|
Deep Navy.—Prepare a dye-bath with 1 lb. Fast acid Magenta B, 3 lb. Wool Blue B X, 4-3/4 oz. Orange I I, 5 lb. sulphuric acid, and 10 lb. Glauber's salt, working at the boil for one hour.
The Patent Blues work exceedingly well on wool, giving good bright shades of a fair degree of fastness. The following recipes will (p. 154) give some idea of the nature of the shades which may be obtained from them, while later on their use in combination with other dyes for the production of compound shades will be shown.
Bright Blue.—Prepare a dye-bath with 2 lb. Patent Blue N, or Patent Blue superior, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil for one hour.
Bright Greenish Blue.—Use 2 lb. Patent Blue V, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Royal Blue.—Use 2 lb. Patent Blue B, or 2 lb. Patent Blue J (No. 3), 10 lb. Glauber's salt, and 2 lb. sulphuric acid. Patent Blue J (No. 3) gives slightly more violet shades than Patent Blue N, but there is not much difference between them.
Saxony Blue.—Use 2 lb. Patent Blue J (No. 00), 2 lb. sulphuric acid, and 10 lb. Glauber's salt. Patent Blue J (No. 00) dyes shades very closely resembling those dyed with indigo extract, and where the latter is used in the dyeing of compound shades the former might be substituted.
Brilliant Royal Blue.—Prepare a bath with 1-1/2 lb. New Victoria Blue B, and 10 lb. Glauber's salt. Enter at about 100 deg. F., then raise to the boil and work for one hour. This gives a very brilliant shade of blue of a violet tone.
Sky Blue.—Prepare a dye-bath with 1-1/2 oz. New Victoria Blue B and 2 lb. Glauber's salt, working in the manner described in the last recipe.
Dark Blue.—Prepare a dye-bath with 1-1/2 oz. Acid Violet 5 B, and 1-1/2 lb. Fast Green Bluish, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil to shade; then lift, wash and dry.
Deep Blue.—Make a dye-bath with 4 lb. Chromotrop 6 B, 10 lb. Glauber's salt, and 4 lb. acetic acid. Work for one hour at the boil; then lift, add 2 lb. bichromate of potash and 3 lb. acetic acid, re-enter the goods and work for one hour longer; lift, wash and dry.
The blues produced from the Chromotrops according to the last (p. 155) recipe are full, solid-looking shades, and have a great degree of fastness to milling and light. Some other examples showing the production of blue shades from the Chromotrops will be given later on.
Violet Blue.—Prepare a dye-bath with 2 lb. Victoria Violet 8 B S, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil to shade; then lift, wash and dry.
Deep Blue.—A fine deep blue is dyed on wool from a bath containing 6 lb. Victoria Violet 8 B S, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil to shade.
Deep Sky Blue.—A fine shade is dyed in a bath containing 4 oz. Cyanole extra, 10 lb. Glauber's salt and 2 lb. acetic acid.
Electric Blue.—Make the dye-bath with 4 oz. Cyanole extra, 1 oz. Acid Green extra, and 10 lb. bisulphate of soda.
Bright Blue.—A very fine shade of blue can be dyed in a bath containing 3 lb. Cyanole extra and 10 lb. bisulphate of soda.
Dark Navy Blue.—Prepare the dye-bath with 4 lb. Cyanole extra, 9 oz. Archil Substitute N, and 10 lb. bisulphate of soda.
Dark Navy.—Prepare the dye-bath with 5 lb. Black Blue O, 1-3/4 oz. Formyl Violet S 4 B, 4 oz. Patent Blue V, 25 lb. Glauber's salt, and 4 lb. bisulphate of soda, adding 1 lb. sulphuric acid when the dyeing is about half done.
The navy blues given in the last few recipes possess the merit of considerable resistance to light, air and milling.
Pale Blue.—Make the dye-bath with 1/2 oz. Chromotrop 2 R, 4 oz. Cyanine B, 7-1/2 oz. Fast Acid Blue R, 1/2 oz. Azo Yellow, 10 lb. acetic acid, and 15 lb. Glauber's salt.
Peacock Blue.—A fine shade is dyed with 14 oz. Cyanine B, 1-1/2 lb. Fast Acid Blue R, 2 oz. Azo Yellow, 10 lb. acetic acid, and 15 lb. Glauber's salt.
Dark Invisible Blue.—Make the dye-bath with 2 lb. Victoria (p. 156) Black Blue, 10 lb. Glauber's salt, and 3 lb. sulphuric acid.
Bright Blue.—A very fine shade of blue, not, however, fast to light, is dyed from a bath containing 1/2 lb. Victoria Blue B, and 10 lb. Glauber's salt.
Bright Electric Blue.—Prepare a dye-bath with 3/4 lb. Glacier Blue, 10 lb. Glauber's salt and 3 lb. sulphuric acid, working at the boil. This gives a very bright green shade of blue.
Dark Peacock Blue.—Make the dye-bath with 1 lb. Naphthol Blue Black, 10 lb. Glauber's salt, and 3 lb. sulphuric acid.
Peri Wool Blues B & G dye wool in very fast dark blue shades from baths of Glauber's salt and acetic acid. They are dye-stuffs which form with copper blue colour lakes of some fastness. The copper is amalgamated with the dye-stuffs as put on the market.
Pale Navy Blue.—Mordant, 4 lb. bichromate of potash and 1-1/2 lb. oxalic acid. Dye, 2-1/2 lb. Alizarine Bordeaux B.
Navy Blue.—Mordant, 4 lb. bichromate of potash and 2 lb. oxalic acid. Dye, 7 lb. Alizarine Bordeaux G.
Bright Violet Blue.—Mordant, 3 lb. fluoride of chrome and 2 lb. oxalic acid. Dye, 3/4 lb. Celestine Blue B.
Navy Blue.—A reddish shade of navy blue is dyed by mordanting with 3 lb. fluoride of chrome and 2 lb. oxalic acid, and dyeing with 3 lb. Celestine Blue B and 3/4 lb. Diamond Black.
The Alizarine Cyanines are excellent dye-stuffs for giving dark blue and navy blue shades on wool. They dye fairly easily, and uniform shades are readily obtained, while they possess some considerable penetrative power, so that they are well adapted for dyeing heavy piece goods. The following recipes show their use and indicate the character of the shades the various brands yield. It may be added (p. 157) that the shades are fast to light and milling.
Red Navy Blue.—Mordant, 4 lb. bichromate of potash, 2 lb. tartar, and 1-1/2 oz. sulphuric acid. Dye, 6 lb. Alizarine Cyanine R R R double. By using a mordant of 4 lb. fluoride of chrome and 2 lb. oxalic acid the shade is made brighter and not so red in tone.
Dark Blue.—A red shade of blue almost approaching a navy is obtained by mordanting with bichromate of potash, as in the last recipe, and dyeing with 12 lb. Alizarine Cyanine R R, or with 13 lb. Alizarine Cyanine R. The shade with the latter dye-stuff is scarcely so red as with the former.
Dark Blue.—Mordant with 4 lb. fluoride of chrome and 2 lb. oxalic acid and dye with 13 lb. Alizarine Cyanine R.
Dark Blue.—A somewhat brighter and less red shade than is obtained by working as in the last recipe is given by mordanting with 3 lb. bichromate of potash, 2 lb. tartar, and 2-1/2 oz. sulphuric acid, and then dyeing with 17 lb. Alizarine Cyanine G extra.
Dark Blue.—Mordant with 3-1/2 lb. bichromate of potash, 2 lb. tartar, and 3 oz. sulphuric acid. Dye with 18 lb. Alizarine Cyanine G G.
Peacock Blue.—Mordant with 4 lb. fluoride of chrome and 2 lb. oxalic acid. Dye with 18 lb. Alizarine Cyanine G G.
The addition of from 2 lb. to 5 lb. acetate of ammonia in working with the Alizarine Cyanines is a considerable advantage, by causing the dye-stuff to penetrate the fibre better and to give more uniform shades.
Medium Blue.—Mordant with 3 lb. bichromate of potash and 2 lb. oxalic acid. Dye with 5 lb. Brilliant Alizarine Blue G, and 2 lb. acetic acid.
Black Blue.—Mordant as in the last. Dye with 20 lb. Brilliant Alizarine Blue G and 2 lb. acetic acid.
Dark Navy.—Mordant as in the last recipe and dye with 5 lb. (p. 158) Alizarine Cyanine 3 R double, 5 lb. Alizarine Blue G W, 2 lb. Brilliant Alizarine Blue G, and 2 lb. acetic acid.
Medium Blue.—Mordant as in the last. Dye with 5 lb. Alizarine Blue G W, 2-1/2 lb. Brilliant Alizarine Blue G, and 2 lb. acetic acid.
Lavender Blue.—Mordant with 3 lb. bichromate of potash and 2-1/4 lb. tartar. Dye with 2 lb. Alizarine Blue A.
Navy.—Mordant as in the last recipe, and dye with 20 lb. Alizarine Blue A.
Deep Sky Blue.—Mordant with 3 lb. bichromate of potash and 1 lb. oxalic acid, then dye with 2-1/2 lb. Chrome Blue.
Bright Blue.—A very fine bright shade is obtained by mordanting as in the last, and then dyeing with 10 lb. Chrome Blue.
Lilac Blue.—Mordant with 2 lb. bichromate of potash and 1-1/2 lb. tartar. Dye with 4 lb. Alizarine Blue D N W. Alizarine Blue R gives somewhat bluer shades than the D N W brand.
Slate Blue.—Mordant with 3 lb. bichromate of potash and 2-1/2 lb. tartar. Dye with 2-1/2 lb. Alizarine Blue D N W, 4 oz. Alizarine Brown, and 1-2/3 oz. Alizarine Yellow.
Peacock Blue.—Mordant with 3 lb. bichromate of potash and 2-1/2 lb. tartar. Dye with 6 lb. Alizarine Blue D N W, 3 lb. Alizarine Yellow, and 1-1/2 lb. Patent Blue A, adding a little acetic acid to the dye-bath.
Paris Blue.—Mordant as in the last recipe. Dye with 3 lb. Galleine, 1 lb. Alizarine Blue D N W, and 1 lb. Patent Blue A, adding a little acetic acid.
Grey Blue.—Mordant as above and dye with 4-1/2 lb. Alizarine Blue D N W, and 1 lb. Alizarine Brown.
Blue.—Mordant with 10 lb. alum, 3 lb. tartar, and 2 lb. oxalic acid. Dye with 15 lb. Anthracene Blue W G, 3 lb. acetate of lime, and 1 lb. tannic acid.
Red Navy.—Mordant as in the last recipe and dye with 15 lb. (p. 159) Anthracene Blue B W, 3 lb. acetate of lime, and 3/4 lb. tannic acid.
Dark Blue.—Mordant with 1 lb. bichromate of potash and 2 lb. tartar. Then dye with 20 lb. Anthracene Blue W B. Anthracene Blue W G gives slightly greener shades than the W B brand, while the W R blue gives redder shades.
Grounding wool with various tints of indigo is a favourite method of producing many useful shades on wool. In general it is a good plan, as the bottom so given is a fast and permanent one, and is not in any way affected (so far as the stability of the colour is concerned) by the subsequent dyeing operations, care of course being taken that these are the usual acid or mordanting baths. The only drawback against bottoming with indigo is the increased cost of dyeing necessitated by the extra labour, and materials required to dye the bottom. As to the methods and materials required, they are just those usually employed in indigo dyeing, and these have been described. The hydrosulphite vat, or Messrs. Holliday's patent indigo, is, perhaps, the most convenient method to adopt.
Dark Slate.—Give a medium indigo bottom, then mordant with 3 lb. fluoride of chrome and 1 lb. oxalic acid, and dye with 1-1/2 lb. Anthracene Brown W, 1/2 lb. Alizarine Bordeaux G, and 1 oz. Diamond Flavine.
Dark Navy.—Give a medium indigo bottom in the vat, then mordant with 3 lb. fluoride of chrome and 1-1/2 lb. tartar, finally dyeing with 6-1/2 lb. Alizarine Cyanine G, and 1-1/2 lb. Alizarine Bordeaux G.
Dark Blue.—Give a medium indigo bottom, then mordant with 6 lb. fluoride of chrome and 2 lb. oxalic acid, finally dyeing with 14 lb. Alizarine Cyanine Black.
Blue Black.—Give a deep indigo bottom in the vat, then mordant with 3 lb. bichromate of potash and 2 lb. tartar, finally dyeing with (p. 160) 6 lb. Alizarine Cyanine Black and 1-1/2 lb. Alizarine Cyanine 3 R double.
VIOLET SHADES ON WOOL.
Violet shades can only be obtained from the coal-tar colours, and of these there are not many. The recipes which are given below will serve to show what dye-stuffs are available, and will give some idea of the tints they dye.
With Direct Dyes. Pale Violet.—Prepare the dye-bath with 1/2 lb. Sulphon Cyanine, 1/4 lb. Geranine B, 5 lb. Glauber's salt, and 5 lb. acetate of ammonia, working at the boil for one hour.
With Basic Dyes. Violet.—The dye-bath is made with 1 lb. Methyl Violet 3 B, and 10 lb. Glauber's salt. A fine pure shade of violet is obtained. Methyl Violet is made in many brands, distinguished as B, B B, 2 B, 4 B, etc. By using either one or the other of these, a variety of tints of violet, from a red shade with Methyl Violet R through violet (B) to a violet blue with Methyl Violet 7 B, can be dyed.
Puce.—A very bright shade of puce is dyed by using Methyl Violet R, and 10 lb. Glauber's salt.
With Acid Dyes. Violet.—Make the dye-bath with 2 lb. Acid Violet 4 B S, 10 lb. Glauber's salt, and 2 lb. sulphuric acid. This gives a pure violet shade. If Acid Violet 6 B S be used a bluer shade is obtained.
Reddish Puce.—A very bright red tint of puce is obtained by using 2 lb. Acid Violet 4 R S, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Bluish Violet.—Make the dye-bath with 3 lb. Acid Violet 5 B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil for one hour.
Lavender.—Use 4 oz. Acid Violet 5 B, 1 oz. Azo Fuchsine G, 1/16 oz. Fast Green bluish, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Deep Violet.—A fine deep shade is obtained by using 2-3/4 lb. Chromotrop 6 R, 2-1/2 lb. Cyanine B, 10 lb. Glauber's salt, and (p. 161) 2 lb. sulphuric acid, working at the boil for one hour.
Mauve.—Use 2 lb. Acid Mauve B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Bright Violet.—Use 2 lb. Formyl Violet S 4 B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Bright Violet.—Use 2 lb. Acid Violet 6 B N, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Violet.—Use 2 lb. Acid Violet N, 2 lb. sulphuric acid, and 10 lb. Glauber's salt.
With Mordant Dyes. Violet.—Mordant the wool with 3 lb. bichromate of potash and 2 lb. tartar, and dye with 10 lb. Chrome Violet.
Dark Violet.—Mordant as in the last recipe. Then dye with 3 lb. Chrome Bordeaux 6 B double and 2 lb. Brilliant Alizarine blue G.
BROWN SHADES ON WOOL.
Brown is a very important colour, of which there is an infinite variety of shades and it can be dyed in a great variety of ways and from a variety of dye-stuffs, as will be seen on looking through the recipes which follow, although these do not by any means exhaust the methods by which browns may be dyed on woollen goods, but they may be taken as representative and will serve to show by what combinations of dyes various tints of browns may be obtained.
With Direct Dyes. Brown.—Make the dye-bath with 1 lb. Nyanza Black B, 2 lb. Congo Brown R, and 20 lb. Glauber's salt, working at the boil for one hour; then lift, wash and dry.
With Acid Dyes. Yellow Brown.—Make the dye-bath with 1 lb. Azo Carmine, 1 lb. Fast Yellow, 1 lb. Indigo Carmine D, 10 lb. Glauber's salt, and 2 lb. sulphuric acid. A good shade is thus obtained.
Olive Brown.—Use 3/4 lb. Azo Acid Violet 4 R, 2 lb. Fast (p. 162) Yellow, 3 oz. Fast Green bluish, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil for one hour; then lift, wash and dry.
Dark Chestnut.—Dye in a bath containing 6-1/2 oz. Patent Blue V, 3-1/4 oz. Acid Violet V, 1 lb. Azo Yellow, 2 lb. Orange No. 2, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil for one hour; then lift, wash and dry.
Mouse.—Make the dye-bath with 4 oz. Patent Blue V, 1-2/3 oz. Acid Violet N, 13 oz. Orange G, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Deep Seal.—Dye in a bath containing 1 lb. Orange G G, 1/2 lb. Patent Blue J 3, 1/2 lb. Azo Yellow, 3-1/4 oz. Acid Violet N, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Deep Brown.—Make the dye-bath with 1-3/4 lb. Chromotrop 2 R, 1-1/4 lb. Victoria Yellow, 4 lb. Keton Blue G, 2-1/2 oz. Acid Violet 5 B E, 25 lb. Glauber's salt, and 4 lb. sulphuric acid, working at the boil for one hour.
Walnut.—A fine shade can be dyed with 1-3/4 lb. Azo Acid Magenta G, 14-1/2 oz. Patent Blue V, 3/4 lb. Victoria Yellow, 15 lb. Glauber's salt and 2 lb. sulphuric acid.
Olive Brown.—Make a dye-bath with 2 lb. sulphuric acid, 10 lb. Glauber's salt, 1 lb. Azo Fuchsine G, 1/2 lb. Fast Yellow, and 1/2 lb. Fast Green extra bluish.
Dark Olive Brown.—A very fine shade can be dyed with 1 lb. Fast Acid Violet 10 B, 1-1/2 lb. Orange 11, 1/2 lb. Fast Green bluish, 7 oz. Fast Yellow, 20 lb. Glauber's salt, and 3 lb. sulphuric acid.
Walnut.—Use 1 lb. Cyanole, 1 lb. Orange extra, 1/2 lb. Archil Substitute N, 10 lb. Glauber's salt and 2 lb. sulphuric acid, working at the boil for one hour.
Dark Seal.—Use 1 lb. Cyanole, 1 lb. Orange extra, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Golden Brown.—A fine shade is dyed with 1-1/4 lb. Victoria (p. 163) Yellow, 9-1/2 oz. Chromotrop 2 R, 3-1/2 oz. Patent Blue V, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
With Mordant Dyes. Golden Brown.—Make the dye-bath with 1 lb. Diamine Fast Red F, 1-1/2 lb. Anthracene Yellow C, and 5 lb. acetate of ammonia. Work for half an hour; then add 5 lb. bisulphate of soda and work for half an hour longer, then add 3 lb. fluoride of chrome, and work for half an hour at the boil.
Bright Golden Brown.—Use 3/4 lb. Diamine Fast Red F, 1-1/2 lb. Anthracene Yellow C, 5 lb. bisulphate of soda, as indicated in the last recipe. The shades so obtained are very fine, and have the merit of being fast to washing and light.
Chestnut.—Give a medium indigo bottom in the vat, then dye in a bath containing 1-3/4 lb. Anthracene Yellow C, 1 lb. Diamine Fast Red F, and 5 lb. bisulphate of soda. Work again for half an hour, then add 3 lb. fluoride of chrome, and work again for another half hour; lift, wash and dry.
Dark Brown.—Use a dye-bath containing 1-1/4 lb. Diamine Fast Red F, 3/4 lb. Anthracene Yellow C, 1-1/2 lb. Anthracite Black B, and 5 lb. acetate of ammonia. After half an hour's boiling, add 5 lb. bisulphate of soda, work half an hour longer, add 3 lb. fluoride of chrome, and work together another half hour; then lift, wash and dry.
Brown.—A very fine shade can be dyed in the following way: First give a medium indigo bottom in the vat, then mordant in a bath containing 3 lb. bichromate of potash and 2-1/2 lb. tartar, and finally dye in a bath made from 1-1/2 lb. Alizarine Orange R, 4 lb. Diamond Flavine, and 2 lb. acetic acid.
Dark Seal.—Give a medium indigo bottom in the vat, and Mordant with 3 lb. bichromate of potash and 2-1/2 lb. tartar, and finally dye in a bath containing 3-1/2 lb. Alizarine Orange R, 1 lb. Anthracene Brown R, 2 lb. Diamond Flavine, and 2 lb. acetic acid.
Brown.—A full shade is dyed by first mordanting with 3 lb. (p. 164) bichromate of potash and 2 lb. tartar, and then dyeing with 10 lb. Anthracene Brown W, and 1 lb. Mordant Yellow.
Buff.—Mordant as in the last, and dye with 5 lb. Anthracene Brown W, and 1/4 lb. Mordant Yellow O.
Nut.—Mordant with 3 lb. bichromate of potash and 1 lb. oxalic acid, and dye with 20 lb. Diamond Brown.
Pale Old Gold Brown.—Mordant as in the last, and dye with 5 lb. Diamond Brown.
Dark Violet Brown.—Mordant as in the last recipes, and dye with 30 lb. Chrome Brown R.
Bright Chestnut.—Mordant with 3 lb. bichromate of potash and 1 lb. sulphuric acid, and dye with 30 lb. Gambine R.
Pale Chestnut.—Mordant as in the last recipes, and dye with 20 lb. Gambine Y.
Olive Brown.—Mordant as in the last recipes, and dye with 10 lb. Gambine B. The browns dyed with Gambine have the merit of being fast to milling and light.
Dark Brown.—Mordant with 3 lb. bichromate of potash and 2-1/2 lb. tartar; then dye with 15 lb. Alizarine Brown.
Bright Buff.—Mordant as in the last recipe; then dye with 4-3/4 lb. Alizarine Brown, 4 lb. Alizarine Yellow, 1-3/4 oz. Alizarine Blue D N W, and 2 lb. acetic acid.
Dark Violet Brown.—Mordant with 3 lb. bichromate of potash and 2-1/2 lb. tartar. Then dye with 18 lb. Alizarine Brown, 6 lb. Alizarine Orange H, and 2 lb. acetic acid.
Dark Walnut.—Mordant with 3 lb. bichromate of potash and 1 lb. sulphuric acid; then dye with 8 lb. Alizarine Brown, 2 lb. Alizarine Red 3 W S, and 2 lb. Alizarine Yellow G G W.
MODE COLOURS ON WOOL.
Under the general designation of "mode colours" are included a great variety of tints or shades unusually described more specifically (p. 165) as drabs, buffs, greys, fawns, slates, etc. It is impossible here to do more than give a few recipes for their production.
With Direct Dyes. Drab.—Make a dye-bath with 3 oz. Nyanza Black B, 1-1/2 oz. Chrysamine G, 2 oz. Congo orange R, and 20 lb. Glauber's salt, working at the boil for one hour; then lift, wash and dry.
With Acid Dyes. Bright Buff.—Dye in a bath containing 3/4 oz. each Cyanole, Orange extra, and Indian Yellow R, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Slate.—Use a dye-bath containing 3 oz. Cyanole, 1/4 oz. Archil Substitute N, 1/2 oz. Orange extra, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Silver Grey.—Use 1-1/4 oz. Orange extra, 3/4 oz. Archil Substitute N, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Pale Drab.—Make the dye-bath with 1/2 oz. Cyanine B, 3/4 oz. Azo Yellow, 1/4 oz. Chromotrop 2 R, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Grey.—Make the dye-bath with 1 oz. Chromotrop 2 R, 1-1/4 oz. Cyanine B, 2-1/2 oz. Fast Acid Blue R, 2 oz. Azo Yellow, 10 lb. Glauber's salt and 5 lb. acetic acid.
Bright Fawn.—The dye-bath is made with 2 oz. Chromotrop 2 R, 8 oz. Orange G, 2-1/4 oz. Fast Acid Blue R, 1-1/4 oz. Cyanine B, 10 lb. Glauber's salt and 5 lb. acetic acid.
Dark Buff.—Use 2 oz. Cyanine B, 5 oz. Azo Yellow, 2-1/2 oz. Chromotrop 2 R, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Lilac Grey.—Use 3 oz. each Fast Acid Violet 10 B, Fast Green bluish, and Fast Yellow, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Pale Fawn Drab.—Use 1 oz. Patent Blue V, 1 oz. Rhodamine, 1-3/4 oz. Orange G, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Dark Grey.—Use 1 lb. Wool Grey R, 10 lb. Glauber's salt and (p. 166) 2 lb. sulphuric acid.
Stone.—Use 1 oz. Patent Blue J B, 1-3/4 oz. Orange G, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Pale Fawn Brown.—Use 4 oz. Fast Acid Violet R, 2 oz. Patent Blue J O O, 3 oz. Orange G, 10 lb. Glauber's salt and 3 lb. sulphuric acid.
Drab.—Use 3 oz. Azo Carmine, 1-1/2 oz. Fast Yellow, 1-1/4 oz. Indigo Carmine D, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Lilac.—Use 1/2 lb. Azo carmine, 1/2 lb. Indigo Carmine D, 1-1/2 oz. Fast Yellow, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
With Mordant Dyes. Pale Drab.—Mordant with 2 lb. bichromate of potash and 1-1/2 lb. tartar. Dye with 1 lb. Alizarine Brown paste.
Violet Grey.—Mordant as in the last recipe, and dye with 1 lb. Alizarine Grey B.
Pale Fawn.—Mordant with 3 lb. bichromate of potash and 2-1/2 lb. tartar, and dye with 4-1/2 lb. Alizarine Yellow, 13 oz. Alizarine Brown, 11-1/2 oz. Alizarine Orange N, and 2 lb. acetic acid.
Pale Stone.—Mordant with 2 lb. bichromate of potash and 1-1/2 lb. tartar. Dye with 13 oz. Alizarine Yellow and 1-1/4 lb. Alizarine Brown.
Dark Slate.—Mordant with 3 lb. bichromate of potash and 2 lb. tartar. Dye with 2-1/2 lb. Alizarine Blue D N W, and 10 oz. Alizarine Yellow.
Lavender Grey.—Mordant with 2 lb. bichromate of potash and 1-1/2 lb. tartar. Dye with 13 oz. Alizarine Blue D N W, and 2 oz. Galleine.
Drab.—Mordant as in the last recipe; then dye with 4 oz. Alizarine Blue, 1-1/2 lb. Alizarine Yellow and 14 oz. Alizarine Brown.
Drab.—Mordant with 3 lb. bichromate of potash and 1 lb. (p. 167) sulphuric acid, and dye with 1 lb. Gambine R.
Dark Grey.—Give a light indigo bottom in the vat, and then dye in a bath containing 3/4 oz. Diamine Fast Red F, 3/4 oz. Anthracene Yellow C, and 5 lb. acetate of ammonia. Work at the boil for half an hour, then add 5 lb. bisulphate of soda, work half an hour longer, then add 1 lb. fluoride of chrome, and work for another half hour at the boil; then lift, wash and dry.
CHAPTER V. (p. 168)
DYEING UNION (MIXED COTTON AND WOOL) FABRICS.
There is now produced a great variety of textile fabrics of every conceivable texture by combining the two fibres, cotton and wool, in a number of ways. The variety of these fabrics has of late years considerably increased, which increase may be largely ascribed to the introduction of the direct dyeing colouring matters—the Diamine dyes, the Benzo dyes, the Congo and the Zambesi dyes; for in the dyeing of wool-cotton fabrics they have made a revolution. The dyer of union fabrics, that is fabrics composed of wool and cotton, was formerly put to great straits to obtain uniform shades on the fabrics supplied to him owing to the difference in the affinity of the fibres for the dye-stuffs then known. Now the direct dyes afford him a means of easily dyeing a piece of cotton-wool cloth in any colour of a uniform shade, while the production of two-coloured effects is much more under his control, and has led to the increased production of figured dress fabrics with the ground in one fibre (wool) and colour, and the design in another fibre (cotton) and colour. The number of direct dyes issued by the various colour manufacturers is so great that it would take a fairly considerable space to discuss them all.
To obtain good results it is needful that the dyer of union fabrics should be a man of keen observation and have a thorough knowledge of the dyes he is using, for each dye makes a rule to itself as regards its power of dyeing wool and cotton; some go better on to the (p. 169) cotton than on to the wool, and vice versa. Some dye wool best at the boil, others equally well below that heat; some go on the cotton at a moderate temperature, others require the dye-bath to be boiling; some will go to the cotton only and appear to ignore the wool.
The presence or absence in the dye-bath of such bodies as carbonate of soda, Glauber's salt, etc., has a material influence on the degree of the affinity of the dye-stuff for the two fibres, as will perhaps be noted hereafter. Again, while some of the dyes produce equal colours on both fibres, there are others where the tone is different. With all these peculiarities of the Diamine and other direct dyes the union dyer must make himself familiar. These dyes are used in neutral baths, that is, along with the dye-stuff. It is often convenient to use along with the direct dyes some azo or acid dyes which have the property of dyeing the wool from neutral baths; many examples of such will be found in the practical recipes given below. The dyes now under consideration may be conveniently classed into five groups.
(1) Those dyes which dye the cotton and wool from the same bath to the same shade, or nearly so.—Among such are Thioflavine S, Diamine Fast Yellow B, Diamine Orange B, Diamine Rose B D, Diamine Reds 4 B, 5 B, 6 B and 10 B, Diamine Fast Red F, Diamine Bordeaux B, Diamine Brown N, Diamine Brown 3 G, B and G W, Diamine Blue R W, B X, Diamine Blue G, Diamine Greens G and B, Diamine Black H W, Diamine Dark Blue B, Union Black B and S, Oxydiamine Blacks B, M, D and A, Diamine Catechine G, Union Blue B B, Oxyphenine, Chloramine Yellow, Thioflavine S, Alkali Yellow R, Chromine G, Titan Scarlet S, Mimosa, Primuline, Auroline, Congo Corinth B, Thiazol Yellow, Columbia Yellow, Oxydiamine Yellow G G, Oxydiamine Oranges G and R, Diamine (p. 170) Orange O, Oxydiamine Red S.
(2) Dyes which dye the cotton a deeper shade than the wool.—The following belong to this group. Diamine Fast Yellow A, Diamine Orange G and D, Diamine Catechine G, Diamine Catechine B, Diamine sky Blue, Diamine Blues 2 B, Diamine Blue 3 B, Diamine Blue B G, Diamine Brilliant Blue G, Diamine New Blue R, Diamine Steel Blue L, Diamine Black R O, Diamine Black B O, Diamine Black B H, and Oxydiamine Black S O O O, Diamine Nitrazol Brown G, Diamine Catechine B, Diamine Sky Blue F F, Diamine Dark Blue B, Diamine Bordeaux B, Diamine Violet N, Oxydiamine Violet B, Columbia Black B and F B, Zambesi Black B, Congo Brown G, Direct Yellow G, Direct Orange R, Clayton Yellow, Cotton Yellow, Orange T A, Benzopurpurine B, Brilliant Congo R, Chicago Blues B, 4 B and 6 B.
(3) Dyes which dye wool a deeper shade than the cotton.—The dyes in this group are not numerous. They are Diamine Gold, Diamine Scarlet B, Diamine Scarlet 3 B, Diamine Bordeaux S, Diamine Blue R W, and Diamine Green G, Diamine Red N O and B, Chicago Blue G and R R W, Brilliant Purpurine R, Diamine Scarlet B, Deltapurpurine 5 B, Chrysamine, Titan Blue, Titan Pink, Congo Oranges G and R, Erie Blue 2 G, Congo R, Brilliant Congo R, Erika B N, Benzopurpurine 4 B and 10 B, Chrysophenine, Titan Yellow, Titan Brown Y, R and O, Congo Brown G, Sulphon Azurine B, Zambesi Black D.
(4) Dyes which produce different shades on the two fibres.—Diamine Brown G and Diamine Blue 3 R, Diamine Brown V, Diamine Brown S, Diamine Nitrazol Brown B, Diamine Blue B X and 3 R, Diamine Blue Black E, Benzo Blue Black G, Benzopurpurine 10 B, Benzo Azurine R G and 3 G, Columbia Red S B, Brilliant Azurine 5 G, Titan Marine (p. 171) Blue, Congo Corinths G and B, Azo Blue, Hessian Violet, Titan Blue, Azo Mauve, Congo Brown, Diamine Bronze G, Zambesi Browns G and 2 G, Zambesi Black F.
(5) Azo acid dyes which dye wool from neutral baths, and are therefore suitable for shading up the wool to the cotton in union fabric dyeing.—Among the dyes thus available may be enumerated Naphthol Blue G and E, Naphthol Blue Black, Formyl Violet 10 B, Lanacyl Blue B B, Lanacyl Blue R, Alkaline Blue, Formyl Violet S 4 B and 6 B, Rocceleine, Azo Red A, Croceine A Z, Brilliant Scarlet, Orange extra, Orange E N Z, Indian Yellow G, Indian Yellow R, Tropaeoline O O, Naphthylamine Black 4 B, and Naphthol Blue Black, Brilliant Scarlet G, Lanacyl Violet B, Brilliant Milling Green B, Thiocarmine R, Formyl Blue B, Naphthylamine Blacks D, 4 B and 6 B, Azo Acid Yellow, Curcumine Extra, Mandarine G, Ponceau 3 R B, Acid Violet 6 B, Guinea Violet 4 B, Guinea Green B, Wool Black 6 B.
Regarding the best methods of dyeing, that in neutral baths yields the most satisfactory results in practical working. It is done in a boiling hot or in a slightly boiling bath with the addition of 6-1/4 oz. crystallised Glauber's salt per gallon water for the first bath, and when the baths are kept standing 20 per cent. crystallised Glauber's salt reckoned upon the weight of the goods for each succeeding lot.
In dyeing unions, the dye-baths must be as concentrated as possible and must not contain more than from 25 to 30 as much water as the goods weigh. In this respect it serve as a guide that concentrated baths are best used dyeing dark shades while light shades can be dyed in more dilute baths. The most important factor for producing uniform dyeings is the appropriate regulation of the temperature of the dye-bath. Concerning this the dyer must bear in mind that the direct colours possess a greater affinity for cotton if dyed below the boiling-point, and only go on the wool when the bath is boiling, (p. 172) especially so the longer and more intensely the goods are boiled.
The following method of dyeing is perhaps the best one. Charge the dye-bath with the requisite dye-stuff and Glauber's salt, boil up, shut off the steam, enter the goods and let run for half an hour, without steam, then sample. If the shade of both cotton and wool is too light, add some more of the dye-stuffs used for both fibres, boil up once more, and boil for a quarter to half an hour. If the wool only is too light, or its shade different from that of the cotton, add some more of the dye-stuff used for shading the wool and bring them again to the boil. If, however, the cotton turns out too light or does not correspond in shade to the wool, add some more of the dye-stuffs used for dyeing the cotton, without, however, raising the temperature. Prolonged boiling is necessary only very rarely, and generally only if the goods to be dyed are difficult to penetrate or contain qualities of wool which only with difficulty take up the dye-stuff. In such cases, in making up the bath, dye-stuffs are to be selected some of which go only on the wool and others which go only on the cotton (those belonging to the second group).
The goods can then be boiled for some time, and perfect penetration and level shades will result. If the wool takes up the dye-stuff easily (as is frequently the case with goods manufactured from shoddy) and are therefore dyed too dark a shade, then dye-stuffs have to be used which principally dye the cotton, and a too high temperature is to be avoided. In such cases it is advisable to diminish the affinity of the wool by the addition of one-fifth of the original quantity of Glauber's salt (about 3/8 oz. per gallon of water), and from three-quarters to four-fifths of the dye-stuff used for the first lot. Care has to be taken that not much of the dye-liquor is lost when taking out the dyed goods, otherwise the quantities of Glauber's salt and dye-stuff will have to be increased proportionately. Wooden (p. 173) vats such as are generally used for piece dyeing have proved the most suitable, they are heated with direct or still better with indirect steam. The method which has proved most advantageous is to let the steam run into a space separated from the vat by a perforated wall into which space the required dye-stuffs and salt are placed.
The mode of working is influenced by the character of the goods, and the following notes will be found useful by the union dyer.
Very little difficulty will be met with in dyeing such light fabrics as Italians, cashmeres, serges and similar thin textiles lightly woven from cotton warp and woollen weft. When deep shades (blacks, dark blues, browns and greens) are being dyed it is not advisable to make up the dye-bath with the whole of the dyes at once. It is much better to add these in quantities of about one-fourth at a time at intervals during the dyeing of the piece. It is found that the affinity of the wool for the dyes at the boil is so much greater than is that of the cotton that it would, if the whole of the dye were used, take up too much of the colour and then would come up too deep in shade. Never give a strong boil with such fabrics, but keep the bath just under the boil which results in the wool dyeing much more nearly like to cotton.
On Union Flannels.—In this class of goods it is important that the soft open feel of the goods be retained as much as possible, and for this purpose no class of dyes offers so many advantages as the direct colours. Only one bath being required, there is not the same amount of manipulation needed in the dyeing operation, hence there is less risk that the soft feel and woolly structure will be affected. As no mordants are needed there is nothing to impart a harsh feel to the fabrics.
On Dress Goods, Suitings and Coatings.—A large quantity of fabrics for gentlemen's suits, coats and cloths in general are now made (p. 174) from wool and cotton. Formerly the dyeing of these offered many difficulties before the application of the direct dyes was properly understood. Now, however the ease with which such dyes may be applied has given considerable impetus to this class of goods, and the trade has grown by leaps and bounds during recent years, and has been one cause of the great cheapening of clothes which has occurred in the same period. The dyeing of the goods with the direct colours offers very little difficulty, and only requires that a little attention be paid, particularly to goods in which the cotton either appears on the surface forming a design, or is spun or twisted together with the wool.
A good deal of shoddy is used in making the cheaper class of these goods, and it is quite natural that such "artificial wool" behaves differently from pure wool, not only with regard to its shade resulting from mixing and working together differently dyed waste wools, but also on account of its possessing a greater affinity for all kinds of dye-stuff than raw wool; this in consequence of the carbonisation and washing processes it has undergone, and also of the mordants which the material may retain from previous processes. Therefore (and especially in dyeing light shades on goods manufactured of shoddy) only a small quantity of soda or borax is to be added to the dye-bath and severe boiling is to be avoided. Wherever it is possible goods which are to be dyed in light shades should be made from the palest materials, and the dark qualities only used for goods which are to be dyed in dark shades.
This rule can, of course, not always be adhered to. Quite often a light and bright shade is to be dyed on comparatively dark material. This cannot be achieved by simply dyeing it, the goods must be stripped or bleached before dyeing. For this purpose either energetically reacting, oxidising reducing agents are applied. Of the former, bichromate of potassium is principally used. Boil the (p. 175) goods for half to three-quarters of an hour with 3 to 5 per cent. bichromate of potassium, 2 to 4 per cent. oxalic acid, and 3 to 5 per cent. sulphuric acid, wash in a fresh warm bath charged with soda in order to entirely neutralise the acid which has remained in the goods, or else the wool would be dyed too deep a shade. In some cases hydrosulphite has proved a useful reducing agent; it can be easily prepared from ordinary bisulphite of soda in the following manner. Add 10 oz. ammonia (0.9 specific gravity) to a gallon of bisulphite of soda, 32 deg. Tw.; then add slowly under a brisk stirring 10 oz. zinc-dust, and let the entire mixture settle well, using only the clear solution. Treat the goods from fifteen to twenty minutes in a bath of 140 deg. F., to which first add at the boil 3/4 oz. acetic acid, 10 deg. Tw., per gallon water, and then 4 to 6 gallons clear hydrosulphite solution per 100 gallons liquor. Then rinse very well and dye in the usual manner; avoiding, however, too high a temperature. As on this class of goods dark shades are mostly dyed, the goods need only very rarely be stripped.
Bright Yellow.—Use 2 lb. Thioflavine S in a bath which contains 4 lb. Glauber's salt per 10 gallons of dye-liquor.
Good Yellow.—A very fine deep shade is dyed with 2-1/2 lb. Diamine Gold, and 24 lb. Diamine Fast Yellow A in the same way as the last. Here advantage is taken of the fact that while the Diamine Gold dyes the wool better than the cotton the Diamine Yellow dyes the cotton the deepest shade, and between the two a uniform shade of yellow is got.
Pale Gold Yellow.—Use a dye-liquor containing 4 lb. Glauber's salt in every 10 gallons, 2-1/2 lb. Diamine Fast Yellow A, 2 oz. Indian Yellow G, and 3-1/2 oz. Indian Yellow R. In this recipe we use in the two last dyes purely wool yellows, which dye the wool the same tint as the Fast Yellow A dyes the cotton.
Bright Yellow.—Use in the same way as the last 2-1/2 lb Diamine (p. 176) Fast Yellow B and 3 oz. Indian Yellow G.
Gold Orange.—Use as above 2 lb. Diamine orange G, 3-1/2 oz. Indian Yellow R, and 1-1/2 oz. Orange E N Z.
Deep Orange.—Use 2-1/2 lb. Diamine Orange D C, 6-1/2 oz. Orange E N Z, and 3-1/4 oz. Indian Yellow R.
Black.—Use 4-1/2 lb. Union Black S, 2 oz. Diamine Fast Yellow A, 5 oz. Naphthol Blue Black, 3-1/4 oz. Formyl Violet S 4 B, and 4 lb. Glauber's salt in 10 gallons dye-liquor.
The goods are treated at the boil in this bath for one hour, Italian cloths have frequently if not always to pass through a finishing process to give them lustre. This treatment, especially with blues and blacks, has a tendency to affect the shades, reddening them. With some dye the colour comes back on the goods becoming cold again, but with others this is not the case. If desired the goods may be subjected after dyeing to a treatment with alum or, better, bichromate of potash. The goods after being dyed are rinsed and then passed into a bath at a temperature of 140 deg. F., containing 3 lb. bichromate of potash and 1-1/2 to 2 oz. sulphuric acid. After being chromed in this for about half an hour they are well washed. This chroming thoroughly fixes the colour on the cotton and it will not change while being finished, either by crabbing, steaming or hot pressing.
Gold Brown.—Use 1-1/2 lb. Diamine Cutch, 6-1/2 oz. Diamine Fast Yellow B, 1 oz. each Union Black, Naphthol Blue Black and Azo Red A.
Walnut Brown.—A fine shade is got with 1-1/4 lb. Union Black S, 1-1/4 lb. Diamine Brown M, 3-1/4 oz. Diamine Fast Yellow B, 13 oz. Indian Yellow G, and 1 oz. Naphthol Blue Black. After dyeing the goods should be chromed with 3 lb. bichromate of potash and 2 oz. sulphuric acid.
Dark Blue.—A good full shade is got with 2-1/4 lb. Union Black S, 9-1/2 oz. Diamine Brilliant Blue G, 6-1/2 oz. Alkaline Violet (p. 177) C A, and 1/4 lb. Alkaline Blue F. Treatment in a bath of 1/2 lb. alum and 1/2 oz. soda at 130 deg. F. will fix the colour against finishing.
Silver Grey.—A fine grey can be got from 1-3/4 oz. Diamine Black B H, 1/2 oz. Diamine Orange B, 1/2 oz. Naphthol Blue Black, and 1/2 oz. Formyl Violet.
Navy Blue.—Use 1-1/4 lb. Union Black S, 3 lb. Diamine Black B H, 1/2 oz. Naphthol Blue Black, 1/2 lb. Formyl Violet S 4 B, and 2-1/2 oz. Alkaline Blue B.
Red Plum.—Use a dye-bath containing 2-1/2 lb. Oxydiamine Violet B and 3-1/4 oz. Formyl Violet S 4 B.
Dark Green.—A fine shade can be dyed in a bath containing 3 lb. Diamine Green B and 1-1/2 lb. Diamine Black H W.
Dark Slate.—Use 4 lb. Diamine Black H W, 2 oz. Naphthol Blue Black, and 3 oz. Azo Red A.
Sage.—Use a dye-bath containing 4 lb. Diamine Bronze G and 1-1/4 oz. Naphthol Blue Black.
Dark Brown.—A fine dark shade is got from 2-1/2 lb. Diamine Brown V, and 2 oz. Naphthol Blue Black.
Peacock Green.—Use 3-3/4 lb. Diamine Steel Blue L, 13 oz. Diamine Fast Yellow B, 14-1/2 oz. Thiocarmine R, and 2-1/4 oz. Indian Yellow G in a bath of 4 lb. Glauber's salt per gallon of dye-liquor.
Dark Sea Green.—Use 9 oz. Diamine Steel Blue L, 3-3/4 oz. Diamine Fast Yellow B, 1/2 oz. Diamine Orange G, 1-1/4 oz. Naphthol Blue Black, and 3/4 oz. Indian Yellow G.
Dark Brown.—Use 1 lb. Diamine Orange B, 1 lb. Diamine Fast Yellow B, 13-3/4 oz. Union Black S, 1 lb. Diamine Brown M, and 1/2 lb. Indian Yellow G. Fix in an alum bath after dyeing.
Dark Stone.—Use 1/2 lb. Diamine Orange B, 3-3/4 oz. Union Black, 1/4 oz. Diamine Bordeaux B, 1-1/2 oz. Azo Red A, and 3/4 oz. Naphthol Blue Black.
Black.—A very fine black can be got from 3-1/2 lb. Oxydiamine Black R M, 2 lb. Union Black S, 9-1/2 oz. Naphthol Blue Black and (p. 178) 4 oz. Formyl Violet S 4 B, chroming after dyeing as described above.
Dark Grey.—A fine bluish, shade of grey is got from 7 oz. Diamine Black B H, 2-1/4 oz. Diamine Orange G, 2-1/2 oz. Naphthol Blue Black, and 1 oz. Orange E N Z.
Dark Blue.—A fine shade is got by using 2 lb. Diamine Black B H, 1/2 lb. Diamine Black H W and 3-1/2 oz. Alkaline Blue 6 B.
Drab.—Use 3-1/2 oz. Diamine Orange B, 3/4 oz. Union Black, 1/8 oz. Diamine Bordeaux B, 3/4 oz. Azo Red A, and 1/4 oz. Naphthol Blue Black.
Plum.—Use 2-1/2 lb. Diamine Violet N, 9-1/2 oz. Union Black, and 1 lb. Formyl Violet S 4 B.
Bright Yellow.—Use a dye-bath containing 4 lb. Thioflavine S, 2 lb. Naphthol Yellow S, 10 lb. Glauber's salt, and 2 lb, acetic acid.
Pink.—Use 1/6 oz. Diamine Rose B D, 1/4 oz. Diamine Scarlet B, 1/2 oz. Rhodamine B and 20 lb. Glauber's salt.
Scarlet.—A fine shade is got from 1-1/2 lb. Diamine Scarlet B, 1/2 oz. Diamine Red 5 B and 20 lb. Glauber's salt.
Orange.—Use a dye-bath containing 3-1/2 lb. Diamine Orange G, 14-1/2 oz. Tropaeoline O O, and 2-3/4 oz. Orange extra.
Sky Blue.—Use 1-1/2 oz. Diamine Sky Blue and 1-1/4 oz. Alkaline Blue B.
Bright Blue.—A fine shade similar to that formerly known as Royal Blue is got by using 1-1/2 lb. Diamine Brilliant Blue G, and 9-1/4 oz. Alkaline Blue 6 B.
Maroon.—Use 3 lb. Diamine Bordeaux B, 2 lb. Diamine Violet N, and 3-1/4 oz. Formyl Violet S 4 B.
Green.—A fine green similar in shade to that used for billiard-table cloth is got from 2 lb. Diamine Fast Yellow B, 2 lb. Diamine Steel Blue L, 14-1/2 oz. Thiocarmine R and 7-1/4 oz. Indian Yellow G.
Gold Brown.—A fine brown is got from 3 lb. Diamine Orange B, (p. 179) 1/2 lb. Union Black, 2-1/2 oz. Diamine Brown, 3/4 oz. Naphthol Blue Black, and 1/2 lb. Indian Yellow G.
Navy Blue.—Use 3-1/4 lb. Diamine Black B H, 1-1/2 lb. Diamine Brilliant Blue G, and 1/2 lb. Alkaline Blue.
Fawn Drab.—A fine shade is got by dyeing in a bath containing 6-3/4 oz. Diamine Orange B, 1-3/4 lb. Union Black, 1/4 oz. Naphthol Blue Black, 1/4 oz. Diamine Bordeaux B, and 1 oz. Azo Red A.
In all these colours the dye-baths contain Glauber's salt at the rate of 4 lb. per 10 gallons.
Dark Brown.—2-1/2 lb. Diamine Orange B, 13 oz. Diamine Bordeaux B, 1-1/2 lb. Diamine Fast Yellow B, 1-3/4 lb. Union Black, and 3-1/2 oz. Naphthol Black.
Drab.—1-3/4 lb. Diamine Fast Yellow R, 3-1/4 oz. Diamine Bordeaux B, 2-1/2 oz. Union Black, 1/2 oz. Naphthol Blue Black, and 1-1/4 oz. Indian Yellow G.
Dark Blue.—Use in the dye-bath 4-1/4 lb. Diamine Dark Blue B, 1-1/2 lb. Diamine Brilliant Blue G, 3/4 lb. Formyl Violet S 4 B, and 5 oz. Naphthol Blue Black.
Blue Black.—Use 3-1/4 lb. Union Black S, 1-1/2 lb. Oxydiamine Black B M, 6-1/2 oz. Naphthol Blue Black, and 1/4 lb. Formyl violet S 4 B.
Dark Walnut.—2-3/4 lb. Diamine Brown M, 1-1/2 lb. Union Black S, and 11-1/4 oz. Indian Yellow G.
Peacock Green.—Use in the dye-bath 3-1/2 lb. Diamine Black H W, 5-1/6 oz. Diamine Fast Yellow B, 1-1/2 lb. Thiocarmine R, and 1-1/6 oz. Indian Yellow G.
Slate Blue.—Use in the dye-bath 6-1/2 oz. Diamine Catechine B, 4-3/4 oz. Diamine Orange B, 2-1/2 oz. Union Black, 2-3/4 oz. Orange E N Z, and 1-3/4 oz. Naphthol Blue Black.
Dark Sage.—A good shade is dyed with 1 lb. Diamine Orange B, 6-1/2 oz. Union Black, 1-3/4 oz. Diamine Brown M, 3-1/4 oz. Azo Red A, and 2-1/4 oz. Naphthol Blue Black.
Navy Blue.—Use 2 lb. Diamine Dark Blue B, 1-1/4 lb. Lanacyl (p. 180) Violet B, and 7 oz. Naphthol Blue Black.
Bronze Green.—A good shade is dyed with 2 lb. Diamine Orange B, 5 oz. Diamine Brown N, 3/4 lb. Union Black S, 1 lb. Indian Yellow G, and 2 oz. Naphthol Blue Black.
Black.—Use 2-1/2 lb. Oxydiamine Black B M and 1-1/2 lb. Naphthylamine Black 6 B. Another recipe, 2-1/4 lb. Oxydiamine Black B M, 1 lb. Diamine Brown M, 1 lb. Orange E N Z, and 2 oz. Naphthol Blue Black.
Dark Brown.—Use 1-1/2 lb. Oxydiamine Black B M, 15-1/2 oz. Diamine Brown M, 1-3/4 lb. Indian Yellow G, and 2-3/4 oz. Naphthol Blue Black. Another combination, 1-1/2 lb. Oxydiamine Black B M, 1-1/2 lb. Orange E N Z, 1 lb. Indian Yellow G, and 5 oz. Naphthol Blue Black.
Scarlet.—3 lb. Benzopurpurine 4 B, 3/4 oz. Ponceau 3 R B, and 1/2 lb. Curcumine S.
Crimson.—1/2 lb. Congo Corinth G, 2 lb. Benzopurpurine 10 B, and 1/2 lb. Curcumine S.
Bright Blue.—2 lb. Chicago Blue 6 B, 3 oz. Alkali Blue 6 B, 1-1/2 oz. Zambesi Blue R X. After dyeing, rinse and develop in a bath of 8 oz. sulphuric acid in 10 gallons water, then rinse well.
Dark Blue.—2-1/2 lb. Columbia Fast Blue 2 G, 3 oz. Sulphon Azurine D, 3 oz. Alkali Blue 6 B. After dyeing, rinse and develop in a bath of 8 oz. sulphuric acid in 20 gallons of water.
Orange.—9 oz. Congo Brown G, 1-1/2 lb. Mikado Orange 4 R O, and 1-1/2 oz. Mandarine G.
Dark Green.—2 lb. Columbia Green, 1/2 lb. Sulphon Azurine D, 1/2 lb. Zambesi Blue B X, 1-1/2 oz. Curcumine S.
Black.—4 lb. Columbia Black F B, and 2 lb. Wool Black 6 B.
Pale Sage Green.—5 oz. Zambesi Black D, 3/4 lb. Chrysophenine G, and 1-1/2 lb. Curcumine S.
Slate.—1/2 lb. Zambesi Black D, 3/4 oz. Zambesi Blue R X, (p. 181) 1/2 oz. Mikado Orange 4 R O, and 1-1/2 oz. Acid Violet 6 B.
Dark Grey.—1 lb. Columbia Black F B, 3 oz. Zambesi Black B, and 3/4 oz. Sulphon Azurine D.
Drab.—1-1/2 oz. Zambesi Black D, 3/4 oz. Mandarine G extra, 1/4 oz. Curcumine extra, and 3 oz. Mikado Orange 4 R O.
Brown.—5 oz. Zambesi Black D, 3/4 oz. Mandarine G extra, 1-1/2 oz. Orange T A, and 2 oz. Mikado Orange 4 R O.
Nut Brown.—3/4 lb. Congo Brown G, 1/4 lb. Chicago Blue R W, and 3/4 lb. Mikado Orange 4 R O.
Dark Brown.—1 lb. Congo Brown G, 1-1/2 lb. Benzopurpurine 4 B, 1-1/2 lb. Zambesi Black F, and 1/2 lb. Wool Black 6 B.
Stone.—1 oz. Zambesi Black D, 1/4 oz. Mandarine G, 1/4 oz. Curcumine extra, and 1-1/4 oz. Mikado Orange 4 R O.
Slate Green.—3 oz. Zambesi Black D, 1-1/2 oz. Guinea Green B.
Sage Brown.—1/2 lb. Zambesi Black D, 1-1/2 oz. Mandarine G extra, 3 oz. Curcumine extra, 3 oz. Acid Violet 6 B, 6 oz. Mikado Orange 4 R O, and 4-1/2 oz. Curcumine S.
Cornflower Blue.—3 oz. Chicago Blue 4 R, 1/4 lb. Zambesi Blue R X, 1/4 lb. Acid Violet 6 B, and 3/4 oz. Zambesi Brown G.
Dark Brown.—1-1/2 lb. Brilliant Orange G, 1/2 lb. Orange T A, 1 lb. Columbia Black F B, and 1/4 lb. Wool Black 6 B.
Dark Blue.—2 lb. Chicago Blue R W, 1 lb. Zambesi Blue R X, 1/2 lb. Columbia Black F B, 10 oz. Guinea Green B, and 1/2 lb. Guinea Violet 4 B.
The Janus dyes may be used for the dyeing of half wool union fabrics. The best plan of working is to prepare a bath with 5 lb. of sulphate of zinc. In this the goods are worked at the boil for five minutes, then there is added the dyes (previously dissolved in water), and the working continued for a quarter of an hour; then there is added 20 lb. Glauber's salt and the working at the boil continued for one hour, (p. 182) at the end of which time the dye-bath will be fairly well exhausted of colour. The goods are now taken out and put into a fixing bath of sumac or tannin, in which they are treated for fifteen minutes. To this same bath there is next added tartar emetic and 1 lb. sulphuric acid, and the working continued for a quarter of an hour; then the bath is heated to 160 deg. F., when the goods are lifted, rinsed and dried. In the recipes the quantities of dyes, sumac or tannin, and tartar emetic only are given, the other ingredients and processes are the same in all.
Dark Blue.—2-1/4 lb. Janus Dark Blue B, and 1/2 lb. Janus Green B, in the dye-bath; 16 lb. sumac extract and 2 lb. tartar emetic in the fixing bath.
Blue Black.—3-1/2 lb Janus Black I and 1/3 lb. Janus Black I I in the dye-bath, and 16 lb. sumac extract and 2 lb. tartar emetic in the fixing bath.
Dark Brown.—2-1/2 lb. Janus Brown B, 1 lb. Janus Black I, 3-1/2 oz. Janus Yellow G, and 5 oz. Janus Red B in the dye-bath, with 16 lb. sumac extract and 2 lb. tartar emetic in the fixing bath.
Drab.—1-1/2 oz. Janus Yellow R, 1/4 oz. Janus Red B, 1 oz. Janus Blue R, and 1/4 oz. Janus Grey B B, in the dye-bath, and 4 lb. sumac extract and 1 lb. tartar emetic in the fixing-bath.
Grey.—5 oz. Janus Blue R, 3-1/4 oz. Janus Grey B, 1-1/2 oz. Janus Yellow R, and 1/4 oz. Janus Red B in the dye-bath, with 4 lb. sumac extract and 1 lb. tartar emetic in the fixing-bath.
Nut Brown.—1 lb. Janus Brown R, 8 oz. Janus Yellow R, and 1-1/2 oz. Janus Blue B in the dye-bath, and 8 lb. sumac extract and 1 lb. tartar emetic in the fixing-bath.
Walnut Brown.—3 lb. Janus Brown B, 1 lb. Janus Red B, 1 lb. Janus Yellow R, and 1-1/4 oz. Janus Green B in the dye-bath, with 8 lb. sumac extract and 1 lb. tartar emetic in the fixing-bath.
Crimson.—2-1/2 lb. Janus Red B, and 8 oz. Janus Claret Red B (p. 183) in the dye-bath, with 8 lb. sumac extract and 1 lb. tartar emetic in the fixing-bath.
Dark Green.—1-1/2 lb. Janus Green B, 1 lb. Janus Yellow R, and 8 oz. Janus Grey B in the dye-bath, with 4 lb. sumac extract and 1-1/4 lb. tartar emetic in the fixing-bath.
Chestnut Brown.—1 lb. Janus Brown R and 1 lb. Janus Yellow R in the dye-bath, and 8 lb. sumac extract and 1 lb. tartar emetic in the fixing-bath.
Before the introduction of the direct dyes the method usually followed, and indeed is now to a great extent, is that known as Cross-dyeing. The goods were woven with dyed cotton threads of the required shade and undyed woollen threads; after weaving and cleansing the woollen part of the fabric was dyed with acid dyes such as Acid Magenta, Scarlet R, Acid Yellow, etc. In such methods care has to be taken that the dyes used for dyeing the cotton are such as stand acids, a by no means easy condition to fulfil at one time. Many of the direct dyes are fast to acids and therefore lend themselves more or less readily to cross-dyeing. For details of the dyes for cotton reference may be made to the sections on dyeing with the direct colours in the companion volume to this book on Dyeing of Cotton Fabrics.
Shot Effects.—A pleasing kind of textile fabric which is now made and is a great favourite for ladies' dress goods is where the cotton of a mixed fabric is thrown up to form a figured design. It is possible to dye the two fibres in different colours and so produce a variety of shot effects. These latter are so endless that it is impossible here to enumerate all that may be produced. It will have to suffice to lay down the lines which may be followed to the best advantage, and then give some recipes to illustrate the remarks that have been made. The best plan for the production of shot effects upon union fabrics is to take advantage of the property of certain acid dyes which dye only (p. 184) the wool in an acid bath and of many of the direct colours which will only dye the cotton in an alkaline bath. The process, working on these lines, becomes as follows: The wool is first dyed in an acid bath with the addition of Glauber's salt and bisulphate of soda or sulphuric acid, the goods are then washed with water containing a little ammonia to free them from the acid and afterwards dyed with the direct colour in an alkaline bath.
Fancy or the mode shades are obtained by combining suitable dye-stuffs.
If the cotton is to be dyed in light shades it is advantageous to dye on the liquor at 65 deg. to 80 deg. F., with the addition of 3-1/4 oz. Glauber's salt, and from 20 to 40 grains borax per gallon water. The addition of an alkali is advisable in order to neutralise slight quantities of acid which may have remained in the wool, and to prevent the dye-stuff from dyeing the cotton too deep a shade.
Very light shades can also be done on the padding machine. The dye-stuffs of Group (2), which have been previously enumerated, do not stain the wool at all or only very slightly and are therefore the most suitable. Less bright effects can be produced by simply dyeing the goods in one bath. The wool is first dyed at the boil with the wool dye-stuff in a neutral bath, the steam is then shut off and the cotton dyed by adding the cotton dye-stuff to the bath and dyeing without again heating. By passing the goods through cold water to which some sulphuric or acetic acid is added the brightness of most effects is greatly increased.
Gold and Green.—First bath, 1 lb. Cyanole extra, 7-1/4 oz. Acid Green, 1-1/2 oz. Orange G G, and 10 lb. bisulphate of soda; work at the boil for one hour, then lift and rinse well. Second bath, 4 lb. Diamine Orange G and 15 lb. Glauber's salt; work in the cold or at a lukewarm heat. Third bath at 120 deg. F., 4 oz. Chrysoidine and 1/4 oz. Safranine.
Black and Blue.—First bath, 3-1/2 lb. Naphthol Black 3 B and (p. 185) 10 lb. bisulphate of soda. Second bath, 2 lb. Diamine Sky Blue and 13 lb. Glauber's salt. Third bath, 6-1/2 oz. New Methylene Blue N; work as in the last recipe.
Green and Claret.—First bath, 3-1/2 lb. Naphthol Red C and 10 lb. bisulphate of soda. Second bath, 2 lb. Diamine Sky Blue F F, 1-1/4 lb. Thioflavine S, and 15 lb. Glauber's salt.
Gold Brown and Blue.—First bath, 2-1/2 oz. Orange E N Z, 1-1/2 oz. Orange G G, 1/4 oz. Cyanole extra, and 10 lb. bisulphate of soda. Second bath, 14 oz. Diamine Sky Blue F F and 15 lb. Glauber's salt.
Dark Brown and Blue.—First bath, 1/2 lb. Orange G G, 1-1/2 oz. Orange E N Z, 1-1/2 oz. Cyanole extra and 10 lb. bisulphate of soda. Second bath, 12 oz. Diamine Sky Blue F F and 15 lb. Glauber's salt.
Black and Green Blue.—First bath, 3 lb. Orange G G, 1 lb. Brilliant cochineal 4 R, 1 lb. Fast Acid Green B N, and 10 lb. Glauber's salt. Second bath, 1-3/4 lb. Diamine Sky Blue F F, 3-1/4 lb. Thioflavine S, and 15 lb. Glauber's salt.
We may here note that in all the above recipes the second bath (for dyeing the cotton) should be used cold or at a lukewarm heat, and as strong as possible. It is not completely exhausted of colour, only about one-half going on the fibre. If kept as a standing bath this feature should be borne in mind and less dye-stuff used in the dyeing of the second and following lots of goods.
Blue and Gold Yellow.—3 lb. Diamine Orange G, 13 oz. Naphthol Blue G, 14-1/2 oz. Formyl Violet S 4 B, and 15 lb. Glauber's salt; work at just under the boil.
Brown and Blue.—-1 lb. Diamine Steel Blue L, 9-1/2 oz. Diamine Sky Blue, 1 lb. Orange E N Z, 1 lb. Indian Yellow G, 1-3/4 oz. Naphthol Blue Black and 15 lb. Glauber's salt. Work at 170 deg. to 180 deg. F.
In these two last recipes only one bath is used, all the dyes (p. 186) being added at once. This is possible if care be taken that dye-stuffs are used which will dye wool and not cotton from neutral baths and dyes which dye cotton better than wool. The temperature should also be kept below the boil and carefully regulated as the operation proceeds and the results begin to show themselves.
Grey and Orange.—First bath, 3 oz. Orange extra, 1-1/4 lb. Cyanole extra, 11 lb. Azo Red A, and 10 lb. bisulphate of soda. Second bath, 5 oz. Diamine Orange D C and 3 oz. Diamine Fast Yellow B.
Green and Red.—First bath, 2 lb. Croceine A Z and 10 lb. Glauber's salt. Second bath, 1 lb. Diamine Sky Blue F F, 1/2 lb. Thioflavine S, and 15 lb. Glauber's salt.
Brown and Violet.—First bath, 3/4 lb. Orange extra, 3/4 lb. Cyanole extra, and 10 lb. bisulphate of soda. Second bath, 5 oz. Diamine Brilliant Blue G and 15 lb. Glauber's salt.
Black and Yellow.—First bath, 7 lb. Naphthol Black B, 1/2 lb. Fast Yellow S, and 10 lb. bisulphate of soda. Second bath, 3 lb. Diamine Fast Yellow A and 15 lb. Glauber's salt.
Black and Pink.—Black as above. Pink with Diamine Rose B D (see above).
Green and Buff.—First bath, 1/4 lb. Orange extra, 3/4 oz. Fast Yellow S and 10 lb. bisulphate of soda. Second bath, 3/4 lb. Diamine Sky Blue F F, 1/2 lb. Thioflavine S, and 15 lb. Glauber's salt.
Orange and Violet.—First bath, 9 oz. Orange extra and 10 lb. bisulphate of soda. Second bath, 3/4 lb. Diamine Violet N and 10 lb. Glauber's salt.
Black and Blue.—First bath, Naphthol Black, as given above. Second bath, Diamine Sky Blue, as given above.
Black and Yellow.—Add first 1 lb. Wool Black 6 B and 10 lb. Glauber's salt, then when the wool has been dyed add 2 lb. Curcumine S to dye the cotton in the same bath.
Green and Red.—Dye the wool by using 3 lb. Guinea Green B, (p. 187) 1/4 lb. Curcumine extra, and 10 lb. Glauber's salt, then add to the bath 3/4 lb. Erika B N and 3/4 lb. Congo Corinth G.
Orange and Blue.—Dye the wool first with 1-1/4 lb. Mandarine G, 2 oz. Wool Black 6 B, and 10 lb. Glauber's salt; then the cotton with 2 lb. Columbia Blue G.
Blue and Orange.—Dye the wool first with 3/4 lb. Guinea Violet B, 3/4 lb. Guinea Green B, and 10 lb. Glauber's salt; then dye the cotton with 2 lb. Mikado Orange 4 R O.
Green and Orange.—Dye the wool with 3 lb. Guinea Green B, 1/4 lb. Curcumine extra and 10 lb. Glauber's salt, then dye the cotton in the same bath with 1-1/2 lb. Mikado Orange 4 R O.
CHAPTER VI. (p. 188)
DYEING OF GLORIA.
Gloria is a material which during the last few years has become of considerable importance as furnishing a fine lustrous fabric at a comparatively low price. The perfection to which the art of dyeing has attained and the facilities now available to the dyer, enable this to be produced more beautiful than ever, and naturally an increased demand for it as a dress fabric has developed.
Gloria is woven from the two fibres, wool and silk, of a fine texture to enable it to be used in the place of a silk fabric. Formerly it was usually woven with the wool and silk yarns already dyed, especially when a "shot" effect was to be produced, this being done by a twill weave of the fabric and by the use of yarns of two very different colours in the case of "shot" fabrics. By the introduction of dye-stuffs derived from coal tar the cloth is now dyed after being woven, care being taken to choose those which will dye the two fibres equally well when self-shades are wanted, or those which will dye one fibre better than the other, and thus allow a woven piece of gloria to be dyed of two different colours. As most dyers know, the most brilliant effects are obtained when the finished woven piece can be dyed. Then all the grease and dirt which has become attached to it during the operations of spinning the yarns and weaving the pieces can be removed before dyeing, thus leaving the fabric in a perfectly clean condition. Thus no after cleansing is required, whereas when the (p. 189) fibres are dyed in the yarn the goods must be cleansed after weaving to free them from dirt, and such cleaning has a somewhat deleterious effect upon the brilliancy of the colour of the finished fabric, more especially in the case of light colours.
Gloria may be in one colour only, a self-colour as it is called; this case is comparatively simple, the only care that is required being to select dyes which have an equal affinity for the two fibres or which give but slightly different shades. Still, some good effects are obtained when dyes are used which dye the silk and wool different colours but give the combined effect of a self-colour. Or the fibre may be purposely dyed in two different colours in some cases to give the "shot" effect. This is much more troublesome, but with a little care can be carried out with good results. The dyes available for dyeing gloria may be classified, according to their behaviour in regard to their dyeing of the two fibres, into three groups as follows:—
Group A.—Those which will dye the two fibres of equal shade.
Group B.—Those which will dye the wool at boiling heat more readily than the silk.
Group C.—Those which will dye the silk only in a cold bath.
Group A consists of those dyes which can be used in dyeing self-colours on gloria from acid baths. It includes Alkali Blue, Naphthylamine Blacks, Naphthol Green B, Indian Yellow, Croceine A Z, Croceine Orange, Orange R, Brilliant Croceine M, Rose Bengale, Thiocarmine R, Soluble Blue, Formyl Violet S 4 B, Acid Green, Croceine Orange G, Carmoisin, Acid Violet 5 B, Fast Acid Violet 10 B, Fast Green Bluish, Rhodamine, Silk Blue, Victoria Black, Archil, Turmeric, Safranine, Auramine, Quinoline Yellow, Azoflavine, Victoria Blue and Bismarck Brown.
Group B comprises those dye-stuffs which in a boiling acid (p. 190) bath dye the wool deeper than the silks, in other words have more affinity for the wool than the silk, Tropaeoline O, Acid Magenta, Indigo Extract, Phloxine, Naphthol Yellow, Orange G G, Scarlet S, Azo Red A, Eosines, Thiocarmine R, Naphthol Black B B, New Victoria Black Blue, Erythrosine, and Roccelline.
The silk becomes tinted to a more or less extent when in such a bath, but often the colour is readily removed either by subsequent passage through boiling water or through hot soap liquor. A very good clearing can be effected by the use of a bath of acetate of ammonia. Naphthol Yellow, for instance, only imparts a very faint shade of yellow when thus dyed, and this is easily removed by boiling-water treatment.
Group C.—Those dye-stuffs which will dye the silk more readily in a cold bath than the wool. These comprise most of the basic dyes, such as Thioflavine T, Safranine, Brilliant Green, Methyl Violet, Magenta, New Methylene Blue, Bismarck Brown, Rose Bengale, Phloxine, Acid Greens, Formyl Violet S 4 B, Rhodamine, Solid Blue, etc.
Gloria may be dyed either by a one-bath or two-bath process, and either one or two colours, as may be required. In both cases advantage may be taken of the different affinities of the two fibres for the dye-stuffs used, as, for instance, the silk may be dyed brown, the wool olive by using a mixture of Acid Yellow, Indigo extract and Orange G. Indigo extract, Cochineal, Acid Magenta, Picric acid, Naphthol Yellow, and Tartrazine dye the wool only at the boil.
The following recipes will serve to illustrate the foregoing remarks and show how this important fabric may be dyed:—
Deep Gold.—The dye-bath is made from 2 lb. Indian Yellow, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, dyed at the boil. In this and following recipes the quantities are for 100 lb.
Orange.—The dye-bath is made with 2 lb. Indian Yellow, 19 lb. (p. 191) Glauber's salt, and 2 lb. sulphuric acid.
Scarlet.—Make the dye-bath with 2 lb. Scarlet 3 R, 10 lb. Glauber's salt, and 2 lb. sulphuric acid. Another scarlet is got from 2 lb. sulphuric acid. Another scarlet is got from 2 lb. Croceine Scarlet 3 B, 2 lb. sulphuric acid, and 10 lb. Glauber's salt; by using the 5 B Scarlet a bluer shade can be dyed. Azo Cochineal also dyes a fine scarlet on gloria.
Crimson.—Make the dye-bath with 1 lb. Carmoisin B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid. The 7 B Croceine Scarlet also dyes a fine crimson of a more fiery tone than the last, while 2-1/2 lb. Azo Fuchsine G dyes a bluer shade of crimson.
Rose.—A fine rose is obtained with 2 lb. Rhodamine B, 10 lb. Glauber's salt, and a little acetic acid. 1 lb. Phloxine dyes a fine deep rose; the silk comes out a paler colour than the wool, but the general effect is good.
Deep Maroon.—Make the dye-bath from 1-1/2 lb. Croceine A Z, 1/2 lb. Indian Yellow, 1/4 lb. Formyl Violet S 4 B, 10 lb. bisulphate of soda. Enter the goods, work at the boil for an hour, then cool down to 120 deg. F., enter an equal quantity of dye-stuff and work for an hour longer.
Pale Maroon.—Make the dye-bath with 3 lb. Azo Bordeaux, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Black.—Prepare the dye-bath with 5 lb. Naphthylamine Black D, 1 lb. Acid Green B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid; work at the boil for twenty minutes, then allow to cool to 120 deg. or 130 deg. F., then work an hour longer. Another black can be dyed in a similar way from 5 lb. Victoria Black B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Violet.—Use 2 lb. Acid Violet 5 B, or 2 lb. Formyl Violet S 4 B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid. Fast Acid Violet 10 B gives a bluer shade than the above.
Green.—Make the dye-bath with 2 lb. Acid Green G G, 10 lb. (p. 192) Glauber's salt, and 2 lb. sulphuric acid, working at the boil. This gives a bright yellow shade of green; a bluer shade can be got from Acid Green 6 B or Acid Green B, while Fast Green Bluish gives very blue greens.
Coeruleum Blue.—Dye with 3/4 lb. Silk Blue B E S, 10 lb. Glauber's salt, and 2 lb. sulphuric acid; this gives a very fine bright blue.
Deep Indigo Blue.—Dye with 4-1/2 lb. Solid Blue R, 2 lb. Thiocarmine R paste, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Deep Violet Brown.—Dye with 3 lb. Croceine A Z, 1-1/4 lb. Indian Yellow, 1-3/4 lb. Formyl Violet S 4 B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid for an hour at the boil, and for an hour at 120 deg. F.
Blue Black.—Make the dye-bath with 5 lb. New Victoria Blue Black, 10 lb. Glauber's salt, and 2 lb. sulphuric acid, working at the boil. Another plan is to use 5 lb. Naphthylamine Black 4 B and 10 lb. bisulphate of soda.
Dark Grey.—Prepare a dye-bath with 3 lb. Naphthol Black 3 B, 4 lb. Naphthol Green B, 1 lb. Amaranth, 10 lb. Glauber's salt, 8 lb. copperas, and 3 lb. sulphuric acid, working at the boil for an hour and then rinsing in water to which a little acetate of ammonia has been added. The silk is dyed grey and the wool a black.
Brown.—A fine yellow brown shot with lilac is obtained by first dyeing in a bath of 5 lb. Naphthol Yellow, 10 lb. Glauber's salt and 2 lb. sulphuric acid. Wash in hot water, then dye with 2-1/2 lb. Solid Blue P G, 1-1/2 oz. Methyl Violet B O, and 5 lb. acetic acid in the cold.
Wool, Orange; Silk, Pale Green.—Dye the wool with 1-1/2 lb. Orange G G, 6 oz. Naphthol Green B, 2-1/2 oz. Naphthol Red C, 10 lb. bisulphate of soda, and 2 lb. sulphuric acid; and the silk with 1/2 lb. Milling Yellow and 1/2 lb. Acid Green.
Wool, Black; Silk, Light Grey.—Dye in a bath with 5 lb. (p. 193) Anthracene Acid Black S T, 4-1/2 oz. Fast Yellow S, 10 lb. bisulphate of soda, and 2 lb. sulphuric acid. The silk is cleaned by boiling for ten minutes in a soap bath.
Wool, Bright Red; Silk, Blush Rose.—The gloria silk is dyed in a bath of 3 lb. Naphthol Red O, 10 lb. bisulphate of soda, and 2 lb. sulphuric acid. After dyeing, soap for ten minutes.
Wool, Black; Silk, Green.—Dye the wool in a bath containing 5 lb. Anthracene Acid Black S T, 5 oz. Fast Yellow S, 2 lb. oxalic acid, 10 lb. Glauber's salt, and 15 lb. acetic acid. Work the goods in this at the boil for an hour, then lift, add 3/4 lb. bichromate of potash, and boil for twenty minutes longer. Clean the silk by boiling in a bath of soap for twenty minutes, then dye in a cold bath containing 1 lb. Thioflavine T and 1 lb. Brilliant Green.
Wool, Dark Maroon; Silk, Pale Blue.—After the manner described in the first recipe, dye the wool with 1 lb. Orange G G, 3 lb. Naphthol Green B, 2 lb. Brilliant Cochineal 2 R, 10 lb. bisulphate of soda, and 2 lb. sulphuric acid. Dye the silk with 1-1/2 lb. Pure Blue O T.
Wool, Violet; Silk, Green.—Make the dye-bath with 1 lb. Acid Violet 4 B, 9 oz. Indigotine extra, 10 lb. bisulphate of soda, and 2 lb. sulphuric acid. The dyeing is carried on at the boil until the bath is exhausted of colour, whereupon the goods are well rinsed in water. They are next soaped at 160 deg. F. for ten minutes in a liquor containing 1/2 oz. soap per gallon, then rinsed. Next a dye-bath is made with 1 lb. Acid Green, 8 oz. Milling Yellow O, and 1 lb. acetic acid, the goods being treated in this in the cold until the desired shade is obtained, then lifted, rinsed and dried.
Violet and Pink.—A fine effect of violet shot with pink is obtained by dyeing in a bath of 1-1/2 lb. Indigo extract, 1/2 lb. Rhodamine B, 10 lb. Glauber's salt, and 2 lb. sulphuric acid.
Brown Olive and Green is dyed in a bath made with 1 lb. (p. 194) Quinoline Yellow, 1 lb. Azo Fuchsine G, 1/4 lb. Fast Green Bluish, 10 lb. Glauber's salt, and 2 lb. sulphuric acid. By using about half the above quantities of dye-stuffs a drab effect shot with green can be obtained.
Crimson and Green.—The first bath is made from 4 lb. Azo Red A and 10 lb. bisulphate of soda, worked for an hour at the boil; then treat in a weak bath of acetate of ammonia; and dye the silk in a cold bath of 2 oz. Solid Green Crystals, 1/4 lb. Thioflavine T, and 5 lb. acetic acid.
Violet and Pink.—Dye in a bath of 1-1/4 lb. Indigo extract, 10 lb. Glauber's salt and 2 lb. sulphuric acid.
Brown and Pink.—This is dyed in a bath made from 1-1/4 lb. Fast Yellow, 5 oz. Rhodamine B, 1/4 lb. indigo extract, 10 lb. Glauber's salt, and 2 lb. sulphuric acid. The silk dyes a pale pink while the general effect is that of a fine fawn brown with a reddish shot effect.
Dark Green and Pale Crimson.—This is done in two baths, the first is made with 8 lb. Naphthol Green B, 10 lb. Glauber's salt, 3 lb. sulphuric acid, and 7 lb. copperas, working at the boil; then treat with hot water and dye in a fresh bath with 6 oz. Safranine Prima and 5 lb. acetic acid in the cold. The combined effect of the two is that of a brown shot with green.
Orange and Green.—This gives a splendid shot effect and is dyed as follows. Work for an hour at the boil, for thirty minutes in a bath of boiling water, then enter into a cold bath of 5 oz. Thioflavine T, 3 oz. Brilliant Green, and 3 lb. acetic acid; work for thirty minutes, or until shade is obtained.
Orange and Blue.—Use first dye-bath as in the last, then, after washing in hot water, dye in a bath of 2 oz. New Methylene Blue N, and 3 lb. acetic acid.
Silk, Sky Blue; Wool, Drab.—Make a dye-bath with 20 lb. acetic acid, 3/4 oz. Indigotine, 3 oz. Fast Yellow extra and 2 oz. Azo (p. 195) Fuchsine G. Work at the boil for one hour at 100 deg. F., then pass into a bath of 3/4 oz. Turquoise Blue B B, and 2 lb. acetic acid, working for half an hour at 80 deg.
Silk, Pink; Wool, Pale Blue.—Make a dye-bath with 15 lb. acetic acid and 4-1/2 oz. Indigotine. Work at the boil for an hour, then pass into a bran bath as before; next enter into a dye-bath at 80 deg. to 90 deg. of 3/4 oz. Brilliant Rhoduline R B, 1-1/2 oz. Auramine I I, and 2 lb. acetic acid.
Silk, Green; Wool, Dark Crimson.—The first bath is made from 3 lb. Azo Fuchsine G, 1 lb. Indian Yellow G and 20 lb. acetic acid; then follows the bran and the final dye-bath, which is made from 1-1/2 oz. Imperial Green G I, and 2 lb. acetic acid.
Silk, Orange; Wool, Black.—A dye-bath is made from 2 lb. Indigotine, 2 lb. Indian Yellow G, 1/2 lb. Rhodamine G, and 20 lb. acetic acid. Work at the boil for one hour; then lift, wash and dry.
Silk, Light Green; Wool, Dark Blue.—Make a dye-bath from 1/2 lb. Azo Fuchsine G, 2 lb. Fast Light Green, and 20 lb. acetic acid. Work at the boil to shade; then lift, wash and dry.
Silk, Yellow; Wool, Terra Cotta.—A dye-bath is made from 1-1/2 oz. Indigotine, 3/4 lb. Azo Fuchsine G, 9 oz. Indian Yellow R, and 20 lb. acetic acid. Work at the boil for one hour; then lift, wash and dry.
Silk, Light Sea Green; Wool, Pale Sage.—Make the dye-bath with 1/2 lb. Fast Yellow extra, 3 oz. Azo Fuchsine G, 1-1/2 oz. Fast Green bluish, and 20 lb. acetic acid. Work as in the last recipe.
Silk, Light Green; Wool, Brown.—Make the dye-bath with 1 lb. Azo Fuchsine G, 2-1/2 lb. Fast Yellow extra, 1/2 lb. Fast Green bluish, and 20 lb. acetic acid. Work at the boil for one hour.
Silk, Pale Blue; Wool, Crimson.—Make a dye-bath with 2 lb. (p. 196) Azo Crimson L and 20 lb. acetic acid. Work at the boil for one hour, then pass into a bran bath for half an hour at 90 deg. F., and into another bath containing 1/2 lb. Turquoise Blue G, and 2 lb. acetic acid, at 90 deg. F., for half an hour; then wash and dry.
Silk, Light Drab; Wool, Lavender.—Make the first dye-bath from 3 oz. Indigotine, 2 oz. Azo Fuchsine G, and 20 lb. acetic acid. After working an hour at the boil, pass into a bran bath for half an hour, afterwards topping with 1-1/2 oz. Bismarck Brown R and 2 lb. acetic acid.
CHAPTER VII. (p. 197)
OPERATIONS FOLLOWING DYEING: WASHING, SOAPING, DRYING.
After loose wool, or woollen yarns or piece goods of every description have been dyed, before they can be sent out for sale they have to pass through various operations of a purifying character. There are some operations through which cloths pass that have as their object the imparting of a certain appearance and texture to them, these are generally known as finishing processes, of these it is not intended here to speak, but only of those which precede them but follow on the dyeing operations.
These processes are usually of a very simple character, and common to most colours which are dyed, and here will be noticed the appliances and manipulations necessary in the carrying out of these operations.
Squeezing or Wringing.—It is advisable when the goods are taken out of the dye-bath to squeeze or wring them according to circumstances in order to express out all surplus dye-liquor, which can be returned to the dye-bath if needful to be used again. This is an economical proceeding in many cases, especially in working with many of the old tannin materials, like sumac, divi-divi, myrobalans, and the modern direct dyes, which during the dyeing operations are not completely extracted out of the bath, or in other words the dye-bath is not exhausted of colouring matter, and therefore it can be used again for another lot of goods simply by adding fresh material to make up for that absorbed by the first lot.
Loose wool and loose cotton are somewhat difficult to deal with by (p. 198) squeezing or wringing, but the material may be passed through a pair of squeezing rollers such as are shown in figure 24, which will be more fully dealt with later on.
Yarns in Hanks.—In the hand-dyeing process of hank-dyeing the hanks are wrung by placing one end of the hank on a wringing-horse placed over the dye-tub, and a dye-stick in the other end of the hank, giving two or three sharp pulls to straighten out the yarn and then twisting the stick round; the twisting of the yarns puts some pressure on the fibres thoroughly and uniformly squeezing out the surplus liquor from the yarn.
Hank-Wringing Machines.—Several forms of hank-wringing machines have been devised. One machine consists of a pair of discs fitted on an axle, these discs carry strong hooks on which the hanks are placed. The operator places a hank on a pair of the hooks. The discs revolve and carry round the hank, during the revolution the hank is twisted and the surplus liquor wrung out, when the revolution of the discs carries the hank to the spot where it entered the machine, the hooks fly back to their original position, the hank unwinds, it is then removed and a new hank put in its place, and so the machine works on, hanks being put on and taken off as required. The capacity of such a machine is great and the efficiency of its working good.
Mr. S. Spencer, of Whitefield, makes a hank-wringing machine which consists of a pair of hooks placed over a vat. One of the hooks is fixed, the other is made to rotate. A hank hung between the hooks is naturally twisted and all the surplus liquor wrung out, the liquor falling into the vat.
Roller Squeezing Machines for Yarn.—Hanks may be passed through a pair of indiarubber squeezing rollers which may be so arranged that they can be fixed as required on the dye-bath. Such a pair of (p. 199) rollers is a familiar article and quite of common and general use in dye-houses.
Piece Goods.—These are generally passed open through a pair of squeezing rollers, which are often attached to the dye-vat in which the pieces are dyed.
Read Holiday's Squeezing Machine.—In figure 24 is shown a squeezing machine very largely employed for squeezing all kinds of piece goods after dyeing or washing. It consists of a pair of heavy rollers on which, by means of the screws shown at the top, a very considerable pressure can be brought to bear. The piece is run through the eye shown on the left, by which it is made into a rope form, then over the guiding rollers and between the squeezing rollers and into (p. 200) waggons for conveyance to other machines. This machine is effective.
Another plan on which roller, or rather in this case disc, squeezing machines are made is to make the bottom roller with a square groove in the centre, into this fits a disc, the cloth passing between them. The top disc can, by suitable screws, be made to press upon the cloth in the groove and thus squeeze the water out of it.
WASHING.
One of the most important operations following that of dyeing is the washing with water to free the goods, whether cotton or woollen, from all traces of loose dye, acids, mordanting materials, etc., which it is not desirable should be left in, as they might interfere with the subsequent finishing operations. For this purpose a plentiful supply of good clean water is required, this should be as soft as possible, free from any suspended matter which might settle upon the dyed goods and stain or speck them.
Washing may be done by hand, as it frequently was in olden days, by simply immersing the dyed fabrics in a tub of water, shaking, then wringing out, again placing in fresh water to finish off. Or if the dye-works were on the banks of a running stream of clean water the dyed goods were simply hung in the stream to be washed in a very effectual manner.
In these days it is best to resort to washing machines adapted to deal with the various kinds of fibrous materials and fabrics, in which they can be subjected to a current of water.
Loose Wool.—If this has been dyed by hand then the washing may also be done in the same way by hand in a plain vat. If the dyeing has been done on a machine then the washing can be done on the same machine.
Yarn in Hanks.—A very common form of washing machine is shown (p. 202) in figure 25. As will be seen it consists of a wooden vat, over which are arranged a series of revolving reels on which the hanks are hung, the hanks are kept in motion through the water and so every part of the yarn is thoroughly washed. Guides keep the hanks of yarn separate and prevent any entanglement one with another. A pipe delivers constantly a current of clean water, while another pipe carries away the used water. Motion is given to the reels in this case by a donkey engine attached to the machine, but it may also be driven by a belt from the main driving shaft of the works. This machine is very effective.
Piece Goods.—Piece goods are mostly washed in machines, of which two broad types may be recognised. First those where the pieces are dealt with in the form of ropes or in a twisted form, and second those where the pieces are washed while opened out full width. There are some machines in which the cloths may be treated either in the open or rope form as may be thought most desirable.
Figure 26 represents a fairly well-known machine in which the (p. 203) pieces are treated in a rope-like form. It consists of a trough in which a constant current of water is maintained; at one end of this trough is a square beating roller, at the other a wood lattice roller, above the square beater and out of the trough are a pair of rollers whose purpose is to draw the cloth through the machine and also partly to act as squeezing rollers. As will be seen the cloth is threaded in rope form spirally round the rollers, passing in at one end and out at the other, pegs in a guide rail serving to keep the various portions separate. The square beater in its revolutions has a beating (p. 204) action on the cloth, tending to more effectual washing. The lattice roller is simply a guide roller.
Figure 27 shows a washing machine very largely used in the wool-dyeing trade. The principal portion of this machine is of wood.
The internal parts consist of a large wooden bowl, or oftener, as in the machine under notice, of a pair of wooden bowls which are pressed together by springs with some small degree of force. Between these bowls the cloth is placed, more or less loosely twisted up in a rope form, and the machines are made to take four, six or eight pieces or lengths at one time, the ends of the pieces being stitched together so as to make a continuous band. A pipe running along the front of the machine conveys a constant current of clean water, which is caused to impinge in the form of jets on the pieces of cloth as they run through the machine, while an overflow carries away the used water. The goods are run in this machine as long as is considered necessary for a sufficient wash, which may take half to one and a half hours.
In figure 30 is shown a machine designed to wash pieces in the broad or open state. The machine contains a large number of guide rollers built more or less open, round which the pieces are guided, the ends of the pieces being stitched together, pipes carrying water are so arranged that jets of clean water impinge on and thoroughly wash cloth as it passes through, the construction of the guide rollers facilitating the efficient washing of the goods.
SOAPING.
Sometimes yarns or cloths have to be passed through a soap-bath after being dyed in order to brighten up the colours or develop them in some way. In the case of yarns this can be done on the reel washing (p. 205) machines such as are shown in figure 25. In the case of piece goods a continuous machine in which the washing, soaping, etc., can be carried on simultaneously is often employed. Such a machine is shown in figure 28. It consists of a number of compartments fitted with guide rollers, so that the cloth passes up and down several times through the liquors in the compartment; between one compartment and another is placed a pair of squeezing rollers. The cloth is threaded in a continuous manner, well shown in the drawing, through the machine; in one compartment it is treated with water, in another with soap liquor, and another with water, and so on, and these machines may be made with two, three or more compartments, as may be necessary for the particular work in hand. As seen in the drawing the cloth passes in at one end, and out at the other finished. It is usually arranged that a continuous current of the various liquors used flows through the various compartments, thus ensuring the most perfect treatment of the cloths.
DRYING. (p. 206)
Following on the washing comes the final operation of the dyeing process, that of drying the dyed and washed goods. Now textile fabrics of all kinds after they have passed through dye-baths, washing machines, etc., contain a large amount of water, often exceeding in amount that of the fabric itself, and to take the goods direct from the preceding operations to the drying plant means that a considerable amount of fuel must be expended to drive off this large amount of water. It is therefore very desirable that the goods be freed from as much of this water as possible before they are sent into any drying chambers, and this may be done in three ways, by wringing, squeezing and hydro-extracting. The first two methods have already been described (pp. 198, 199) and need not again be alluded to, the last needs some account.
Hydro-extractors are a most efficient means for extracting water (p. 207) out of textile fabrics. They are made in a variety of forms by several makers. Essentially they consist of a cylindrical vessel with perforated sides, so constructed that it can be revolved at a high speed. This vessel is enclosed in an outer cage. The goods are placed in the basket, as it is termed, and then this is caused to revolve; at the high speed at which it revolves centrifugal action comes into play and the water contained in the goods finds its way to the outside of the basket through the perforations and so away from the goods. Hydro-extractors are made in a variety of sizes and forms, in some the driving gear is above, in others below the basket, in some the driving is done by belt gearing, in others a steam engine is directly connected with the basket. Figures 29 and 30 show two forms which are much in use in the textile industry. They are very efficient and extract water from textile goods more completely than any other means, as will be obvious from a study of the table below.
The relative efficiency of the three systems of extracting the moisture out of textile fabrics has been investigated by Grothe, who gives in his Appretur der Gewebe, published in 1882, the following table showing the percentage amount of water removed in fifteen minutes:—
Yarns. Wool. Silk. Cotton. Linen. (p. 208) Wringing 44.5 45.4 45.3 50.3 Squeezing 60.0 71.4 60.0 73.6 Hydro-extracting 83.5 77 81.2 82.8
Pieces. Wringing 33.4 44.5 44.5 54.6 Squeezing 64.0 69.7 72.2 83.0 Hydro-extracting 77.8 75.5 82.3 86.0
In the practical working of hydro-extractors it is of the utmost importance that the goods be carefully and regularly laid in the basket, not too much in one part and too little in another. Any unevenness in this respect at the speed at which they are driven leaves such a strain on the bearings as to seriously endanger the safety of the machine.
After being wrung, squeezed or hydro-extracted the goods are ready to be dried. In the case of yarns this may be done in rooms heated by steam pipes placed on the floor, the hanks being hung on rods suspended from racks arranged for the purpose.
Where large quantities of yarn have to be dried it is most economical to employ a yarn or drying machine, and one form of such is shown in figure 31. The appearance of the machine is that of one long room from the outside, internally it is divided into compartments, each of which is heated up by suitably arranged steam pipes, but the degree of heating in each compartment varies, at the entrance end it is (p. 209) high, at the exit end low. The yarn is fed in at one end, being hung on rods, and by suitable gearing it is carried directly through the various chambers or sections, and in its passage the heat to which it is subject drives off the water it contains. The yarn requires no attention from the time it passes in wet at the one end of the (p. 210) machine and comes out dry at the other end. The amount of labour required is slight, only that represented by filling the sticks with wet yarn and emptying the dried yarn. The machine works regularly and well.
The drying is accomplished by circulating heated air through the yarns, this heating being effected by steam coils; fresh air continually enters the chambers while water-saturated air is as continually being taken out at the top of the chamber. One of the great secrets in all drying operations is to have a constant current of fresh hot air playing on the goods to be dried, this absorbs the moisture they contain, and the water-charged air thus produced must be taken away as quickly as possible.
Piece Goods.—The most convenient manner of drying piece goods is to employ the steam cylinder drying machine such as is shown in figure 32. This consists of a number of hollow tin or copper cylinders which can be heated by steam passing in through the axles of the cylinders, which are made hollow on purpose. The cloth to be dried passes round these cylinders, which revolve while the cloth passes. They work very effectually.
CHAPTER VIII. (p. 211)
EXPERIMENTAL DYEING AND COMPARATIVE DYE TESTING.
Every dyer ought to be able to make experiments in the mordanting and dyeing of textile fibres for the purpose of ascertaining the best methods of applying mordants or dye-stuffs, the best methods of obtaining any desired shade, and for the purpose of making comparative tests of dyes or mordanting materials with the object of determining their strength and value. This is not by any means difficult, nor does it involve the use of any expensive apparatus, so that a dyer need not hesitate to set up a small dyeing laboratory for fear of the expense which it might entail.
In order to carry out the work indicated above there will be required several pieces of apparatus. First a small chemical balance; one that will carry 50 grammes in each pan is quite large enough, and such a one, quite accurate enough for this work, can be bought for 25s. to 30s., while if the dyer be too poor even for this a cheap pair of apothecaries' scales might be used. It is advisable to procure a set of gramme weights and to get accustomed to them, which is not by any means difficult.
In using the balance always put the substance to be weighed on the left-hand pan and the weights on the right-hand pan. Never put chemicals of any kind direct on the pan, but weigh them in a watch-glass, small porcelain basin, or glass beaker (which has first been weighed), according to the nature of the material which is being weighed. The sets of weights are always fitted into a block or (p. 212) box, and every time they are used they should be put back into their proper place.
The experimenter will find it convenient to provide himself with a few small porcelain basins, glass beakers, cubic centimetre measures, two or three 200 c.c. flasks with a mark on the neck, a few pipettes of various sizes, 10 c.c., 20 c.c., 25 c.c.
The most important feature is the dyeing apparatus. Where only a single dye test is to be made a small copper or enamelled iron saucepan, such as can be bought at any ironmongers may be used; this may conveniently be heated by a gas-boiling burner, such as can also be bought at an ironmongers or plumbers for 2s. |
|