|
That part of the silver production which is a by-product of copper production has been low since the war, because of the stagnation in the copper industry. The production from lead ores, on the other hand, was not handicapped by lack of demand for lead. With the restoration of order in Mexico, a presumption of large silver production in that country may be expected. Increases may probably be expected also from new mines in Burma and from Bolivia. On the whole, no large increase in world production can be assumed from present known resources. New discoveries will be necessary to make any considerable change.
Of the mine production of silver in the United States, about two-thirds of the total comes from the states of Montana, Utah, Idaho, and Nevada. Other considerable producers are Colorado, Arizona, California, Alaska, and New Mexico. All the other states together produce less than 5 per cent of the total. The most important single districts are the Butte district of Montana, the Coeur d'Alene district of Idaho, and the Tonopah district of Nevada, supplying respectively about one-fifth, one-eighth, and one-tenth of the country's total silver output.
GEOLOGIC FEATURES
The most important mineral of silver is the sulphide, argentite or "silver glance." Other minerals which yield a minor percentage of the total silver produced are the silver-antimony sulphides, pyrargyrite or "ruby silver," stephanite or "black silver," and polybasite; the silver-arsenic sulphides, proustite or "light ruby silver" and pearcite; and the silver antimonide, dyscrasite. In the oxide zone the most abundant minerals are cerargyrite (silver chloride) and native or "horn" silver. In addition to these definite mineral forms, silver is present in many ores in an undetermined form in other sulphides, notably in galena, sphalerite, and pyrite. Silver differs from gold in that it is chemically active and forms many stable compounds, of which only the more important have been mentioned.
The fact that half the world's silver is obtained as a by-product in the mining of other metals has been referred to. In the United States about a third of the production comes from dry or siliceous ores, over a third from lead and zinc ores, and a fourth to a third from copper ores. A fraction of 1 per cent of the total is obtained as a by-product of gold placers, and all the remainder is won from lode or hard-rock deposits.
The general geologic features of the silver-bearing copper and lead ores, and of the dry or siliceous gold and silver ores, have been described on previous pages. The Philipsburg district has been referred to in connection with manganese ores, and the Bolivian tin-silver ores will be described in connection with tin. We shall consider here only a few of the more prominent districts which have been primarily silver producers.
The Cobalt district of northern Ontario is the most productive silver district in North America. The ores are found in numerous short, narrow veins, principally in pre-Cambrian sediments near a thick quartz-diabase sill. Locally they penetrate the sill. Native silver and various silver sulphides, arsenides, and antimonides are associated with minerals of cobalt, nickel, bismuth, lead, and zinc, in a gangue of calcite and some quartz. The ore is of very high grade. The ore minerals are believed to have been deposited by hot solutions emanating from deep magmatic sources after the intrusion of the diabase. The present oxidized zone is very shallow, but may have been deeper before being stripped off by glaciation; it is characterized by native silver and arsenates of nickel and cobalt in the form of the green "nickel bloom" and the pink "cobalt bloom." The silver minerals are distinctly later in origin than the cobalt and nickel in the unoxidized zone, as evidenced by the relations of the mineral individuals when seen under the microscope. This fact, together with the abundance of native silver in the oxide zone, has suggested downward concentration of the silver by surface waters; but recent studies have indicated the probability that some of the silver at least was deposited by the later ascending solutions of magmatic origin.
In the Tintic district of central Utah, Paleozoic limestones have been intruded by monzonite (an acid granitic or porphyritic igneous rock), and covered by surface flows, the flows for the most part having been removed by subsequent erosion. The sediments have been much folded and faulted, and the ore bodies occur as fissure veins which locally widen into chimneys or pipes in fracture zones, accompanied by much replacement of limestone. There is a rough zonal arrangement of the ore minerals around the intrusive, gold and copper minerals (chiefly enargite and chalcopyrite) being more prominent near the intrusive, and argentiferous galena and zinc blende richer at greater distances. Silver constitutes the principal value. The gangue is mainly fine-grained quartz or jasperoid, and barite. The water table is at unusually great depths (2,400 feet) and there is a correspondingly deep oxidized zone, which is characterized by lead and zinc oxide minerals much as at Leadville (p. 219).
The Comstock Lode at Virginia City, Nevada, on the east slope of the Sierra Nevadas, was one of the most famous bonanza deposits of gold and silver in the world. While the richer ore has all been extracted, lower-grade material is still being mined and the fissure is still being followed, in the hope of some day striking another fabulously rich ore body. The lode occupies a fault fissure parallel to the trend of the range and dipping about 40 degrees to the east, which can be traced about two and a half miles along the strike, with igneous rocks forming both hanging and foot walls. There are no sedimentary rocks in the district. The high-grade part of the vein is several hundred feet in thickness, with many irregular branches; the great thickness has been thought to be at least in part due to the tremendous pressure exerted by growing quartz crystals. The wall rocks have undergone a "propylitic" alteration, with development of chlorite, epidote, and probably sericite, much as at Butte. The ore contains rich silver sulphide minerals and native gold, in a gangue composed almost entirely of quartz. The ore was doubtless formed by hot solutions, but the exact nature of these solutions, whether magmatic or meteoric, has not been proven. The hypothesis was early developed that the ores were deposited by surface waters,—which are supposed to have fallen on the summits of the Sierra Nevadas, to have sunk to great depths where they were heated, enabling them to pick up metallic constituents from the diabase forming one wall of the ore body, and to have risen under artesian pressure along the fault plane, where loss of heat and pressure resulted in deposition. Later studies have emphasized the similarity of the ore-depositing conditions with those in other districts where the ores are believed to have come directly from magmatic sources, and this origin is now generally favored for the Comstock Lode. However, the earlier theory has not been disproved.
The Tonopah, Nevada, district is very similar to the Goldfield district (p. 230). Silver and gold are found in veins and replacements in a series of Tertiary volcanic flows and tuffs, all of which have been complexly faulted. Silver is the dominant constituent of value. The formation of fissures and faults accompanying and caused by the intrusion and cooling of lavas was first clearly shown in this district. Evidences of origin through the work of hot solutions, probably magmatic, are the close association of the ores in place and in time with the igneous rocks—ore deposition in most of the flows having taken place before the next overlying flows were put down,—the presence of fluorine, the nature of the wall-rock alterations, the fact that both hot and cold springs are found close together underground (indicating unusual sources for the hot springs), the contrast in composition between the ores and the country rock, and the general relation of these ores to a large number of similar occurrences in Tertiary lavas in the same general area.
Under weathering conditions, the silver sulphide minerals in general are oxidized to form native silver and cerargyrite, which are relatively insoluble and remain for the most part in the oxide zone. Silver is less soluble than copper and zinc, but more soluble than gold; and to some extent it is removed in solution, particularly where the oxidation of pyrite forms ferric sulphate. Farther down it may be reprecipitated as native silver, argentite, and the sulpho-salts, by organic matter or by various sulphides. The secondarily enriched ores are in a few districts, as at Philipsburg, Montana, the most valuable portions of the deposits. In other cases, sulphide enrichment does not appear to have contributed greatly to the values. The zones of oxide ores, secondary sulphide ores, and primary or protores are in most silver deposits much less regular and much less definitely marked than in the case of copper ores.
PLATINUM ORES
ECONOMIC FEATURES
The principal uses of platinum are: as a catalytic agent in the contact process for the manufacture of sulphuric acid, and in the making of nitric acid from ammonia; for chemical laboratory utensils that must be resistant to heat and acids; for electrical contacts for certain telephone, telegraph, and electrical control instruments, and for internal combustion engines; in dental work; and for jewelry. In normal times before the war, it is estimated that in the United States the jewelry and dental industries used 75 per cent of the platinum metals consumed, the electrical industry 20 per cent, and the chemical industry 5 per cent. During the war, with the extraordinary expansion of sulphuric and nitric acid plants, these proportions were reversed and the chemical and electrical industries consumed about two-thirds of the platinum. Substitutes have been developed, particularly for the electrical uses, and the demand from this quarter may be expected to decrease.
About 90 per cent of the world's crude platinum produced annually comes from the Ural Mountains in Russia. The deposits next in importance are those of Colombia. Small amounts are produced in New South Wales, Tasmania, New Zealand, Borneo, British Columbia, United States, India, and Spain; and as a by-product in the electrolytic refining of the Sudbury, Canada, nickel ores. The extension of this method of refining to all of the Sudbury ores would create an important supply of platinum. The Colombian output has been increasing rapidly since 1911. Meanwhile the Russian production has declined; and from the best information available, it is not likely that Russia will be able to maintain production for many more years. Estimates of the life of the Russian fields are from 12 to 20 years at the pre-war rate of production.
The platinum situation is commercially controlled by buying and mine-operating agencies,—the French having, before the war, practically dominated the Russian industry, while American interests controlled in Colombia. The situation is further influenced by four large refineries, in England, Germany, United States, and France.
Before the war the United States produced less than 1 per cent of the new platinum it consumed annually. Production comes principally from California, with smaller amounts from Oregon, Alaska, and Nevada. The many efforts which have been made to develop an adequate domestic supply of this metal do not indicate that the United States can ever hope to become independent of foreign sources for its future supplies of platinum.
There is little reason to doubt that the Colombia field, commercially dominated by the United States, holds great promise for the future. The output has come largely from native hand labor, and with the installation of dredges can probably be greatly increased.
During the war, the need for platinum for war manufactures was so urgent and the production so reduced, that restrictions against its use in jewelry were put into force in all the allied countries. The United States government secured quantities of platinum which would have been sufficient for several years' use if war had continued. With the cessation of hostilities restrictions on the use of platinum were removed, and the accumulated metal was released by the government from time to time in small quantities; but the demands for platinum in the arts were so great that prices for a time tended to even higher levels than during the war. More recently supply is again approaching demand.
GEOLOGIC FEATURES
Platinum, like gold, occurs chiefly as the native metal. This is usually found alloyed with iron and with other metals of the platinum group, especially iridium, rhodium, and palladium. Most of the platinum as used in jewelry and for electrical purposes contains iridium, which serves to harden it. Paladium-gold alloys are a substitute for platinum, chiefly in dental uses.
The original home of platinum is in basic igneous rocks, such as peridotites, pyroxenites, and dunites, where it has been found in small, scattered crystals intergrown with olivine, pyroxene, and chromite. Platinum is very dense and highly resistant to oxidation and solution. In the breaking up and washing away of the rocks, therefore, it is concentrated in small grains and scales in stream and beach placers. Of the world production of platinum over 99 per cent has been derived from placers.
The Ural Mountain deposits of Russia are gold- and platinum-bearing placers, in streams which drain areas of dunite rock containing minute quantities of native platinum. The deposits of Colombia and Australasia are placers of a similar character. In the United States small quantities of platinum are recovered from the gold-bearing gravels of California and Oregon, where the streams have come from areas of serpentine and peridotite.
A platinum arsenide, called sperrylite, is sometimes found associated with sulphide minerals in basic igneous rocks. At Sudbury, Ontario, this mineral, together with palladium arsenide, is found in the nickel ores, especially in the weathered zone where it is concentrated by removal of more soluble materials. It has also been found in the copper mines of Rambler, Wyoming. In the Yellow Pine district of southern Nevada, metallic gold-platinum-palladium ore shoots are found in association with copper and lead ores, in a fine-grained quartz mass which replaces beds of limestone near a granitic dike. No basic intrusives are known in the district. The deposit is unusual in that it has a comparatively high content of platinum (nearly an ounce to the ton), and is probably genetically related to acid intrusives. From all these deposits, only small quantities of platinum are mined.
FOOTNOTES:
[34] Report of a joint committee appointed from the Bureau of Mines and the United States Geological Survey by the Secretary of the Interior to study the gold situation: Bull. 144, U. S. Bureau of Mines, 1919. See also Report of Special Gold Committee to Secretary of the Treasury, February 11, 1919.
[35] Ransome, F. L., The geology and ore deposits of Goldfield, Nevada: Prof. Paper 66, U.S. Geol. Survey, 1909, p. 193.
[36] Butler, B. S., Loughlin, G. F., Heikes, V. C., and others, The ore deposits of Utah: Prof. Paper 111, U.S. Geol. Survey, 1920, p. 195.
CHAPTER XII
MISCELLANEOUS METALLIC MINERALS
ALUMINUM ORES
ECONOMIC FEATURES
Bauxite (hydrated aluminum oxide) is the principal ore of aluminum. Over three-fourths of the world's bauxite production and 65 per cent of the United States production is used for the manufacture of aluminum. On an average six tons of bauxite are required to make one ton of metallic aluminum. Other important uses of bauxite are in the manufacture of artificial abrasives in the electric furnace, and in the preparation of alum, aluminum sulphate, and other chemicals which are used for water-purification, tanning, and dyeing. Relatively small but increasingly important quantities are used in making bauxite brick or high alumina refractories for furnace-linings.
Aluminum is used principally in castings and drawn and pressed ware, for purposes in which lightness, malleability, and unalterability under ordinary chemical reagents are desired. Thus it is used in parts of airplane and automobile engines, in household utensils, and recently in the framework of airplanes. Aluminum wire has been used as a substitute for copper wire as an electrical conductor. Aluminum is used in metallurgy to remove oxygen from iron and steel, and also in the manufacture of alloys. Powdered aluminum is used for the production of high temperatures in the Thermite process, and is a constituent of the explosive, ammonal, and of aluminum paints.
Deposits of bauxite usually contain as impurities silica (in the form of kaolin or hydrous aluminum silicate), iron oxide, and titanium minerals, in varying proportions. Bauxites to be of commercial grade should carry at least 50 per cent alumina, and for the making of aluminum should be low in silica though the content of iron may be fairly high. For aluminum chemicals materials low in iron and titanium are preferred; and for refractories which must withstand high temperatures, low iron content seems to be necessary. The abrasive trade in general uses low-silica high-iron bauxites.
The only large producers of bauxite are the United States and France, which supplied in normal times before the war over 95 per cent of the world's total. Small amounts are produced in Ireland, Italy, India, and British Guiana. During the war a great deal of low-grade bauxite was mined in Austria-Hungary and possibly in Germany; but on account of the large reserves of high-grade material in other parts of the world, it is doubtful whether these deposits will be utilized in the future. Bauxites of good grade have been reported from Africa, Australia, and many localities in India. From geologic considerations it is practically certain that there are very large quantities available for the future in some of these regions.
The international movements and the consumption of bauxite are largely determined by the manufacture of aluminum, and to a lesser extent by the manufacture of abrasives and chemicals. The principal foreign producers of aluminum are France, Switzerland (works partly German-owned), Norway (works controlled by English and French capital), England, Canada, Italy, Germany, and Austria. French bauxite has normally supplied the entire European demands,—with the exceptions that Italy procures part of her requirements at home, and that the Irish deposits furnish a small fraction of the English demand.
The deposits of southern France, controlled largely by French but in part by British capital, have large reserves and will probably continue to meet the bulk of European requirements. France also has important reserves of bauxite in French Guiana.
The United States produces about half of the aluminum of the world, and is the largest manufacturer of artificial abrasives and probably of aluminum chemicals. Most of these are made from domestic bauxite. Prior to the war, the United States imported about 10 per cent of the bauxite consumed, but these imports were mainly high-grade French bauxite which certain makers of chemicals preferred to the domestic material. The small production of Guiana is also imported into the United States. Bauxite is exported to Canadian makers of aluminum and abrasives. During the war period domestic deposits were entirely capable of supplying all the domestic as well as Canadian demands for bauxite, although these demands increased to two and one-half times their previous figure. At the same time considerable amounts of manufactured aluminum products were exported to Europe, whereas aluminum had previously been imported from several European countries.
The United States production of bauxite comes mainly from Arkansas, with smaller amounts from Tennessee, Alabama, and Georgia. The reserves are large but are not inexhaustible. Most of the important deposits are controlled by the large consumers of bauxite, principally the Aluminum Company of America and its subsidiaries, though certain chemical and abrasive companies own some deposits. The Aluminum Company of America also controls immense deposits of high-grade bauxite in Dutch and British Guiana, and further exploration by American interests is under way.
With the return to normal conditions since the war, some of the domestic bauxite deposits probably can not be worked at a profit, a situation which is likely to require the development of the tropical American deposits.
GEOLOGIC FEATURES
Aluminum is the third most abundant element in the common rocks and is an important constituent of most rock minerals; but in its usual occurrence it is so closely locked up in chemical combinations that the metal cannot be extracted on a commercial scale. In the crystalline form aluminum oxide constitutes some of the most valuable gem stones. Many ordinary clays and shales contain 25 to 35 per cent alumina (Al{2}O{3}), and the perfection of a process for their utilization would make available almost unlimited aluminum supplies. The principal minerals from which aluminum is recovered today are hydrous aluminum oxides, the most prominent of which are bauxite, gibbsite, and diaspore—the aggregate of all these minerals going commercially under the name of bauxite.
Prior to the discovery of bauxite ores, cryolite, a sodium-aluminum fluoride obtained from pegmatites in Greenland, was the chief source of aluminum. It is only within about the last thirty-five years that bauxite has been used and that aluminum has become an important material of modern industry. Cryolite is used today to form a molten bath in which the bauxite is electrolytically reduced to aluminum.
Bauxite deposits in general are formed by the ordinary katamorphic processes of surface weathering, when acting on the right kind of rocks and carried to an extreme. In the weathering of ordinary rocks the bases are leached out and carried away, leaving a porous mass of clay (hydrous aluminum silicates), quartz, and iron oxide. In the weathering of rocks high in alumina, and low in iron minerals and quartz, deposits of residual clay or kaolin nearly free from iron oxide and quartz are formed. Under ordinary weathering conditions the kaolin is stable; but under favorable conditions, such as obtain in the weathered zones of tropical climates, it is broken up, the silica is taken into solution and carried away, and hydrous aluminum oxides remain as bauxite ores. This extreme type of weathering is sometimes called lateritic alteration (see pp. 172-173). Impurities of the bauxite ores are the small quantities of iron and titanium present in the original rocks, together with the kaolin which has not been broken up. The deposits usually form shallow blankets over considerable areas, with irregular lower surfaces determined by the action of surface waters—which work most effectively where joints or other conditions favor the maximum circulation and alteration. A certain degree of porosity in the original rock is also known to favor the alteration. A complete gradation from the unaltered rock through clay to the high-grade bauxite, with progressive decrease in bases and silica, concentration of alumina and iron oxide, and increase of moisture and pore space, is frequently evident (see Fig. 13). The bauxite is earthy, and usually shows a concretionary or pisolitic structure similar to that observed in residual iron ores (p. 172). Near the surface there may be an increase in silica,—probably due to a reversal of the usual conditions by a slight leaching of alumina, thus concentrating the denser masses of kaolin which have not been decomposed.
The Arkansas bauxite deposits, the most important in the United States, are surface deposits overlying nepheline-syenite, an igneous rock with a high ratio of alumina to iron content. The most valuable deposits are residual, and some parts have preserved the texture of the original rock, though with great increase in pore space; most of the ore, however, has the typical pisolitic structure. Near the surface the pisolites are sometimes loosened by weathering, yielding a gravel ore, and some of the material has been transported a short distance to form detrital ores interstratified with sands and gravels. The complete gradation from syenite to bauxite has been shown.
In the Appalachian region of Tennessee, Alabama, and Georgia, bauxite occurs as pockets in residual clays above sedimentary rocks, chiefly above shales and dolomites. Its origin has probably been similar to that described.
The bauxite deposits of southern France occur in folded limestones, and have been ascribed by French writers to the work of ascending hot waters carrying aluminum sulphate. They present some unusual features, and evidence as to their origin is not conclusive.
At the present time bauxite is doubtless forming in tropical climates, where conditions are favorable for deep and extreme weathering of the lateritic type. The breaking up of kaolin accompanied by the removal of silica is not characteristic of temperate climates, though many clays in these climates show some bauxite. It is possible that, at the time when the bauxite deposits of Arkansas and other temperate regions were formed, the climate of these places was warmer than it is today.
In studying the origin of bauxites, it should not be overlooked that they have much in common with clays, certain iron ores, and many other deposits formed by weathering.
ANTIMONY ORES
ECONOMIC FEATURES
Antimony is used mainly for alloying with other metals. Over one-third of the antimony consumed in the United States is alloyed with tin and copper in the manufacture of babbitt or bearing-metal. Other important alloys include type-metal (lead, antimony, and tin), which has the property of expanding on solidification; "hard lead," a lead-antimony alloy used in making acid-resisting valves; Britannia or white metal (antimony, tin, copper, zinc), utilized for cheap domestic tableware; and some brasses and bronzes, solders, aluminum alloys, pattern metals, and materials for battery plates and cable coverings. Antimony finds a very large use in war times in the making of shrapnel bullets from antimonial lead. Antimony oxides are used in white enameling of metal surfaces, as coloring agents in the manufacture of glass, and as paint pigments; the red sulphides are used in vulcanizing and coloring rubber, as paint pigments, in percussion caps, and in safety matches; and other salts find a wide variety of minor uses in chemical industries and in medicine.
Antimony ores vary greatly in grade, the Chinese ores carrying from 20 to 64 per cent of the metal. The presence of arsenic and copper in the ores is undesirable. Several of the more important antimony districts owe their economical production of that metal to the presence of recoverable values in gold. Some lead-silver ores contain small quantities of antimony, and "antimonial lead," containing 12 to 18 per cent antimony, is recovered in their smelting.
China is by far the most important antimony-producing country in the world, and normally supplies over half the world's total. Chinese antimony is exported in part as antimony crude (lumps of needle-like antimony sulphide), and in part as antimony regulus, which is about 99 per cent pure metal. France was the only other important source of antimony before the war (25 to 30 per cent of the world production), and Mexico and Hungary produced small amounts. The large demand for antimony occasioned by the war, besides stimulating production in these countries, brought forth important amounts of antimony ore from Algeria (French control) and from Bolivia and Australia (British control), as well as smaller quantities from several other countries. Of the war-developed sources, only Algeria and perhaps Australia are expected to continue production under normal conditions.
Before the war, antimony was smelted chiefly in China, England, and France, and to a lesser extent in Germany. British and French commercial and smelting interests dominated to a considerable extent the world situation, and London was the principal antimony market of the world.
During the war Chinese antimony interests were greatly strengthened, and facilities for treating the ore in that country were increased. Japan also became important as a smelter and marketer of Chinese ore, and increasing quantities of antimony were exported from China and Japan directly to the United States. English exports ceased entirely and were replaced in this country by Chinese and Japanese brands.
The United States normally consumes about one-third of the world's antimony. Before the war the entire amount was secured by importation, two-thirds from Great Britain and the rest from the Orient, France, and other European countries. Domestic production of ore and smelting of foreign ores were negligible. (These statements refer only to the purer forms of antimony; the United States normally produces considerable amounts of antimonial lead, equivalent to somewhat less than 5 per cent of the country's total lead production, but this material cannot be substituted for antimony regulus in most of its uses.)
During the war, under the stimulus of rising prices, mining of antimony was undertaken in the United States and several thousand tons of metal were produced—principally from Nevada, with smaller amounts from Alaska, California, and other western states. The great demands for antimony, however, were met chiefly by increased importation. Imports were mainly of regulus from Chinese and Japanese smelters of Chinese antimony; but about a third was contained in ores, including most of the production of Mexico which had formerly gone to England, and about 15 per cent of the Bolivian output. Antimony smelters were developed in the United States to handle these ores.
At the close of hostilities there had accumulated in the United States large surplus stocks of antimony and antimonial materials. With a very dull market and low prices, domestic mines and smelters were obliged to close down. The dependence of the United States on foreign sources of antimony and the importance of the metal for war purposes led to some agitation for a protective tariff—in addition to the present import duty of 10 per cent on antimony metal—in order to encourage home production (see pp. 365-366, 393-394).
In summary, the United States is almost entirely dependent upon outside sources for its antimony, although there are inadequately known reserves in this country which might be exploited if prices were maintained at a high level. The future of United States smelters is problematical. China, the world's chief source of antimony, at present dominates the market in this country, largely due to the low cost of production and favorable Japanese freight rates.
GEOLOGIC FEATURES
The antimony sulphide, stibnite, is the source of most of the world's production of this metal. Antimony oxides, including senarmontite, cervantite, and others, are formed near the surface, and in some of the deposits of Mexico and Algeria they supply a large part of the values recovered. Jamesonite, bournonite, and tetrahedrite (sulphantimonides of lead and copper), when found in lead-silver deposits, are to some extent a source of antimony in the form of antimonial lead.
Stibnite is found in a variety of associations and is present in small quantities in many types of deposits. In the commercial antimony deposits, it is in most cases accompanied by minor quantities of other metallic sulphides—pyrite, cinnabar, sphalerite, galena, arsenopyrite, etc.—in a gangue of quartz and sometimes calcite. Many of the deposits contain recoverable amounts of gold and silver.
The deposits of the Hunan Province of southern China occur as seams, pockets, and bunches of stibnite ore in gently undulating beds of faulted and fissured dolomitic limestone. In the vicinity of the most important mines no igneous rocks have been observed, and the origin of the ores has not been worked out.
In the Central Plateau of France the numerous antimony deposits are stibnite veins cutting granites and the surrounding schists and sediments. An origin related in some way to hot ascending solutions seems probable.
The deposits of the National district of western Nevada, the most important war-developed antimony deposits of the United States, consist of stibnite veins with a gangue of fine-grained drusy quartz, cutting through flows of rhyolite and basalt. They are intimately related to certain gold- and silver-bearing veins, and all are closely associated with dikes of rhyolite, which were the feeders to the latest extrusion in the district. The wall rocks have undergone alteration of the propylitic type. These relations, and the presence of the mercury sulphide, cinnabar, in some of the ores (see pp. 258-259), suggest an origin through the work of ascending hot waters or hot springs. These waters probably derived their dissolved matter from a magmatic source, and worked up along vents near the rhyolite dikes soon after the eruption of this rock.
In the weathering of antimony deposits, the stibnite usually alters to form insoluble white or yellowish oxides, which are sometimes called "antimony ocher." These tend to accumulate in the oxide zone through the removal of the more soluble accompanying minerals. Secondary sulphide enrichment of antimony deposits, if it occurs at all, is negligible.
ARSENIC ORES
ECONOMIC FEATURES
About two-thirds of the arsenic consumed in recent years has been used in agriculture, where various arsenic compounds—arsenic trioxide or "white arsenic," Paris green, lead arsenate, etc.—are used as insecticides and weed killers. Arsenic compounds are also used in "cattle-dips" for killing vermin. The only other large use of arsenic is in the glass industry, arsenic trioxide being added to the molten glass to purify and decolorize the product. Small quantities of arsenic compounds are used in the preparation of drugs and dyeing materials, and metallic arsenic is used for hardening lead in shot-making.
The principal arsenic-producing countries are the United States, Germany, France, Great Britain, Canada, and Mexico. Spain, Portugal, Japan, and China are also producers, and recent trouble with the "prickly-pear" pest in Queensland, Australia, has led to local development of arsenic mining in that country. For the most part, European production has been used in Europe and American production in the United States.
Arsenic is recovered almost wholly as a by-product of smelting ores for the metals. The potential supply is ample in most countries where smelting is conducted, but owing to the elaborate plant required to recover the arsenic, apparatus is not usually installed much in advance of the demand for production. Rapid expansion is not possible.
Before the war the arsenic needs of the United States (chiefly agricultural) were supplied by a few recovery plants in the United States, Mexico, and Canada. Several large smelters had not found it profitable to install recovery plants, as the market might have been oversupplied and prices were low. During the war, with the extensive demand for insecticides for gardening, there was a considerable deficiency of arsenic supplies. With rising prices production was stimulated, but was still unable to meet the increased demand. This situation resulted in regulation of the prices of white arsenic by the Food Administration.
Production of arsenic in the United States comes chiefly from smelters in Colorado, Washington, Utah, Montana, and New Jersey. Small amounts are produced by arsenic mines in Virginia and New York. A Mexican plant at Mapimi has been shipping important quantities to the United States. The plant at Anaconda, Montana, is expected to produce an ample supply in the future.
The United States is entirely independent in arsenic supplies and will probably soon have an exportable surplus. Export trade, after the reconstruction period, will probably meet competition from France and Germany where production was formerly large.
GEOLOGIC FEATURES
Arsenic-bearing minerals are numerous and rather widely distributed, but only a few of them are mined primarily for their content of arsenic. Arsenopyrite or "mispickle" (iron-arsenic sulphide) has been used intermittently as a source of white arsenic in various places,—notably at Brinton, Virginia, and near Carmel, New York. The former deposits contain arsenopyrite and copper-bearing pyrite impregnating a mica-quartz-schist, adjacent to and in apparent genetic relation with aplite or pegmatite intrusives. In the latter locality arsenopyrite is found associated with pyrite in a gangue of quartz, forming a series of parallel stringers in gneiss close to a basic dike.
The orange-red sulphides of arsenic, orpiment and realgar, are formed both as primary minerals of igneous source and as secondary products of weathering. They are rather characteristic of the oxide zones of certain arsenical metallic ores, and are believed in many cases to have formed from arsenopyrite. They are mined on a commercial scale in China.
The great bulk of the world's arsenic, as previously stated, is obtained as a by-product of smelting operations. The enargite of the Butte copper ores (pp. 201-203) contains a considerable amount of arsenic, a large part of which will be recovered from the smelter fumes by new processes which are being installed. The gold-silver ores of the Tintic district (pp. 235) also yield important amounts, the arsenic-bearing minerals being enargite and tennantite (copper-arsenic sulphides) and others. The silver ores of the Cobalt district of Ontario (pp. 234-235), containing nickel and cobalt arsenides, produce considerable arsenic. Many other metallic ores contain notable amounts of arsenic, which are at present allowed to escape through smelter flues, but which could be recovered under market conditions which would repay the cost of installing the necessary apparatus.
BISMUTH ORES
ECONOMIC FEATURES
Bismuth metal is used in alloys, to which it gives low fusibility combined with hardness and sharp definition. Bismuth alloys are employed in automatic fire sprinklers, in safety plugs for boilers, in electric fuses, in solders and dental amalgams, and in some type and bearing metals. Bismuth salts find a considerable application for pharmaceutical purposes, especially in connection with intestinal disorders, and the best grades of bismuth materials are used for this purpose. The salts are also used in porcelain painting and enameling and in staining glass.
Bolivia is the most important producer of bismuth ore. The output is controlled entirely by British smelting interests. An important deposit exists in Peru, the output of which is limited by the same British syndicate. Considerable bismuth is produced in Australia, Tasmania, and New Zealand, all of which likewise goes to England. Germany before the war had three smelters which produced bismuth from native ores in Saxony; bismuth was one of the few metals of which Germany had an adequate domestic supply. Recently southern China is reported to be mining increasing amounts of bismuth.
The United States produces the larger part of its bismuth requirements, chiefly from plants installed at two lead refineries. A further installation would make this country entirely independent of foreign supplies if occasion required. Imports, from England and South America, have been steadily declining, but during the war were somewhat increased. The United States does not export bismuth so far as known.
GEOLOGIC FEATURES
The principal minerals of bismuth are bismuthinite (bismuth sulphide), bismutite (hydrated carbonate), bismite or bismuth ocher (hydrated oxide), and native bismuth.
The native metal and the sulphide are believed to be formed mainly as primary minerals of igneous origin. In the deposits of New South Wales they are found associated with molybdenite in quartz gangue, in pipe-like deposits in granite. The oxide and the carbonate are probably products of surface weathering. The Bolivian deposits contain the native metal, the oxide, and the carbonate, associated with gold, silver, and tin minerals, in one locality in slates and in another locality in porphyry. The origin is not well known.
In the United States, the sulphide, bismuthinite, is found in the siliceous ores of Goldfield, Nevada (p. 230), and in minor amounts in a great number of the sulphide ores of the Cordilleran region. The ores of the Leadville and Tintic districts (pp. 219 and 235) yield the larger part of the United States production, the bismuth being recovered as by-product from the electrolytic refining of the lead bullion. Large amounts of bismuth pass out of the stacks of smelters treating other western ores, and while it would not be cheap nor easy to save the bismuth thus lost, it could probably be done in case of necessity.
CADMIUM ORES
ECONOMIC FEATURES
Cadmium is used in low melting-point alloys—as, for example, those employed in automatic fire-extinguishers and electric fuses,—in the manufacture of silverware, and in dental amalgams. During the war the critical scarcity of tin led to experiments in the substitution of cadmium for tin in solders and anti-friction metals. Results of some of these experiments were promising, but the war ceased and demands for tin decreased before the cadmium materials became widely used. Future developments in this direction seem not unlikely. Cadmium compounds are used as pigments, particularly as the sulphide "cadmium yellow," and to give color and luster to glass and porcelain. Cadmium salts are also variously used in the arts, in medicine, and in electroplating.
Practically the entire cadmium output of the world comes from Germany and the United States. In addition, England produces a very small quantity. Before the war Germany produced about two-thirds of the world's total, and supplied the European as well as a considerable part of the United States consumption. During the war the United States production increased three to four fold, imports ceased, and considerable quantities were exported to the allied nations in Europe and to Japan. At present the United States is entirely independent as regards cadmium supplies. Production is sufficient to supply all the home demand and to permit exports of one-third of the total output. A considerable number of possible cadmium sources are not being used, and the production is capable of extension should the need arise.
GEOLOGIC FEATURES
Nearly the only cadmium mineral known is the sulphide, greenockite, but no deposits of this mineral have been found of sufficient volume to be called cadmium ores. Sphalerite almost always contains a little cadmium, probably as the sulphide; and in zinc deposits crystals of sphalerite in cavities are frequently covered with a greenish-yellow film or coating of greenockite. These coatings have probably been formed by the decomposition of cadmium-bearing zinc sulphide in the oxide zone, the carrying down of the cadmium in solution, and its precipitation as secondary cadmium sulphide. The zinc oxide minerals in the surficial zone also are sometimes colored yellow by small amounts of greenockite. In the zinc ores of the Joplin district of Missouri, cadmium is present in amounts ranging from a trace to 1 per cent and averaging 0.3 per cent.
Germany's cadmium is produced by fractional distillation of the Silesian zinc ores, which contain at most 0.3 per cent cadmium. In the United States there are large potential sources in the zinc ores of the Mississippi valley, and considerable cadmium is recovered in roasting them. Much of the American cadmium is also obtained from bag-house dusts at lead smelters.
The general geologic conditions of the cadmium-bearing ores are indicated in the discussion of lead and zinc deposits in an earlier chapter.
COBALT ORES
ECONOMIC FEATURES
Cobalt finds its largest use in the form of cobalt salts, employed in coloring pottery and glass and in insect poisons. Cobalt is also used in some of the best high-speed tool steels. "Stellite," which is used to a limited extent in non-rusting tools of various sorts, and in considerable quantity to replace high-speed tool steels, is an alloy of cobalt, chromium, and small quantities of other metals. Considerable experimental work has been done on the properties and uses of cobalt alloys, and their consumption is rapidly on the increase.
Cobalt is an item of commerce of insignificant tonnage. There are only two countries, Canada (Ontario) and the Belgian Congo, which produce noteworthy amounts. The Katanga district in the Congo produces blister copper that contains as much as 4 per cent of cobalt, though usually less than 2 per cent. This product formerly went to Germany, and now goes entirely to Great Britain. Just how much cobalt is saved is unknown, but probably several hundred tons annually. It is probable that most of the cobalt in these ores will be lost on the installation of a leaching process for recovery of the copper. Canada exports most of its product to the United States, though the amount is small. Domestic production in this country has been too small to record. The United States has been dependent on imports from Canada.
GEOLOGIC FEATURES
The principal cobalt minerals are smaltite (cobalt arsenide), cobaltite (cobalt-arsenic sulphide), and linnaeite (cobalt-nickel sulphide). Under weathering conditions these minerals oxidize readily to form asbolite, a mixture of cobalt and manganese oxides, and the pink arsenate, erythrite or "cobalt bloom."
Cobalt minerals are found principally in small quantities disseminated through ores of silver, nickel, and copper. The production of Canada is obtained mainly as a by-product of the silver ores of the Cobalt district (described on pp. 234-235), and smaller amounts are recovered from the Sudbury nickel ores (pp. 180-182). The cobalt of Belgian Congo is obtained from rich oxidized copper ores which impregnate folded sediments (p. 205).
MERCURY (QUICKSILVER) ORES
ECONOMIC FEATURES
Uses of mercury are characterized by their wide variety and their application to very many different phases of modern industry; they will be named here in general order of decreasing importance. About one-third of the mercury consumed in this country goes into the manufacture of drugs and chemicals, such as corrosive sublimate, calomel, and glacial acetic acid. Mercury fulminate is used as a detonator for high explosives and to some extent for small-arms ammunition—a use which was exceedingly important during the war, but is probably of minor consequence in normal times. Mercuric sulphide forms the brilliant red pigment, vermilion, and mercuric oxide is becoming increasingly important in anti-fouling marine paint for ship-bottoms. Either as the metal or the oxide, mercury is employed in the manufacture of electrical apparatus (batteries, electrolyzers, rectifiers, etc.), and in the making of thermostats, gas governors, automatic sprinklers, and other mechanical appliances. Mercuric nitrate is used in the fabrication of felt hats from rabbits' fur. In the extraction of gold and silver from their ores by amalgamation, large amounts of metallic mercury have been utilized, but of late years the wide application of the cyanide process has decreased this use. Minor uses include the making of certain compounds for preventing boiler-scale, of cosmetics, and of dental amalgam.
The ores of mercury vary greatly in grade. Spanish ores yield an average in the neighborhood of 7 per cent, Italian ores 0.9 per cent, and Austrian ores 0.65 per cent of metallic mercury. In the United States the ores of California yield about 0.4 per cent and those of Texas range from about 0.5 to 4 per cent. In almost all cases the ores are treated in the immediate vicinity of the mines, and fairly pure metal is obtained by a process of sublimation and condensation. This is usually marketed in iron bottles or flasks containing 75 pounds each.
The large producers of mercury are, in order of normal importance, Spain, Italy, Austria, and United States. Mexico, Russia, and all other countries produce somewhat less than 5 per cent of the world's total.
The largest quicksilver mines of the world are those of Almaden in central Spain, which are owned and operated by the Spanish government. This government, after reserving a small amount for domestic use, sells all the balance of the production through the Rothschilds of London. In addition British capital controls some smaller mines in northern Spain. England thus largely controls the European commercial situation in this commodity, and London is the world's great quicksilver market, where prices are fixed and whence supplies go to all corners of the globe. Reserves of the Almaden ore bodies are very large. Sufficient ore is reported to have been developed to insure a future production of at least 40,000 metric tons—an amount equivalent to the entire world requirements at pre-war rates of consumption for 100 years.
The mercury deposits of the Monte Amiata district of central Italy were in large part dominated by German capital, but during the war were seized by the Italian government. The mines of Idria, Austria-Hungary, were owned by the Austrian government and their ultimate control is at present uncertain. Reserves are very large, being estimated at about one-half those of Almaden. Although England has had a considerable control over the prices and the market for mercury, the Italian and Austrian deposits have provided a sufficient amount to prevent any absolute monopoly. English interests have now secured control of the Italian production, and it is expected that they will also control the Austrian production—thus giving England control of something over three-fourths of the world's mercury.
In the United States about two-thirds of the mercury is produced in the Coast Range district of California, and most of the remainder in the Terlingua district of Texas. Smaller quantities come from Nevada, Oregon, and a few other states. The output before the war was normally slightly in excess of domestic demand and some mercury was exported to various countries. Due to the exhaustion of the richer and more easily worked deposits, however, production was declining. During the war, with increased demands and higher prices, production was stimulated, the United States became the largest mercury-producing country in the world, and large quantities were exported to help meet the military needs of England and France.
With the end of war prices and with high costs of labor and supplies, production in the United States has again declined. Many of the mines have passed their greatest yield, and though discovery of new ore bodies might revive the industry, production is probably on the down grade. Future needs of this country will probably in some part be met by imports from Spain, Italy, and Austria, where the deposits are richer and labor is cheaper. This situation has caused much agitation for a tariff on imports. The present tariff of 10 per cent is not sufficient to keep out foreign mercury.
Outside of the United States large changes in distribution of production of quicksilver are not expected for some time. The reserves of the European producers are all large and are ample to sustain present output for a considerable number of years. It is reported that there will be a resumption of mining in the once very productive Huancavelica District of Peru and in Asia Minor, and with restoration of political order there may be an increase in output from Mexico and Russia,—but these districts will be subordinate factors in the world situation. On geologic grounds, new areas of mercury ores may be looked for in regions of recent volcanic activity, such as the east coast of Asia, some islands of Oceania, the shores of the Mediterranean, and the Cordilleras of North and South America,—but no such areas which are likely to be producers on a large scale are now known.
GEOLOGIC FEATURES
The chief mineral of mercury, from which probably over 95 per cent of the world's mercury comes, is the brilliant red sulphide, cinnabar. Minor sources include the black or gray sulphide, metacinnabar, the native metal, and the white mercurous chloride, calomel. The ores are commonly associated with more or less iron sulphide, and frequently with the sulphides of antimony and arsenic, in a gangue consisting largely of quartz and carbonates (of calcium, magnesium, and iron). The precious metals and the sulphides of the base metals are rare.
Mercury deposits are in general related to igneous rocks, and have associations which indicate a particular type of igneous activity. They are not found in magmatic segregations, in pegmatites, nor in veins which have been formed at great depths and under very high temperatures. On the contrary, the occurrence of many deposits in recent flows which have not been eroded, their general shallow depth (large numbers extending down only a few hundred feet), and the association of some deposits with active hot springs now carrying mercury in solution, suggest an origin through the work of ascending hot waters near the surface. The mercury minerals are believed to have been carried in alkaline sulphide solutions. Precipitation from such solutions may be effected by oxidation, by dilution, by cooling, or by the presence of organic matter. Being near the surface, it is a natural assumption that the waters doing the work were not intensely hot. At Sulphur Bank Springs, in the California quicksilver belt, deposition of cinnabar by moderately hot waters is actually taking place at present; also these waters are bleaching the rock in a manner often observed about mercury deposits.
The Coast Ranges of California contain a great number of mercury deposits extending over a belt about 400 miles long. The ore bodies are in fissured zones in serpentine and Jurassic sediments, and are related in general to recent volcanic flows. A considerable amount of bituminous matter is found in the ores, and is believed to have been an agent in their precipitation.
The Terlingua ores of Texas are found in similar fractured zones in Cretaceous shales and limestones associated with surface igneous flows. The occurrence of a few ore bodies in vertical shoots in limestone, apparently terminating upward at the base of an impervious shale, furnishes an additional argument for their formation by ascending waters.
In the few deposits (e. g., those of Almaden, Spain, and of the deep mines of New Almaden and New Idria, California,) where there is no such clear relation to volcanic rocks as generally observed, but where the ores contain the same characteristic set of minerals, it is concluded that practically the same processes outlined above have been active in their formation; and that the volcanic source of the hot solutions either failed to reach the surface or has been removed by erosion. The same line of reasoning is carried a step further, and in many gold-quartz veins in volcanic rocks, where cinnabar and its associated minerals are present, it is believed that waters of a hot-spring nature have again been effective. Thus cinnabar, when taken with its customary associations, is regarded as a sort of geologic thermometer.
In the weathering of mercury deposits, cinnabar behaves somewhat like the corresponding silver sulphide, argentite. In the oxide zone, native mercury and the chloride, calomel, are formed. In the Texas deposits a red oxide and a number of oxychlorides are also present. The carrying down of the mercury and its precipitation as secondary sulphide may have taken place in some deposits, but this process is unimportant in forming values.
TIN ORES
ECONOMIC FEATURES
The largest use of tin is in the manufacture of tin-plate, which is employed in containers for food, oil, and other materials. Next in importance is its use in the making of solder and of babbitt or bearing metal. Tin is also a constituent of certain kinds of brass, bronze, and other alloys, such as white metal and type metal. Minor uses include the making of tinfoil, collapsible tubes, wire, rubber, and various chemicals. Tin oxide is used to some extent in white enameling of metal surfaces. Roughly a third of the tin consumed within the United States goes into tin-plate, a third into solder and babbitt metal, and a third into miscellaneous uses.
The ores of tin in general contain only small quantities of the metal. Tin has sufficient value to warrant the working of certain placers containing only a half-pound to the cubic yard, although the usual run is somewhat higher. The tin content of the vein deposits ranges from about 1 per cent to 40 per cent, and the average grade is much closer to the lower figure.
Great Britain has long controlled the world's tin ores, producing about half of the total and controlling additional supplies in other countries. The production is in small part in Cornwall, but largely in several British colonies—the Malay States, central and south Africa, Australia, and others. The Malay States furnish about a third of the world's total. Another third is produced in immediately adjacent districts of the Dutch East Indies, Siam (British control), and China, and some of the concentrates of these countries are handled by British smelters, especially at Singapore.
Tin is easily reduced from its ores and most of the tin is smelted close to the sources of production. Considerable quantities, however, have gone to England for treatment. London has been the chief tin market of the world, and before the war the larger portion of the tin entering international trade went through this port. During the war a good deal of the export tin from Straits Settlements was shipped direct to consumers rather than via London, but it is not certain how future shipments may be made.
Significant features of the tin situation in recent years have been a decline of production in the Malay States, and a large and growing production in Bolivia. Malayan output has decreased because of the exhaustion of some of the richer and more accessible deposits; certain governmental measures have also had a restrictive effect. Bolivian production now amounts to over a fifth of the world's total and bids fair to increase. About half the output is controlled by Chilean, and small amounts by American, French, and German interests. A large portion of the Bolivian concentrates formerly went to Germany for smelting, but during the war American smelters were developed to handle part of this material; large quantities are also smelted in England.
The United States produces a small fraction of 1 per cent of the world's tin, and consumes a third to a half of the total. The production is mainly from the Seward Peninsula of northwestern Alaska. For American tin smelters, Bolivia is about the only available source of supplies; metallic tin can be obtained from British possessions, but no ore, except by paying a 33-1/3 per cent export tax. The United States exports tin-plate in large amounts, and in this trade has met strong competition from English and German tin-plate makers.
A world shortage of tin during the war required a division of available supplies through a central international committee. Somewhat later, with the removal of certain restrictions on the distribution of tin, considerable quantities which had accumulated in the Orient found their way into Europe and precipitated a sensational slump in the tin market.
GEOLOGIC FEATURES
The principal mineral of tin is cassiterite (tin oxide). Stannite, a sulphide of copper, iron, and tin, is found in some of the Bolivian deposits but is rare elsewhere.
About two-thirds of the world's tin is obtained from placers and one-third from vein or "lode" deposits. Over 90 per cent of the tin of southeastern Asia and Oceania is obtained from placers. Tin placers, like placers of gold, platinum, and tungsten, represent concentrations in stream beds and ocean beaches of heavy, insoluble minerals—in this case chiefly cassiterite—which were present in the parent rocks in much smaller quantities, but which have been sorted out by the classifying action of running water.
The original home of cassiterite is in veins closely related to granitic rocks. It is occasionally found in pegmatites, as in certain small deposits of the Southern Appalachians and the Black Hills of South Dakota, or is present in a typical contact-metamorphic silicated zone in limestone, as in some of the deposits of the Seward Peninsula of Alaska. In general, however, it is found in well-defined fissure veins in the outer parts of granitic intrusions and extending out into the surrounding rocks. With the cassiterite are often found minerals of tungsten, molybdenum, and bismuth, as well as sulphides of iron, copper, lead, and zinc, and in some cases there is evidence of a rough zonal arrangement. The deposits of Cornwall and of Saxony show transitions from cassiterite veins close to the intrusions into lead-silver veins at a greater distance. The gangue is usually quartz, containing smaller amounts of a number of less common minerals—including lithium mica, fluorite, topaz, tourmaline, and apatite. The wall rocks are usually strongly altered and in part are replaced by some of the above minerals, forming coarse-grained rocks which are called "greisen."
The origin of cassiterite veins, in view of their universal association with granitic rocks, is evidently related to igneous intrusions. The occurrence of the veins in distinct fissures in the granite and in the surrounding contact-metamorphic zone indicates that the granite had consolidated before their formation, and that they represent a late stage in the cooling. The association with minerals containing fluorine and boron, and the intense alteration of the wall rocks, indicate that the temperature must have been very high. It is probable that the temperature was so high as to cause the solutions to be gaseous rather than liquid, and that what have been called "pneumatolytic" conditions prevailed; but evidence to decide this question is not at present available.
The most important deposits of tin in veins are those of Bolivia, some of which are exceptionally rich. These are found in granitic rocks forming the core of the high Cordillera Real and in the adjacent intruded sediments, in narrow fissure veins and broader brecciated zones containing the typical ore and gangue minerals described above, and also, in many cases, silver-bearing sulphides (chiefly tetrahedrite). There appear to be all gradations in type from silver-free tin ores to tin-free silver ores, although the extremes are now believed to be rare. In the main the tin ores, with abundant tourmaline, appear to be more closely related to the coarse-grained granites, and to indicate intense conditions of heat and pressure, while the more argentiferous ores, with very little or no tourmaline, are found in relation to finer-grained quartz porphyries and even rhyolites, and seem to indicate less intense conditions at the time of deposition. The ores of the whole area, which is a few hundred miles long, have been supposed to represent a single genetic unit, and the sundry variations are believed to be local facies of a general mineralization. Processes of secondary enrichment have in places yielded large quantities of oxidized silver minerals and wood tin near the surface, with accumulations of ruby silver ores at greater depths.
The only other vein deposits which are at present of consequence are those of Cornwall. Here batholiths of granite have been intruded into Paleozoic slates and sandstones, and tin ores occur in fissures and stockworks in the marginal zones. With the exhaustion of the more easily mined placers, the lode deposits will doubtless be of increasing importance.
Cassiterite is practically insoluble and is very resistant to decomposition by weathering. Oxide zones of tin deposits are therefore enriched by removal of the more soluble minerals. Stannite probably alters to "wood tin," a fibrous variety of cassiterite. Secondary enrichment of tin deposits by redeposition of tin minerals is negligible.
URANIUM AND RADIUM ORES
ECONOMIC FEATURES
Radium salts are used in various medical treatments—especially for cancer, internal tumors, lupus, and birth marks—and in luminous paints. During the latter part of the war it is estimated that over nine-tenths of the radium produced was used in luminous paints for the dials of watches and other instruments. In addition part of the material owned by physicians was devoted to this purpose, and it is probable that the accumulated stocks held by the medical profession were in this way reduced by one-half. The greatly extended use of radium, together with the distinctly limited character of the world's known radium supplies, has led to some concern; and considerable investigation has been made of the possibilities of mesothorium as a substitute for radium in luminous paints. Low-grade radium residues are used to some extent as fertilizers.
Uranium has been used as a steel alloy, but has not as yet gained wide favor. Uranium salts have a limited use as yellow coloring agents in pottery and glass. The principal use of uranium, however, is as a source of radium, with which it is always associated.
European countries first developed the processes of reduction of radium salts from their ores. Most of the European ores are obtained from Austria, where the mines are owned and operated by the Austrian government, and small quantities are mined in Cornwall, England, and in Germany. Production is decreasing. The European hospitals and municipalities have acquired nearly all of the production.
The United States has the largest reserves of radium ore in the world, and the American market has in recent years been supplied from domestic plants. Before the war, radium ores were shipped to Europe for treatment in Germany, France, and England, and radium salts were imported from these countries. There are now radium plants in the United States capable of producing annually from domestic ores an amount several times as large as the entire production of the rest of the world. Practically all the production has come from Colorado and Utah. Known reserves are not believed to be sufficient for more than a comparatively few years' production, but it is not unlikely that additional deposits will be found in the same area.
GEOLOGIC FEATURES
Uranium is one of the rarer metals. Radium is found only in uranium ores and only in exceedingly small quantities. The maximum amount which can be present in a state of equilibrium is about one part of radium in 3,000,000 parts of uranium. The principal sources of uranium and radium are the minerals carnotite (hydrous potassium-uranium vanadate) and pitchblende or uraninite (uranium oxide).
The deposits of Joachimsthal, Bohemia, contain pitchblende, along with silver, nickel, and cobalt minerals and other metallic sulphides, in veins associated with igneous intrusions.
The important commercial deposits of Colorado and Utah contain carnotite, together with roscoelite (a vanadium mica) and small amounts of chromium, copper, and molybdenum minerals, as impregnations of flat-lying Jurassic sandstones. The ores carry up to 35 per cent uranium oxide (though largely below 2 per cent), and from one-third as much to an equal amount of vanadium oxide. The ore minerals are supposed to have been derived from a thick series of clays and impure sandstones a few hundred feet above, containing uranium and vanadium minerals widely disseminated, and to have been carried downward by surface waters containing sulphates. The ore bodies vary from very small pockets to deposits yielding a thousand tons or so, and are found irregularly throughout certain particular beds without any special relation to present topography or to faults. The association of many of the deposits with fossil wood and other carbonaceous material suggests that organic matter was an agent in their precipitation, but the exact nature of the process is not clear. In a few places in Utah the beds dip at steep angles, and the carnotite appears in spots along the outcrops and generally disappears as the outcrops are followed into the hillsides; this suggests that the carnotite may be locally redissolved and carried to the surface by capillary action, forming rich efflorescences. Because of the nature of the deposits no large amount of ore is developed in advance of actual mining; but estimates based on past experience indicate great potentialities of this region for future production.
In eastern Wyoming is a unique deposit of uranium ore in a quartzite which lies between mica-schist and granite. The principal ore mineral is uranophane, a hydrated calcium-uranium silicate, which is believed to be an oxidation product of pitchblende. Some of the ore runs as high as 4 per cent uranium oxide, and the ore carries appreciable amounts of copper but very little vanadium.
Very recently radium ores have been discovered in the White Signal mining district of New Mexico, which was formerly worked for gold, silver, copper, and lead. The radium-bearing minerals are torbernite and autunite (hydrous copper-uranium and calcium-uranium phosphates), and are found in dark felsite dikes near their intersections with east-west gold-silver-quartz veins. The possibilities of this district have not yet been determined.
Pitchblende has been found in gold-bearing veins in Gilpin County, eastern Colorado, and in pegmatite dikes in the Appalachians, but these deposits are of no commercial importance. Pitchblende is grayish-black, opaque, and so lacking in distinctive characteristics that it may readily be overlooked; hence future discoveries in various regions would not be surprising.
CHAPTER XIII
MISCELLANEOUS NON-METALLIC MINERALS
NATURAL ABRASIVES
ECONOMIC FEATURES
Natural abrasives are less important commercially in the United States than artificial abrasives, but a considerable industry is based on the natural abrasives.
Silica or quartz in its various crystalline forms constitutes over three-fourths of the tonnage of natural abrasives used in the United States. It is the chief ingredient of sand, sandstone, quartzite, chert, diatomaceous earth, and tripoli. From the sand and sandstone are made millstones, buhrstones, grindstones, pulpstones, hones, oilstones, and whetstones. Sand, sandstone, and quartzite are also ground up and used in sand-blasts, sandpaper, and for other abrasive purposes. Chert or flint constitutes grinding pebbles and tube-mill linings, and is also ground up for abrasives. Diatomaceous (infusorial) earth is used as a polishing agent and also as a filtering medium, an absorbent, and for heat insulation. Tripoli (and rottenstone) are used in polishing powders and scouring soaps as well as for filter blocks and many other purposes.
Other important abrasives are emery and corundum, garnet, pumice, diamond dust and bort, and feldspar.
Imports of abrasive materials into the United States have about one-third of the value of those locally produced. While all of the various abrasives are represented in these imports, the United States is dependent on foreign sources for important parts of its needs only of emery and corundum, garnet, pumice, diamond dust and bort, and grinding pebbles.
Emery and corundum are used in various forms for the grinding and polishing of hard materials—steel, glass, stone, etc. The principal foreign sources of emery have been Turkey (Smyrna) and Greece (Naxos) where reserves are large and production cheap. Production of corundum has come from Canada, South Africa, Madagascar, and India. The domestic production of emery is mainly from New York and Virginia, and corundum comes from North Carolina. Domestic supplies are insufficient to meet requirements, and cannot be substituted for the foreign material for the polishing of fine glass and other special purposes. Curtailment of imports during the war greatly stimulated the development of artificial abrasives and their substitution for emery and corundum.
Garnet is used chiefly in the form of garnet paper for working leather, wood, and brass. Garnet is produced mainly in the United States and Spain. The United States is the only country using large amounts of this mineral and imports most of the Spanish output. The domestic supply comes mainly from New York, New Hampshire, and North Carolina.
Pumice is used in fine finishing and polishing of varnished and enameled surfaces, and in cleaning powders. The world's principal source for pumice is the Lipari Islands, Italy. There is a large domestic supply of somewhat lower-grade material (volcanic ash) in the Great Plains region, and there are high-grade materials in California and Arizona. Under war conditions these supplies were drawn on, but normally the high-quality Italian pumice can be placed in American markets more cheaply.
Diamond dust is used for cutting gem stones and other very hard materials, and borts or carbonadoes (black diamonds) for diamond-drilling in exploration. Most of the black diamonds come from Brazil, and diamond dust comes from South Africa, Brazil, Borneo, and India.
Chert or flint pebbles for tube-mills are supplied mainly from the extensive deposits on the French and Danish coasts. The domestic production has been small, consisting principally of flint pebbles from the California beaches, and artificial pebbles made from rhyolite in Nevada and quartzite in Iowa. War experience demonstrated the possibility of using the domestic supply in larger proportion, but the grade is such that in normal times this supply will not compete with importations.
Feldspar as an abrasive is used mainly in scouring soaps and window-wash. Domestic supplies are ample. The principal use of feldspar is in the ceramic industry and the mineral is discussed at greater length in the chapter on common rocks (p. 86).
For the large number of abrasives produced from silica, outside of flint pebbles, domestic sources of production are ample. Siliceous rocks are available almost everywhere. For particular purposes, however, rocks possessing the exact combinations of qualities which make them most suitable are in many cases distinctly localized. Millstones and buhrstones, used for grinding cereals, paint ores, cement rock, fertilizers, etc., are produced chiefly in New York and Virginia; partly because of trade prejudice and tradition, about a third of the American requirements are imported from France, Belgium, and Germany. Grindstones and pulpstones, used for sharpening tools, grinding wood-pulp, etc., come mainly from Ohio and to a lesser extent from Michigan and West Virginia; about 5 per cent of the consumption is imported from Canada and Great Britain. Hones, oilstones, and whetstones are produced largely from a rock called "novaculite" in Arkansas, and also in Indiana, Ohio, and New England; imports are negligible. Flint linings for tube-mills were formerly imported from Belgium, but American products, developed during the war in Pennsylvania, Tennessee, and Iowa, appear to be wholly satisfactory substitutes. Diatomaceous earth is produced in California, Nevada, Connecticut, and Maryland, and tripoli and rottenstone in Illinois, Missouri, and Oklahoma; domestic sources are sufficient for all needs, but due to questions of back-haul and cost of rail transportation there has been some importation from England and Germany.
GEOLOGIC FEATURES
The geologic features of silica (quartz), feldspar, and diamonds are sufficiently indicated elsewhere (Chapter II; pp. 84, 196, 86, 291-292).
Diatomaceous earth is made up of remains of minute aquatic plants. It may be loose and powdery, or coherent like chalk. It is of sedimentary origin, accumulated originally at the bottoms of ponds, lakes, and in the sea.
Tripoli and rottenstone are light, porous, siliceous rocks which have resulted from the leaching of calcareous materials from various siliceous limestones or calcareous cherts in the process of weathering.
Grinding pebbles are derived from the erosion of limestone or chalk formations which contain concretions of extremely fine-grained and dense chert. Under stream and wave action they are rounded and polished. The principal sources are ocean beaches.
Corundum as an abrasive is the mineral of this name—made up of anhydrous aluminum oxide. Emery is an intimate mechanical mixture of corundum, magnetite, and sometimes spinel. Corundum is a product of contact metamorphism and also a result of direct crystallization from molten magma. Canadian corundum occurs as a constituent of syenite and nepheline-syenite in Lower Ontario. In North Carolina and Georgia, the corundum occurs in vein-like bodies at the contact of peridotite with gneisses and schists, and also in part in the peridotite itself. In New York the emery deposits are segregations of aluminum and iron oxides in norite (a basic igneous rock). The emery of Greece and Turkey occurs as lenses or pockets in crystalline limestones, and is the result of contact metamorphism by intrusive granites.
Garnets result mainly from contact metamorphism, and commonly occur either in schists and gneisses or in marble. The principal American occurrences are of this type. Being heavy and resistant to weathering, they are also concentrated in placers. The Spanish garnets are reported to be obtained by washing the sands of certain streams.
Pumice is solidified rock froth formed by escape of gases from molten igneous rocks at the surface. It is often closely associated with volcanic ash, which is also used for abrasive purposes.
In general, the geologic processes entering into the formation of abrasives cover almost the full range from primary igneous processes to surface alterations and sedimentation.
ASBESTOS
ECONOMIC FEATURES
The principal uses of asbestos are in high-pressure packing in heat engines, in thermal and electrical insulation, in fire-proofing, and in brake-band linings.
The largest producers of asbestos are Canada (Quebec) and, to a considerably less extent, Russia. United States interests have financial control of about a fourth of the Canadian production, and practically the entire export trade of Canada goes to the United States. Russia exports nearly all her product to Germany, Austria, United Kingdom, Belgium, and the Netherlands. Previous to the war the output was largely controlled by a German syndicate. There is a considerable recent production in South Africa, which is taken by England and the United States, and small amounts are produced in Italy, Cyprus, and Australia.
The United States has been a large importer of asbestos, from Canada and some other sources. Domestic production is relatively insignificant, and exports depend chiefly on an excess of import. Georgia is the principal local source. Arizona and California are also producers, their product being of a higher grade. The United States is the largest manufacturer of asbestos goods, and exports go to nearly all parts of the world.
So long as the abundant Canadian material is accessible on reasonable conditions, the United States is about as well situated as if independent. Some Canadian proposals of restriction during the war led to a study of other supplies and showed that several deposits, such as those in Russia and Africa, might compete with the Canadian asbestos.
GEOLOGIC FEATURES
Asbestos consists mostly of magnesium silicate minerals—chrysotile, anthophyllite, and crocidolite. The term asbestos covers all fibrous minerals with some tensile strength which are poor conductors and can be used for heat-protection. Like talc, they are derived principally from the alteration of olivine, pyroxene, and amphibole,—or more commonly from serpentine, which itself results from the alteration of these minerals. Chrysotile is the most common, and because of the length, fineness, and flexibility of its fibers, enabling it to be spun into asbestos ropes and fabrics, it is the most valuable. Anthophyllite fibers, on the other hand, are short, coarse, and brittle, and can be used only for lower-grade purposes. Crocidolite or blue asbestos is similar to chrysotile but somewhat inferior in fire-resisting qualities.
Asbestos deposits occur chiefly as veinlets in serpentine rock, which is itself the alteration of some earlier rock like peridotite. They are clearly formed in cracks and fissures through the agency of water, but whether the waters are hot or cold is not apparent. The veinlets have sometimes been interpreted as fillings of contraction cracks, but more probably are due to recrystallization of the serpentine, proceeding inward from the cracks. In Quebec the chrysotile asbestos (which is partly of spinning and partly of non-spinning grade) forms irregular veins of this nature in serpentine, the fiber making up 2 to 6 per cent of the rock.
In Georgia the asbestos, which is anthophyllite, occurs in lenticular masses in peridotite associated with gneiss. It is supposed to have formed by the alteration of olivine and pyroxene in the igneous rocks. In Arizona chrysotile is found in veins in cherty limestone, associated with diabase intrusives. Here it is believed to be an alteration product of diopside (lime-magnesia pyroxene) in a contact-metamorphic silicated zone.
Crocidolite is mined on a commercial scale only in Cape Colony, South Africa. The deposits occur in thin sedimentary layers interbedded with jaspers and ironstones. Their origin has not been worked out in detail.
The deposits of Russia, the Transvaal, Rhodesia, and Australia are of high-grade chrysotile, probably similar in origin to the Quebec deposits. The asbestos of Italy and Cyprus is anthophyllite, more like the Georgia material.
BARITE (BARYTES)
ECONOMIC FEATURES
Barite is used chiefly as a material for paints. For this purpose it is employed both in the ground form and in the manufacture of lithopone, a widely used white paint consisting of barium sulphate and zinc sulphide. Ground barite is also used in certain kinds of rubber goods and in the making of heavy glazed paper. Lesser amounts go into the manufacture of barium chemicals, which are used in the preparation of hydrogen peroxide, in softening water, in tanning leather, and in a wide variety of other applications.
Germany is the world's principal producer of barite and has large reserves of high grade. Great Britain also has extensive deposits and produces perhaps one-fourth as much as Germany. France, Italy, Belgium, Austria-Hungary, and Spain produce smaller but significant amounts.
Before the war the United States imported from Germany nearly half the barite consumed in this country, and produced the remainder. Under the necessities of war times, adequate domestic supplies were developed and took care of nearly all the greatly increased demands. Production has come from fourteen states, the large producers being Georgia, Missouri, and Tennessee. During the war, also, an important movement of barite-consuming industries to the middle west took place, in order to utilize more readily and cheaply the domestic product. For this reason it is not expected that German barite will play as important a part as formerly in American markets,—although it can undoubtedly be put down on the Atlantic seaboard much more cheaply than domestic barite, which requires long rail hauls from southern and middle-western states.
GEOLOGIC FEATURES
The mineral barite is a heavy white sulphate of barium, frequently called "barytes" or "heavy spar." Witherite, the barium carbonate, is a much rarer mineral but is found with barite in some veins.
All igneous rocks contain at least a trace of barium, which is probably present in the silicates, and these small quantities are the ultimate source of the more concentrated deposits. Barite itself is not found as an original constituent of igneous rocks or pegmatites, but is apparently always formed by deposition from aqueous solutions. It is a common gangue mineral in many deposits of metallic sulphides, both those formed in relation to igneous activity and those which are independent of such activity, but in these occurrences it is of little or no commercial importance.
The principal deposits of barite are found in sedimentary rocks, and especially in limestones and dolomites. In these rocks it occurs in veins and lenses very similar in nature to the lead and zinc deposits of the Mississippi valley (p. 211 et seq.), and, like them, probably deposited by cold solutions which gathered together small quantities of material from the overlying or surrounding rocks. The Missouri deposits are found in limestones in a region not far from the great southeastern Missouri lead district, and vary from the lead deposits in relative proportions rather than in kind of minerals; the veins consist chiefly of barite, with minor quantities of silica, iron sulphide, galena, and sphalerite. The deposits of the southern Appalachians occur as lenses in limestones and schists.
Barite is little affected by surface weathering, and tends to remain behind while the more soluble minerals of the associated rock are dissolved out and carried away. A limited amount of solution and redeposition of the barite takes place, however, resulting in its segregation into nodules in the residual clays. Most of the barite actually mined comes from these residual deposits, which owe their present positions and values to katamorphic processes. The accompanying clay and iron oxide are removed by washing and mechanical concentration.
Certain investigators of the deposits of the Mississippi valley are extremely reluctant to accept the idea that the ores are formed by surface waters of ordinary temperatures, and are inclined to appeal to heated waters from a hypothetical underlying magmatic source. The fact that barite is a characteristic mineral of many igneous veins, and the fact that in this same general region it is found in the Kentucky-Illinois fluorspar deposits,—where a magmatic source is generally accepted,—together with doubts as to the theoretical efficacy of meteoric waters to transport the minerals found in the barite deposits, have led certain writers to ascribe to these barite deposits a magmatic origin. The magmatic theory has not been disproved; but on the whole the balance of evidence seems strongly to indicate that the barite deposits as well as the lead and zinc ores, which are essentially the same in nature though differing in mineral proportions, have been concentrated from the adjacent sediments by ordinary surface waters.
BORAX
ECONOMIC FEATURES
Borax-bearing minerals are used almost entirely in the manufacture of borax and boric acid. Fully a third of the borax consumed in the United States is used in the manufacture of enamels or porcelain-like coatings for such objects as bathtubs, kitchen sinks, and cooking utensils. Other uses of borax or of boric acid are as a flux in the melting and purification of the precious metals, in decomposing chromite, in making glass, as a preservative, as an antiseptic, and as a cleansing agent. Recent developments indicate that the metal, boron, may play an important part in the metallurgy of various metals. It has been used in making very pure copper castings for electrical purposes, in aluminum bronzes, and in hardening aluminum castings; and an alloy, ferroboron, has been shown experimentally to act on steel somewhat like ferrovanadium.
The bulk of the world's borax comes from the Western Hemisphere, the United States and Chile being the two principal producers. There are additional large deposits in northern Argentina, southern Peru, and southern Bolivia, which have thus far been little drawn on because of their inaccessibility. English financial interests control most of these South American deposits.
The only large European producer of borax is Turkey. Italy and Germany produce small amounts. There has also been small production of borax in Thibet, brought out from the mountains on sheep-back.
The United States supplies of borax are sufficient for all domestic requirements and probably for export. Small quantities of boric acid are imported, but no borax in recent years. The domestic production comes entirely from California, though in the past deposits in Nevada and Oregon have also been worked.
GEOLOGIC FEATURES
The element boron is present in various complex boro-silicates, such as datolite and tourmaline, the latter of which is used as a precious stone (pp. 290, 293). None of these are commercial sources of borax. The principal boron minerals are borax or "tincal" (hydrated sodium borate), colemanite (hydrated calcium borate), ulexite (hydrated calcium-sodium borate), and boracite (magnesium chloro-borate). Commercially the term borax is sometimes applied to all these materials. These minerals appear in nature under rather widely differing modes of origin.
The borax production of Italy is obtained from the famous "soffioni" or "fumaroles" of Tuscany. These are volcanic exhalations, in which jets of steam carrying boric acid and various borates, together with ammonium compounds, emerge from vents in the ground. The boric acid material is recovered by a process of condensation.
Borates, principally in the form of borax, occur in hot springs and in lakes of volcanic regions. The Thibet deposits, and those formerly worked at Borax Lake, California, are of this type. Certain of the hot-spring waters of the California coast ranges and of Nevada carry considerable quantities of boron, together with ammoniacal salts, and in some places they deposit borax along with sulphur and cinnabar. It seems probable (see p. 40) that these waters may come from an igneous source not far beneath.
Most of the borax deposits of California, Nevada, and Oregon, though not at present the largely producing ones, and probably most of the Chilean and adjacent South American deposits, are formed by the evaporation of desert lakes. They are products of desiccation, and in Chile are associated with the great nitrate deposits (pp. 102-104), which are of similar origin. The salts contained in these deposits are mainly borax, ulexite, and colemanite. The sources of these materials are perhaps deposits of the type mentioned in the last paragraph, or, in California, certain Tertiary borate deposits described below. Whatever their source, the borates are carried in solution by the waters of occasional rains to shallow basins, which become covered with temporary thin sheets of water or "playa lakes." Evaporation of these lakes leaves broad flats covered with the white salts. These may subsequently be covered with drifting sands and capillary action may cause the borates to work up through the sands, becoming mixed with them and efflorescing at the surface. One of the largest of the California deposits of this general class is that at Searles Lake, from which it has been proposed to recover borax along with the potash (pp. 113-114).
The deposits which at present constitute the principal source of domestic borax are not the playa deposits just described, but are masses of colemanite in Tertiary clays and limestones with interbedded basaltic flows. The principal deposits are in Death Valley and adjacent parts of California. The colemanite occurs in irregular milky-white layers or nodules, mingled with more or less gypsum. The deposits are believed to be of the replacement type, rather than ones formed contemporaneously with the sediments. Whether they are due to magmatic solutions carrying boric acid from the associated flows, or to surface waters carrying materials leached from other sediments, is not clear. The crude colemanite as mined carries an average of about 25 per cent B2O3; it is treated with soda in the manufacture of borax, or with sulphuric acid in making boric acid.
Boron is present in minute quantities in sea water. When such water evaporates, it becomes concentrated, along with the magnesium and potassium salts, in the "mother liquor"; and upon complete evaporation, it crystallizes out as boracite and other rarer minerals. Thus the Stassfurt salts of Germany (p. 113) contain borates of this type in the carnallite zone of the upper part of the deposits. This is the only important case known of borate deposits of marine origin.
BROMINE
ECONOMIC FEATURES
Bromine finds a considerable use in chemistry as an oxidizing agent, in separating gold from other metals, and in manufacturing disinfectants, bromine salts, and aniline colors. The best known and most widely used bromine salts are the silver bromide, used in photography, and the potassium bromide, used in medicine to depress the nervous system. During the war, large quantities of bromine were used in asphyxiating and lachrymating gases. |
|