question is discussed for the case of instincts with a proviso that the same argument applies to structure. It is briefly stated in its general bearing in Origin, Ed. i. p. 87, vi. p. 106.
If instead of looking, as above, at certain individual organs, in order to speculate on the stages by which their parts have been matured and selected, we consider an individual animal, we meet with the same or greater difficulty, but which, I believe, as in the case of single organs, rests entirely on our ignorance. It may be asked by what intermediate forms could, for instance, a bat possibly have passed; but the same question might have been asked with respect to the seal, if we had not been familiar with the otter and other semi-aquatic carnivorous quadrupeds. But in the case of the bat, who can say what might have been the habits of some parent form with less developed wings, when we now have insectivorous opossums and herbivorous squirrels fitted for merely gliding through the air{300}. One species of bat is at present partly aquatic in its habits{301}. Woodpeckers and tree-frogs are especially adapted, as their names express, for climbing trees; yet we have species of both inhabiting the open plains of La Plata, where a tree does not exist{302}. I might argue from this circumstance that a structure eminently fitted for climbing trees might descend from forms inhabiting a country where a tree did not exist. Notwithstanding these and a multitude of other well-known facts, it has been maintained by several authors that one species, for instance of the carnivorous order, could not pass into another, for instance into an otter, because in its transitional state its habits would not be adapted to any proper conditions of life; but the jaguar{303} is a thoroughly terrestrial quadruped in its structure, yet it takes freely to the water and catches many fish; will it be said that it is impossible that the conditions of its country might become such that the jaguar should be driven to feed more on fish than they now do; and in that case is it impossible, is it not probable, that any the slightest deviation in its instincts, its form of body, in the width of its feet, and in the extension of the skin (which already unites the base of its toes) would give such individuals a better chance of surviving and propagating young with similar, barely perceptible (though thoroughly exercised), deviations{304}? Who will say what could thus be effected in the course of ten thousand generations? Who can answer the same question with respect to instincts? If no one can, the possibility (for we are not in this chapter considering the probability) of simple organs or organic beings being modified by natural selection and the effects of external agencies into complicated ones ought not to be absolutely rejected.
{300} No one will dispute that the gliding is most useful, probably necessary for the species in question.
{301} Is this the Galeopithecus? I forget. <Galeopithecus "or the flying Lemur" is mentioned in the corresponding discussion in the Origin, Ed. i. p. 181, vi. p. 217, as formerly placed among the bats. I do not know why it is described as partly aquatic in its habits.>
{302} In the Origin, Ed. vi. p. 221, the author modified the statement that it never climbs trees; he also inserted a sentence quoting Mr Hudson to the effect that in other districts this woodpecker climbs trees and bores holes. See Mr Darwin's paper, Zoolog. Soc. Proc., 1870, and Life and Letters, iii. p. 153.
{303} Note by the late Alfred Newton. Richardson in Fauna Boreali-Americana, i. p. 49.
{304} See Richardson a far better case of a polecat animal , which half-year is aquatic. <Mentioned in Origin, Ed. i. p. 179, vi. p. 216.>
PART II{305}
ON THE EVIDENCE FAVOURABLE AND OPPOSED TO THE VIEW THAT SPECIES ARE NATURALLY FORMED RACES, DESCENDED FROM COMMON STOCKS
{305} In the Origin the division of the work into Parts I and II is omitted. In the MS. the chapters of Part II are numbered afresh, the present being Ch. I of Pt. II. I have thought it best to call it Ch. IV and there is evidence that Darwin had some thought of doing the same. It corresponds to Ch. IX of Origin, Ed. i., Ch. X in Ed. vi.
CHAPTER IV
ON THE NUMBER OF INTERMEDIATE FORMS REQUIRED ON THE THEORY OF COMMON DESCENT; AND ON THEIR ABSENCE IN A FOSSIL STATE
I must here premise that, according to the view ordinarily received, the myriads of organisms, which have during past and present times peopled this world, have been created by so many distinct acts of creation. It is impossible to reason concerning the will of the Creator, and therefore, according to this view, we can see no cause why or why not the individual organism should have been created on any fixed scheme. That all the organisms of this world have been produced on a scheme is certain from their general affinities; and if this scheme can be shown to be the same with that which would result from allied organic beings descending from common stocks, it becomes highly improbable that they have been separately created by individual acts of the will of a Creator. For as well might it be said that, although the planets move in courses conformably to the law of gravity, yet we ought to attribute the course of each planet to the individual act of the will of the Creator{306}. It is in every case more conformable with what we know of the government of this earth, that the Creator should have imposed only general laws. As long as no method was known by which races could become exquisitely adapted to various ends, whilst the existence of species was thought to be proved by the sterility{307} of their offspring, it was allowable to attribute each organism to an individual act of creation. But in the two former chapters it has (I think) been shown that the production, under existing conditions, of exquisitely adapted species, is at least possible. Is there then any direct evidence in favour or against this view? I believe that the geographical distribution of organic beings in past and present times, the kind of affinity linking them together, their so-called "metamorphic" and "abortive" organs, appear in favour of this view. On the other hand, the imperfect evidence of the continuousness of the organic series, which, we shall immediately see, is required on our theory, is against it; and is the most weighty objection{308}. The evidence, however, even on this point, as far as it goes, is favourable; and considering the imperfection of our knowledge, especially with respect to past ages, it would be surprising if evidence drawn from such sources were not also imperfect.
{306} In the Essay of 1842 the author uses astronomy in the same manner as an illustration. In the Origin this does not occur; the reference to the action of secondary causes is more general, e.g. Ed. i. p. 488, vi. p. 668.
{307} It is interesting to find the argument from sterility given so prominent a place. In a corresponding passage in the Origin, Ed. i. p. 480, vi. p. 659, it is more summarily treated. The author gives, as the chief bar to the acceptance of evolution, the fact that "we are always slow in admitting any great change of which we do not see the intermediate steps"; and goes on to quote Lyell on geological action. It will be remembered that the question of sterility remained a difficulty for Huxley.
{308} Similar statements occur in the Essay of 1842, p. 24, note 1, and in the Origin, Ed. i. p. 299.
As I suppose that species have been formed in an analogous manner with the varieties of the domesticated animals and plants, so must there have existed intermediate forms between all the species of the same group, not differing more than recognised varieties differ. It must not be supposed necessary that there should have existed forms exactly intermediate in character between any two species of a genus, or even between any two varieties of a species; but it is necessary that there should have existed every intermediate form between the one species or variety of the common parent, and likewise between the second species or variety, and this same common parent. Thus it does not necessarily follow that there ever has existed series of intermediate sub-varieties (differing no more than the occasional seedlings from the same seed-capsule,) between broccoli and common red cabbage; but it is certain that there has existed, between broccoli and the wild parent cabbage, a series of such intermediate seedlings, and again between red cabbage and the wild parent cabbage: so that the broccoli and red cabbage are linked together, but not necessarily by directly intermediate forms{309}. It is of course possible that there may have been directly intermediate forms, for the broccoli may have long since descended from a common red cabbage, and this from the wild cabbage. So on my theory, it must have been with species of the same genus. Still more must the supposition be avoided that there has necessarily ever existed (though one may have descended from other) directly intermediate forms between any two genera or families—for instance between the genus Sus and the Tapir{310}; although it is necessary that intermediate forms (not differing more than the varieties of our domestic animals) should have existed between Sus and some unknown parent form, and Tapir with this same parent form. The latter may have differed more from Sus and Tapir than these two genera now differ from each other. In this sense, according to our theory, there has been a gradual passage (the steps not being wider apart than our domestic varieties) between the species of the same genus, between genera of the same family, and between families of the same order, and so on, as far as facts, hereafter to be given, lead us; and the number of forms which must have at former periods existed, thus to make good this passage between different species, genera, and families, must have been almost infinitely great.
{309} In the Origin, Ed. i. p. 280, vi. p. 414 he uses his newly-acquired knowledge of pigeons to illustrate this point.
{310} Compare the Origin, Ed. i. p. 281, vi. p. 414.
What evidence{311} is there of a number of intermediate forms having existed, making a passage in the above sense, between the species of the same groups? Some naturalists have supposed that if every fossil which now lies entombed, together with all existing species, were collected together, a perfect series in every great class would be formed. Considering the enormous number of species requisite to effect this, especially in the above sense of the forms not being directly intermediate between the existing species and genera, but only intermediate by being linked through a common but often widely different ancestor, I think this supposition highly improbable. I am however far from underrating the probable number of fossilised species: no one who has attended to the wonderful progress of palaeontology during the last few years will doubt that we as yet have found only an exceedingly small fraction of the species buried in the crust of the earth. Although the almost infinitely numerous intermediate forms in no one class may have been preserved, it does not follow that they have not existed. The fossils which have been discovered, it is important to remark, do tend, the little way they go, to make good the series; for as observed by Buckland they all fall into or between existing groups{312}. Moreover, those that fall between our existing groups, fall in, according to the manner required by our theory, for they do not directly connect two existing species of different groups, but they connect the groups themselves: thus the Pachydermata and Ruminantia are now separated by several characters, the Pachydermata{313} have both a tibia and fibula, whilst Ruminantia have only a tibia; now the fossil Macrauchenia has a leg bone exactly intermediate in this respect, and likewise has some other intermediate characters. But the Macrauchenia does not connect any one species of Pachydermata with some one other of Ruminantia but it shows that these two groups have at one time been less widely divided. So have fish and reptiles been at one time more closely connected in some points than they now are. Generally in those groups in which there has been most change, the more ancient the fossil, if not identical with recent, the more often it falls between existing groups, or into small existing groups which now lie between other large existing groups. Cases like the foregoing, of which there are many, form steps, though few and far between, in a series of the kind required by my theory.
{311} Origin, Ed. i. p. 301, vi. p. 440.
{312} Origin, Ed. i. p. 329, vi. p. 471.
{313} The structure of the Pachyderm leg was a favourite with the author. It is discussed in the Essay of 1842, p. 48. In the present Essay the following sentence in the margin appears to refer to Pachyderms and Ruminants: "There can be no doubt, if we banish all fossils, existing groups stand more separate." The following occurs between the lines "The earliest forms would be such as others could radiate from."
As I have admitted the high improbability, that if every fossil were disinterred, they would compose in each of the Divisions of Nature a perfect series of the kind required; consequently I freely admit, that if those geologists are in the right who consider the lowest known formation as contemporaneous with the first appearances of life{314}; or the several formations as at all closely consecutive; or any one formation as containing a nearly perfect record of the organisms which existed during the whole period of its deposition in that quarter of the globe;—if such propositions are to be accepted, my theory must be abandoned.
{314} Origin, Ed. i. p. 307, vi. p. 448.
If the Palaeozoic system is really contemporaneous with the first appearance of life, my theory must be abandoned, both inasmuch as it limits from shortness of time the total number of forms which can have existed on this world, and because the organisms, as fish, mollusca{315} and star-fish found in its lower beds, cannot be considered as the parent forms of all the successive species in these classes. But no one has yet overturned the arguments of Hutton and Lyell, that the lowest formations known to us are only those which have escaped being metamorphosed ; if we argued from some considerable districts, we might have supposed that even the Cretaceous system was that in which life first appeared. From the number of distant points, however, in which the Silurian system has been found to be the lowest, and not always metamorphosed, there are some objections to Hutton's and Lyell's view; but we must not forget that the now existing land forms only 1/5 part of the superficies of the globe, and that this fraction is only imperfectly known. With respect to the fewness of the organisms found in the Silurian and other Palaeozoic formations, there is less difficulty, inasmuch as (besides their gradual obliteration) we can expect formations of this vast antiquity to escape entire denudation, only when they have been accumulated over a wide area, and have been subsequently protected by vast superimposed deposits: now this could generally only hold good with deposits accumulating in a wide and deep ocean, and therefore unfavourable to the presence of many living things. A mere narrow and not very thick strip of matter, deposited along a coast where organisms most abound, would have no chance of escaping denudation and being preserved to the present time from such immensely distant ages{316}.
{315} <Pencil insertion by the author.> The parent-forms of Mollusca would probably differ greatly from all recent,—it is not directly that any one division of Mollusca would descend from first time unaltered, whilst others had become metamorphosed from it.
{316} Origin, Ed. i. p. 291, vi. p. 426.
If the several known formations are at all nearly consecutive in time, and preserve a fair record of the organisms which have existed, my theory must be abandoned. But when we consider the great changes in mineralogical nature and texture between successive formations, what vast and entire changes in the geography of the surrounding countries must generally have been effected, thus wholly to have changed the nature of the deposits on the same area. What time such changes must have required! Moreover how often has it not been found, that between two conformable and apparently immediately successive deposits a vast pile of water-worn matter is interpolated in an adjoining district. We have no means of conjecturing in many cases how long a period{317} has elapsed between successive formations, for the species are often wholly different: as remarked by Lyell, in some cases probably as long a period has elapsed between two formations as the whole Tertiary system, itself broken by wide gaps.
{317} Reflect on coming in of the Chalk, extending from Iceland to the Crimea.
Consult the writings of any one who has particularly attended to any one stage in the Tertiary system (and indeed of every system) and see how deeply impressed he is with the time required for its accumulation{318}. Reflect on the years elapsed in many cases, since the latest beds containing only living species have been formed;—see what Jordan Smith says of the 20,000 years since the last bed, which is above the boulder formation in Scotland, has been upraised; or of the far longer period since the recent beds of Sweden have been upraised 400 feet, what an enormous period the boulder formation must have required, and yet how insignificant are the records (although there has been plenty of elevation to bring up submarine deposits) of the shells, which we know existed at that time. Think, then, over the entire length of the Tertiary epoch, and think over the probable length of the intervals, separating the Secondary deposits. Of these deposits, moreover, those consisting of sand and pebbles have seldom been favourable, either to the embedment or to the preservation of fossils{319}.
{318} Origin, Ed. i. p. 282, vi. p. 416.
{319} Origin, Ed. i. pp. 288, 300, vi. pp. 422, 438.
Nor can it be admitted as probable that any one Secondary formation contains a fair record even of those organisms which are most easily preserved, namely hard marine bodies. In how many cases have we not certain evidence that between the deposition of apparently closely consecutive beds, the lower one existed for an unknown time as land, covered with trees. Some of the Secondary formations which contain most marine remains appear to have been formed in a wide and not deep sea, and therefore only those marine animals which live in such situations would be preserved{320}. In all cases, on indented rocky coasts, or any other coast, where sediment is not accumulating, although often highly favourable to marine animals, none can be embedded: where pure sand and pebbles are accumulating few or none will be preserved. I may here instance the great western line of the S. American coast{321}, tenanted by many peculiar animals, of which none probably will be preserved to a distant epoch. From these causes, and especially from such deposits as are formed along a line of coast, steep above and below water, being necessarily of little width, and therefore more likely to be subsequently denuded and worn away, we can see why it is improbable that our Secondary deposits contain a fair record of the Marine Fauna of any one period. The East Indian Archipelago offers an area, as large as most of our Secondary deposits, in which there are wide and shallow seas, teeming with marine animals, and in which sediment is accumulating; now supposing that all the hard marine animals, or rather those having hard parts to preserve, were preserved to a future age, excepting those which lived on rocky shores where no sediment or only sand and gravel were accumulating, and excepting those embedded along the steeper coasts, where only a narrow fringe of sediment was accumulating, supposing all this, how poor a notion would a person at a future age have of the Marine Fauna of the present day. Lyell{322} has compared the geological series to a work of which only the few latter but not consecutive chapters have been preserved; and out of which, it may be added, very many leaves have been torn, the remaining ones only illustrating a scanty portion of the Fauna of each period. On this view, the records of anteceding ages confirm my theory; on any other they destroy it.
{320} Neither highest or lowest fish (i.e. Myxina or Lepidosiren) could be preserved in intelligible condition in fossils.
{321} Origin, Ed. i. p. 290, vi. p. 425.
{322} See Origin, Ed. i. p. 310, vi. p. 452 for Lyell's metaphor. I am indebted to Prof. Judd for pointing out that Darwin's version of the metaphor is founded on the first edition of Lyell's Principles, vol. I. and vol. III.; see the Essay of 1842, p. 27.
Finally, if we narrow the question into, why do we not find in some instances every intermediate form between any two species? the answer may well be that the average duration of each specific form (as we have good reason to believe) is immense in years, and that the transition could, according to my theory, be effected only by numberless small gradations; and therefore that we should require for this end a most perfect record, which the foregoing reasoning teaches us not to expect. It might be thought that in a vertical section of great thickness in the same formation some of the species ought to be found to vary in the upper and lower parts{323}, but it may be doubted whether any formation has gone on accumulating without any break for a period as long as the duration of a species; and if it had done so, we should require a series of specimens from every part. How rare must be the chance of sediment accumulating for some 20 or 30 thousand years on the same spot{324}, with the bottom subsiding, so that a proper depth might be preserved for any one species to continue living: what an amount of subsidence would be thus required, and this subsidence must not destroy the source whence the sediment continued to be derived. In the case of terrestrial animals, what chance is there when the present time is become a pleistocene formation (at an earlier period than this, sufficient elevation to expose marine beds could not be expected), what chance is there that future geologists will make out the innumerable transitional sub-varieties, through which the short-horned and long-horned cattle (so different in shape of body) have been derived from the same parent stock{325}? Yet this transition has been effected in the same country, and in a far shorter time, than would be probable in a wild state, both contingencies highly favourable for the future hypothetical geologists being enabled to trace the variation.
{323} See More Letters, vol. I. pp. 344-7, for Darwin's interest in the celebrated observations of Hilgendorf and Hyatt.
{324} This corresponds partly to Origin, Ed. i. p. 294, vi. p. 431.
{325} Origin, Ed. i. p. 299, vi. p. 437.
CHAPTER V
GRADUAL APPEARANCE AND DISAPPEARANCE OF SPECIES{326}
{326} This chapter corresponds to ch. X of Origin, Ed. i., vi. ch. XI, "On the geological succession of organic beings."
In the Tertiary system, in the last uplifted beds, we find all the species recent and living in the immediate vicinity; in rather older beds we find only recent species, but some not living in the immediate vicinity{327}; we then find beds with two or three or a few more extinct or very rare species; then considerably more extinct species, but with gaps in the regular increase; and finally we have beds with only two or three or not one living species. Most geologists believe that the gaps in the percentage, that is the sudden increments, in the number of the extinct species in the stages of the Tertiary system are due to the imperfection of the geological record. Hence we are led to believe that the species in the Tertiary system have been gradually introduced; and from analogy to carry on the same view to the Secondary formations. In these latter, however, entire groups of species generally come in abruptly; but this would naturally result, if, as argued in the foregoing chapter, these Secondary deposits are separated by wide epochs. Moreover it is important to observe that, with our increase of knowledge, the gaps between the older formations become fewer and smaller; geologists of a few years standing remember how beautifully has the Devonian system{328} come in between the Carboniferous and Silurian formations. I need hardly observe that the slow and gradual appearance of new forms follows from our theory, for to form a new species, an old one must not only be plastic in its organization, becoming so probably from changes in the conditions of its existence, but a place in the natural economy of the district must [be made,] come to exist, for the selection of some new modification of its structure, better fitted to the surrounding conditions than are the other individuals of the same or other species{329}.
{327} Origin, Ed. i. p. 312, vi. p. 453.
{328} In the margin the author has written "Lonsdale." This refers to W. Lonsdale's paper "Notes on the age of the Limestone of South Devonshire," Geolog. Soc. Trans., Series 2, vol. V. 1840, p. 721. According to Mr H. B. Woodward (History of the Geological Society of London, 1907, p. 107) "Lonsdale's 'important and original suggestion of the existence of an intermediary type of Palaeozoic fossils, since called Devonian,' led to a change which was then 'the greatest ever made at one time in the classification of our English formations'." Mr Woodward's quotations are from Murchison and Buckland.
{329} Better begin with this. If species really, after catastrophes, created in showers over world, my theory false. <In the above passage the author is obviously close to his theory of divergence.>
In the Tertiary system the same facts, which make us admit as probable that new species have slowly appeared, lead to the admission that old ones have slowly disappeared, not several together, but one after another; and by analogy one is induced to extend this belief to the Secondary and Palaeozoic epochs. In some cases, as the subsidence of a flat country, or the breaking or the joining of an isthmus, and the sudden inroad of many new and destructive species, extinction might be locally sudden. The view entertained by many geologists, that each fauna of each Secondary epoch has been suddenly destroyed over the whole world, so that no succession could be left for the production of new forms, is subversive of my theory, but I see no grounds whatever to admit such a view. On the contrary, the law, which has been made out, with reference to distinct epochs, by independent observers, namely, that the wider the geographical range of a species the longer is its duration in time, seems entirely opposed to any universal extermination{330}. The fact of species of mammiferous animals and fish being renewed at a quicker rate than mollusca, though both aquatic; and of these the terrestrial genera being renewed quicker than the marine; and the marine mollusca being again renewed quicker than the Infusorial animalcula, all seem to show that the extinction and renewal of species does not depend on general catastrophes, but on the particular relations of the several classes to the conditions to which they are exposed{331}.
{330} Opposite to this passage the author has written "d'Archiac, Forbes, Lyell."
{331} This passage, for which the author gives as authorities the names of Lyell, Forbes and Ehrenberg, corresponds in part to the discussion beginning on p. 313 of Origin, Ed. i., vi. p. 454.
Some authors seem to consider the fact of a few species having survived{332} amidst a number of extinct forms (as is the case with a tortoise and a crocodile out of the vast number of extinct sub-Himalayan fossils) as strongly opposed to the view of species being mutable. No doubt this would be the case, if it were presupposed with Lamarck that there was some inherent tendency to change and development in all species, for which supposition I see no evidence. As we see some species at present adapted to a wide range of conditions, so we may suppose that such species would survive unchanged and unexterminated for a long time; time generally being from geological causes a correlative of changing conditions. How at present one species becomes adapted to a wide range, and another species to a restricted range of conditions, is of difficult explanation.
{332} The author gives Falconer as his authority: see Origin, Ed. i. p. 313, vi. p. 454.
Extinction of species.
The extinction of the larger quadrupeds, of which we imagine we better know the conditions of existence, has been thought little less wonderful than the appearance of new species; and has, I think, chiefly led to the belief of universal catastrophes. When considering the wonderful disappearance within a late period, whilst recent shells were living, of the numerous great and small mammifers of S. America, one is strongly induced to join with the catastrophists. I believe, however, that very erroneous views are held on this subject. As far as is historically known, the disappearance of species from any one country has been slow—the species becoming rarer and rarer, locally extinct, and finally lost{333}. It may be objected that this has been effected by man's direct agency, or by his indirect agency in altering the state of the country; in this latter case, however, it would be difficult to draw any just distinction between his agency and natural agencies. But we now know in the later Tertiary deposits, that shells become rarer and rarer in the successive beds, and finally disappear: it has happened, also, that shells common in a fossil state, and thought to have been extinct, have been found to be still living species, but very rare ones{334}. If the rule is that organisms become extinct by becoming rarer and rarer, we ought not to view their extinction, even in the case of the larger quadrupeds, as anything wonderful and out of the common course of events. For no naturalist thinks it wonderful that one species of a genus should be rare and another abundant, notwithstanding he be quite incapable of explaining the causes of the comparative rareness{335}. Why is one species of willow-wren or hawk or woodpecker common in England, and another extremely rare: why at the Cape of Good Hope is one species of rhinoceros or antelope far more abundant than other species? Why again is the same species much more abundant in one district of a country than in another district? No doubt there are in each case good causes: but they are unknown and unperceived by us. May we not then safely infer that as certain causes are acting unperceived around us, and are making one species to be common and another exceedingly rare, that they might equally well cause the final extinction of some species without being perceived by us? We should always bear in mind that there is a recurrent struggle for life in every organism, and that in every country a destroying agency is always counteracting the geometrical tendency to increase in every species; and yet without our being able to tell with certainty at what period of life, or at what period of the year, the destruction falls the heaviest. Ought we then to expect to trace the steps by which this destroying power, always at work and scarcely perceived by us, becomes increased, and yet if it continues to increase ever so slowly (without the fertility of the species in question be likewise increased) the average number of the individuals of that species must decrease, and become finally lost. I may give a single instance of a check causing local extermination which might long have escaped discovery{336}; the horse, though swarming in a wild state in La Plata, and likewise under apparently the most unfavourable conditions in the scorched and alternately flooded plains of Caraccas, will not in a wild state extend beyond a certain degree of latitude into the intermediate country of Paraguay; this is owing to a certain fly depositing its eggs on the navels of the foals: as, however, man with a little care can rear horses in a tame state abundantly in Paraguay, the problem of its extinction is probably complicated by the greater exposure of the wild horse to occasional famine from the droughts, to the attacks of the jaguar and other such evils. In the Falkland Islands the check to the increase of the wild horse is said to be loss of the sucking foals{337}, from the stallions compelling the mares to travel across bogs and rocks in search of food: if the pasture on these islands decreased a little, the horse, perhaps, would cease to exist in a wild state, not from the absolute want of food, but from the impatience of the stallions urging the mares to travel whilst the foals were too young.
{333} This corresponds approximately to Origin, Ed. i. p. 317, vi. p. 458.
{334} The case of Trigonia, a great Secondary genus of shells surviving in a single species in the Australian seas, is given as an example in the Origin, Ed. i. p. 321, vi. p. 463.
{335} This point, on which the author laid much stress, is discussed in the Origin, Ed. i. p. 319, vi. p. 461.
{336} Origin, Ed. i. p. 72, vi. p. 89.
{337} This case does not occur in the Origin, Ed.
From our more intimate acquaintance with domestic animals, we cannot conceive their extinction without some glaring agency; we forget that they would undoubtedly in a state of nature (where other animals are ready to fill up their place) be acted on in some part of their lives by a destroying agency, keeping their numbers on an average constant. If the common ox was known only as a wild S. African species, we should feel no surprise at hearing that it was a very rare species; and this rarity would be a stage towards its extinction. Even in man, so infinitely better known than any other inhabitant of this world, how impossible it has been found, without statistical calculations, to judge of the proportions of births and deaths, of the duration of life, and of the increase and decrease of population; and still less of the causes of such changes: and yet, as has so often been repeated, decrease in numbers or rarity seems to be the high-road to extinction. To marvel at the extermination of a species appears to me to be the same thing as to know that illness is the road to death,—to look at illness as an ordinary event, nevertheless to conclude, when the sick man dies, that his death has been caused by some unknown and violent agency{338}.
{338} An almost identical sentence occurs in the Origin, Ed. i. p. 320, vi. p. 462.
In a future part of this work we shall show that, as a general rule, groups of allied species{339} gradually appear and disappear, one after the other, on the face of the earth, like the individuals of the same species: and we shall then endeavour to show the probable cause of this remarkable fact.
{339} Origin, Ed. i. p. 316, vi. p. 457.
CHAPTER VI
ON THE GEOGRAPHICAL DISTRIBUTION OF ORGANIC BEINGS IN PAST AND PRESENT TIMES
For convenience sake I shall divide this chapter into three sections{340}. In the first place I shall endeavour to state the laws of the distribution of existing beings, as far as our present object is concerned; in the second, that of extinct; and in the third section I shall consider how far these laws accord with the theory of allied species having a common descent.
{340} Chapters XI and XII in the Origin, Ed. i., vi. chs. XII and XIII ("On geographical distribution") show signs of having been originally one, in the fact that one summary serves for both. The geological element is not separately treated there, nor is there a separate section on "how far these laws accord with the theory, &c."
In the MS. the author has here written in the margin "If same species appear at two spot at once, fatal to my theory." See Origin, Ed. i. p. 352, vi. p. 499
SECTION FIRST.
Distribution of the inhabitants in the different continents.
In the following discussion I shall chiefly refer to terrestrial mammifers, inasmuch as they are better known; their differences in different countries, strongly marked; and especially as the necessary means of their transport are more evident, and confusion, from the accidental conveyance by man of a species from one district to another district, is less likely to arise. It is known that all mammifers (as well as all other organisms) are united in one great system; but that the different species, genera, or families of the same order inhabit different quarters of the globe. If we divide the land{341} into two divisions, according to the amount of difference, and disregarding the numbers of the terrestrial mammifers inhabiting them, we shall have first Australia including New Guinea; and secondly the rest of the world: if we make a three-fold division, we shall have Australia, S. America, and the rest of the world; I must observe that North America is in some respects neutral land, from possessing some S. American forms, but I believe it is more closely allied (as it certainly is in its birds, plants and shells) with Europe. If our division had been four-fold, we should have had Australia, S. America, Madagascar (though inhabited by few mammifers) and the remaining land: if five-fold, Africa, especially the southern eastern parts, would have to be separated from the remainder of the world. These differences in the mammiferous inhabitants of the several main divisions of the globe cannot, it is well known, be explained by corresponding differences in their conditions{342}; how similar are parts of tropical America and Africa; and accordingly we find some analogous resemblances,—thus both have monkeys, both large feline animals, both large Lepidoptera, and large dung-feeding beetles; both have palms and epiphytes; and yet the essential difference between their productions is as great as between those of the arid plains of the Cape of Good Hope and the grass-covered savannahs of La Plata{343}. Consider the distribution of the Marsupialia, which are eminently characteristic of Australia, and in a lesser degree of S. America; when we reflect that animals of this division, feeding both on animal and vegetable matter, frequent the dry open or wooded plains and mountains of Australia, the humid impenetrable forests of New Guinea and Brazil; the dry rocky mountains of Chile, and the grassy plains of Banda Oriental, we must look to some other cause, than the nature of the country, for their absence in Africa and other quarters of the world.
{341} This division of the land into regions does not occur in the Origin, Ed. i.
{342} Origin, Ed. i. p. 346, vi. p. 493.
{343} Opposite this passage is written "not botanically," in Sir J. D. Hooker's hand. The word palms is underlined three times and followed by three exclamation marks. An explanatory note is added in the margin "singular paucity of palms and epiphytes in Trop. Africa compared with Trop. America and Ind. Or." .
Furthermore it may be observed that all the organisms inhabiting any country are not perfectly adapted to it{344}; I mean by not being perfectly adapted, only that some few other organisms can generally be found better adapted to the country than some of the aborigines. We must admit this when we consider the enormous number of horses and cattle which have run wild during the three last centuries in the uninhabited parts of St Domingo, Cuba, and S. America; for these animals must have supplanted some aboriginal ones. I might also adduce the same fact in Australia, but perhaps it will be objected that 30 or 40 years has not been a sufficient period to test this power of struggling and overcoming the aborigines. We know the European mouse is driving before it that of New Zealand, like the Norway rat has driven before it the old English species in England. Scarcely an island can be named, where casually introduced plants have not supplanted some of the native species: in La Plata the Cardoon covers square leagues of country on which some S. American plants must once have grown: the commonest weed over the whole of India is an introduced Mexican poppy. The geologist who knows that slow changes are in progress, replacing land and water, will easily perceive that even if all the organisms of any country had originally been the best adapted to it, this could hardly continue so during succeeding ages without either extermination, or changes, first in the relative proportional numbers of the inhabitants of the country, and finally in their constitutions and structure.
{344} This partly corresponds to Origin, Ed. i. p. 337, vi. p. 483.
Inspection of a map of the world at once shows that the five divisions, separated according to the greatest amount of difference in the mammifers inhabiting them, are likewise those most widely separated from each other by barriers{345} which mammifers cannot pass: thus Australia is separated from New Guinea and some small adjoining islets only by a narrow and shallow strait; whereas New Guinea and its adjoining islets are cut off from the other East Indian islands by deep water. These latter islands, I may remark, which fall into the great Asiatic group, are separated from each other and the continent only by shallow water; and where this is the case we may suppose, from geological oscillations of level, that generally there has been recent union. South America, including the southern part of Mexico, is cut off from North America by the West Indies, and the great table-land of Mexico, except by a mere fringe of tropical forests along the coast: it is owing, perhaps, to this fringe that N. America possesses some S. American forms. Madagascar is entirely isolated. Africa is also to a great extent isolated, although it approaches, by many promontories and by lines of shallower sea, to Europe and Asia: southern Africa, which is the most distinct in its mammiferous inhabitants, is separated from the northern portion by the Great Sahara Desert and the table-land of Abyssinia. That the distribution of organisms is related to barriers, stopping their progress, we clearly see by comparing the distribution of marine and terrestrial productions. The marine animals being different on the two sides of land tenanted by the same terrestrial animals, thus the shells are wholly different on the opposite sides of the temperate parts of South America{346}, as they are (?) in the Red Sea and the Mediterranean. We can at once perceive that the destruction of a barrier would permit two geographical groups of organisms to fuse and blend into one. But the original cause of groups being different on opposite sides of a barrier can only be understood on the hypothesis of each organism having been created or produced on one spot or area, and afterwards migrating as widely as its means of transport and subsistence permitted it.
{345} On the general importance of barriers, see Origin, Ed. i. p. 347, vi. p. 494.
{346} Origin, Ed. i. p. 348, vi. p. 495.
Relation of range in genera and species.
It is generally{347} found, that where a genus or group ranges over nearly the entire world, many of the species composing the group have wide ranges: on the other hand, where a group is restricted to any one country, the species composing it generally have restricted ranges in that country{348}. Thus among mammifers the feline and canine genera are widely distributed, and many of the individual species have enormous ranges [the genus Mus I believe, however, is a strong exception to the rule]. Mr Gould informs me that the rule holds with birds, as in the owl genus, which is mundane, and many of the species range widely. The rule holds also with land and fresh-water mollusca, with butterflies and very generally with plants. As instances of the converse rule, I may give that division of the monkeys which is confined to S. America, and amongst plants, the Cacti, confined to the same continent, the species of both of which have generally narrow ranges. On the ordinary theory of the separate creation of each species, the cause of these relations is not obvious; we can see no reason, because many allied species have been created in the several main divisions of the world, that several of these species should have wide ranges; and on the other hand, that species of the same group should have narrow ranges if all have been created in one main division of the world. As the result of such and probably many other unknown relations, it is found that, even in the same great classes of beings, the different divisions of the world are characterised by either merely different species, or genera, or even families: thus in cats, mice, foxes, S. America differs from Asia and Africa only in species; in her pigs, camels and monkeys the difference is generic or greater. Again, whilst southern Africa and Australia differ more widely in their mammalia than do Africa and S. America, they are more closely (though indeed very distantly) allied in their plants.
{347} The same laws seem to govern distribution of species and genera, and individuals in time and space. <See Origin, Ed. i. p. 350, vi. p. 497, also a passage in the last chapter, p. 146.>
{348} Origin, Ed. i. p. 404, vi. p. 559.
Distribution of the inhabitants in the same continent.
If we now look at the distribution of the organisms in any one of the above main divisions of the world, we shall find it split up into many regions, with all or nearly all their species distinct, but yet partaking of one common character. This similarity of type in the subdivisions of a great region is equally well-known with the dissimilarity of the inhabitants of the several great regions; but it has been less often insisted on, though more worthy of remark. Thus for instance, if in Africa or S. America, we go from south to north{349}, or from lowland to upland, or from a humid to a dryer part, we find wholly different species of those genera or groups which characterise the continent over which we are passing. In these subdivisions we may clearly observe, as in the main divisions of the world, that sub-barriers divide different groups of species, although the opposite sides of such sub-barriers may possess nearly the same climate, and may be in other respects nearly similar: thus it is on the opposite sides of the Cordillera of Chile, and in a lesser degree on the opposite sides of the Rocky mountains. Deserts, arms of the sea, and even rivers form the barriers; mere preoccupied space seems sufficient in several cases: thus Eastern and Western Australia, in the same latitude, with very similar climate and soils, have scarcely a plant, and few animals or birds, in common, although all belong to the peculiar genera characterising Australia. It is in short impossible to explain the differences in the inhabitants, either of the main divisions of the world, or of these sub-divisions, by the differences in their physical conditions, and by the adaptation of their inhabitants. Some other cause must intervene.
{349} Origin, Ed. i. p. 349, vi. p. 496.
We can see that the destruction of sub-barriers would cause (as before remarked in the case of the main divisions) two sub-divisions to blend into one; and we can only suppose that the original difference in the species, on the opposite sides of sub-barriers, is due to the creation or production of species in distinct areas, from which they have wandered till arrested by such sub-barriers. Although thus far is pretty clear, it may be asked, why, when species in the same main division of the world were produced on opposite sides of a sub-barrier, both when exposed to similar conditions and when exposed to widely different influences (as on alpine and lowland tracts, as on arid and humid soils, as in cold and hot climates), have they invariably been formed on a similar type, and that type confined to this one division of the world? Why when an ostrich{350} was produced in the southern parts of America, was it formed on the American type, instead of on the African or on Australian types? Why when hare-like and rabbit-like animals were formed to live on the Savannahs of La Plata, were they produced on the peculiar Rodent type of S. America, instead of on the true{351} hare-type of North America, Asia and Africa? Why when borrowing Rodents, and camel-like animals were formed to tenant the Cordillera, were they formed on the same type{352} with their representatives on the plains? Why were the mice, and many birds of different species on the opposite sides of the Cordillera, but exposed to a very similar climate and soil, created on the same peculiar S. American type? Why were the plants in Eastern and Western Australia, though wholly different as species, formed on the same peculiar Australian types? The generality of the rule, in so many places and under such different circumstances, makes it highly remarkable and seems to demand some explanation.
{350} The case of the ostrich (Rhea) occurs in the Origin, Ed. i. p. 349, vi. p. 496.
{351} There is a hare in S. America,—so bad example.
{352} See Origin, Ed. i. p. 349, vi. p. 497.
Insular Faunas.
If we now look to the character of the inhabitants of small islands{353}, we shall find that those situated close to other land have a similar fauna with that land{354}, whilst those at a considerable distance from other land often possess an almost entirely peculiar fauna. The Galapagos Archipelago{355} is a remarkable instance of this latter fact; here almost every bird, its one mammifer, its reptiles, land and sea shells, and even fish, are almost all peculiar and distinct species, not found in any other quarter of the world: so are the majority of its plants. But although situated at the distance of between 500 and 600 miles from the S. American coast, it is impossible to even glance at a large part of its fauna, especially at the birds, without at once seeing that they belong to the American type{356}. Hence, in fact, groups of islands thus circumstanced form merely small but well-defined sub-divisions of the larger geographical divisions. But the fact is in such cases far more striking: for taking the Galapagos Archipelago as an instance; in the first place we must feel convinced, seeing that every island is wholly volcanic and bristles with craters, that in a geological sense the whole is of recent origin comparatively with a continent; and as the species are nearly all peculiar, we must conclude that they have in the same sense recently been produced on this very spot; and although in the nature of the soil, and in a lesser degree in the climate, there is a wide difference with the nearer part of the S. American coast, we see that the inhabitants have been formed on the same closely allied type. On the other hand, these islands, as far as their physical conditions are concerned, resemble closely the Cape de Verde volcanic group, and yet how wholly unlike are the productions of these two archipelagoes. The Cape de Verde{357} group, to which may be added the Canary Islands, are allied in their inhabitants (of which many are peculiar species) to the coast of Africa and southern Europe, in precisely the same manner as the Galapagos Archipelago is allied to America. We here clearly see that mere geographical proximity affects, more than any relation of adaptation, the character of species. How many islands in the Pacific exist far more like in their physical conditions to Juan Fernandez than this island is to the coast of Chile, distant 300 miles; why then, except from mere proximity, should this island alone be tenanted by two very peculiar species of humming-birds—that form of birds which is so exclusively American? Innumerable other similar cases might be adduced.
{353} For the general problem of Oceanic Islands, see Origin, Ed. i. p. 388, vi. p. 541.
{354} This is an illustration of the general theory of barriers (Origin, Ed. i. p. 347, vi. p. 494). At i. p. 391, vi. p. 544 the question is discussed from the point of view of means of transport. Between the lines, above the words "with that land," the author wrote "Cause, formerly joined, no one doubts after Lyell."
{355} Origin, Ed. i. p. 390, vi. p. 543.
{356} See Origin, Ed. i. p. 397, vi. p. 552.
{357} The Cape de Verde and Galapagos Archipelagoes are compared in the Origin, Ed. i. p. 398, vi. p. 553. See also Journal of Researches, 1860, p. 393.
The Galapagos Archipelago offers another, even more remarkable, example of the class of facts we are here considering. Most of its genera are, as we have said, American, many of them are mundane, or found everywhere, and some are quite or nearly confined to this archipelago. The islands are of absolutely similar composition, and exposed to the same climate; most of them are in sight of each other; and yet several of the islands are inhabited, each by peculiar species (or in some cases perhaps only varieties) of some of the genera characterising the archipelago. So that the small group of the Galapagos Islands typifies, and follows exactly the same laws in the distribution of its inhabitants, as a great continent. How wonderful it is that two or three closely similar but distinct species of a mocking-thrush{358} should have been produced on three neighbouring and absolutely similar islands; and that these three species of mocking-thrush should be closely related to the other species inhabiting wholly different climates and different districts of America, and only in America. No similar case so striking as this of the Galapagos Archipelago has hitherto been observed; and this difference of the productions in the different islands may perhaps be partly explained by the depth of the sea between them (showing that they could not have been united within recent geological periods), and by the currents of the sea sweeping straight between them,—and by storms of wind being rare, through which means seeds and birds could be blown, or drifted, from one island to another. There are however some similar facts: it is said that the different, though neighbouring islands of the East Indian Archipelago are inhabited by some different species of the same genera; and at the Sandwich group some of the islands have each their peculiar species of the same genera of plants.
{358} In the Origin, Ed. i. p. 390, a strong point is made of birds which immigrated "with facility and in a body" not having been modified. Thus the author accounts for the small percentage of peculiar "marine birds."
Islands standing quite isolated within the intra-tropical oceans have generally very peculiar floras, related, though feebly (as in the case of St Helena{359} where almost every species is distinct), with the nearest continent: Tristan d'Acunha is feebly related, I believe, in its plants, both to Africa and S. America, not by having species in common, but by the genera to which they belong{360}. The floras of the numerous scattered islands of the Pacific are related to each other and to all the surrounding continents; but it has been said, that they have more of an Indo-Asiatic than American character{361}. This is somewhat remarkable, as America is nearer to all the Eastern islands, and lies in the direction of the trade-wind and prevailing currents; on the other hand, all the heaviest gales come from the Asiatic side. But even with the aid of these gales, it is not obvious on the ordinary theory of creation how the possibility of migration (without we suppose, with extreme improbability, that each species with an Indo-Asiatic character has actually travelled from the Asiatic shores, where such species do not now exist) explains this Asiatic character in the plants of the Pacific. This is no more obvious than that (as before remarked) there should exist a relation between the creation of closely allied species in several regions of the world, and the fact of many such species having wide ranges; and on the other hand, of allied species confined to one region of the world having in that region narrow ranges.
{359} "The affinities of the St Helena flora are strongly South African." Hooker's Lecture on Insular Floras in the Gardeners' Chronicle, Jan. 1867.
{360} It is impossible to make out the precise form which the author intended to give to this sentence, but the meaning is clear.
{361} This is no doubt true, the flora of the Sandwich group however has marked American affinities.
Alpine Floras.
We will now turn to the floras of mountain-summits which are well known to differ from the floras of the neighbouring lowlands. In certain characters, such as dwarfness of stature, hairiness, &c., the species from the most distant mountains frequently resemble each other,—a kind of analogy like that for instance of the succulency of most desert plants. Besides this analogy, Alpine plants present some eminently curious facts in their distribution. In some cases the summits of mountains, although immensely distant from each other, are clothed by the same identical species{362} which are likewise the same with those growing on the likewise very distant Arctic shores. In other cases, although few or none of the species may be actually identical, they are closely related; whilst the plants of the lowland districts surrounding the two mountains in question will be wholly dissimilar. As mountain-summits, as far as their plants are concerned, are islands rising out of an ocean of land in which the Alpine species cannot live, nor across which is there any known means of transport, this fact appears directly opposed to the conclusion which we have come to from considering the general distribution of organisms both on continents and on islands—namely, that the degree of relationship between the inhabitants of two points depends on the completeness and nature of the barriers between those points{363}. I believe, however, this anomalous case admits, as we shall presently see, of some explanation. We might have expected that the flora of a mountain summit would have presented the same relation to the flora of the surrounding lowland country, which any isolated part of a continent does to the whole, or an island does to the mainland, from which it is separated by a rather wide space of sea. This in fact is the case with the plants clothing the summits of some mountains, which mountains it may be observed are particularly isolated; for instance, all the species are peculiar, but they belong to the forms characteristic of the surrounding continent, on the mountains of Caraccas, of Van Dieman's Land and of the Cape of Good Hope{364}. On some other mountains, for instance Tierra del Fuego and in Brazil, some of the plants though distinct species are S. American forms; whilst others are allied to or are identical with the Alpine species of Europe. In islands of which the lowland flora is distinct but allied to that of the nearest continent, the Alpine plants are sometimes (or perhaps mostly) eminently peculiar and distinct{365}; this is the case on Teneriffe, and in a lesser degree even on some of the Mediterranean islands.
{362} See Origin, Ed. i. p. 365, vi. p. 515. The present discussion was written before the publication of Forbes' celebrated paper on the same subject; see Life and Letters, vol. I. p. 88.
{363} The apparent breakdown of the doctrine of barriers is slightly touched on in the Origin, Ed. i. p. 365, vi. p. 515.
{364} In the Origin, Ed. i. p. 375, vi. p. 526, the author points out that on the mountains at the Cape of Good Hope "some few representative European forms are found, which have not been discovered in the inter-tropical parts of Africa."
{365} See Hooker's Lecture on Insular Floras in the Gardeners' Chronicle, Jan. 1867.
If all Alpine floras had been characterised like that of the mountain of Caraccas, or of Van Dieman's Land, &c., whatever explanation is possible of the general laws of geographical distribution would have applied to them. But the apparently anomalous case just given, namely of the mountains of Europe, of some mountains in the United States (Dr Boott) and of the summits of the Himalaya (Royle), having many identical species in common conjointly with the Arctic regions, and many species, though not identical, closely allied, require a separate explanation. The fact likewise of several of the species on the mountains of Tierra del Fuego (and in a lesser degree on the mountains of Brazil) not belonging to American forms, but to those of Europe, though so immensely remote, requires also a separate explanation.
Cause of the similarity in the floras of some distant mountains.
Now we may with confidence affirm, from the number of the then floating icebergs and low descent of the glaciers, that within a period so near that species of shells have remained the same, the whole of Central Europe and of North America (and perhaps of Eastern Asia) possessed a very cold climate; and therefore it is probable that the floras of these districts were the same as the present Arctic one,—as is known to have been to some degree the case with then existing sea-shells, and those now living on the Arctic shores. At this period the mountains must have been covered with ice of which we have evidence in the surfaces polished and scored by glaciers. What then would be the natural and almost inevitable effects of the gradual change into the present more temperate climate{366}? The ice and snow would disappear from the mountains, and as new plants from the more temperate regions of the south migrated northward, replacing the Arctic plants, these latter would crawl{367} up the now uncovered mountains, and likewise be driven northward to the present Arctic shores. If the Arctic flora of that period was a nearly uniform one, as the present one is, then we should have the same plants on these mountain-summits and on the present Arctic shores. On this view the Arctic flora of that period must have been a widely extended one, more so than even the present one; but considering how similar the physical conditions must always be of land bordering on perpetual frost, this does not appear a great difficulty; and may we not venture to suppose that the almost infinitely numerous icebergs, charged with great masses of rocks, soil and brushwood{368} and often driven high up on distant beaches, might have been the means of widely distributing the seeds of the same species?
{366} In the margin the author has written "(Forbes)." This may have been inserted at a date later than 1844, or it may refer to a work by Forbes earlier than his Alpine paper.
{367} See Origin, Ed. i. p. 367, vi. p. 517.
{368} Perhaps vitality checked by cold and so prevented germinating. <On the carriage of seeds by icebergs, see Origin, Ed. i. p. 363, vi. p. 513.>
I will only hazard one other observation, namely that during the change from an extremely cold climate to a more temperate one the conditions, both on lowland and mountain, would be singularly favourable for the diffusion of any existing plants, which could live on land, just freed from the rigour of eternal winter; for it would possess no inhabitants; and we cannot doubt that preoccupation{369} is the chief bar to the diffusion of plants. For amongst many other facts, how otherwise can we explain the circumstance that the plants on the opposite, though similarly constituted sides of a wide river in Eastern Europe (as I was informed by Humboldt) should be widely different; across which river birds, swimming quadrupeds and the wind must often transport seeds; we can only suppose that plants already occupying the soil and freely seeding check the germination of occasionally transported seeds.
{369} A note by the author gives "many authors" apparently as authority for this statement.
At about the same period when icebergs were transporting boulders in N. America as far as 36 deg. south, where the cotton tree now grows in South America, in latitude 42 deg. (where the land is now clothed with forests having an almost tropical aspect with the trees bearing epiphytes and intertwined with canes), the same ice action was going on; is it not then in some degree probable that at this period the whole tropical parts of the two Americas possessed{370} (as Falconer asserts that India did) a more temperate climate? In this case the Alpine plants of the long chain of the Cordillera would have descended much lower and there would have been a broad high-road{371} connecting those parts of North and South America which were then frigid. As the present climate supervened, the plants occupying the districts which now are become in both hemispheres temperate and even semi-tropical must have been driven to the Arctic and Antarctic{372} regions; and only a few of the loftiest points of the Cordillera can have retained their former connecting flora. The transverse chain of Chiquitos might perhaps in a similar manner during the ice-action period have served as a connecting road (though a broken one) for Alpine plants to become dispersed from the Cordillera to the highlands of Brazil. It may be observed that some (though not strong) reasons can be assigned for believing that at about this same period the two Americas were not so thoroughly divided as they now are by the West Indies and tableland of Mexico. I will only further remark that the present most singularly close similarity in the vegetation of the lowlands of Kerguelen's Land{373} and of Tierra del Fuego (Hooker), though so far apart, may perhaps be explained by the dissemination of seeds during this same cold period, by means of icebergs, as before alluded to{374}.
{370} Opposite to this passage, in the margin, the author has written:—"too hypothetical."
{371} The Cordillera is described as supplying a great line of invasion in the Origin, Ed. i. p. 378.
{372} This is an approximation to the author's views on trans-tropical migration (Origin, Ed. i. pp. 376-8). See Thiselton-Dyer's interesting discussion in Darwin and Modern Science, p. 304.
{373} See Hooker's Lecture on Insular Floras in the Gardeners' Chronicle, Jan. 1867.
{374} <Note by the author.> Similarity of flora of coral islands easily explained.
Finally, I think we may safely grant from the foregoing facts and reasoning that the anomalous similarity in the vegetation of certain very distant mountain-summits is not in truth opposed to the conclusion of the intimate relation subsisting between proximity in space (in accordance with the means of transport in each class) and the degree of affinity of the inhabitants of any two countries. In the case of several quite isolated mountains, we have seen that the general law holds good.
Whether the same species has been created more than once.
As the fact of the same species of plants having been found on mountain-summits immensely remote has been one chief cause of the belief of some species having been contemporaneously produced or created at two different points{375}, I will here briefly discuss this subject. On the ordinary theory of creation, we can see no reason why on two similar mountain-summits two similar species may not have been created; but the opposite view, independently of its simplicity, has been generally received from the analogy of the general distribution of all organisms, in which (as shown in this chapter) we almost always find that great and continuous barriers separate distinct series; and we are naturally led to suppose that the two series have been separately created. When taking a more limited view we see a river, with a quite similar country on both sides, with one side well stocked with a certain animal and on the other side not one (as is the case with the Bizcacha{376} on the opposite sides of the Plata), we are at once led to conclude that the Bizcacha was produced on some one point or area on the western side of the river. Considering our ignorance of the many strange chances of diffusion by birds (which occasionally wander to immense distances) and quadrupeds swallowing seeds and ova (as in the case of the flying water-beetle which disgorged the eggs of a fish), and of whirlwinds carrying seeds and animals into strong upper currents (as in the case of volcanic ashes and showers of hay, grain and fish{377}), and of the possibility of species having survived for short periods at intermediate spots and afterwards becoming extinct there{378}; and considering our knowledge of the great changes which have taken place from subsidence and elevation in the surface of the earth, and of our ignorance of the greater changes which may have taken place, we ought to be very slow in admitting the probability of double creations. In the case of plants on mountain-summits, I think I have shown how almost necessarily they would, under the past conditions of the northern hemisphere, be as similar as are the plants on the present Arctic shores; and this ought to teach us a lesson of caution.
{375} On centres of creation see Origin, Ed. i. p. 352, vi. p. 499.
{376} In the Journal of Researches, Ed. 1860, p. 124, the distribution of the Bizcacha is described as limited by the river Uruguay. The case is not I think given in the Origin.
{377} In the Origin, Ed. i. a special section (p. 356, vi. p. 504) is devoted to Means of Dispersal. The much greater prominence given to this subject in the Origin is partly accounted for by the author's experiments being of later date, i.e. 1855 (Life and Letters, vol. II. p. 53). The carriage of fish by whirlwinds is given in the Origin, Ed. i. p. 384, vi. p. 536.
{378} The case of islands serving as halting places is given in the Origin, Ed. i. p. 357, vi. p. 505. But here the evidence of this having occurred is supposed to be lost by the subsidence of the islands, not merely by the extinction of the species.
But the strongest argument against double creations may be drawn from considering the case of mammifers{379} in which, from their nature and from the size of their offspring, the means of distribution are more in view. There are no cases where the same species is found in very remote localities, except where there is a continuous belt of land: the Arctic region perhaps offers the strongest exception, and here we know that animals are transported on icebergs{380}. The cases of lesser difficulty may all receive a more or less simple explanation; I will give only one instance; the nutria{381}, I believe, on the eastern coast of S. America live exclusively in fresh-water rivers, and I was much surprised how they could have got into rivulets, widely apart, on the coast of Patagonia; but on the opposite coast I found these quadrupeds living exclusively in the sea, and hence their migration along the Patagonian coast is not surprising. There is no case of the same mammifer being found on an island far from the coast, and on the mainland, as happens with plants{382}. On the idea of double creations it would be strange if the same species of several plants should have been created in Australia and Europe; and no one instance of the same species of mammifer having been created, or aboriginally existing, in two as nearly remote and equally isolated points. It is more philosophical, in such cases, as that of some plants being found in Australia and Europe, to admit that we are ignorant of the means of transport. I will allude only to one other case, namely, that of the Mydas{383}, an Alpine animal, found only on the distant peaks of the mountains of Java: who will pretend to deny that during the ice period of the northern and southern hemispheres, and when India is believed to have been colder, the climate might not have permitted this animal to haunt a lower country, and thus to have passed along the ridges from summit to summit? Mr Lyell has further observed that, as in space, so in time, there is no reason to believe that after the extinction of a species, the self-same form has ever reappeared{384}. I think, then, we may, notwithstanding the many cases of difficulty, conclude with some confidence that every species has been created or produced on a single point or area.
{379} "We find no inexplicable cases of the same mammal inhabiting distant points of the world." Origin, Ed. i. p. 352, vi. p. 500. See also Origin, Ed. i. p. 393, vi. p. 547.
{380} <Note by the author.> Many authors. <See Origin, Ed. i. p. 394, vi. p. 547.>
{381} Nutria is the Spanish for otter, and is now a synonym for Lutra. The otter on the Atlantic coast is distinguished by minute differences from the Pacific species. Both forms are said to take to the sea. In fact the case presents no especial difficulties.
{382} In Origin, Ed. i. p. 394, vi. p. 548, bats are mentioned as an explicable exception to this statement.
{383} This reference is doubtless to Mydaus, a badger-like animal from the mountains of Java and Sumatra (Wallace, Geographical Distribution, ii. p. 199). The instance does not occur in the Origin but the author remarks (Origin, Ed. i. p. 376, vi. p. 527) that cases, strictly analogous to the distribution of plants, occur among terrestrial mammals.
{384} See Origin, Ed. i. p. 313, vi. p. 454.
On the number of species, and of the classes to which they belong in different regions.
The last fact in geographical distribution, which, as far as I can see, in any way concerns the origin of species, relates to the absolute number and nature of the organic beings inhabiting different tracts of land. Although every species is admirably adapted (but not necessarily better adapted than every other species, as we have seen in the great increase of introduced species) to the country and station it frequents; yet it has been shown that the entire difference between the species in distant countries cannot possibly be explained by the difference of the physical conditions of these countries. In the same manner, I believe, neither the number of the species, nor the nature of the great classes to which they belong, can possibly in all cases be explained by the conditions of their country. New Zealand{385}, a linear island stretching over about 700 miles of latitude, with forests, marshes, plains and mountains reaching to the limits of eternal snow, has far more diversified habitats than an equal area at the Cape of Good Hope; and yet, I believe, at the Cape of Good Hope there are, of phanerogamic plants, from five to ten times the number of species as in all New Zealand. Why on the theory of absolute creations should this large and diversified island only have from 400 to 500 (? Dieffenbach) phanerogamic plants? and why should the Cape of Good Hope, characterised by the uniformity of its scenery, swarm with more species of plants than probably any other quarter of the world? Why on the ordinary theory should the Galapagos Islands abound with terrestrial reptiles? and why should many equal-sized islands in the Pacific be without a single one{386} or with only one or two species? Why should the great island of New Zealand be without one mammiferous quadruped except the mouse, and that was probably introduced with the aborigines? Why should not one island (it can be shown, I think, that the mammifers of Mauritius and St Iago have all been introduced) in the open ocean possess a mammiferous quadruped? Let it not be said that quadrupeds cannot live in islands, for we know that cattle, horses and pigs during a long period have run wild in the West Indian and Falkland Islands; pigs at St Helena; goats at Tahiti; asses in the Canary Islands; dogs in Cuba; cats at Ascension; rabbits at Madeira and the Falklands; monkeys at St Iago and the Mauritius; even elephants during a long time in one of the very small Sooloo Islands; and European mice on very many of the smallest islands far from the habitations of man{387}. Nor let it be assumed that quadrupeds are more slowly created and hence that the oceanic islands, which generally are of volcanic formation, are of too recent origin to possess them; for we know (Lyell) that new forms of quadrupeds succeed each other quicker than Mollusca or Reptilia. Nor let it be assumed (though such an assumption would be no explanation) that quadrupeds cannot be created on small islands; for islands not lying in mid-ocean do possess their peculiar quadrupeds; thus many of the smaller islands of the East Indian Archipelago possess quadrupeds; as does Fernando Po on the West Coast of Africa; as the Falkland Islands possess a peculiar wolf-like fox{388}; so do the Galapagos Islands a peculiar mouse of the S. American type. These two last are the most remarkable cases with which I am acquainted; inasmuch as the islands lie further from other land. It is possible that the Galapagos mouse may have been introduced in some ship from the S. American coast (though the species is at present unknown there), for the aboriginal species soon haunts the goods of man, as I noticed in the roof of a newly erected shed in a desert country south of the Plata. The Falkland Islands, though between 200 and 300 miles from the S. American coast, may in one sense be considered as intimately connected with it; for it is certain that formerly many icebergs loaded with boulders were stranded on its southern coast, and the old canoes which are occasionally now stranded, show that the currents still set from Tierra del Fuego. This fact, however, does not explain the presence of the Canis antarcticus on the Falkland Islands, unless we suppose that it formerly lived on the mainland and became extinct there, whilst it survived on these islands, to which it was borne (as happens with its northern congener, the common wolf) on an iceberg, but this fact removes the anomaly of an island, in appearance effectually separated from other land, having its own species of quadruped, and makes the case like that of Java and Sumatra, each having their own rhinoceros. |
|