|
It will be recollected that, when vegetable matter decomposes in the soil, it produces certain gases (carbonic acid, etc.), which either escape into the atmosphere, or are retained in the soil for the use of plants. The production of these gases is always accompanied by heat, which, though scarcely perceptible to our senses, is perfectly so to the growing plant, and is of much practical importance. This will be examined more fully in speaking of manures.
[How is it obtained by the soil?
What offices does the organic matter in the soil perform?]
Another important part of the organic matter in the soil is that which contains nitrogen. This forms but a very small portion of the soil, but it is of the greatest importance to vegetables. As the nitrogen in food is of absolute necessity to the growth of animals, so the nitrogen in the soil is indispensable to the growth of cultivated plants. It is obtained by the soil in the form of ammonia (or nitric acid), from the atmosphere, or by the application of animal matter. In some cases, manures called nitrates[S] are used; and, in this manner, nitrogen is given to the soil.
We have now learned that the organic matter in the soil performs the following offices:—
Organic matter thoroughly decomposed is carbon, and has the various effects ascribed to this substance on p. 79.
Organic matter in process of decay produces carbonic acid, and sometimes ammonia in the soil; also its decay causes heat.
Organic matter containing nitrogen, such as animal substances, etc., furnish ammonia, and other nitrogenous substances to the roots of plants.
FOOTNOTES:
[Q] Produce.
[R] By absorbing and retaining, we mean taking up and holding.
[S] Nitrates are compounds of nitric acid (which consists of nitrogen and oxygen), and alkaline substances. Thus nitrate of potash (saltpetre), is composed of nitric acid and potash: nitrate of soda (cubical nitre), of nitric acid and soda.
CHAPTER III.
USES OF INORGANIC MATTER.
[What effect has clay besides the one already named?
How does it compare with charcoal for this purpose?]
The offices performed by the inorganic constituents of the soil are many and important.
These, as well as the different conditions in which the bodies exist, are necessary to be thoroughly studied.
Those parts which constitute the larger proportion of the soil, namely the clay, sand, and limy portions, are useful for purposes which have been named in the first part of this section, while the clay has an additional effect in the absorption of ammonia.
For this purpose, it is as effectual as charcoal, the gases escaping from manures, as well as those existing in the atmosphere, and in rain-water, being arrested by clay as well as charcoal.[T]
[What particular condition of inorganic matter is requisite for fertility?
What is the fixed rule with regard to this?
What is the condition of the alkalies in most of their combinations? Of the acids?
What is said of phosphate of lime?]
The more minute ingredients of the soil—those which enter into the construction of plants—exist in conditions which are more or less favorable or injurious to vegetable growth. The principal condition necessary to fertility is capacity to be dissolved, it being (so far as we have been able to ascertain) a fixed rule, as was stated in the first section, that no mineral substance can enter into the roots of a plant except it be dissolved in water.
The alkalies potash, soda, lime, and magnesia, are in nearly all of their combinations in the soil sufficiently soluble for the purposes of growth.
The acids are, as will be recollected, sulphuric and phosphoric. These exist in the soil in combination with the alkalies, as sulphates and phosphates, which are more or less soluble under natural circumstances. Phosphoric acid in combination with lime as phosphate of lime is but slightly soluble; but, when it exists in the compound known as super-phosphate of lime, it is much more soluble, and consequently enters into the composition of plants with much greater facility. This matter will be more fully explained in the section on manures.
[How may silica be rendered soluble?
What is the condition of chlorine in the soil?
Do peroxide and protoxide of iron affect plants in the same way?
How would you treat a soil containing protoxide of iron?
On what does the usefulness of all these matters in the soil depend?]
The neutrals, silica, chlorine, oxide of iron, and oxide of manganese, deserve a careful examination. Silica exists in the soil usually in the form of sand, in which it is, as is well known, perfectly insoluble; and, before it can be used by plants, which often require it in large quantities, it must be made soluble, which is done by combining it with an alkali.
For instance, if the silica in the soil is insoluble, we must make an application of an alkali, such as potash, which will unite with the silica, and form the silicate of potash, which is in the exact condition to be dissolved and carried into the roots of plants.
Chlorine in the soil is probably always in an available condition.
Oxide of iron exists, as has been previously stated, usually in the form of the peroxide (or red oxide). Sometimes, however, it exists in the form of the protoxide (or black oxide), which is poisonous to plants, and renders the soil unfertile. By loosening the soil in such a manner as to admit air and water, this compound takes up more oxygen, which renders it a peroxide, and makes it available for plants. The oxide of manganese is probably of little consequence.
The usefulness of all of these matters in the soil depends on their exposure; if they are in the interior of particles, they cannot be made use of; while, if the particles are so pulverized that their constituents are exposed, they become available, because water can immediately attack to dissolve, and carry them into roots.
[What is one of the chief offices of plowing and hoeing?
Is the subsoil usually different from the surface soil?
What circumstances have occasioned the difference? In what way?]
This is one of the great offices of plowing and hoeing; the lumps of soil being thereby more broken up and exposed to the action of atmospheric influences, which are often necessary to produce a fertile condition of soil, while the trituration of particles reduces them in size.
SUBSOIL.
[May the subsoil be made to resemble the surface soil?
May all soils be brought to the highest state of fertility?
On what examination must improvement be based?
What is the difference between the soil of some parts of Massachusetts and that of the Miami valley?]
The subsoil is usually of a different character from the surface soil, but this difference is more often the result of circumstances than of formation. The surface soil from having been long cultivated has been more opened to the influences of the air than is the case with the subsoil, which has never been disturbed so as to allow the same action. Again the growth of plants has supplied the surface soil with roots, which by decaying have given it organic matter, thus darkening its color, rendering it warmer, and giving greater ability to absorb heat and moisture, and to retain manures. All of these effects render the surface soil of a more fertile character than it was before vegetable growth commenced; and, where frequent cultivation and manures have been applied, a still greater benefit has resulted. In most instances the subsoil may by the same means be gradually improved in condition until it equals the surface soil in fertility. The means of producing this result, also farther accounts of its advantages, will be given under the head of Cultivation (Sect. IV.)
IMPROVEMENT.
From what has now been said of the character of the soil, it must be evident that, as we know the causes of fertility and barrenness, we may by the proper means improve the character of all soils which are not now in the highest state of fertility.
Chemical analysis will tell us the composition of a soil, and an examination, such as any farmer may make, will inform us of its deficiencies in mechanical character, and we may at once resort to the proper means to secure fertility. In some instances the soil may contain every thing that is required, but not in the necessary condition. For instance, in some parts of Massachusetts, there are nearly barren soils which show by analysis precisely the same chemical composition as the soil of the Miami valley of Ohio, one of the most fertile in the world. The cause of this great difference in their agricultural capabilities, is that the Miami soil has its particles finely pulverized; while in the Massachusetts soil the ingredients are combined within particles (such as pebbles, etc.), where they are out of the reach of roots.
[Why do soils of the same degree of fineness sometimes differ in fertility?
Can soils always be rendered fertile with profit?
Can we determine the cost before commencing the work?
What must be done before a soil can be cultivated understandingly?
What must be done to keep up the quality of the soil?]
In other cases, we find two soils, which are equally well pulverized, and which appear to be of the same character, having very different power to support crops. Chemical analysis will show in these instances a difference of composition.
All of these differences may be overcome by the use of the proper means. Sometimes it could be done at an expense which would be justified by the result; and, at others, it might require too large an outlay to be profitable. It becomes a question of economy, not of ability, and science is able to estimate the cost.
Soil cannot be cultivated understandingly until it has been subjected to such an examination as will tell us exactly what is necessary to render it fertile. Even after fertility is perfectly restored it requires thought and care to maintain it. The ingredients of the soil must be returned in the form of manures as largely as they are removed by the crop, or the supply will eventually become too small for the purposes of vegetation.
FOOTNOTES:
[T] It is due to our country, as well as to Prof. Mapes and others, who long ago explained this absorptive power of clay and carbon, to say that the subject was perfectly understood and practically applied in America a number of years before Prof. Way published the discovery in England as original.
SECTION THIRD.
MANURES.
CHAPTER I.
CHARACTER AND VARIETIES OF MANURES.
[What must a farmer know in order to avoid failures?
Can this be learned entirely from observation?
What kind of action have manures?
Give examples of each of these.
May mechanical effects be produced by chemical action?
How does potash affect the soil?]
To understand the science of manures is the most important branch of practical farming. No baker would be called a good practical baker who kept his flour exposed to the sun and rain. No shoemaker would be called a good practical shoemaker, who used morocco for the soles of his shoes, and heavy leather for the uppers. No carpenter would be called a good practical carpenter, who tried to build a house without nails, or other fastenings. So with the farmer. He cannot be called a good practical farmer if he keeps the materials, from which he is to make plants, in such a condition, that they will have their value destroyed, uses them in the wrong places, or tries to put them together without having every thing present that is necessary. Before he can avoid failures with certainty, he must know what manures are composed of, how they are to be preserved, where they are needed, and what kinds are required. True, he may from observation and experience, guess at results, but he cannot know that he is right until he has learned the facts above named. In this section of our work, we mean to convey some of the information necessary to this branch of practical farming.
We shall adopt a classification of the subject somewhat different from that found in most works on manures, but the facts are the same. The action of manures is either mechanical or chemical, or a combination of both. For instance: some kinds of manure improve the mechanical character of the soil, such as those which loosen stiff clay soils, or others which render light sandy soils compact—these are called mechanical manures. Some again furnish food for plants—these are called chemical manures.
Many mechanical manures produce their effects by means of chemical action. Thus potash combines chemically with sand in the soil. In so doing, it roughens the surfaces of the particles of sand, and renders the soil less liable to be compacted by rains. In this manner, it acts as a mechanical manure. The compound of sand and potash,[U] as well as the potash alone, may enter into the composition of plants, and hence it is a chemical manure. In other words, potash belongs to both classes described above.
It is important that this distinction should be well understood by the learner, as the words "mechanical" and "chemical" in connection with manures will be made use of throughout the following pages.
[What are absorbents?
What kind of manure is charcoal?]
There is another class of manures which we shall call absorbents. These comprise those substances which have the power of taking up fertilizing matters, and retaining them for the use of plants. For instance, charcoal is an absorbent. As was stated in the section on soils, this substance is a retainer of all fertilizing gases and many minerals. Other matters made use of in agriculture have the same effect. These absorbents will be spoken of more fully in their proper places.
TABLE.
MECHANICAL MANURES are those which improve the mechanical condition of soils.
CHEMICAL " are those which serve as food for plants.
ABSORBENTS are those substances which absorb and retain fertilizing matters.
[Into what classes may manures be divided?
What are organic manures?
Inorganic? Atmospheric?]
Manures may be divided into three classes, viz.: organic, inorganic, and atmospheric.
ORGANIC manures comprise all animal and vegetable matters which are used to fertilize the soil, such as dung, muck, etc.
INORGANIC manures are those which are of a purely mineral character, such as lime, ashes, etc.
ATMOSPHERIC manures consist of those organic manures which are in the form of gases in the atmosphere, and which are absorbed by rains and carried to the soil. These are of immense importance. The ammonia and carbonic acid in the air are atmospheric manures.
FOOTNOTES:
[U] Silicate of potash.
CHAPTER II.
EXCREMENTS OF ANIMALS.
[Of what is animal excrement composed?
Explain the composition of the food of animals.
What does hay contain?
To what does Liebig compare the consumption of food by animals, and why?]
The first organic manure which we shall examine, is animal excrement.
This is composed of those matters which have been eaten by the animal as food, and have been thrown off as solid or liquid manure. In order that we may know of what they consist, we must refer to the composition of food and examine the process of digestion.
The food of animals, we have seen to consist of both organic and inorganic matter. The organic part may be divided into two classes, i. e., that portion which contains nitrogen—such as gluten, albumen, etc., and that which does not contain nitrogen—such as starch, sugar, oil, etc.
The inorganic part of food may also be divided into soluble matter and insoluble matter.
DIGESTION AND ITS PRODUCTS.
[Of what does that part of dung consist which resembles soot?
What else does the dung contain?
In what manner does the digested part of food escape from the body?]
Let us now suppose that we have a full-grown ox, which is not increasing in any of his parts, but only consumes food to keep up his respiration, and to supply the natural wastes of his body. To this ox we will feed a ton of hay which contains organic matter, with and without nitrogen, and soluble and insoluble inorganic substances. Now let us try to follow it through its changes in the animal, and observe its destination. Liebig compares the consumption of food by animals to the imperfect burning of wood in a stove, where a portion of the fuel is resolved into gases and ashes (that is, it is completely burned), and another portion, which is not thoroughly burned, passes off as soot. In the animal action in question, the food undergoes changes which are similar to this burning of wood. A part of the food is digested and taken up by the blood, while another portion remains undigested, and passes the bowels as solid dung—corresponding to soot. This part of the dung then, we see is merely so much of the food as passes through the system without being materially changed. Its nature is easily understood. It contains organic and inorganic matter in nearly the same condition as they existed in the hay. They have been rendered finer and softer, but their chemical character is not materially altered. The dung also contains small quantities of nitrogenous matter, which leaked out, as it were, from the stomach and intestines. The digested food, however, undergoes further changes which affect its character, and it escapes from the body in three ways—i. e., through the lungs, through the bladder, and through the bowels. It will be recollected from the first section of this book, p. 22, that the carbon in the blood of animals, unites with the oxygen of the air drawn into the lungs, and is thrown off in the breath as carbonic acid. The hydrogen and oxygen unite to form a part of the water which constitutes the moisture of the breath.
[Explain the escape of carbon, hydrogen and oxygen.
What becomes of the nitrogenous parts?
How is the soluble ash of the digested food parted with?
The insoluble?
If any portions of the food are not returned in the dung, how are they disposed of?]
That portion of the organic part of the hay which has been taken up by the blood of the ox, and which does not contain nitrogen (corresponding to the first class of proximates, as described in Sect. I), is emitted through the lungs. It consists, as will be recollected, of carbon, hydrogen and oxygen, and these assume, in respiration, the form of carbonic acid and water.
The organic matter of the digested hay, in the blood, which contains nitrogen (corresponding to the second class of proximates, described in Sect. I), goes to the bladder, where it assumes the form of urea—a constituent of urine or liquid manure.
We have now disposed of the imperfectly digested food (dung), and of the organic matter which was taken up by the blood. All that remains to be examined is the inorganic or mineral matter in the blood, which would have become ashes, if the hay had been burned. The soluble part of this inorganic matter passes into the bladder, and forms the inorganic part of urine. The insoluble part passes the bowels, in connection with the dung.
[How is their place supplied?
Is food put out of existence when it is fed to animals?
What does the solid dung contain? Liquid manure? The breath?]
If any of the food taken up by the blood is not returned as above stated, it goes to form fat, muscle, hair, bones, or some other part of the animal, and as he is not growing (not increasing in weight) an equivalent amount of the body of the animal goes to the manure to take the place of the part retained.[V]
We now have our subject in a form to be readily understood. We learn that when food is given to animals it is not put out of existence, but is merely changed in form; and that in the impurities of the breath, we have a large portion of those parts of the food which plants obtain from air and from water; while the solid and liquid excrements contain all that was taken by the plants from the soil and manures.
The SOLID DUNG contains the undigested parts of the food, the insoluble parts of the ash, and the nitrogenous matters which have escaped from the digestive organs.
"LIQUID MANURE" the nitrogenous or second class of proximates of the digested food, and the soluble parts of the ash.
THE BREATH contains the first class of proximates, those which contain carbon, hydrogen and oxygen, but no nitrogen.[W]
FOOTNOTES:
[V] This account of digestion is not, perhaps, strictly accurate in a physiological point of view, but it is sufficiently so to give an elementary understanding of the character of excrements as manures.
[W] The excrements of animals contain more or less of sulphur, and sometimes small quantities of phosphorus.
CHAPTER III.
WASTE OF MANURE.
[What are the first causes of loss of manure?
What is evaporation?]
The loss of manure is a subject which demands most serious attention. Until within a few years, little was known about the true character of manures, and consequently, of the importance of protecting them against loss.
The first causes of waste are evaporation and leaching.
EVAPORATION.
[Name a solid body which evaporates.
What takes place when a dead animal is exposed to the atmosphere for a sufficient time?
What often assist the evaporation of solids?]
Evaporation is the changing of a solid or liquid body to a vapory form. Thus common smelling salts, a solid, if left exposed, passes into the atmosphere in the form of a gas or vapor. Water, a liquid, evaporates, and becomes a vapor in the atmosphere. This is the case with very many substances, and in organic nature, both solid and liquid, they are liable to assume a gaseous form, and become mixed with the atmosphere. They are not destroyed, but are merely changed in form.
As an instance of this action, suppose an animal to die and to decay on the surface of the earth. After a time, the flesh will entirely disappear, but is not lost. It no longer exists as the flesh of an animal, but its carbon, hydrogen, oxygen, and nitrogen, still exist in the air. They have been liberated from the attractions which held them together, and have passed away; but (as we already know from what has been said in a former section) they are ready to be again taken up by plants, and pressed into the service of life.
The evaporation of liquids may take place without the aid of any thing but heat; still, in the case of solids, it is often assisted by decay and combustion, which break up the bonds that hold the constituents of bodies together, and thus enable them to return to the atmosphere, from which they were originally derived.
[What is the cause of odor?
When we perceive an odor, what is taking place?
Why do manures give off offensive odors?
How may we detect ammonia escaping from manure?]
It must be recollected that every thing, which has an odor (or can be smelled), is evaporating. The odor is caused by parts of the body floating in the air, and acting on the nerves of the nose. This is an invariable rule; and, when we perceive an odor, we may be sure that parts of the material, from which it emanates, are escaping. If we perceive the odor of an apple, it is because parts of the volatile oils of the apple enter the nose. The same is true when we smell hartshorn, cologne, etc.
Manures made by animals have an offensive odor, simply because volatile parts of the manure escape into the air, and are therefore made perceptible. All organic parts in turn become volatile, assuming a gaseous form as they decompose.
We do not see the gases rising, but there are many ways by which we can detect them. If we wave a feather over a manure heap, from which ammonia is escaping, the feather having been recently dipped in manure, white fumes will appear around the feather, being the muriate of ammonia formed by the union of the escaping gas with the muriatic acid. Not only ammonia, but also carbonic acid, and other gases which are useful to vegetation escape, and are given to the winds. Indeed it may be stated in few words that all of the organic part of plants (all that was obtained from the air, water, and ammonia), constituting more than nine tenths of their dry weight, may be evaporated by the assistance of decay or combustion. The organic part of manures may be lost in the same manner; and, if the process of decomposition be continued long enough, nothing but a mass of mineral matter will remain, except perhaps a small quantity of carbon which has not been resolved into carbonic acid.
[What remains after manure has been long exposed to decomposition?
What gaseous compounds are formed by the decomposition of manures?]
The proportion of solid manure lost by evaporation (made by the assistance of decay), is a very large part of the whole. Manure cannot be kept a single day in its natural state without losing something. It commences to give out an offensive odor immediately, and this odor is occasioned, as was before stated, by the loss of some of its fertilizing parts.
Animal manure contains, as will be seen by reference to p. 100, all of the substances contained in plants, though not always in the correct relative proportions to each other. When decomposition commences, the carbon unites with the oxygen of the air, and passes off as carbonic acid; the hydrogen and oxygen combine to form water (which evaporates), and the nitrogen is mostly resolved into ammonia, which escapes into the atmosphere.
[Describe fire-fanging.
What takes place when animal manure is exposed in an open barn-yard?
What does liquid manure lose by evaporation?]
If manure is thrown into heaps, it often ferments so rapidly as to produce sufficient heat to set fire to some parts of the manure, and cause it to be thrown off with greater rapidity. This may be observed in nearly all heaps of animal excrement. When they have lain for some time in mild weather, gray streaks of ashes are often to be seen in the centre of the pile. The organic part of the manure having been burned away, nothing but the ash remains,—this is called fire-fanging.
Manures kept in cellars without being mixed with refuse matter are subject to the same losses.
When kept in the yard, they are still liable to be lost by evaporation. They are here often saturated with water, and this water in its evaporation carries away the ammonia, and carbonic acid which it has obtained from the rotting mass. The evaporation of the water is rapidly carried on, on account of the great extent of surface. The whole mass is spongy, and soaks the liquids up from below (through hollow straws, etc.), to be evaporated at the surface on the same principle as causes the wick of a lamp to draw up the oil to supply fuel for the flame.
LIQUID MANURE containing large quantities of nitrogen, and forming much ammonia, is also liable to lose all of its organic part from evaporation (and fermentation), so that it is rendered as much less valuable as is the solid dung.[X]
[When does the waste of exposed manure commence?
What does economy of manure require?
What is the effect of leaching?
Give an illustration of leaching.]
From these remarks, it may be justly inferred that a very large portion of the value of solid and liquid manure as ordinarily kept is lost by evaporation in a sufficient length of time, depending on circumstances, whether it be three months or several years. The wasting commences as soon as the manure is dropped, and continues, except in very cold weather, until the destruction is complete. Hence we see that true economy requires that the manures of the stable, stye, and poultry-house, should be protected from evaporation (as will be hereafter described), as soon as possible after they are made.
LEACHING.
The subject of leaching is as important in considering the inorganic parts of manures as evaporation is to the organic, while leaching also affects the organic gases, they being absorbed by water in a great degree.
A good illustration of leaching is found in the manufacture of potash. When water is poured over wood-ashes, it dissolves their potash which it carries through in solution, making ley. If ley is boiled to dryness, it leaves the potash in a solid form, proving that this substance had been dissolved by the water and removed from the insoluble parts of the ashes.
[How does water affect decomposing manures?
Does continued decomposition continue to prepare material to be leached away?
How far from the surface of the soil may organic constituents be carried by water?]
In the same way water in passing through manures takes up the soluble portions of the ash as fast as liberated by decomposition, and carries them into the soil below; or, if the water runs off from the surface, they accompany it. In either case they are lost to the manure. There is but a small quantity of ash exposed for leaching in recent manures; but, as the decomposition of the organic part proceeds, it continues to develope it more and more (in the same manner as burning would do, only slower), thus preparing fresh supplies to be carried off with each shower. In this way, while manures are largely injured by evaporation, the soluble inorganic parts are removed by water until but a small remnant of its original fertilizing properties remains.
[What arrests their farther progress?
What would be the effect of allowing these matters to filter downwards?
What does evaporation remove from manure? Leaching?]
It is a singular fact concerning leaching, that water is able to carry no part of the organic constituents of vegetables more than about thirty-four inches below the surface in a fertile soil. They would probably be carried to an unlimited distance in pure sand, as it contains nothing which is capable of arresting them; but, in most soils, the clay and carbon which they contain retain all of the ammonia; also nearly all of the matters which go to form the inorganic constituents of plants within about the above named distance from the surface of the soil. If such were not the case, the fertility of the earth must soon be destroyed, as all of those elements which the soil must supply to growing plants would be carried down out of the reach of roots, and leave the world a barren waste, its surface having lost its elements of fertility, while the downward filtration of these would render the water of wells unfit for our use. Now, however, they are all retained near the surface of the soil, and the water issues from springs comparatively pure.
EVAPORATION removes from manure—
Carbon, in the form of carbonic acid.
Hydrogen and oxygen, in the form of water.
Nitrogen, in the form of ammonia.
LEACHING removes from manure—
The soluble and most valuable parts of the ash in solution in water, besides carrying away some of the named above forms of organic matter.
FOOTNOTES:
[X] It should be recollected that every bent straw may act as a syphon, and occasion much loss of liquid manure.
CHAPTER IV.
ABSORBENTS.
[What substances are called absorbents?
What is the most important of these?
What substances are called charcoal in agriculture?
How is vegetable matter rendered useful as charcoal?]
Before considering farther the subject of animal excrement, it is necessary to examine a class of manures known as absorbents. These comprise all matters which have the power of absorbing, or soaking up, as it were, the gases which arise from the evaporation of solid and liquid manures, and retaining them until required by plants.
The most important of these is undoubtedly carbon or charcoal.
CHARCOAL.
Charcoal, in an agricultural sense, means all forms of carbon, whether as peat, muck, charcoal dust from the spark-catchers of locomotives, charcoal hearths, river and swamp deposits, leaf mould, decomposed spent tanbark or sawdust, etc. In short, if any vegetable matter is decomposed with the partial exclusion of air (so that there shall not be oxygen enough supplied to unite with all of the carbon), a portion of its carbon remains in the exact condition to serve the purposes of charcoal.
[What is the first-named effect of charcoal? The second? Third? Fourth?
Explain the first action.]
The offices performed in the soil by carbonaceous matter were fully explained in a former section (p. 79, Sect. 2), and we will now examine merely its action with regard to manures. When properly applied to manures, in compost, it has the following effects:
1. It absorbs and retains the fertilizing gases evaporating from decomposing matters.
2. It acts as a divisor, thereby reducing the strength (or intensity) of powerful manures—thus rendering them less likely to injure the roots of plants; and also increases their bulk, so as to prevent fire fanging in composts.
3. It in part prevents the leaching out of the soluble parts of the ash.
4. It keeps the compost moist.
The first-named office of charcoal, i. e., absorbing and retaining gases, is one of the utmost importance. It is this quality that gives to it so high a position in the opinion of all who have used it. As was stated in the section on soils, carbonaceous matter seems to be capable of absorbing every thing which may be of use to vegetation. It is a grand purifier, and while it prevents offensive odors from escaping, it is at the same time storing its pores with food for the nourishment of plants.
[Explain its action as a divisor.
How does charcoal protect composts against injurious action of rains?
How does it keep them moist?]
2d. In its capacity as a divisor for manures, charcoal should be considered as excellent in all cases, especially to use with strongly concentrated (or heating) animal manures. These, when applied in their natural state to the soil, are very apt to injure young roots by the violence of their action. When mixed with a divisor, such manures are diluted, made less active, and consequently less injurious. In composts, manures are liable, as has been before stated, to become burned by the resultant heat of decomposition; this is called fire fanging, and is prevented by the liberal use of divisors, because, by increasing the bulk, the heat being diffused through a larger mass, becomes less intense. The same principle is exhibited in the fact that it takes more fire to boil a cauldron of water than a tea-kettle full.
3d. Charcoal has much power to arrest the passage of mineral matters in solution; so much so, that compost heaps, well supplied with muck, are less affected by rains than those not so supplied. All composts, however, should be kept under cover.
4th. Charcoal keeps the compost moist from the ease with which it absorbs water, and its ability to withstand drought.
[What source of carbon is within the reach of most farmers?
What do we mean by muck?
Of what does it consist?
How does it differ in quality?]
With these advantages before us, we must see the importance of an understanding of the modes for obtaining charcoal. Many farmers are so situated that they can obtain sufficient quantities of charcoal dust. Others have not equal facilities. Nearly all, however, can obtain muck, and to this we will now turn our attention.
MUCK, AND THE LIME AND SALT MIXTURE.
[What is the first step in preparing muck for decomposition?
With what proportion of the lime and salt mixture should it be composted?
Why should this compost be made under cover?
What is this called after decomposition?
Why should we not use muck immediately after taking it from the swamp?]
By muck, we mean the vegetable deposits of swamps and rivers. It consists of decayed organic substances, mixed with more or less earth. Its principal constituent is carbon, in different degrees of development, which has remained after the decomposition of vegetable matter. Muck varies largely in its quality, according to the amount of carbon which it contains, and the perfection of its decomposition. The best muck is usually found in comparatively dry locations, where the water which once caused the deposit has been removed. Muck which has been long in this condition, is usually better decomposed than that which is saturated with water. The muck from swamps, however, may soon be brought to the best condition. It should be thrown out, if possible, at least one year before it is required for use (a less time may suffice, except in very cold climates) and left, in small heaps or ridges, to the action of the weather, which will assist in pulverizing it, while, from having its water removed, its decomposition goes on more rapidly.
After the muck has remained in this condition a sufficient length of time, it may be removed to the barn-yard and composted with the lime and salt mixture (described on page 115) in the proportion of one cord of muck to four bushels of the mixture. This compost ought to be made under cover, lest the rain leach out the constituents of the mixture, and thus occasion loss; at the end of a month or more, the muck in the compost will have been reduced to a fine pulverulent mass, nearly equal to charcoal dust for application to animal excrement. When in this condition it is called prepared muck, by which name it will be designated in the following pages.
Muck should not be used immediately after being taken from the swamp, as it is then almost always sour, and is liable to produce sorrel. Its sourness is due to acids which it contains, and these must be rectified by the application of an alkali, or by long exposure to the weather, before the muck is suitable for use.
LIME AND SALT MIXTURE.
[What proportions of lime and salt are required for the decomposing mixture?
Explain the process of making it.
Why should it be made under cover?]
The lime and salt mixture, used in the decomposition of muck, is made in the following manner:
RECIPE.—Take three bushels of shell lime, hot from the kiln, or as fresh as possible, and slake it with water in which one bushel of salt has been dissolved.
Care must be taken to use only so much water as is necessary to dissolve the salt, as it is difficult to induce the lime to absorb a larger quantity.
In dissolving the salt, it is well to hang it in a basket in the upper part of the water, as the salt water will immediately settle towards the bottom (being heavier), and allow the freshest water to be nearest to the salt. In this way, the salt may be all dissolved, and thus make the brine used to slake the lime. It may be necessary to apply the brine at intervals of a day or two, and to stir the mass often, as the amount of water is too great to be readily absorbed.
This mixture should be made under cover, as, if exposed, it would obtain moisture from rain or dew, which would prevent the use of all the brine. Another objection to its exposure to the weather is its great liability to be washed away by rains. It should be at least ten days old before being used, and would probably be improved by an age of three or four months, as the chemical changes it undergoes will require some time to be completed.
[Explain the character of this mixture as represented in the diagram. (Black board.)]
The character of this mixture may be best described by the following diagram:—
We have originally—
Lime-+ Salt consisting of + -Chlorine } Chloride and } of +-Sodium. } Sodium. Carbonic acid and Oxygen in the air. +-Chloride of lime.-+ +-Carbonate of Soda. [Y]
The lime unites with the chlorine of the salt and forms chloride of lime.
The sodium, after being freed from the chlorine, unites with the oxygen of the air and forms soda, which, combining with the carbonic acid of the atmosphere, forms carbonate of soda.
Chloride of lime and carbonate of soda are better agents in the decomposition of muck than pure salt and lime; and, as these compounds are the result of the mixture, much benefit ensues from the operation.
When shell lime cannot be obtained, Thomaston, or any other very pure lime, will answer, though care must be taken that it do not contain much magnesia.
LIME.
[What effect has lime on muck?
On what does the energy of this effect depend?
Why should a compost of muck and lime be protected from rain?]
Muck may be decomposed by the aid of other materials. Lime is very efficient, though not as much so as when combined with salt. The action of lime, when applied to the muck, depends very much on its condition. Air-slaked lime (carbonate of lime), and hydrate of lime, slaked with water, have but a limited effect compared with lime freshly burned and applied in a caustic (or pure) form. When so used, however, the compost should not be exposed to rains, as this would have a tendency to make mortar which would harden it.
POTASH.
[Is potash valuable for this use?
From what sources may potash be obtained?
In what proportion should ashes be applied to muck? Sparlings?]
Potash is a very active agent in decomposing vegetable matter, and may be used with great advantage, especially where an analysis of the soil which is to be manured shows a deficiency of potash.
Unleached wood ashes are generally the best source from which to obtain this, and from five to twenty-five bushels of these mixed with one cord of muck will produce the desired result.[Z]
The sparlings (or refuse) of potash warehouses may often be purchased at sufficiently low rates to be used for this purpose, and answer an excellent end. They may be applied at the rate of from twenty to one hundred pounds to each cord of muck.
* * * * *
By any of the foregoing methods, muck may be prepared for use in composting.
FOOTNOTES:
[Y] There is, undoubtedly, some of this lime which does not unite with the chlorine; this, however, is still as valuable as any lime.
[Z] Leached ashes will not supply the place of these, as the leaching has deprived them of their potash.
CHAPTER V.
COMPOSTING STABLE MANURE.
[What principles should regulate us in composting?
In what condition is solid dung of value as a fertilizer?
What do we aim to do in composting?]
In composting stable manure in the most economical manner, the evaporation of the organic parts and the leaching of the ashy (and other) portions must be avoided, while the condition of the mass is such as to admit of the perfect decomposition of the manure.
Solid manures in their fresh state are of but very little use to plants. It is only as they are decomposed, and have their nitrogen turned into ammonia, and their other ingredients resolved into the condition required by plants, that they are of much value as fertilizers. We have seen that, if this decomposition takes place without proper precautions being made, the most valuable parts of the manure would be lost. Nor would it be prudent to keep manures from decomposing until they are applied to the soil, for then they are not immediately ready for use, and time is lost. By composting, we aim to save every thing while we prepare the manures for immediate use.
SHELTER.
[What is the first consideration for composts?
Describe the arrangement of floor.]
The first consideration in preparing for composting, is to provide proper shelter. This may be done either by means of a shed or by arranging a cellar under the stables, or in any other manner that may be dictated by circumstances. It is no doubt better to have the manure shed enclosed so as to make it an effectual protection; this however is not absolutely necessary if the roof project far enough over the compost to shelter it from the sun's rays and from driving rains.
The importance of some protection of this kind, is evident from what has already been said, and indeed it is impossible to make an economical use of manures without it. The trifling cost of building a shed, or preparing a cellar, is amply repaid in the benefit resulting from their uses.
THE FLOOR.
The floor or foundation on which to build the compost deserves some consideration. It may be of plank tightly fitted, a hard bed of clay, or better, a cemented surface. Whatever material is used in its construction (and stiff clay mixed with water and beaten compactly down answers an excellent purpose), the floor must have such an inclination as will cause it to discharge water only at one point. That is, one part of the edge must be lower than the rest of the floor, which must be so shaped that water will run towards this point from every part of it; then—the floor being water-tight—all of the liquids of the compost may be collected in a
TANK.
[How should the tank be attached?]
This tank used to collect the liquids of the manure may be made by sinking a barrel or hogshead (according to the size of the heap) in the ground at the point where it is required, or in any other convenient manner.
In the tank a pump of cheap construction may be placed, to raise the liquid to a sufficient height to be conveyed by a trough to the centre of the heap, and there distributed by means of a perforated board with raised edges, and long enough to reach across the heap in any direction. By altering the position of this board, the liquid may be carried evenly over the whole mass.
The appearance of the apparatus required for composting, and the compost laid up, may be better shown by the following figure.
[How is the compost made?]
The compost is made by laying on the floor ten or twelve inches of muck, and on that a few inches of manure, then another heavy layer of muck, and another of manure, continuing in this manner until the heap is raised to the required height, always having a thick layer of muck at the top.
[What liquids are best for moistening the compost?
How should they be applied?
What are the advantages of this moistening?
How does it compare with forking over?]
After laying up the heap, the tank should be filled with liquid manure from the stables, slops from the house, soap-suds, or other water containing fertilizing matter, to be pumped over the mass. There should be enough of the liquid to saturate the heap and filter through to fill the tank twice a week, at which intervals it should be again pumped up, thus continually being passed through the manure. This liquid should not be changed, as it contains much soluble manure. Should the liquid manures named above not be sufficient, the quantity may be increased by the use of rain-water. That falling during the first ten minutes of a shower is the best, as it contains much ammonia.
The effects produced by frequently watering the compost is one of the greatest advantages of this system.
The soluble portions of the manure are equally diffused through every part of the heap.
Should the heat of fermentation be too great, the watering will reduce it.
When the compost is saturated with water, the air is driven out; and, as the water subsides, fresh air enters and takes its place. This fresh air contains oxygen, which assists in the decomposition of the manure.
In short, the watering does all the work of forking over by hand much better and much more cheaply.
[Why will the ammonia of manure thus made, not escape if it be used as a top dressing?
What are the advantages of preparing manures in this manner?
What is the profit attending it?]
At the end of a month or more, this compost will be ready for use. The layers in the manure will have disappeared, the whole mass having become of a uniform character, highly fertilizing, and ready to be immediately used by plants.
It may be applied to the soil, either as a top-dressing, or otherwise, without fear of loss, as the muck will retain all of the gases which would otherwise evaporate.
The cost and trouble of the foregoing system of composting are trifling compared with its advantages. The quantity of the manure is much increased, and its quality improved. The health of the animals is secured by the retention of those gases, which, when allowed to escape, render impure the air which they have to breathe.
The cleanliness of the stable and yard is much advanced as the effete matters, which would otherwise litter them, are carefully removed to the compost.
As an instance of the profit of composting, it may be stated that Prof. Mapes has decomposed ninety-two cords of swamp muck, with four hundred bushels of the lime and salt mixture, and then composted it with eight cords of fresh horse dung, making one hundred cords of manure fully equal to the same amount of stable-manure alone, which has lain one year exposed to the weather. Indeed one cord of muck well decomposed, and containing the chlorine lime and soda of four bushels of the mixture, is of itself equal in value to the same amount of manure which has lain in an open barn-yard during the heat and rain of one season, and is then applied to the land in a raw or undecomposed state.
[In what other manners may muck be used in the preservation of manures?
How may liquid manure be made most useful?]
The foregoing system of composting is the best that has yet been suggested for making use of solid manures. Many other methods may be adopted when circumstances will not admit of so much attention. It is a common and excellent practice to throw prepared muck into the cellar under the stables, to be mixed and turned over with the manure by swine. In other cases the manures are kept in the yard, and are covered with a thin layer of muck every morning. The principle which renders these systems beneficial is the absorbent power of charcoal.
LIQUID MANURE.
Liquid manure from animals may, also, be made useful by the assistance of prepared muck. Where a tank is used in composting, the liquids from the stable may all be employed to supply moisture to the heap; but where any system is adopted, not requiring liquids, the urine may be applied to muck heaps, and then allowed to ferment. Fermentation is necessary in urine as well as in solid dung, before it is very active as a manure. Urine, as will be recollected, contains nitrogen and forms ammonia on fermentation.
[Describe the manner of digging out the bottoms of stalls.]
It is a very good plan to dig out the bottoms of the stalls in a circular or gutter-like form, three or four feet deep in the middle, cement the ground, or make it nearly water-tight, by a plastering of stiff clay, and fill them up with prepared muck. The appearance of a cross section of the floor thus arranged would be as follows:
The prepared muck in the bottom of the stalls would absorb the urine as soon as voided, while yet warm with the animal heat, and receive heat from the animal's body while lying down at night. This heat will hasten the decomposition of the urea,[AA] and if the muck be renewed twice a month, and that which is removed composted under cover, it will be found a most prolific source of good manure. In Flanders, the liquid manure of a cow is considered worth $10 per year, and it is not less valuable here. As was stated in the early part of this section, the inorganic (or mineral) matter contained in urine, is soluble, and consequently is immediately useful as food for plants.
By referring to the analysis of liquid and solid manure, in section V., their relative value may be seen.
CHAPTER VI.
DIFFERENT KINDS OF ANIMAL EXCREMENT.
The manures of different animals are, of course, of different value, as fertilizers, varying according to the food, the age of the animals, etc.
STABLE MANURE.
By stable manure we mean, usually, that of the horse, and that of horned cattle. The case described in chap. 2 (of this section), was one where the animal was not increasing in any of its parts, but returned, in the form of manure, and otherwise, the equivalent of every thing eaten. This case is one of the most simple kind, and is subject to many modifications.
[Is the manure of full-grown animals of the same quality as that of other animals?
Why does that of the growing animal differ?
Why does not the formation of fat reduce the quality of manure?
What does milk remove from the food?]
The growing animal is increasing in size, and as he derives his increase from his food, he does not return in the form of manure as much as he eats. If his bones are growing, he is taking from his food phosphate of lime and nitrogenous matter; consequently, the manure will be poorer in these ingredients. The same may be said of the formation of the muscles, in relation to nitrogen.
The fatting animal, if full grown, makes manure which is as good as that from animals that are not increasing in size, because the fat is taken from those parts of the food which is obtained by plants from the atmosphere, and from nature, (i. e. from the 1st class of proximates). Fat contains no nitrogen, and, consequently, does not lessen the amount of this ingredient in the manure.
Milch Cows turn a part of their food to the formation of milk, and consequently, they produce manure of reduced value.
[How do the solid and liquid manure of the horse and ox compare?
What occasions these differences?]
The solid manure of the horse is better than that of the ox, while the liquid manure of the ox is comparatively better than that of the horse. The cause of this is that the horse has poorer digestive organs than the ox, and consequently passes more of the valuable parts of his food, in an undigested form, as dung, while the ox, from chewing the cud and having more perfect organs, turns more of his food into urine than the horse.
RECAPITULATION.
FULL GROWN animals not } producing milk, and full } make the best manure. grown animals fattening }
GROWING ANIMALS reduce the value of their manure, taking portions of their food to form their bodies.
MILCH COWS reduce the value of their manure by changing a part of their food into milk.
THE OX makes poor dung and rich urine.
THE HORSE makes rich dung and poor urine.[AB]
NIGHT SOIL.
[What is the most valuable manure accessible to the farmer?
What is the probable value of the night soil yearly lost in the United States?
Of what does the manure of man consist?]
The best manure within the reach of the farmer is night soil, or human excrement. There has always been a false delicacy about mentioning this fertilizer, which has caused much waste, and great loss of health, from the impure and offensive odors which it is allowed to send forth to taint the air.
The value of the night soil yearly lost in the United States is, probably, about fifty millions of dollars (50,000,000); an amount nearly equal to the entire expenses of our National Government. Much of the ill health of our people is undoubtedly occasioned by neglecting the proper treatment of night soil.
[Describe this manure as compared with the excrements of other animals.
Does the use of night soil produce disagreeable properties in plants?]
That which directly affects agriculture, as treated of in this book, is the value of this substance as a fertilizer. The manure of man consists (as is the case with that of other animals) of those parts of his food which are not retained in the increase of his body. If he be growing, his manure is poorer, as in the case of the ox, and it is subject to all the other modifications named in the early part of this chapter. His food is usually of a varied character, and is rich in nitrogen, the phosphates, and other inorganic constituents; consequently, his manure is made valuable by containing large quantities of these matters. As is the case with the ox, the dung contains the undigested food, the secretions (or leakings) of the digestive organs, and the insoluble parts of the ash of the digested food. The urine, in like manner, contains a large proportion of the nitrogen and the soluble inorganic parts of the digested food. When we consider how much richer the food of man is than that of horned cattle, we shall see the superior value of his excrement.
Night soil has been used as a manure, for ages, in China, which is, undoubtedly, one great secret of their success in supporting a dense population, for so long a time, without impoverishing the soil. It has been found, in many instances, to increase the productive power of the natural soil three-fold. That is, if a soil would produce ten bushels of wheat per acre, without manure, it would produce thirty bushels if manured with night soil.
Some have supposed that manuring with night soil would give disagreeable properties to plants: such is not the case; their quality is invariably improved. The color and odor of the rose become richer and more delicate by the use of the most offensive night soil as manure.
[What is the direct object of plants?
What would result if this were not the case?
How may night soil be easily prepared for use, and its offensive odor prevented?]
It is evident that this is the case from the fact that plants have it for their direct object to make over and put together the refuse organic matter, and the gases and the minerals found in nature, for the use of animals. If there were no natural means of rendering the excrement of animals available to plants, the earth must soon be shorn of its fertility, as the elements of growth when once consumed would be essentially destroyed, and no soil could survive the exhaustion. There is no reason why the manure of man should be rejected by vegetation more than that of any other animal; and indeed it is not, for ample experience has proved that for most soils there is no better manure in existence.
A single experiment will suffice to show that night soil may be so kept that there shall be no loss of its valuable gases, and consequently no offensive odor arising from it, while it may be removed and applied to crops without unpleasantness. All that is necessary to effect this wonderful change in night soil, and to turn it from its disagreeable character to one entirely inoffensive, is to mix with it a little charcoal dust, prepared muck, or any other good absorbent—thus making what is called poudrette. The mode of doing this must depend on circumstances. In many cases, it would be expedient to keep a barrel of the absorbent in the privy and throw down a small quantity every day. The effect on the odor of the house would amply repay the trouble.
[Should pure night soil be used as a manure?
What precaution is necessary in preparing hog manure for use?]
The manure thus made is of the most valuable character, and may be used under any circumstances with a certainty of obtaining a good crop. It should not be used unmixed with some absorbent, as it is of such strength as to kill plants.
For an analysis of human manure, see Section V.
HOG MANURE.
Hog Manure is very valuable, but it must be used with care. It is so violent in its action that, when applied in a pure form to crops, it often produces injurious results. It is liable to make cabbages clump-footed, and to induce a disease in turnips called ambury (or fingers and toes). The only precaution necessary is to supply the stye with prepared muck, charcoal-dust, leaf-mould, or any absorbent in plentiful quantities, often adding fresh supplies. The hogs will work this over with the manure; and, when required for use, it will be found an excellent fertilizer. The absorbent will have overcome its injurious tendency, and it may be safely applied to any crop. From the variety and rich character of the food of this animal, his manure is of a superior quality.
[Why is the manure from butchers' hog-pens very valuable?
How does the value of poultry manure compare with that of guano?
How may it be protected against loss?]
Butchers' hog-pen manure is one of the best fertilizers known. It is made by animals that live almost entirely on blood and other animal refuse, and is very rich in nitrogen and the phosphates. It should be mixed with prepared muck, or its substitute, to prevent the loss of its ammonia, and as a protection against its injurious effect on plants.
POULTRY HOUSE MANURE.
Next in value to night soil, among domestic manures, are the excrements of poultry, pigeons, etc. Birds live on the nice bits of creation, seeds, insects, etc., and they discharge their solid and liquid excrements together. Poultry-dung is nearly equal in value to guano (except that it contains more water), and it deserves to be carefully preserved and judiciously used. It is as well worth twenty-five cents per bushel as guano is worth fifty dollars a ton (at which price it is now sold).
Poultry-manure is liable to as much injury from evaporation and leaching as is any other manure, and equal care should be taken (by the same means) to prevent such loss. Good shelter over the roosts, and daily sprinkling with prepared muck or charcoal-dust will be amply repaid by the increased value of the manure, and its better action and greater durability in the soil. The value of this manure should be taken into consideration in calculating the profit of keeping poultry (as indeed with all other stock). It has been observed by a gentleman of much experience, in poultry raising, that the yearly manure of a hundred fowls applied to previously unmanured land would produce extra corn enough to keep them for a year. This is probably a large estimate, but it serves to show that this fertilizer is very valuable, and also that poultry may be kept with great profit, if their excrements are properly secured.
The manure of pigeons has been a favorite fertilizer in some countries for more than 2000 years.
Market gardeners attach much value to rabbit-manure.
SHEEP MANURE.
[What can you say of the manure of sheep?]
The manure of sheep is less valuable than it would be, if so large a quantity of the nitrogen and mineral parts of the food were not employed in the formation of wool. This has a great effect on the richness of the excrements, but they are still a very good fertilizer, and should be protected from loss in the same way as stable manure.
GUANO.
[Should the use of guano induce us to disregard other manures?
Where and in what manner is the best guano deposited?]
Guano as a manure has become world renowned. The worn-out tobacco lands of Virginia, and other fields in many parts of the country, which seemed to have yielded to the effect of an ignorant course of cultivation, and to have sunk to their final repose, have in many cases been revived to the production of excellent crops, and have had their value multiplied many fold by the use of guano. Although an excellent manure, it should not cause us to lose sight of those valuable materials which exist on almost every farm. Every ton of guano imported into the United States is an addition to our national wealth, but every ton of stable-manure, or poultry-dung, or night soil evaporated or carried away in rivers, is equally a deduction from our riches. If the imported manure is to really benefit us, we must not allow it to occasion the neglect and consequent loss of our domestic fertilizers.
The Peruvian guano (which is considered the best) is brought from islands near the coast of Peru. The birds which frequent these islands live almost entirely on fish, and drop their excrements here in a climate where rain is almost unknown, and where, from the dryness of the air, there is but little loss sustained by the manure. It is brought to this country in large quantities, and is an excellent fertilizer, superior even to night soil.
[How should it be prepared for use?]
It should be mixed with an absorbent before being used, unless it is plowed deeply under the soil, as it contains much ammonia which would be lost from evaporation. It would probably also injure plants. The best way to use guano, is in connection with sulphuric acid and bones, as will be described hereafter.
The composition of the various kinds of guano may be found in the section on analysis.
FOOTNOTES:
[AA] The nitrogenous compound in the urine.
[AB] Comparatively.
CHAPTER VII.
OTHER ORGANIC MANURES.
The number of organic manures is almost countless. The most common of these have been described in the previous chapters on the excrements of animals. The more prominent of the remaining ones will now be considered. As a universal rule, it may be stated that all organic matter (every thing which has had vegetable or animal life) is capable of fertilizing plants.
DEAD ANIMALS.
[What are the chief fertilizing constituents of dead animals?
What becomes of these when exposed to the atmosphere?
How may this be prevented?]
The bodies of animals contain much nitrogen, as well as valuable quantities, the phosphates and other inorganic materials required in the growth of plants. On their decay, the nitrogen is resolved into ammonia,[AC] and the mineral matters become valuable as food for the inorganic parts of plants.
If the decomposition of animal bodies takes place in exposed situations, and without proper precautions, the ammonia escapes into the atmosphere, and much of the mineral portion is leached out by rains. The use of absorbents, such as charcoal-dust, prepared muck, etc., will entirely prevent evaporation, and will in a great measure serve as a protection against leaching.
If a dead horse be cut in pieces and mixed with ten loads of muck, the whole mass will, in a single season, become a most valuable compost. Small animals, such as dogs, cats, etc., may be with advantage buried by the roots of grape-vines or trees.
BONES.
[Of what do the bones of animals consist?
What is gelatine?
Describe the fertilizing qualities of fish.]
The bones of animals contain phosphate of lime and gelatine. The gelatine is a nitrogenous substance, and produces ammonia on its decomposition. This subject will be spoken of more fully under the head of 'phosphate of lime' in the chapter on mineral manures, as the treatment of bones is more directly with reference to the fertilizing value of their inorganic matter.
FISH.
In many localities near the sea-shore large quantities of fish are caught and applied to the soil. These make excellent manure. They contain much nitrogen, which renders them strongly ammoniacal on decomposition. Their bones consist of phosphate and carbonate of lime; and, being naturally soft, they decompose in the soil with great facility, and become available to plants. The scales of fish contain valuable quantities of nitrogen, phosphate of lime, etc., all of which are highly useful.
Refuse fishy matters from markets and from the house are well worth saving. These and fish caught for manure may be made into compost with prepared muck, etc.; and, as they putrefy rapidly, they soon become ready for use. They may be added to the compost of stable manure with great advantage.
[Should these be applied as a top dressing to the soil?
What are the fertilizing properties of woollen rags?
What is the best way to use them?]
Fish (like all other nitrogenous manures) should never be applied as a top dressing, unless previously mixed with a good absorbent of ammonia, but should when used alone be immediately plowed under to considerable depth, to prevent the evaporation—and consequent loss—of their fertilizing gases.
WOOLLEN RAGS, ETC.
Woollen rags, hair, waste of woollen factories, etc., contain both nitrogen and phosphate of lime; and, like all other matters containing these ingredients, are excellent manures, but must be used in such a way as to prevent the escape of their fertilizing gases. They decompose slowly, and are therefore considered a lasting manure. Like all lasting manures, however, they are slow in their effects, and the most advantageous way to use them is to compost them with stable manure, or with some other rapidly fermenting substance, which will hasten their decomposition and render them sooner available.
Rags, hair, etc., thus treated, will in a short time be reduced to such a condition that they may be immediately used by plants instead of lying in the soil to be slowly taken up. It is better in all cases to have manures act quickly and give an immediate return for their cost, than to lie for a long time in the soil before their influence is felt.
[What is their value compared with that of farm-yard manure?
How should old leather be treated?
Describe the manurial properties of tanners' refuse.
How should they be treated?
Are horn piths, etc. valuable?]
A pound of woollen rags is worth, as a manure, twice as much as is paid for good linen shreds for paper making; still, while the latter are always preserved, the former are thrown away, although considered by good judges to be worth forty times as much as barn-yard manure.
Old leather should not be thrown away. It decomposes very slowly, and consequently is of but a little value; but, if put at the roots of young trees, it will in time produce appreciable effects.
Tanners' and curriers' refuse, and all other animal offal, including that of the slaughter-house, is well worth attention, as it contains more or less of those two most important ingredients of manures, nitrogen and phosphate of lime.
It is unnecessary to add that, in common with all other animal manures, these substances must be either composted, or immediately plowed under the soil. Horn piths, and horn shavings, if decomposed in compost, with substances which ferment rapidly, make very good manure, and are worth fully the price charged for them.
ORGANIC MANURES OF VEGETABLE ORIGIN.
Muck, the most important of the purely vegetable manures, has been already sufficiently described. It should be particularly borne in mind that, when first taken from the swamp it is often sour, or cold, but that if exposed for a long time to the air, or if well treated with lime, unleached ashes, the lime and salt mixture, or any other alkali, its acids will be neutralized (or overcome), and it becomes a good application to any soil, except peat or other soils already containing large quantities of organic matter. In applying muck to the soil (as has been before stated), it should be made a vehicle for carrying ammoniacal manures.
SPENT TAN BARK.
[Why is decomposed bark more fertilizing than that of decayed wood?]
Spent tan bark, if previously decomposed by the use of the lime and salt mixture, or potash, answers all the purposes of prepared muck, but is more difficult of decomposition.
[How may bark be decomposed?
Why should tan bark be composted with an alkali?
Why is it good for mulching?
Is sawdust of any value?]
The bark of trees contains a larger proportion of inorganic matter than the wood, and much of this, on the decomposition of the bark, becomes available as manure. The chemical effect on the bark, of using it in the tanning of leather, is such as to render it difficult to be rotted by the ordinary means, but, by the use of the lime and salt mixture it may be reduced to the finest condition, and becomes a most excellent manure. It probably contains small quantities of nitrogen (obtained from the leather), which adds to its value. Unless tan bark be composted with lime, or some other alkali, it may produce injurious effects from the tannic acid which it is liable to contain. Alkaline substances will neutralize this acid, and prevent it from being injurious.
One great benefit resulting from the use of spent tan bark, is due to its power of absorbing moisture from the atmosphere. For this reason it is very valuable for mulching[AD] young trees and plants when first set out.
SAWDUST.
[Why is sawdust a good addition to the pig-stye?
What is the peculiarity of sawdust from the beech, etc.?
What is a peculiarity of soot?
Why may soot be used as a top dressing without losing its ammonia?]
Sawdust in its natural state is of very little value to the land, but when decomposed, as may be done by the same method as was described for tan bark, it is of some importance, as it contains a large quantity of carbon. Its ash, too, which becomes available, contains soluble inorganic matter, and in this way it acts as a direct manure. So far as concerns the value of the ash, however, the bark is superior to sawdust. Sawdust may be partially rotted by mixing it with strong manure (as hog manure), while it acts as a divisor, and prevents the too rapid action of this when applied to the soil. Some kinds of sawdust, such as that from beech wood, form acetic acid on their decomposition, and these should be treated with, at least, a sufficient quantity of lime to correct the acid.
Soot is a good manure. It contains much carbon, and has, thus far, all of the beneficial effects of charcoal dust. The sulphur, which is one of its constituents, not only serves as food for plants, but, from its odor, is a good protection against some insects. By throwing a handful of soot on a melon vine, or young cabbage plant, it will keep away many insects.
Soot contains some ammonia, and as this is in the form of a sulphate, it is not volatile, and consequently does not evaporate when the soot is applied as a top dressing, which is the almost universal custom.
GREEN CROPS.
[What plants are most used as green crops?
What office is performed by the roots of green crops?
How do such manures increase the organic matter of soils?]
Green crops, to plow under, are in many places largely raised, and are always beneficial. The plants most used for this purpose, in our country, are clover, buckwheat, and peas. These plants have very long roots, which they send deep in the soil, to draw up mineral matter for their support. This mineral matter is deposited in the plant. The leaves and roots receive carbonic acid and ammonia from the air, and from water. In this manner they obtain their carbon. When the crop is turned under the soil, it decomposes, and the carbon, as well as the mineral ingredients obtained from the subsoil, are deposited in the surface soil, and become of use to succeeding crops. The hollow stalks of the buckwheat and pea, serve as tubes, in the soil, for the passage of air, and thus, in heavy soils, give a much needed circulation of atmospheric fertilizers.
[What office is performed by the straw of the buckwheat and pea?
What treatment may be substituted for the use of green crops?
Which course should be adopted in high farming?
Why is the use of green crops preferable in ordinary cultivation?
Name some other valuable manures.]
Although green crops are of great benefit, and are managed with little labor, there is no doubt but the same results may be more economically produced. A few loads of prepared muck will do more towards increasing the organic matter in the soil, than a very heavy crop of clover, while it would be ready for immediate cultivation, instead of having to lie idle during the year required in the production and decomposition of the green crop. The effect of the roots penetrating the subsoil is, as we have seen, to draw up inorganic matter, to be deposited within reach of the roots of future crops. In the next section we shall show that this end may be much more efficiently attained by the use of the sub-soil plow, which makes a passage for the roots into the subsoil, where they can obtain for themselves what would, in the other case, be brought up for them by the roots of the green crop.
The offices of the hollow straws may be performed by a system of ridging and back furrowing, having previously covered the soil with leaves, or other refuse organic material.
In high farming, where the object of the cultivator is to make a profitable investment of labor, these last named methods will be found most expedient; but, if the farmer have a large quantity of land, and can afford but a limited amount of labor, the raising of green crops, to be plowed under in the fall, will probably be adopted.
Before closing this chapter, it may be well to remark that there are various other fertilizers, such as the ammoniacal liquor of gas-houses, soapers' wastes, bleachers' lye, lees of old oil casks, etc., which we have not space to consider at length, but which are all valuable as additions to the compost heap, or as applications, in a liquid form, to the soil.
[What are the advantages arising from burying manure in its green state?
Which is generally preferable, this course, or composting? Why?]
In many cases (when heavy manuring is practised), it may be well to apply organic manures to the soil in a green state, turn them under, and allow them to undergo decomposition in the ground. The advantages of this system are, that the heat, resulting from the chemical changes, will hasten the growth of plants, by making the soil warmer; the carbonic acid formed will be presented to the roots instead of escaping into the atmosphere; and if the soil be heavy, the rising of the gases will tend to loosen it, and the leaving vacant of the spaces occupied by the solid matters will, on their being resolved into gases, render the soil of a more porous character. As a general rule, however, in ordinary farming, where the amount of manure applied is only sufficient for the supply of food to the crop, it is undoubtedly better to have it previously decomposed—cooked as it were, for the uses of the plants—as they can then obtain the required amount of nutriment as fast as needed.
ABSORPTION OF MOISTURE.
It is often convenient to know the relative power of different manures to absorb moisture from the atmosphere, especially when we wish to manure lands that suffer from drought. The following results are given by C. W. Johnson, in his essay on salt, (pp. 8 and 19). In these experiments the animal manures were employed without any admixture of straw.
PARTS 1000 parts of horse dung, dried in a temperature of 100 degrees, absorbed by exposure for three hours, to air saturated with moisture, of the temperature of 62 degrees 145 1000 parts of cow dung, under the same circumstances, absorbed 130 1000 parts pig dung 120 1000 " sheep " 81 1000 " pigeon " 50 1000 " rich alluvial soil 14 1000 " fresh tanner's bark 115 1000 " putrified " 145 1000 " refuse marine salt sold as manure 49-1/2 1000 " soot 36 1000 " burnt clay 29 1000 " coal ashes 14 1000 " lime 11 1000 " sediment from salt pans 10 1000 " crushed rock salt 10 1000 " gypsum 9 1000 " salt 4[AE]
Muck is a most excellent absorbent of moisture, when thoroughly decomposed.
DISTRIBUTION OF MANURES.
The following table from Johnson, on manures, will be found convenient in the distribution of manures.
By its assistance the farmer will know how many loads of manure he requires, dividing each load into a stated number of heaps, and placing them at certain distances. In this manner manure may be applied evenly, and calculation may be made as to the amount, per acre, which a certain quantity will supply.[AF]
-+ - DISTANCE OF THE NUMBER OF HEAPS IN A LOAD. HEAPS. -+ + + + + + + + + + 1 2 3 4 5 6 7 8 9 10 -+ + + + + + + + + + 3 yards. 538 269 179 134 108 89-1/2 77 67 60 54 3-1/2 do. 395 168 132 99 79 66 56-1/2 49-1/2 44 39-1/2 4 do. 303 151 101 75-1/2 60-1/2 50-1/2 43-1/4 37-3/4 33-1/2 30-1/4 4-1/2 do. 239 120 79-1/2 60 47-3/4 39-3/4 34-1/4 30 26-1/2 24 5 do. 194 97 64-1/2 48-1/2 38-3/4 32-1/4 27-3/4 24-1/4 21-1/2 19-1/4 5-1/2 do. 160 80 53-1/2 40 32 26-3/4 22-3/4 20 17-3/4 16 6 do. 131 67 44-3/4 33-1/2 27 22-1/2 19-1/4 16-3/4 15 13-1/2 6-1/2 do. 115 57-1/2 38-1/4 28-3/4 23 19 16-1/4 14-1/4 12-3/4 11-1/2 7 do. 99 49-1/2 33 24-3/4 19-3/4 16-1/2 14 12-1/4 11 10 7-1/2 do. 86 43 28-3/4 21-1/2 17-1/4 14-1/4 12-1/4 10-3/4 9-1/2 8-1/2 8 do. 75-1/2 37-3/4 25-1/4 19 15-3/4 12-1/2 10-3/4 9-1/2 8-1/2 7-1/2 8-1/2 do. 67 33-1/2 22-1/4 16-3/4 13-1/2 11-1/4 9-1/2 8-1/2 7-1/2 6-3/4 9 do. 60 30 20 15 12 10 8-1/2 7-3/4 6-3/4 6 9-1/2 do. 53-1/2 26-3/4 18 13-1/2 10-3/4 9 7-3/4 6-3/4 6 5-1/4 10 do. 48-1/2 24-1/4 16-1/4 12 9-3/4 8 7 6 5-1/2 4-3/4 -+ + + + + + + + + +
Example 1.—Required, the number of loads necessary to manure an acre of ground, dividing each load into six heaps, and placing them at a distance of 4-1/2 yards from each other? The answer by the table is 39-3/4.
Example 2.—A farmer has a field containing 5-1/2 acres, over which he wishes to spread 82 loads of dung. Now 82 divided by 5-1/2, gives 15 loads per acre; and by referring to the table, it will be seen that the desired object may be accomplished, by making 4 heaps of a load, and placing them 9 yards apart, or by 9 heaps at 6 yards, as may be thought advisable.
FOOTNOTES:
[AC] Under some circumstances, nitric acid is formed, which is equally beneficial to vegetable growth.
[AD] See the glossary at the end of the book.
[AE] Working Farmer, vol. 1, p. 55.
[AF] It is not necessary that this and the foregoing table should be learned by the scholar, but they will be found valuable for reference by the farmer.
CHAPTER VIII.
MINERAL MANURES.
[How many kinds of action have inorganic manures?
What is the first of these? The second? Third? Fourth?
Do all mineral manures possess all of these qualities?]
The second class of manures named in the general division of the subject, in the early part of this chapter, comprises those of a mineral character, or inorganic manures.
These manures have four kinds of action when applied to the soil.
1st. They furnish food for the inorganic part of plants.
2d. They prepare matters already in the soil, for assimilation by roots.
3d. They improve the mechanical condition of the soil.
4th. They absorb ammonia.
Some of the mineral manures produce in the soil only one of these effects, and others are efficient in two or all of them.
The principles to be considered in the use of mineral manures are essentially given in the first two sections of this book. It may be well, however, to repeat them briefly in this connection, and to give the reasons why any of these manures are needed, from which we may learn what rules are to be observed in their application.
[Relate what you know of the properties of vegetable ashes?
How does this relate to the fertility of the soil?
According to what two rules may we apply mineral manures?
What course would you pursue to raise potatoes on a soil containing a very little phosphoric acid and no potash?]
1st. Those which are used as food by plants. It will be recollected that the ash left after burning plants, and which formed a part of their structures, has a certain chemical composition; that is, it consists of alkalies, acids, and neutrals. It was also stated that the ashes of plants of the same kind are always of about the same composition, while the ashes of different kinds of plants may vary materially. Different parts of the same plant too, as we learned, are supplied with different kinds of ash.
For instance, clover, on being burned, leaves an ash containing lime, as one of its principal ingredients, while the ash of potatoes contains more of potash than of any thing else.
In the second section (on soils), we learned that some soils contain every thing necessary to make the ashes of all plants, and in sufficient quantity to supply what is required, while other soils are either entirely deficient in one or more ingredients, or contain so little of them that they are unfertile for certain plants.
[Would you manure it in the same way for wheat?
Why?]
From this, we see that we may pursue either one of two courses. After we know the exact composition of the soil—which we can learn only from correct analysis—we may manure it with a view either to making it fertile for all kinds of plants or only for one particular plant. For instance, we may find that a soil contains a very little phosphoric acid, and no potash. If we wish to raise potatoes on such a soil, we have only to apply potash (if the soil is good in other particulars), which is largely required by this plant, though it needs but little phosphoric acid; while, if we wish to make it fertile for wheat, and all other plants, we must apply more phosphoric acid as well as potash. As a universal rule, it may be stated that to render a soil fertile for any particular plant, we must supply it (unless it already contains them) with those matters which are necessary to make the ash of that plant; and, if we would render it capable of producing all kinds of plants, it must be furnished with the materials required in the formation of all kinds of vegetable ashes.
It is not absolutely necessary to have the soil analyzed before it can be cultivated with success, but it is the cheapest way.
[How is the fertility of the soil to be maintained, if the crops are sold?
What rule is given for general treatment?
Give an instance of matters in the soil that are to be rendered available by mineral manures?]
We might proceed from an analysis of the plant required (which will be found in Section V.), and apply to the soil in the form of manure every thing that is necessary for the formation of the ash of that plant. This would give a good crop on any soil that was in the proper mechanical condition, and contained enough organic matter; but a moment's reflection will show that, if the soil contained a large amount of potash, or of phosphate of lime, it would not be necessary to make an application of more of these ingredients—at an expense of perhaps three times the cost of an analysis. It is true that, if the crop is sold, and it is desired to maintain the fertility of the soil, the full amount of the ash must be applied, either before or after the crop is grown; but, in the ordinary use of crops for feeding purposes, a large part of the ash will exist in the excrements of the animals; so that the judicious farmer will be able to manure his land with more economy than if he had to apply to each crop the whole amount and variety required for its ash. The best rule for practical manuring is probably to strengthen the soil in its weaker points, and prevent the stronger ones from becoming weaker. In this way, the soil may be raised to the highest state of fertility, and be fully maintained in its productive powers.
2d. Those manures which render available matter already contained in the soil.
[How may silica be developed?
How does lime affect soils containing coarse particles?
How do mineral manures sometimes improve the mechanical texture of the soil?]
Silica (or sand), it will be recollected, exists in all soils; but, in its pure state, is not capable of being dissolved, and therefore cannot be used by plants. The alkalies (as has been stated), have the power of combining with this silica, making compounds, which are called silicates. These are readily dissolved by water, and are available in vegetable growth. Now, if a soil is deficient in these soluble silicates, it is well known that grain, etc., grown on it, not being able to obtain the material which gives them strength, will fall down or lodge; but, if such measures be taken, as will render the sand soluble, the straw will be strong and healthy. Alkalies used for this purpose, come under the head of those manures which develope the natural resources of the soil. |
|