|
The paulownia, which thrives in Northern Italy, has a wood of little value, but the tree would serve well as a shelter for seedlings and young plants of more valuable species, and in other cases where a temporary shade is urgently needed. The young shoots, from a stem polled the previous season, almost surpass even the eucalyptus in rapidity of growth. Such a shoot from a tree not six inches in diameter, which I had an opportunity of daily observing, from the bursting out of the bud from the bark of the parent stem in April till November of the same year, acquired in that interval a diameter of between four and five inches and a height of above twenty feet.] which, latter, it is said, has a growth at least five, and, according to some, ten times more rapid than that of the oak—would prove good investments even in an economical aspect. [Footnote: The economical statistics of Grigor, Arboriculture, Edinburgh, 1868, are very encouraging. In the preface to that work the author says: "Having formed several large plantations nearly forty years ago, which are still standing, in the Highlands of Scotland, I can refer to them as, after paying every expense, yielding a revenue equal to that of the finest arable land in the country, where the ground previously to these formations was not worth a shilling an acre." See also Hartig, Ueber den Wachsthumsgang und Ertrag der Buche, Eiche und Kiefer, 1869, and especially Bryant, Forest Trees, chap. ix.]
There is no doubt that they would pay the expenses of their planting at no distant period, at least in every case where irrigation is possible, and in very many situations, terraces, ditches, or even horizontal furrows upon the hillsides, would answer as a substitute for more artificial irrigation. Large proprietors would receive important indirect benefits from the shelter and the moisture which forests furnish for the lands in their neighborhood, and eventually from the accumulation of vegetable mould in the woods. [Footnote: The fertility of newly cleared land is by no means due entirely to the accumulation of decayed vegetable matter on its surface, and to the decomposition of the mineral constituents of the soil by the gases emitted by the fallen leaves. Sachs has shown that the roots of living plants exercise a most powerful solvent action on rocks, and hence stones are disintegrated and resolved into elements of vegetable nutrition, by the chemical agency of the forest, more rapidly than by frost, rain, and other meteorological influences.] The security of the investment, as in the case of all real-estate, is a strong argument for undertaking such plantations, and a moderate amount of government patronage and encouragement would be sufficient to render the creation of new forests an object of private interest as well as of public advantage, especially in a country where the necessity is so urgent and the climate so favorable as in the United States.
Instability of American Life.
All human institutions, associate arrangements, modes of life, have their characteristic imperfections. The natural, perhaps the necessary defect of ours, is their instability, their want of fixedness, not in form only, but even in spirit. The face of physical nature in the United States shares this incessant fluctuation, and the landscape is as variable as the habits of the population. It is time for some abatement in the restless love of change which characterizes us, and makes us almost a nomade rather than a sedentary people. [Footnote: It is rare that a middle-aged American dies in the house where he was born, or an old man even in that which he has built; and this is scarcely less true of the rural districts, where every man owns his habitation, than of the city, where the majority live hired houses. This life of incessant flitting is unfavorable for the execution of permanent improvements of every sort, and especially of those which, like the forest, are slow in repaying any part of the capital expended in them. It requires a very generous spirit in a landholder to plant a wood on a farm he expects to sell, or which he knows will pass out of the hands of his descendants at his death. But the very fact of having begun a plantation would attach the proprietor more strongly to the soil for which he had made such a sacrifice; and the paternal acres would have a greater value in the eyes of a succeeding generation, if thus improved and beautified by the labors of those from whom they were inherited. Landed property, therefore, the transfer of which is happily free from every legal impediment or restriction in the United States, would find, in the feelings thus prompted, a moral check against a too frequent change of owners, and would tend to remain long enough in one proprietor or one family to admit of gradual improvements which would increase its value both to the possessor and to the state.] We have now felled forest enough everywhere, in many districts far too much. Let us restore this one element of material life to its normal proportions, and devise means of maintaining the permanence of its relations to the fields, the meadows, and the pastures, to the rain and the dews of heaven, to the springs and rivulets with which it waters the earth. The establishment of an approximately fixed ratio between the two most broadly characterized distinctions of rural surface—woodland and ploughland—would involve a certain persistence of character in all the branches of industry, all the occupations and habits of life, which depend upon or are immediately connected with either, without implying a rigidity that should exclude flexibility of accommodation to the many changes of external circumstance which human wisdom can neither prevent nor foresee, and would thus help us to become, more emphatically, a well-ordered and stable commonwealth, and, not less conspicuously, a people of progress.
CHAPTER IV.
THE WATERS.
Land Artificially won from the Waters—Great Works of Material Improvement—Draining of Lincolnshire Fens—Incursions of the Sea in the Netherlands—Origin of Sea-dikes—Gain and Loss of Land in the Netherlands—Marine Deposits on the Coast of Netherlands—Draining of Lake of Haarlem—Draining of the Zuiderzee—Geographical Effects of Improvements in the Netherlands—Ancient Hydraulic Works—Draining of Lake Celano by Prince Torlonia—Incidental Consequences of draining Lakes—Draining of Marshes—Agricultural Draining—Meteorological Effects of Draining—Geographical Effects of Draining—Geographical Effects of Aqueducts and Canals—Antiquity of Irrigation—Irrigation in Palestine, India, and Egypt—Irrigation in Europe—Meteorological Effects of Irrigation—Water withdrawn from Rivers for Irrigation—Injurious Effects of Rice-culture—Salts Deposited by Water of Irrigation—Subterranean Waters—Artesian Wells—Artificial Springs—Economizing Precipitation—Inundations in France—Basins of Reception—Diversion of Rivers—Glacier Lakes—River Embankments—Other Remedies against Inundations—Dikes of the Nile—Deposits of Tuscan Rivers—Improvements in Tuscan Maremma—Improvements in Val di Chiana—Coast of the Netherlands.
Land artificially won from the Waters.
Man, as we have seen, has done much to revolutionize the solid surface of the globe, and to change the distribution and proportions, if not the essential character, of the organisms which inhabit the land and even the waters. Besides the influence thus exerted upon the life which peoples the sea, his action upon the land has involved a certain amount of indirect encroachment upon the territorial jurisdiction of the ocean. So far as he has increased the erosion of running waters by the destruction of the forest or by other operations which lessen the cohesion of the soil, he has promoted the deposit of solid matter in the sea, thus reducing the depth of marine estuaries, advancing the coast-line, and diminishing the area covered by the waters. He has gone beyond this, and invaded the realm of the ocean by constructing within its borders wharves, piers, light-houses, breakwaters, fortresses, and other facilities for his commercial and military operations; and in some countries he has permanently rescued from tidal overflow, and even from the very bed of the deep, tracts of ground extensive enough to constitute valuable additions to his agricultural domain. The quantity of soil gained from the sea by these different modes of acquisition is, indeed, too inconsiderable to form an appreciable element in the comparison of the general proportion between the two great forms of terrestrial surface, land and water; but the results of such operations, considered in their physical and their moral bearings, are sufficiently important to entitle them to special notice in every comprehensive view of the relations between man and nature.
There are cases, as on the western shores of the Baltic, where, in consequence of the secular elevation of the coast, the sea appears to be retiring; others, where, from the slow sinking of the land, it seems to be advancing. These movements depend upon geological causes wholly out of our reach, and man can neither advance nor retard them. [Footnote: It is possible that the weight of the sediment let fall at the mouths of great rivers, like the Ganges, the Mississippi, and the Po, may cause the depression of the strata on which they are deposited, and hence if man promotes the erosion and transport of earthy material by rivers, he augments the weight of the sediment they convey into their estuaries, and consequently his action tends to accelerate such depression. There are, however, cases where, in spite of great deposits of sediment by rivers, the coast is rising. Further, the manifestation of the internal heat of the earth at any given point is conditioned by the thickness of the crust at such point. The deposits of rivers tend to augment that thickness at their estuaries. The sediment of slowly-flowing rivers emptying into shallow seas is spread over so great a surface that we can hardly imagine the foot or two of slime they let fall over a wide area in a century to form an element among even the infinitesimal quantities which compose the terms of the equations of nature. But some swift rivers, rolling mountains of fine earth, discharge themselves into deeply scooped gulfs or bays, and in such cases the deposit amounts, in the course of a few years, to a mass the transfer of which from the surface of a large basin, and its accumulation at a single point, may be supposed to produce other effects than those measurable by the sounding-line. Now, almost all the operations of rural life, as I have abundantly shown, increase the liability of the soil to erosion by water. Hence, the clearing of the valley of the Ganges, for example, by man, must have much augmented the quantity of earth transported by that river to the sea, and of course have strengthened the effects, whatever they may be, of thickening the crust of the earth in the Bay of Bengal. In such cases, then, human action must rank among geological influences.
To the geological effects of the thickening of the earth's crust in the Bay of Bengal, are to be added those of thinning it on the highlands where the Ganges rises. The same action may, as a learned friend suggests to me, even have a cosmical influence. The great rivers of the earth, taken as a whole, transport sediment from the polar regions in an equatorial direction, and hence tend to increase the equatorial diameter, and at the same time, by their inequality of action, to a continual displacement of the centre of gravity, of the earth. The motion of the globe, and of all bodies affected by its attraction, is modified by every change of its form, and in this case we are not authorized to say that such effects are in any way compensated.]
There are also cases where similar apparent effects are produced by local oceanic currents, by river deposit or erosion, by tidal action, or by the influence of the wind upon the waves and the sands of the seabeach. A regular current may drift suspended earth and seaweed along a coast until they are caught by an eddy and finally deposited out of the reach of further disturbance, or it may scoop out the bed of the sea and undermine promontories and headlands; a powerful river, as the wind changes the direction of its flow at its outlet, may wash away shores and sandbanks at one point to deposit their material at another; the tide or waves, stirred to unusual depths by the wind, may gradually wear down the line of coast, or they may form shoals and coast-dunes by depositing the sand they have rolled up from the bottom of the ocean. These latter modes of action are slow in producing effects sufficiently important to be noticed in general geography, or even to be visible in the representations of coast-line laid down in ordinary maps; but they nevertheless form conspicuous features in local topography, and they are attended with consequences of great moment to the material and the moral interests of men. The forces which produce these limited results are all in a considerable degree subject to control, or rather to direction and resistance, by human power, and it is in guiding, combating, and compensating them that man has achieved some of his most remarkable and most honorable conquests over nature. The triumphs in question, or what we generally call harbor and coast improvements, whether we estimate their value by the money and labor expended upon them, or by their bearing upon the interests of commerce and the arts of civilization, must take a very high rank among the great works of man, and they are fast assuming a magnitude greatly exceeding their former relative importance.
The extension of commerce and of the military marine, and especially the introduction of vessels of increased burden and deeper draught of water, have imposed upon engineers tasks of a character which a century ago would have been pronounced, and, in fact, would have been, impracticable; but necessity has stimulated au ingenuity which has contrived means of executing them, and which gives promise of yet greater performance in time to come.
Indeed, although man, detached from the solid earth, is almost powerless to struggle against the sea, he is fast becoming invincible by it so long as his foot is planted on the shore, or even on the bottom of the rolling ocean; and though on some battle-fields between the waters and the land he is obliged slowly to yield his ground, yet he retreats still facing the foe, and will finally be able to say to the sea, "Thus far shalt thou come and no farther, and here shall thy proud waves be stayed!" [Footnote: It is, nevertheless, remarkable that in the particular branch of coast engineering where great improvements are most urgently needed, comparatively little has been accomplished. I refer to the creation of artificial harbors, and of facilities for loading and discharging ships. The whole coast of Italy is, one may almost say, harborless and even, wharfless, and there are many thousands of miles of coast in rich commercial countries in Europe, where vessels can neither lie in safety for a single day, nor even, in better protected heavens, ship or land their passengers or cargoes except by the help of lighters, and other not less clumsy contrivances. It is strange that such enormous inconveniences are borne with so little effort to remove them, and especially that break-waters are rarely constructed by Governments except for the benefit of the military marine.]
Great Works of Material Improvement.
Men have ceased to admire the vain exercise of power which heaped up the great pyramid to gratify the pride of a despot with a giant sepulchre; for many great harbors, many important lines of internal communication, in the civilized world, now exhibit works which in volume and weight of material surpass the vastest remains of ancient architectural art, and demand the exercise of far greater constructive skill and involve a much heavier pecuniary expenditure than would now be required for the building of the tomb of Cheops. It is computed that the great pyramid, the solid contents of which when complete were about 3,000,000 cubic yards, could be erected for a million of pounds sterling. The breakwater at Cherbourg, founded in rough water sixty feet deep, at an average distance of more than two miles from the shore, contains double the mass of the pyramid, and many a comparatively unimportant canal has been constructed at twice the cost which would now build that stupendous monument.
The description of works of harbor and coast improvement which have only an economical value, not a true geographical importance, does not come within the plan of the present volume, and in treating this branch of my subject, I shall confine myself to such as are designed either to gain new soil by excluding the waters from grounds which they had permanently or occasionally covered, or to resist new encroachments of the sea upon the land. [Footnote: Some notice of great works executed by man in foreign lands, and probably not generally familiar to my readers, may, however, prove not uninteresting.
The desaguadero, or canal constructed by the Viceroy Revillagigedo to prevent the inundation of the city of Mexico by the lakes in its vicinity, besides subsidiary works of great extent, has a cutting half a mile long, 1,000 feet wide, and from 150 to 200 feet deep.—Hoffmann, Encyclopaedie, art. Mexico.
The adit which drains the mines of Gwennap in Cornwall, with its branches, is thirty miles long. Those of the silver mines of Saxony are scarcely less extensive, and the Ernst-August-Stollen, or great drain of the mines of the Harz, is fifteen miles long.
The excavation for the Suez Canal were computed at 75,000,000 cubic metres, or about 100,000,000 cubic yards, and those of the Ganges Canal, which, with its branches, had a length of 3,000 miles, amount to nearly the same quantity.
The quarries at Maestricht have undermined a space of sixteen miles by six, or more than two American townships, and the catacombs of Rome, in part, at least, originally quarries, have a lineal extent of five hundred and fifty miles. The catacombs of Paris required the excavation of 13,000,000 cubic yards of stone, or more than four times the volume of the great pyramid.
The excavation for the Mt. Cenis tunnel, eight miles in length, wholly through solid rock, amounted to more than 900,000 cubic yards, and 16,000,000 of brick were employed for the lining.
In an article on recent internal improvements in England, in the London Quarterly Review for January, 1858, it is stated that in a single rock-cutting on the Liverpool and Manchester railway, 480,000 cubic yards of stone were removed; that the earth excavated in the construction of English railways up to that date amounted to a hundred and fifty million cubic yards, and that at the Round Down Cliff, near Dover, a single blast of nineteen thousand pounds of powder blew down a thousand million tons of chalk, and covered fifteen acres of land with the fragments.
In 1869, a mass of marble equal to one and a half times the cubical contents of the Duomo at Florence, or about 450,000 cubic yards, was thrown down at Carrara by one blast, and two hours after, another equal mass, which had been loosened by the explosion, fell of itself. Zolfanelli, La Lunigiana, p. 43.
The coal yearly extracted from the mines of England averages not less than 100,000,000 tons. The specific gravity of British coal ranges from 1.20 to 1.35, and consequently we may allow a cubic yard to the ton. If we add the earth and rock removed in order to reach the coal, we shall have a yearly amount of excavation for this one object equal to more than thirty times the volume of the pyramid of Cheops. These are wonderful achievements of human industry; but the rebuilding of Chicago within a single year after the great fire—not to speak of the extraordinary material improvements previously executed at that city—surpasses them all, and it probably involved the expenditure of a sum of muscular and of moral energy which has never before been exerted in the accomplishment of a single material object, within a like period.]
Draining of Lincolnshire Fens.
The draining of the Lincolnshire fens in England, which has converted about 400,000 acres of marsh, pool, and tide-washed flat into ploughland and pasturage, is a work, or rather series of works, of great magnitude, and it possesses much economical, and, indeed, no trifling geographical, importance. Its plans and methods were, at least in part, borrowed from the example of like improvements in Holland, and it is, in difficulty and extent, inferior to works executed for the same purpose on the opposite coast of the North Sea, by Dutch, Frisie, and Low German engineers. The space I can devote to such operations will be better employed in describing the latter, and I content myself with the simple statement I have already made of the quantity of worthless and even pestilential land which has been rendered both productive and salubrious in Lincolnshire, by diking out the sea, and the rivers which traverse the fens of that country.
The almost continued prevalence of west winds upon both coasts of the German Ocean occasions a constant set of the currents of that sea to the east, and both for this reason and on account of the greater violence of storms from the former quarter, the English shores of the North Sea are less exposed to invasion by the waves than those of the Netherlands and the provinces contiguous to them on the north. The old Netherlandish chronicles are filled with the most startling accounts of the damage done by the irruptions of the ocean, from west winds or extraordinarily high tides, at times long before any considerable extent of seacoast was diked. Several hundreds of those terrible inundations are recorded, and in many of them the loss of human lives is estimated as high as one hundred thousand. It is impossible to doubt that there must be enormous exaggeration in these numbers; for, with all the reckless hardihood shown by men in braving the dangers and privations attached by nature to their birthplace, it is inconceivable that so dense a population as such wholesale destruction of life supposes could find the means of subsistence, or content itself to dwell, on a territory liable, a dozen times in a century, to such fearful devastation. There can be no doubt, however, that the low continental shores of the German Ocean very frequently suffered immense injury from inundation by the sea, and it is natural, therefore, that the various arts of resistance to the encroachments of the ocean, and, finally, of aggressive warfare upon its domain, and of permanent conquest of its territory, should have been earlier studied and carried to higher perfection in the latter countries, than in England, which had less to lose or to gain by the incursions or the retreat of the waters.
Indeed, although the confinement of swelling rivers by artificial embankments is of great antiquity, I do not know that the defence or acquisition of land from the sea by diking was ever practised on a large scale until systematically undertaken by the Netherlanders, a few centuries after the commencement of the Christian era. The silence of the Roman historians affords a strong presumption that this art was unknown to the inhabitants of the Netherlands at the time of the Roman invasion, and the elder Pliny's description of the mode of life along the coast which has now been long diked in, applies precisely to the habits of the people who live on the low islands and mainland flats lying outside of the chain of dikes, and wholly unprotected by embankments of any sort.
Origin of Sea-dikes.
It has been conjectured, and not without probability, that the causeways built by the Romans across the marshes of the Low Countries, in their campaigns against the Germanic tribes, gave the natives the first hint of the utility which might be derived from similar constructions applied to a different purpose. [Footnote: It has often been alleged by eminent writers that a part of the fens in Lincolnshire was reclaimed by sea-dikes under the government of the Romans. I have found no ancient authority in support of this assertion, nor can I refer to any passage in Roman literature in which sea-dikes are expressly mentioned otherwise than as walls or piers, except that in Pliny (Hist. Nat. xxxvi. 24), where it is said that the Tyrrhenian Sea was excluded from the Lucrino Lake by dikes. Dugdale, whose enthusiasm for his subject led him to believe that recovering from the sea land subject to be flooded by it, was of divine appointment, because God said: "Let the waters under the heavens be gathered together unto one place and let the dry land appear," unhesitatingly ascribes the reclamation of the Lincolnshire fens to the Romans, though he is able to cite but one authority, a passage in Tacitus's Life of Agricola which certainly has no such meaning, in support of the assertion.—History of Embankment and Drainage, 2d edition, 1772.] If this is so, it is one of the most interesting among the many instances in which the arts and enginery of war have been so modified as to be eminently promotive of the blessings of peace, thereby in some measure compensating the wrongs and sufferings they have inflicted on humanity. [Footnote: It is worth mentioning, as an illustration of the applicability of military instrumentalities to pacific art, that the sale of gunpowder in the United States was smaller during the late rebellion than before, because the war caused the suspension of many public and private improvements, in the execution of which great quantities of powder were used for blasting.
The same observation was made in France during the Crimean war, and it is alleged that, in general, not ten per cent. of the powder manufactured on either either side of the Atlantic is employed for military purposes.
The blasting for the Mount Cenis tunnel consumed gunpowder enough to fill more than 200,000,000 musket cartridges. It is a fact not creditable to the moral sense of modern civilization, that very many of the most important improvements in machinery and the working of metals have originated in the necessities of war, and that man's highest ingenuity has been shown, and many of his most remarkable triumphs over natural forces achieved, in the contrivance of engines for the destruction of his fellow-man. The military material employed by the first Napoleon has become, in less than two generations, nearly as obsolete as the sling and stone of the shepherd, and attack and defence now begin at distances to which, half a century ago, military reconnaissances hardly extended. Upon a partial view of the subject, the human race seems destined to become its own executioner—on the one hand, exhausting the capacity of the earth to furnish sustenance to her taskmaster; on the other, compensating diminished production by inventing more efficient methods of exterminating the consumer. At the present moment, at an epoch of universal peace, the whole civilized world with the happy exception of our own country, is devoting its utmost energies, applying the highest exercise of inventive genius, to the production of new engines of war; and the last extraordinary rise in the price of iron and copper is in great part due to the consumption of these metals in the fabrication of arms and armed vessels. The simple substitution of sheet-copper for paper and other materials in the manufacture of cartridges has increased the market-price of copper by a large percentage on its former cost.
But war develops great civil virtues, and brings into action a degree and kind of physical energy which seldom fails to awaken a new intellectual life in a people that achieves great moral and political results through great heroism and endurance and perseverance. Domestic corruption has destroyed more nations than foreign invasion, and a people is rarely conquered till it has deserved subjugation.] The Lowlanders are believed to have secured some coast and bay islands by ring-dikes and to have embanked some fresh-water channels, as early as the eighth or ninth century; but it does not appear that sea-dikes, important enough to be noticed in historical records, were constructed on the mainland before the thirteenth century. The practice of draining inland accumulations of water, whether fresh or salt, for the purpose of bringing under cultivation the ground they cover, is of later origin, and is said not to have been adopted until after the middle of the fifteenth century. [Footnote: Staring, Voormaals en Thans, p. 150.]
Gain and Loss of Land in the Netherlands.
The total amount of surface gained to the agriculture of the Netherlands by diking out the sea and by draining shallow bays and lakes, is estimated by Staring at three hundred and fifty-five thousand bunder or hectares, equal to eight hundred and seventy-seven thousand two hundred and forty acres, which is one-tenth of the area of the kingdom. [Footnote: Idem, p. 163. Much the largest proportion of the lands so reclaimed, though for the most part lying above low-water tidemark, are at a lower level than the Lincolnshire fens, and more subject to inundation from the irruptions of the sea.] In very many instances the dikes have been partially, in some particularly exposed localities totally, destroyed by the violence of the sea, and the drained lands again flooded. In some cases the soil thus painfully won from the ocean has been entirely lost; in others it has been recovered by repairing or rebuilding the dikes and pumping out the water. Besides this, the weight of the dikes gradually sinks them into the soft soil beneath, and this loss of elevation must be compensated by raising the surface, while the increased burden thus added tends to sink them still lower. "Tetens declares," says Kohl, "that in some places the dikes have gradually sunk to the depth of sixty or even a hundred feet." [Footnote: Die Inseln und Marschen der Herzogthamer Schleswig und Holstein, iii., p. 151.] For these reasons, the processes of dike-building have been almost everywhere again and again repeated, and thus the total expenditure of money and of labor upon the works in question is much greater than would appear from an estimate of the actual cost of diking-in a given extent of coast-land and draining a given area of water-surface. [Footnote: The purely agricultural island of Pelworm, off the coast of Schleswig, containing about 10,000 acres, annually expends for the maintenance of its dikes not less than L6,000 sterling, or nearly $30,000.—J. G. Kohl, Inseln und Marschen Schleswig's und Holstein's, ii., p. 394.
The original cost of the dikes of Pelworm is not stated. "The greatest part of the province of Zeeland is protected by dikes measuring 250 miles in length, the maintenance of which costs, in ordinary years, more than a million guilders [above $400,000] ... The annual expenditure for dikes and hydraulic works in Holland is from five to seven million guilders" [$2,000,000 to $2,800,000].—Wild, Die Niederlande, i., p. 62.
One is not sorry to learn that the Spanish tyranny in the Netherlands had some compensations. The great chain of ring-dikes which surrounds a large part of Zeeland is due to the energy of Caspar de Robles, the Spanish governor of that province, who in 1570 ordered the construction of these works at the public expense, as a substitute for the private embankments which had previously partially served the same purpose.—Wild, Die Niederlande, i., p. 62.]
Loss of Land by Incursions of Sea.
On the other hand, by erosion of the coast-line, the drifting of sand-dunes into the interior, and the drowning of fens and morasses by incursions of the sea—all caused, or at least greatly aggravated, by human improvidence—the Netherlands have lost a far larger area of land since the commencement of the Christian era than they have gained by diking and draining. Staring despairs of the possibility of calculating the loss from the first-mentioned two causes of destruction, but he estimates that not less than six hundred and forty thousand bunder, or one million five hundred and eighty-one thousand acres, of fen and marsh have been washed away, or rather deprived of their vegetable surface and covered by water; and thirty-seven thousand bunder, or ninety-one thousand four hundred acres, of recovered land, have been lost by the destruction of the dikes which protected them. [Footnote: Staring, Voormaals en Thans, p. 163.] The average value of land gained from the sea is estimated at about nineteen pounds sterling, or ninety dollars, per acre; while the lost fen and morass was not worth more than one twenty-fifth part of the same price. The ground buried by the drifting of the dunes appears to have been almost entirely of this latter character, and, upon the whole, there is no doubt that the soil added by human industry to the territory of the Netherlands, within the historical period, greatly exceeds in pecuniary value that which has fallen a prey to the waves during the same era.
Upon most low and shelving coasts, like those of the Netherlands, the maritime currents are constantly changing, in consequence of the variability of the winds, and the shifting of the sand-banks, which the currents themselves now form and now displace. While, therefore, at one point the sea is advancing landward, and requiring great effort to prevent the undermining and washing away of the dikes, it is shoaling at another by its own deposits, and exposing, at low water, a gradually widening belt of sands and ooze. The coast-lands selected for diking-in are always at points where the sea is depositing productive soil. The Eider, the Elbe, the Weser, the Ems, the Rhine, the Maas, and the Schelde bring down large quantities of fine earth. The prevalence of west winds prevents the waters from carrying this material far out from the coast, and it is at last deposited northward or southward from the mouth of the rivers which contribute it, according to the varying drift of the currents.
Marine Deposits.
The process of natural deposit which prepares the coast for diking-in is thus described by Staring: "All sea-deposited soil is composed of the same constituents. First comes a stratum of sand, with marine shells, or the shells of mollusks living in brackish water. If there be tides, and, of course, flowing and ebbing currents, mud is let fall upon the sand only after the latter has been raised above low-water mark; for then only, at the change from flood to ebb, is the water still enough to form a deposit of so light a material. Where mud is found at great depths, as, for example, in a large proportion of the Ij, it is a proof that at this point there was never any considerable tidal flow or other current. ... The powerful tidal currents, flowing and ebbing twice a day, drift sand with them. They scoop out the bottom at one point, raise it at another, and the sand-banks in the current are continually shifting. As soon as a bank raises itself above low-water mark, flags and reeds establish themselves upon it. The mechanical resistance of these plants checks the retreat of the high water and favors the deposit of the earth suspended in it, and the formation of land goes on with surprising rapidity. When it has risen to high-water level, it is soon covered with grasses, and becomes what is called schor in Zeeland, kwelder in Friesland. Such grounds are the foundation or starting-point of the process of diking. When they are once elevated to the flood-tide level, no more mud is deposited upon them except by extraordinary high tides. Their further rise is, accordingly, very slow, and it is seldom advantageous to delay longer the operation of diking." [Footnote: Voormaals en Thans, pp. 150, 151. According to Reventlov, confercae first appear at the bottom in shoal water, then, after the deposit has risen above the surface, Salicornia herbacea. The Salicornia is followed by various sand-plants, and so the ground rises, by Poa distans and Poa maritum, and finally common grasses establish themselves.—Om Markdannelsen poa Vestkyeten of Slesvig, pp. 7, 8.]
Sea-dikes of the Netherlands.
The formation of new banks by the sea is constantly going on at points favorable for the deposit of sand and earth, and hence opportunity is continually afforded for enclosure of new land outside of that already diked in, the coast is fast advancing seaward, and every new embankment increases the security of former enclosures. The province of Zeeland consists of islands washed by the sea on their western coasts, and separated by the many channels through which the Schelde and some other rivers find their way to the ocean. In the twelfth century these islands were much smaller and more numerous than at present. They have been gradually enlarged, and, in several instances, at last connected by the extension of their system of dikes. Walcheren is formed of ten islets united into one about the end of the fourteenth century. At the middle of the fifteenth century, Goeree and Overflakkee consisted of separate islands, containing altogether about ten thousand acres; by means of above sixty successive advances of the dikes, they have been brought to compose a single island, whose area is not less than sixty thousand acres. [Footnote: Staring, Voormaals en Thans, p, 152. Kohl states that the peninsula of Diksand on the coast of Holstein consisted, at the close of the last century, of several islands measuring together less than five thousand acres. In 1837 they had been connected with the mainland, and had nearly doubled in area.—Inseln u. Marschen Schlene, Holst., iii., p. 202]
In the Netherlands—which the first Napoleon characterized as a deposit of the Rhine, and as, therefore, by natural law, rightfully the property of him who controlled the sources of that great river—and on the adjacent Frisie, Low German, and Danish shores and islands, sea and river dikes have been constructed on a grander and more imposing scale than in any other country. The whole economy of the art has been there most thoroughly studied, and the literature of the subject is very extensive. For my present aim, which is concerned with results rather than with processes, it is not worth while to refer to professional treatises, and I shall content myself with presenting such information as can be gathered from works of a more popular character.
The superior strata of the lowlands upon and near the coast are, as we have seen, principally composed of soil brought down by the great rivers I have mentioned, and either directly deposited by them upon the sands of the bottom, or carried out to sea by their currents, and then, after a shorter or longer exposure to the chemical and mechanical action of salt-water and marine currents, restored again to the land by tidal overflow and subsidence from the waters in which it was suspended. At a very remote period the coast-flats were, at many points, raised so high by successive alluvious or tidal deposits as to be above ordinary high-water level, but they were still liable to occasional inundation from river-floods, and from the seawater also, when heavy or long-continued west winds drove it landwards. The extraordinary fertility of this soil and its security as a retreat from hostile violence attracted to it a considerable population, while its want of protection against inundation exposed it to the devastations of which the chroniclers of the Middle Ages have left such highly colored pictures. The first permanent dwellings on the coast-flats were erected upon artificial mounds, and many similar precarious habitations still exist on the unwalled islands and shores beyond the chain of dikes. River embankments, which, as is familiarly known, have from the earliest antiquity been employed in many countries where sea-dikes are unknown, were probably the first works of this character constructed in the Low Countries, and when two neighboring streams of fresh water had been embanked, the next step in the process would naturally be to connect the river-walls together by a transverse dike or raised causeway, which would serve as a means of communication between different hamlets and at the same time secure the intermediate ground both against the backwater of river-floods and against overflow by the sea. The oldest true sea-dikes described in historical records, however, are those enclosing islands in the estuaries of the great rivers, and it is not impossible that the double character they possess as a security against maritime floods and as a military rampart, led to their adoption upon those islands before similar constructions had been attempted upon the mainland.
At some points of the coast, various contrivances, such as piers, piles, and, in fact, obstructions of all sorts to the ebb of the current, are employed to facilitate the deposit of slime, before a regular enclosure is commenced. Usually, however, the first step is to build low and cheap embankments, extending from an older dike, or from high ground, around the parcel of flat intended to be secured. These are called summer dikes. They are erected when a sufficient extent of ground to repay the cost has been elevated enough to be covered with coarse vegetation fit for pasturage. They serve both to secure the ground from overflow by the ordinary flood-tides of mild weather, and to retain the slime deposited by very high water, which would otherwise be partly carried off by the retreating ebb. The elevation of the soil goes on slowly after this; but when it has at last been sufficiently enriched, and raised high enough to justify the necessary outlay, permanent dikes are constructed by which the water is excluded at all seasons. These embankments are constructed of sand from the coast-dunes or from sand-banks, and of earth from the mainland or from flats outside the dikes, bound and strengthened by fascines, and provided with sluices, which are generally founded on piles and of very expensive construction, for drainage at low water. The outward slope of the sea-dikes is gentle, experience having shown that this form is least exposed to injury both from the waves and from floating ice, and the most modern dikes are even more moderate in the inclination of the seaward scarp than the older ones. [Footnote: The inclination varies from one foot rise in four of base to one foot in fourteen.—Kohl, iii., p. 210.] The crown of the dike, however, for the last three or four feet of its height, is much steeper, being intended rather as a protection against the spray than against the waves, and the inner slope is always comparatively abrupt.
The height and thickness of dikes varies according to the elevation of the ground they enclose, the rise of the tides, the direction of the prevailing winds, and other special causes of exposure, but it may be said that they are, in general, raised from fifteen to twenty feet above ordinary high-water mark. The water-slopes of river-dikes are protected by plantations of willows or strong semi-aquatic shrubs or grasses, but as these will not grow upon banks exposed to salt-water, sea-dikes must be faced with stone, fascines, or some other revetement. [Footnote: The dikes are sometimes founded upon piles, and sometimes protected by one or more rows of piles driven deeply down into the bed of the sea in front of them. "Triple rows of piles of Scandinavian pine," says Wild, "have been driven down along the coast of Friesland, where there are no dunes, for a distance of one hundred and fifty miles. The piles are bound together by strong cross-timbers and iron clamps, and the interstices filled with stones. The ground adjacent to the piling is secured with fascines, and at exposed points heavy blocks of stone are heaped up as an additional protection. The earth-dike is built behind the mighty bulwark of this breakwater, and its foot also is fortified with stones." ... "The great Helder dike is about five miles long and forty feet wide at the top, along which runs a good road. It slopes down two hundred feet into the sea, at an angle of forty degrees. The highest waves do not reach the summit, the lowest always cover its base. At certain distances, immense buttresses, of a height and width proportioned to those of the dike, and even more strongly built, run several hundred feet out into the rolling sea. This gigantic artificial coast is entirely composed of Norwegian granite."—Wild, Die Niederlande, i., pp. 61, 62.] Upon the coast of Schleswig and Holstein, where the people have less capital at their command, they defend their embankments against ice and the waves by a coating of twisted straw or reeds, which must be renewed as often as once, sometimes twice a year. The inhabitants of these coasts call the chain of dikes "the golden border," a name it well deserves, whether we suppose it to refer to its enormous cost, or, as is more probable, to its immense value as a protection to their fields and their firesides.
When outlying flats are enclosed by building new embankments the old interior dikes are suffered to remain, both as an additional security against the waves, and because the removal of them would be expensive. They serve, also, as roads or causeways, a purpose for which the embankments nearest the sea are seldom employed, because the whole structure might be endangered from the breaking of the turf by wheels and the hoofs of horses. Where successive rows of dikes have been thus constructed, it is observed that the ground defended by the more ancient embankments is lower than that embraced within the newer enclosures, and this depression of level has been ascribed to a general subsidence of the coast from geological causes; [Footnote: A similar subsidence of the surface is observed in the diked ground of the Lincolnshire fens, where there is no reason to suspect a general depression from geological causes.] but the better opinion seems to be that it is, in most cases, due merely to the consolidation and settling of the earth from being more effectually dried, from the weight of the dikes, from the tread of men and cattle, and from the movement of the heavy wagons which carry off the crops. [Footnote: The shaking of the ground, even when loaded with large buildings, by the passage of heavy carriages or artillery, or by the march of a body of cavalry or even infantry, shows that such causes may produce important mechanical effects on the condition of the soil. The bogs in the Netherlands, as in most other countries, contain large numbers of fallen trees, buried to a certain depth by earth and vegetable mould. When the bogs are dry enough to serve as pastures, it is observed that trunks of these ancient trees rise of themselves to the surface. Staring ascribes this singular phenomenon to the agitation of the ground by the tread of cattle. "When roadbeds," observes he, "are constructed of gravel and pebbles of different sizes, and these latter are placed at the bottom without being broken and rolled hard together, they are soon brought to the top by the effect of travel on the road. Lying loosely, they undergo some motion from the passage of every wagon-wheel and the tread of every horse that passes over them. This motion is an oscillation or partial rolling, and as one side of a pebble is raised, a little fine sand or earth is forced under it, and the frequent repetition of this process by cattle or carriages moving in opposite directions brings it at last to the surface. We may suppose that a similar effect is produced on the stems of trees in the bogs by the tread of animals."—De Bodem van Nederland, i., pp. 75, 76.
It is observed in the Northern United States, that when soils containing pebbles are cleared and cultivated, and the stones removed from the surface, new pebbles, and even bowlders of many pounds weight, continue to show themselves above the ground, every spring, for a long series of years. In clayey soils the fence-posts are thrown up in a similar way, and it is not uncommon to see the lower rail of a fence thus gradually raised a foot or even two feet above the ground. This rising of stones and fences is popularly ascribed to the action of the severe frosts of that climate. The expansion of the ground, in freezing, it is said, raises its surface, and, with the surface, objects lying near or connected with it. When the soil thaws in the spring, it settles back again to its former level, while the pebbles and posts are prevented from sinking as low as before by loose earth which has fallen under them. The fact that the elevation spoken of is observed only in the spring gives countenance to this theory, which is perhaps applicable also to the cases stated by Staring, and it is probable that the two causes above assigned concur in producing the effect.
The question of the subsidence of the Netherlandish coast has been much discussed. Not to mention earlier geologists, Venema, in several essays, and particularly in Het Dalen van de Noordelijke Kuststreken van ons Land, 1854, adduces many facts and arguments to prove a slow sinking of the northere provinces of Holland. Laveleye (Affaissement du sol at envasement des fleuves survenus dans les temps historiques, 1859), upon a still fuller investigation, arrives at the same conclusion. The eminent geologist Staring, however, who briefly refers to the subject in De Bodem van Nederland, i., p. 356 et seqq., does not consider the evidence sufficient to prove anything more than the sinking of the surface of the polders from drying and consolidation.—See Elisee Reclus, La Terre, vol. i., pp. 730, 732.]
Notwithstanding this slow sinking, most of the land enclosed by dikes is still above low-water mark, and can, therefore, be wholly or partially freed from rain-water, and from that received by infiltration from higher ground, by sluices opened at the ebb of the tide. For this purpose the land is carefully ditched, and advantage is taken of every favorable occasion for discharging the water through the sluices. But the ground cannot be effectually drained by this means, unless it is elevated four or five feet, at least, above the level of the ebb-tide because the ditches would not otherwise have a sufficient descent to carry the water off in the short interval between ebb and flow, and because the moisture of the saturated sub-soil is always rising by capillary attraction. Whenever, therefore, the soil has sunk below the level I have mentioned, and in cases where its surface has never been raised above it, pumps, worked by wind or some other mechanical power, must be very frequently employed to keep the land dry enough for pasturage and cultivation. [Footnote: The elevation of the lands enclosed by dikes—or polders, as they are called in Holland—above low-water mark, depends upon the height of the tides or, in other words, upon the difference between ebb and flood. The tide cannot deposit earth higher than it flows, and after the ground is once enclosed, the decay of the vegetables grown upon it and the addition of manures do not compensate the depression occasional by drying and consolidation. On the coast of Zeeland and the islands of South Holland, the tides, and of course the surface of the lands deposited by them, are so high that the polders can be drained by ditching and sluices, but at other points, as in the enclosed grounds of North Holland on the Zuiderzee, where the tide rises but three feet or even less, pumping is necessary from the beginning.—Staring, Voormaals en Thans, p. 152]
DRAINING OF THE LAKE OF HAARLEM.
The substitution of steam-engines for the feeble and uncertain action of windmills, in driving pumps, has much facilitated the removal of water from the polders as well as the draining of lakes, marshes, and shallow bays, and thus given such an impulse to these enterprises, that not less than one hundred and ten thousand acres wore reclaimed from the waters, and added to the agricultural domain of the Netherlands, between 1815 and 1855. The most important of these undertaking was the draining of the Lake of Haarlem, and for this purpose some of the most powerful hydraulic engines over constructed were designed and executed. [Footnote: The principal engine, of 500 horse-power, drove eleven pumps with a total delivery of 31,000 cubic yards per hour.—Wild, Die Netherland, i., p. 87.] The origin of this lake is unknown. It is supposed by some geographers to be a part of an ancient bed of the Rhine, the channel of which, as there is good reason to believe, has undergone great changes since the Roman invasion of the Netherlands; by others it is thought to have once formed an inland marine channel, separated from the sea by a chain of low islands, which the sand washed up by the tides has since connected with the mainland and converted into a continuous line of coast. The best authorities, however, find geological evidence that the surface occupied by the lake was originally a marshy tract containing within its limits little solid ground, but many ponds and inlets, and much floating as well as fixed fen.
In consequence of the cutting of turf for fuel, and the destruction of the few trees and shrubs which held the loose soil together with their roots, the ponds are supposed to have gradually extended themselves, until the action of the wind upon their enlarged surface gave their waves sufficient force to overcome the resistance of the feeble barriers which separated them, and to unite them all into a single lake. Popular tradition, it is true, ascribes the formation of the Lake of Haarlem to a single irruption of the sea, at a remote period, and connects it with one or another of the destructive inundations of which the Netherland chronicles describe so many; but on a map of the year 1531, a chain of four smaller waters occupies nearly the ground afterwards covered by the Lake of Haarlem, and they have most probably been united by gradual encroachments resulting from the improvident practices above referred to, though no doubt the consummation may have been hastened by floods, and by the neglect to maintain dikes, or the intentional destruction of them, in the long wars of the sixteenth century.
The Lake of Haarlem was a body of water not far from fifteen miles in length, by seven in greatest width, lying between the cities of Amsterdam and Leyden, running parallel with the coast of Holland at the distance of about five miles from the sea, and covering an area of about 45,000 acres. By means of the Ij, it communicated with the Zuiderzee, the Mediterranean of the Netherlands, and its surface was little above the mean elevation of that of the sea. Whenever, therefore, the waters of the Zuiderzee were acted upon by strong north-west winds, those of the Lake of Haarlem were raised proportionally and driven southwards, while winds from the south tended to create a flow in the opposite direction. The shores of the lake were everywhere low, and though between the years 1767 and 1848 more than $1,700,000 had been expended in checking its encroachments, it often burst its barriers, and produced destructive inundations. In November, 1836, a south wind brought its waters to the very gates of Amsterdam, and in December of the same year, in a north-west gale, they overflowed twenty thousand acres of land at the southern extremity of the lake, and flooded a part of the city of Leyden. The depth of water in the lake did not, in general, exceed fourteen feet, but the bottom was a semi-fluid ooze or slime, which partook of the agitation of the waves, and added considerably to their mechanical force. Serious fears were entertained that the lake would form a junction with the inland waters of the Legmeer and Mijdrecht, swallow up a vast extent of valuable soil, and finally endanger the security of a large proportion of the land which the industry of Holland had gained in the course of centuries from the ocean.
For this reason, and for the sake of the large addition the bottom of the lake would make to the cultivable soil of the state, it was resolved to drain it, and the preliminary steps for that purpose were commenced in the year 1840. The first operation was to surround the entire lake with a ring-canal and dike, in order to cut off the communication with the Ij, and to exclude the water of the streams and morasses which discharged themselves into it from the land side. The dike was composed of different materials, according to the means of supply at different points, such as sand from the coast-dunes, earth and turf excavated from the line of the ring-canal, and floating turf, [Footnote: In England and New England, where the marshes have been already drained or are of comparatively small extent, the existence of large floating islands seems incredible, and has sometimes been treated as a fable, but no geographical fact is better established. Kohl (Inseln und Marschen Schleswig-Holsteins, iii., p. 309) reminds us that Pliny mentions among the wonders of Germany the floating islands, covered with trees, which met the Roman fleets at the mouths of the Elbe and the Weser. Our author speaks also of having visited, in the territory of Bremen, floating moors, bearing not only houses but whole villages. At low stages of the water these moors rest upon a bed of sand, but are raised from six to ten feet by the high water of spring, and remain afloat until, in the course of the summer, the water beneath is exhausted by evaporation and drainage, when they sink down upon the sand again.
Staring explains, in an interesting way, the whole growth, formation, and functions of floating fens or bogs, in his very valuable work, De Bodem van Nederland, i., pp. 36-43. The substance of his account is as follows: The turf and the surface of the fens, is stillness of the water. Hence they are not found in running streams, nor in pools so large as to be subject to frequent agitation by the wind. For example, not a single plant grew in the open part of the Lake of Haarlem, and fens cease to form in all pools as soon as, by the cutting of the turf for fuel or other purposes, their area is sufficiently enlarged to be much acted on by wind. When still water above a yard deep is left undisturbed, aquatic plants of various genera, such as Nuphar, Nymphaea, Limnanthemum, Stratiotes, Polygonum, and Potamogeton, fill the bottom with roots and cover the surface with leaves. Many of the plants die every year, and prepare at the bottom a soil fit for the growth of a higher order of vegetation, Phragmites, Acorus, Sparganium, Rumex, Lythrum, Pedicularis, Spiraea, Polystichum, Comarum, Caltha, etc., etc. In the course of twenty or thirty years the muddy bottom is filled with roots of aquatic and marsh plants, which are lighter than water, and if the depth is great enough to give room for detaching this vegetable network, a couple of yard for example, it rises to the surface, bearing with it, of course, the soil formed above it by decay of stems and leaves. New genera now appear upon the mass, such a Carex, Menyanthes, and others, and soon thicky cover it. The turf has now acquired a thickness of from two to four feet, and is called in Groningen lad; in Friesland, til, tilland, or drifftil; in Overijsse, krag; and in Holland, rietzod. It floats about as driven by the wind, gradually increasing in thickness by the decay of its annual crops of vegetation, and in about half a century reaches the bottom and becomes fixed. If it has not been invaded in the meantime by men or cattle, trees and arborescent plants, Alnus, Salix, Myrica, etc., appear, and these contribute to hasten the attachment of the turf to the bottom, both by their weight and by sending their roots quite through into the ground."
This is the regular method employed by nature for the gradual filling up of shallow lakes and pools, and converting them first into morass and then into dry land. Whenever, therefore, man removes the peat or turf, he exerts an injurious geographical agency, and, as I have already said, there is no doubt that the immense extension of the inland seas of Holland in modern times is owing to this and other human imprudences. "Hundreds of hectares of floating pastures," says our author, "which have nothing in their appearance to distinguish them from grass-lands resting on solid bog, are found in Overijssel, in North Holland, and near Utrecht. In short, they occur in all deep bogs, and wherever deep water is left long undisturbed."
In one case a floating island, which had attached itself to the shore, continued to float about for a long time after it was torn off by a flood, and was solid enough to keep a pond of fresh water upon it sweet, though the water in which it was swimming had become brackish from the irruption of the sea. After the hay is cut, cattle are pastured, and occasionally root-crops grown upon these islands, and they sometimes have large trees growing upon them.
When the turf or peat has been cut, leaving water less than a yard deep, Equisetum limosum grows at once, and is followed by the second class of marsh plants mentioned above. Their roots do not become detached from the bottom in such shallow water, but form ordinary turf or peat. These processes are so rapid that a thickness of from three to six feet of turf is formed in half a century, and many men have lived to mow grass where they had fished in their boyhood, and to cut turf twice in the same spot. In Ireland the growth of peat is said to be much more rapid. Elisee Reclus, La Terre, i., 591, 592. But see Asbjornsen, Torv og Torvdrift, ii., 29, 30.
Captain Gilliss says that before Lake Taguataga in Chili was drained, there were in it islands composed of dead plants matted together to a thickness of from four to six feet, and with trees of medium size growing upon them. These islands floated before the wind "with their trees and browsing cattle."—United States Naval Astronomical Expedition to the Southern Hemisphere, i., pp. 16, 17.] fascines being everywhere used to bind and compact the mass together. This operation was completed in 1848, and three steam-pumps were then employed for five years in discharging the water. The whole enterprise was conducted at the expense of the state, and in 1853 the recovered lands were offered for sale for its benefit. Up to 1858, forty-two thousand acres had been sold at not far from sixteen pounds sterling or seventy-seven dollars an acre, amounting altogether to L661,000 sterling or $3,200,000. The unsold lands were valued at more than L6,000 or nearly $30,000, and as the total cost was L764,500 or about $3,700,000, the direct loss to the state, exclusive of interest on the capital expended, may be stated at L100,000 or something less than $500,000.
The success of this operation has encouraged others of like nature in Holland. The Zuid Plas, which covered 11,500 acres and was two feet deeper than the Lake of Haarlem, has been drained, and a similar work now in course of execution on an arm of the Scheld, will recover about 35,000 acres.
In a country like the United States, of almost boundless extent of sparsely inhabited territory, such an expenditure for such an object would be poor economy. But Holland has a narrow domain, great pecuniary resources, an excessively crowded population, and a consequent need of enlarged room and opportunity for the exercise of industry. Under such circumstances, and especially with an exposure to dangers so formidable, there is no question of the wisdom of the measure. It has already provided homes and occupation for more than five thousand citizens, and furnished a profitable investment for a private capital of not less than L400,000 sterling or $2,000,000, which has been expended in improvements over and above the purchase money of the soil; and the greater part of this sum, as well as of the cost of drainage, has been paid as a compensation for labor. The excess of governmental expenditure over the receipts, if employed in constructing ships of war or fortifications, would have added little to the military strength of the kingdom; but the increase of territory, the multiplication of homes and firesides which the people have an interest in defending, and the augmentation of agricultural resources, constitute a stronger bulwark against foreign invasion than a ship of the line or a fortress armed with a hundred cannon.
Draining of the Zuiderzee.
I have referred to the draining of the Lake of Haarlem as an operation of great geographical as well as economical and mechanical interest. A much more gigantic project, of a similar character, is now engaging the attention of the Netherlandish engineers. It is proposed to drain the great salt-water basin called the Zuiderzee. This inland sea covers an area of not less than two thousand square miles, or about one million three hundred thousand acres. The seaward half, or that portion lying north-west of a line drawn from Enkhuizen to Stavoren, is believed to have been converted from a marsh to an open bay since the fifth century after Christ, and this change is ascribed, partly if not wholly, to the interference of man with the order of nature. The Zuiderzee communicates with the sea by at least six considerable channels, separated from each other by low islands, and the tide rises within the basin to the height of three feet. To drain the Zuiderzee, these channels must first be closed and the passage of the tidal flood through them cut off. If this be done, the coast currents will be restored approximately to the lines they followed fourteen or fifteen centuries ago, and thero can be little doubt that an appreciable effect will thus be produced upon all the tidal phenomena of that coast, and, of course, upon the maritime geography of Holland.
A ring-dike and canal must then be constructed around the landward side of the basin, to exclude and carry off the freshwater streams which now empty into it. One of these, the Ijssel, a considerable river, has a course of eighty miles, and is, in fact, one of the outlets of the Rhine, though augmented by the waters of several independent tributaries. These preparations being made, and perhaps transverse dikes erected at convenient points for dividing the gulf into smaller portions, the water must be pumped out by machinery, in substantially the same way as in the case of the Lake of Haarlem. [Footnote: The dependence of man upon the aid of spontaneous nature, in his most arduous material works, is curiously illustrated by the fact that one of the most serious difficulties to be encountered in executing this gigantic scheme is that of procuring brushwood for the fascines to be employed in the embankments. See Diggelen's pamphlet, "Groote Werken in Nederland."] No safe calculations can be made as to the expenditure of time and money required for the execution of this stupendous enterprise, but I believe its practicability is not denied by competent judges, though doubts are entertained as to its financial expediency. [Footnote: The plan at present most in favor is that which proposes the drainage of only a portion of the southern half of the Zuiderzee, which covers not far from 400,000 acres. The project for the construction of a ship-canal directly from Amsterdam to the North Sea, now in course of execution, embraces the drainage of the Ij, a nearly land-locked basin communicating with the Zuiderzee and covering more than 12,000 acres. See official reports on these projects in Droogmaking vom het zuidelyk gedeelte der Zuiderzee, te s' Gravenhage, 1868, 4to.] The geographical results of this improvement would be analogous to those of the draining of the Lake of Haarlem, but many times multiplied in extent, and its meteorological effects, though perhaps not perceptible on the coast, could hardly fail to be appreciable in the interior of Holland.
The bearing of the works I have noticed, and of others similar in character, upon the social and moral, as well as the purely economical, interests of the people of the Netherlands, has induced me to describe them more in detail than the general purpose of this volume may be thought to justify; but if we consider them simply from a geographical point of view, we shall find that they are possessed of no small importance as modifications of the natural condition of terrestrial surface. There is good reason to believe that before the establishment of a partially civilized race upon the territory now occupied by Dutch, Frisic, and Low German communities, the grounds not exposed to inundation were overgrown with dense woods; that the lowlands between these forests and the sea-coasts were marshes, covered and partially solidified by a thick matting of peat-plants and shrubs interspersed with trees; and that even the sand-dunes of the shore were protected by a vegetable growth which, in a great measure, prevented the drifting and translocation of them.
The present causes of river and coast erosion existed, indeed, at the period in question; but some of them must have acted with less intensity, there were strong natural safeguards against the influence of marine and fresh-water currents, and the conflicting tendencies had arrived at a condition of approximate equilibrium, which permitted but slow and gradual changes in the face of nature. The destruction of the forests around the sources and along the valleys of the rivers by man gave them a more torrential character. The felling of the trees, and the extirpation of the shrubbery upon the fens by domestic cattle, deprived the surface of its cohesion and consistence, and the cutting of peat for fuel opened cavities in it, which, filling at once with water, rapidly extended themselves by abrasion of their borders, and finally enlarged to pools, lakes, and gulfs, like the Lake of Haarlem and the northern part of the Zuiderzee. The cutting of the wood and the depasturing of the grasses upon the sand-dunes converted them from solid bulwarks against the ocean to loose accumulations of dust, which every sea-breeze drove farther landward, burying, perhaps, fertile soil and choking up water-courses on one side, and exposing the coast to erosion by the sea upon the other.
Geographical Effect of Physical Improvements in the Netherlands.
The changes which human action has produced within twenty centuries in the Netherlands and the neighboring provinces, are, certainly of no small geographical importance, considered simply as a direct question of loss and gain of territory. They have also, as we shall see hereafter, undoubtedly been attended with some climatic consequences, they have exercised a great influence on the spontaneous animal and vegetable life of this region, and they cannot have failed to produce effects upon tidal and other oceanic currents, the range of which may be very extensive. The force of the tidal wave, the height to which it rises, the direction of its currents, and, in fact, all the phenomena which characterize it, as well as all the effects it produces, depend as much upon the configuration of the coast it washes, and the depth of water, and form of bottom near the shore, as upon the attraction which occasions it. Every one of the terrestrial conditions which affect the character of tidal and other marine currents has been very sensibly modified by the operations I have described, and on this coast, at least, man has acted almost as powerfully on the physical geography of the sea as on that of the land. [Footnote: See, on the influence of the artificial modification of the coast-line on tides and other marine currents, Staring, De Bodem van Nederland, i., p. 279.]
Ancient Hydraulic Works.
The hydraulic works of the Netherlands and of the neighboring states are of such magnitude that—with the exception of the dikes of the Mississippi—they quite throw into the shade all other known artificial arrangements for defending the land against the encroachments of the rivers and the sea, and for reclaiming to the domain of agriculture and civilization soil long covered by the waters. But although the recovery and protection of lands flooded by the sea seems to be an art wholly of Netherlandish origin, we have abundant evidence that, in ancient as well as in comparatively modern times, great enterprises more or less analogous in character have been successfully undertaken, both in inland Europe and in the less familiar countries of the East.
In many cases no historical record remains to inform us when or by whom such works were constructed. The Greeks and Romans, the latter especially, were more inclined to undertake and carry out stupendous material enterprises than to boast of them; and many of the grandest and most important constructions of those nations are absolutely unnoticed by contemporary annalists, and are first mentioned by writers living after all knowledge of the epochs of the projectors of these works had perished. Thus the aqueduct known as the Pont du Gard, near Nimes, which, though not surpassing in volume or in probable cost other analogous constructions of ancient and of modern ages, is yet among the most majestic and imposing remains of ancient civil architecture, is not so much as spoken of by any Roman author, [Footnote: One reason for the silence of Roman writers in respect to great material improvements which had no immediate relation to military or political objects, is doubtless the contempt in which mechanical operations and mechanical contrivances were held by that nation of spoilers. Even the engineer, upon whose skill the attack or defence of a great city depended, was only praefectus fabrum, the master-artisan, and had no military rank or command. This prejudice continued to a late period in the Middle Ages, and the chiefs of artillery were equally without grade or title as soldiers.
"The occupations of all artisans," says Cicero, "are base, and the shop can have nothing of the respectable." De Officiis, 1, i., 42. The position of the surgeon relatively to the physician, in England, is a remnant of the same prejudice, which still survives in full vigor in Italy, with regard to both trade and industry. See p. 6, ante.] and we are in absolute ignorance of the age or the construction of the remarkable tunnel cut to drain Lake Copais in Boeotia. This lake, now reduced by sedimentary deposit and the growth of aquatic and semi-aquatic vegetation to the condition of a marsh, was originally partially drained by natural subterranean outlets in the underlying limestone rock, many of which still exist. But these emissaries, or katavothra, as they are called in both ancient and modern Greek, were insufficient for the discharge of the water, and besides, they were constantly liable to be choked by earth and vegetables, and in such cases the lake rose to a height which produced much injury. To remedy this evil and secure a great accession of fertile soil, at some period anterior to the existence of a written literature in Greece and ages before the time of any prose author whose works have come down to us, two tunnels, one of them four miles long, and of course not inferior to the Torlonian emissary in length, were cut through the solid rock, and may still be followed throughout their whole extent. They were repaired in the time of Alexander the Great, in the fourth century before Christ, and their date was at that time traditionally referred to the reign of rulers who lived as early as the period of the Trojan war.
One of the best known hydraulic works of the Romans is the tunnel which serves to discharge the surplus waters of the Lake of Albano, about fourteen miles from Rome. This lake, about six miles in circuit, occupies one of the craters of an extinct volcanic range, and the surface of its waters is about nine hundred feet above the sea. It is fed by rivulets and subterranean springs originating in the Alban Mount, or Monte Cavo, the most elevated peak of the volcanic group just mentioned, which rises to the height of about three thousand feet. At present the lake has no discoverable natural outlet, and it is not known that the water ever stood at such a height as to flow regularly over the lip of the crater. It seems that at the earliest period of which we have any authentic memorials, its level was usually kept by evaporation, or by discharge through subterranean channels, considerably below the rim of the basin which encompassed it, but in the year 397 B.C., the water, either from the obstruction of such channels, or in consequence of increased supplies from unknown sources, rose to such a height as to flow over the edge of the crater, and threaten inundation to the country below by bursting through its walls. To obviate this danger, a tunnel for carrying off the water was pierced at a level much below the height to which it had risen. This gallery, cut entirely with the chisel through the rock for a distance of six thousand feet, or nearly a mile and one-seventh, is still in so good condition as to serve its original purpose. The fact that this work was contemporaneous with the siege of Veii, has given to ancient annalists occasion to connect the two events, but modern critics are inclined to reject Livy's account of the matter, as one of the many improbable fables which disfigure the pages of that historian. It is, however, repeated by Cicero and by Dionysius of Halicarnassus, and it is by no means impossible that, in an age when priests and soothsayers monopolized both the arts of natural magic and the little which yet existed of physical science, the Government of Rome, by their aid, availed itself at once of the superstition and of the military ardor of its citizens to obtain their sanction to an enterprise which sounder arguments might not have induced them to approve.
Still more remarkable is the tunnel cut by the Emperor Claudius to drain the Lake Fucinus, now Lago di Celano, in the former Neapolitan territory, about fifty miles eastward of Rome. This lake, as far as its history is known, has varied very considerably in its dimensions at different periods, according to the character of the seasons. It lies 2,200 feet above the sea, and has no visible outlet, but was originally either drained by natural subterranean conduits, or kept within certain extreme limits by evaporation. In years of uncommon moisture it spread over the adjacent soil and destroyed the crops; in dry seasons it retreated, and produced epidemic disease by poisonous exhalations from the decay of vegetable and animal matter upon its exposed bed. Julius Caesar had proposed the construction of a tunnel to lower the bed of the lake and provide a regular discharge for its waters, but the enterprise was not actually undertaken until the reign of Claudius, when—after a temporary failure, from errors in levelling by the engineers, as was pretended at the time, or, as now appears certain, in consequence of frauds by the contractors in the execution of the work—it was at least partially completed. From this imperfect construction, it soon got out of repair, but was restored by Hadrian, and is said to have answered its design for some centuries. [Footnote: The fact alluded to in a note on p. 97, ante, that since the opening of a communication between Lake Celano and the Garigliano by the works noticed in the text, fish, of species common in the lake, but not previously found in the river, have become naturalized in the Garigliano, is a circumstance of some weight as evidence that the emissary was not actually open in ancient times; for if the waters had been really connected, the fish of the lake would naturally have followed the descending current and established themselves in the river as they have done now.] In the barbarism which followed the downfall of the empire, it again fell into decay, and though numerous attempts were made to repair it during the Middle Ages, no tolerable success seems to have attended any of these efforts until the present generation.
Draining of Lake Celano by Prince Torlonia.
Works have been some years in progress and are now substantially completed, at a cost of about six millions of dollars, for restoring, or rather enlarging and rebuilding, this ancient tunnel, upon a scale of grandeur which does infinite honor to the liberality and public spirit of the projectors, and with an ingenuity of design and a constructive skill which reflect the highest credit upon the professional ability of the engineers who have planned the works and directed their execution. The length of the Roman tunnel was 18,634 feet, or rather more than three miles and a half, but as the new emissary is designed to drain the lake to the bottom, it must be continued to the lowest part of the basin. It will consequently have a length of not less than 21,000 feet, and, of course, is among the longest subterranean galleries in Europe. Many curious particulars in the design and execution of the original work have been observed in the course of the restoration, but these cannot here be noticed. The difference between the lowest and highest known levels of the surface of the lake is rather more than forty feet and the difference between the areas covered by water at these levels is not less than nine thousand acres. The complete drainage of the lake, including the ground occasionally flooded, will recover, for agricultural occupation, and permanently secure from inundation, about forty-two thousand acres of as fertile soil as any in Italy. [Footnote: Springs rising in the bottom of the lake have materially impeded the process of drainage, and some engineers believe that they will render the complete discharge of the waters impossible. It appears that the earthy and rocky strata underlying the lake are extremely porous, and that the ground already laid dry on the surface absorbs an abnormally large proportion of the precipitation upon it. These strata, therefore, constitute a reservoir which contributes to maintain the spring fed chiefly, no doubt, by underground channels from the neighboring mountains. But it is highly probable that, after a certain time, the process of natural desiccation noticed in note to p. 20, ante, will drain this reservoir, and the entire removal of the surface-water will then become practicable.] The ground already dry enough for cultivation furnishes occupation and a livelihood for a population of 16,000 persons, and it is thought that this number will be augmented to 40,000 when the drainage shall be completely effected.
The new tunnel follows the line of the Claudian emissary—which though badly executed was admirably engineered—but its axis is at a somewhat lower level than that of the old gallery, and its cross-section is about two hundred and fifteen square feet, allowing a discharge of about 2,400 cubic feet to the second, while the Roman work had a cross-section of only one hundred and two square feet, with a possible delivery of 424 cubic feet to the second. |
|