|
Why do we need so many kinds of apples? Because there are so many folks. A person has a right to gratify his legitimate tastes. If he wants twenty or forty kinds of apples for his personal use, running from Early Harvest to Roxbury Russet, he should be accorded the privilege. Some place should be provided where he may obtain trees or cions. There is merit in variety itself. It provides more points of contact with life, and leads away from uniformity and monotony.
The leading varieties of apples, that have become dominant over wide regions, have been great benefactors to man. The original tree should be carefully preserved till the last, by historical or other societies; and then a monument should be placed at the spot. Monuments have been erected to the Baldwin, Northern Spy, McIntosh and other apples. We should never lose our touch with the origins of men, events, notable achievements, outstanding products of nature.
I fear it is now a habit with many fruit-growers to minimize the interest in varieties, placing the emphasis on tillage, spraying and management of plantations. Yet, the only reason why we expend all the labor is that we may grow a given kind of apple; the variety is the final purpose.
In this little book we cannot discuss varieties at length. There are special books on this fascinating subject. But we may have before us a compiled list by way of interesting suggestion. The list is sorted from the Catalogue of Fruits of the American Pomological Society, 1901, the last year in which the catalogue was published with quality rated on a scale of 10. On such a scale, Ben Davis ranks 4-5; Baldwin, 5-6; Wealthy and York Imperial, 6-7; Rhode Island Greening, 7-8; Northern Spy, 8-9; Yellow Newtown (Albermarle Pippin) 9-10. There is no apple in the entire catalogue of 324 kinds (not including crab-apples) rated wholly lower than 4 in quality except one alone and this is grown for cider only, although several varieties of minor importance bear the marks 3-4. Only two varieties are rated exclusively 10, the Garden Royal, a Massachusetts summer-fall apple, little known to planters, and the familiar Esopus Spitzenberg. Of course judgments differ widely in these matters, as there are no inflexible criteria for the scoring of quality; yet this extensive list is probably our soundest approach to the subject.
The varieties in the catalogue of the American Pomological Society are starred if "known to succeed in a given district" and double-starred "if highly successful." North America is thrown into nineteen districts for the purposes of this catalogue (which comprises other fruits besides apples). For our purposes we may combine them into six more or less indefinite great regions: n. e., the northeastern part of the country, Delaware and Pennsylvania to eastern Canada; s. e., the parts south of this area and mostly east of the Mississippi; n. c., north central, from Kansas and Missouri north; s. w., Texas to Arizona; mt., the mountain states of the Rockies west to the Sierras, including of course much high plains country; pac., the Pacific slope, Washington to southern California.
Of the varieties starred and double-starred in these various geographical regions there are 107; these are listed herewith. Of course the intervening twenty years might change the rating of some of these apples, other varieties have come to the front, and certain ones of these older worthies are receding still further into the background; but the exhibit is suggestive none the less.
Arkansas—n.e., s.e., n.c., s.w., mt. Bailey (Sweet)—n.e., s.e., n.c., mt. Baker—n.e. Baldwin—n.e., s.e., n.c., mt., s.w., pac. Beach—s.e. Belle Bonne—n.e. Ben Davis—n.e., s.e., n.c., s.w., mt., pac. Bietigheimer—n.e., s.e., n.c., mt. Bledsoe—s.e. Blenheim—n.e., n.c. Blue Pearmain—n.e., s.e., n.c., mt. Bough, Sweet—n.e., s.e., n.c., mt. Bryan—s.e., mt. Buckingham—n.e., s.e., n.c. Canada Reinette—n.e., n.c., mt. Clayton—n.e., s.e., n.c., mt. Clyde—n.e., n.c. Cogswell—n.e. Cooper—n.e., s.e., n.c., mt. Cracking—s.e., n.c. Doyle—s.e. Early Pennock—n.e., s.e., n.c., mt. Esopus (Spitzenburg)—n.e., s.e., n.c., mt., pac. Ewalt—n.e., s.e., mt. Fallawater—n.e., s.e., n.c., mt. Fall Harvey—n.e., mt. Fall Jenneting—n.e., s.e., n.c., mt. Fall Orange—n.e., s.e., n.c. Fall Pippin—n.e., s.e., n.c., s.w., mt. Fanny—n.e., s.e., n.c., s.w. Farrar—s.e. Foundling—n.e. Gano—n.e., s.e., n.c., s.w., mt. Gilbert—s.e. Golding—n.e., s.e., n.c., mt. Gravenstein—n.e., s.e., n.c., mt., s.w., pac. Hagloe—n.e., s.e. Hoover—s.e., n.c., mt., pac. Hopewell—n.c. Horse—n.e., s.e., n.c. Hubbardston—n.e., s.e., n.c., s.w. Hunge—s.e. Huntsman—s.e., n.c., s.w., mt. Isham (Sweet)—n.c. Jacobs Sweet—n.e. Kent—n.e., s.e., n.c. Kernodle—s.e. Lady Sweet—n.e., mt. Lankford—n.e., s.e. Lawver—n.e., s.e., n.c., mt. Lilly (of Kent)—n.e. Lowe—s.e. Lowell—n.e., s.e., n.c., mt. McAfee—n.e., s.e, mt. McCuller—s.e. McMahon—n.e., n.c., mt. Magog—n.e. Maverack—s.e. Milwaukee—n.c. Minister—n.e., s.e., n.c. Monmouth—s.e., n.c., mt. Newell—n.c. Nickajack—n.e., s.e., n.c., mt. Northern Spy—n.e., s.e., n.c., mt., pac. Northwestern (Greening)—n.e., n.c., mt. Oconee—n.e., s.e. Ohio Nonpareil—n.e., s.e. Ohio Pippin—n.e., s.e., n.c. Ortley—n.e., s.e., n.c., mt. Paragon—n.e., s.e., n.c., mt. Patten (Greening)—n.c. Pease—n.e. Peck (Pleasant)—n.e., s.e., n.c., mt. Peter—n.c. Pewaukee—n.e., s.e., n.c., mt. Porter—n.e., s.e., n.c., mt. Pumpkin Sweet—n.e., s.e., n.c. Quince—n.e., n.c. Ramsdell (Sweet)—n.e., s.e., n.c., mt. Red Astrachan—n.e., s.e., n.c., s.w., mt., pac. Rhode Island (Greening)—n.e., s.e., n.c., s.w., mt., pac. Ridge (Pippin)—n.e. Rolfe—n.e. Rome—n.e., s.e., n.c., s.w., mt. Stark—n.e., s.e., n.c., s.w., mt. Starkey—n.e., s.e. Stayman Winesap—n.e., s.e., n.c. Sterling—n.e., n.c. Summer King—n.e., s.e. Swaar—n.e., n.c., mt., pac. Taunton—s.e. Titovka—n.e., mt. Tompkins King—n.e., s.e., mt., pac. Twenty Ounce—n.e., s.e., s.w., mt. Utter—n.c. Vanhoy—n.e., s.e. Virginia Greening—s.e., mt. Washington (Strawberry)—n.e., s.e., mt. Watson—s.e. White Pippin—n.e., s.e., n.c., mt., pac. Wine—n.e., s.e., n.c., mt. Wistal—s.e., s.w. Wolf River—n.e., s.e., n.c., mt. Yellow Bellflower—n.e., s.e., s.w., mt., pac. Yellow Newtown—n.e., s.e., n.c., s.w., mt., pac. Yopp—s.e. York Imperial—n.e., s.e., n.c., s.w., mt.
There are many odd varieties of apple not found in any list but about which questions are likely to arise. One of these is the Sweet-and-Sour. There is an old ribbed variety of this name, the ribs having an acid flesh and the furrows sweetish; it is little known and of no special value. Apples are sometimes found that are sweetish on one side and sourish on the other. The reasons for this kind of variation are no more understood than are those responsible for variance in color or shape or durability. One yet sometimes hears the pleasant fable that sweet-and-sour apples are produced by splitting the bud when the tree was propagated.
The Surprise is a small whitish apple with light red flesh. It is indeed a surprise to bite into such an apple, but it has little merit. It is an early winter variety.
One is frequently asked about the Sheepnose apple, particularly by older people who remember it from early days and who deplore its infrequency in these latter times. The sheepnose shape—long-conical—is an infrequent variation, as apples go, and apparently none of these forms chances to have sufficient merit to keep it in the lists. The name is often applied to the Black Gilliflower, an old apple more than three inches long, dark red, of light weight perhaps because of the large core, ripening late in autumn to midwinter. It seems to be specially prized by children, perhaps in part because of its unusual shape and in part by its aromatic fragrance; but it is not a high-class apple, and is now little seen. With the Rambo, Vandevere, some of the russets, Early Harvest, Jersey Sweet and other old worthies, it probably will pass away unless rescued here and there by the amateur. To the lover of choice fruit nothing is old; every succeeding crop is as choice and new as is the new year itself, and one waits for it again and again.
One hears of seedless and no-core apples, as also of pears. The core is present but greatly reduced in size, and the seeds may be few and small. I have also raised practically seedless tomatoes. All these are infrequent variations that may be propagated by asexual parts (cuttings, cions), but as yet none of them has any outstanding value.
The reader will now ask me about the water-core apples, so much sought and prized by youngsters. The water-core is not characteristic of a variety, although occurring in some varieties more frequently than in others. It is a physiological condition, supposed to be associated with a relatively low transpiration (evaporation) so that excess water is held in the fruit. In certain seasons this condition is marked, and also in cloudy regions and often on young trees that have an over-supply of moisture. Yet such cores occur in old trees and sometimes with more or less regularity. What the physiological inability may be in such cases to dispose of excess moisture appears to be undetermined.
Now and then one finds a double apple, with two fruits grown solidly together, two blossom ends and a single stem. A seedling tree I knew as a boy bore such apples frequently, sometimes a score of them among the crop of the year. This, of course, is a malformation or teratological state. Apparently two flowers coalesce to form these fruits. On the tree of which I speak, the two fruits were about equal in size, making a large, widened, edible apple, but I have known of other cases in which a diminutive undeveloped fruit is attached to the side of a normal one.
Perhaps the oddest of them all is the "Bloomless apple." It is said to have no flowers. In fact, however, the flowers are present but they lack showy petals and are therefore not conspicuous. The bloomless apple is a monstrous state, the cause of which is unknown. Now and then a tree is reported. It was described at least as long ago as 1768, and in 1770 Muenchhausen called it Pyrus apetala (the petalless pyrus). The flowers have no stamens, and apparently they are pollinated from any other apples in the vicinity. In 1785, Moench described it as Pyrus dioica (the dioecious pyrus, sexes separated on different plants). The ovary is also malformed, having six or seven and sometimes probably more cells, and bearing ten to fifteen styles. The resulting fruit has a core character unknown in other apples but approached in certain apple-like fruits, as the medlar. The fruit has a hole or opening from the calyx (which is open) into the core; and the core is roughly double, one series above the other. The fruit, in such specimens as I have seen or read about, has no horticultural merit; but it is a curiosity of great botanical interest. It appears now and then in widely separated places, the trees probably having originated as chance seedlings. The fruits from the different originations are not always the same in size and form, but the flowers apparently all have the same malformed character.
The apple is preeminently the home fruit. It is not transitory. It spans every season. In an indifferent cellar I keep apples till apples come again. The apple stands up, keeps well on the table. Children may handle it. In color and form it satisfies any taste. Its rondure is perfect. The cavity is deep, graceful and well moulded, holding the good stem securely. The basin is a natural summit and termination of the curvatures, bringing all the lines together, finishing them in the ornaments of the remaining calyx. The fruit adapts itself to the hand. The fingers close pleasantly over it, fitting its figure. It has a solid feel. The flesh of a good apple is crisp, breaking, melting, coolly acid or mildly sweet. It has a fracture, as one bites it, possessed by no other fruit. One likes to feel the snap and break of it. There is a stability about it that satisfies; it holds its shape till the last bite. One likes to linger on an apple, to sit by a fireside to eat it, to munch it waiting on a log when there is no hurry, to have another apple with which to invite a friend.
Now I am not thinking of the Ben Davis apple or any of its kind. I do not want to be doomed to one variety of apple, or even to half a dozen kinds, and particularly I do not want a poor one. There are enough good apples, if we can get them. The days of the amateur fruit-growers seem to be passing. At least we do not hear much of them in society or in many of the meetings of horticulturists. There may be many reasons, but two are evident: we give the public indifferent fruits, and thereby neither educate the taste or stimulate the desire for more; we do not provide them places from which they can get plants of many of the choicest things. Yet on a good amateur interest in fruits depends, in the end, the real success of commercial fruit-growing. Just now we are trying to increase the consumption of apples, to lead the people to eat an apple a day: it cannot be accomplished by customary commercial methods. To eat an apple a day is a question of affections and emotions.
We have had great riches in our varieties of apples. It has been a vast resource to have a small home plantation of many good varieties, each perfect in its season. The great commercial apple-growing has been carried to high perfection of organization and care. More perfect apples are put on the market, in proportion to numbers, than ever before,—carefully grown and graded and handled. I have watched this American development with growing pride. The quantity-production makes for greater perfection of product, but it does not make for variety and human interest, nor for high-quality varieties. We shall still improve it. Masterful men will perfect organizations. The high character and attainment of the commanding fruit-growers, nurserymen and dealers are good augury for the future. But all this is not sufficient. Quantity-production will be an increasing source of wealth, but it cannot satisfy the soul.
The objects and productions of high intrinsic merit are preserved by the amateur. It is so in art and letters. It is necessarily so. A body of amateurs is an essential background to the development of science. The late Professor Pickering, renowned astronomer, encouraged the amateur societies of star-observers, and others. The amateurs in the background, disinterested and unselfish, support appropriations by legislatures for even abstruse public work. The amateur is the embodiment of the best in the common life, the conservator of aspirations, the fulfillment of democratic freedom. I hope pomology will not lag in this respect. In all lines I hope that professionalism will not subjugate the man who follows a subject for the love of it rather than for the gain of it or for the pride of it. In horticulture, when we lose the amateur, who, as the word means, is the lover, we lose the ideals.
Naturally, the nurseryman cannot grow trees of all the good apples that may be wanted. The experiment stations cannot maintain living museums of them, for their function is to investigate rather than to preserve. Arboretums are concerned with other activities. Is there not some person of means, desiring to do good to his successors, ready now to establish a fructicetum in perpetuum for the purpose of preserving a single tree of at least one hundred of the choicest apples, to the end that a record may be kept and that amateurs may be supplied with cions thereof?
XII
THE PLEASANT ART OF GRAFTING
If I procure cuttings of a good apple, what shall I do with them that they may give me of their fruitage?
The cuttings will probably be dormant twigs of the last season's growth. They may not be expected to grow when placed in the ground. They are therefore planted in another tree, becoming cions. The case is in no way different in principle from the propagating of the young tree in the nursery, of which we already have learned. The nurseryman works with a small stock, a mere slip of a seedling one or two years old. The grower would better not attempt the making of nursery trees. It is better for him to purchase regular nursery trees and to graft the cions on them; or he may put the cions in any older tree that is available.
I have spoken of my own collecting of certain dessert apples. I "worked" them on young Northern Spy trees, purchased when two or three years old; they were grafted after they had stood a year in the orchard. These Northern Spy trees, used in this case as stocks, were regularly grown by nurserymen. The Northern Spy was chosen because of its hardiness and straight, clean, erect growth, making it a vigorous and comely stock. Weak-growing varieties are usually rejected for this purpose. Some growers use Oldenburg as stock, and there are other good kinds.
From the young stock, the old head is to be removed and a new head (the new variety) grown in its stead. The tree, therefore, will be combined of three kinds of apple,—the root of unknown quality; the trunk or body under a varietal name; the top, of the variety desired. Any number of different kinds of apple wood may be worked into the tree if the tree is large enough. If the operations are well performed so that there are no imperfect unions, and if the pruning is judicious, the tree may be grafted many times, in whole or in part.
I have said that my father brought apple seeds from New England and that the resulting seedlings were top-grafted. One of these trees was early top-worked to "Holland Pippin," which seldom bore. It stood in the yard near the smoke-house, where it found abundant nourishment. It grew to great size. In time I became a grafter of trees for the neighborhood, and often as I returned at night would have cions of different kinds in my pockets. It became a pastime to graft these cions in the old tree. More than thirty varieties were placed there. It was with keen anticipation, as the years came, that I looked for the annual crop, to see what strange inhabitants would appear in the great tree-top. I do not remember how many of these varieties came into bearing before the tree was finally gathered to the wood-box, but they were a goodly number, probably more than a score. I used often to wonder how it was that the nutrients taken in by the roots of the Vermont seedling and transported in the tissues of the Holland Pippin, combined with the same air, could produce so many diverse apples and even pears (for I had pears in that tree) each with the marks and flavor proper to its kind. The little cions I grafted into the tree were soon lost in the overgrowth, and yet all the branches that came from them carried the genius of one single variety and of none other. And I often speculated whether there were any reflex action of these many varieties on the root, demanding a certain kind of service from it.
The cions (sometimes still called "grafts") are cut in winter or early spring, when well matured and perfectly dormant. Placed in sand in a cool cellar so they will not shrivel, they are kept until grafting time, which is early spring, usually before the leaves start on the stock. The cions may be placed on the tree by several methods, but only two are commonly employed,—the whip-graft and the cleft-graft. The former is adapted to small stocks, the size of one's finger or smaller; it is the method employed in root-grafting in the nursery, and Fig. 16 explains it.
The requirement is to cause the cion and stock to grow together solidly, making one piece of wood. The growing plastic region is associated with the cambium tissues underneath the bark. It is necessary, therefore, to bring the "line betwixt the wood and the bark" together in the two parts, and to hold the junction firm and also well protected from evaporation until union takes place. The method of putting the parts together, the form of whittling, is a matter of convenience and practice.
The case was put in this way by old Robert Sharrock, "Fellow of New-College," in his "History of the Propagation and Improvement of Vegetables by the concurrence of Art and Nature" (I quote from the second edition, Oxford, 1672): "Grafting is an Art of so placing the Cyon upon a stock, that the Sap may pass from the stock to the Cyon without Impediment." Batty Langley, in 1729, gave this direction in the "Pomona": "The Stocks being cleft, you must therefore cut the Cion in the Form of a Wedge, which must always be cut from a Bud, for the Reasons aforesaid; and then with a Grafting-Chizel open the Slit, and place the Cion therein, so that their Barks may be exactly even and smooth."
Still earlier (1626) did William Lawson, in "A New Orchard and Garden," set forth the rationale of the practice in his Chapter X, "On Grafting," in this wise: "Now are we come to the most curious point of our faculty: curious in conceit, but indeed as plaine and easie as the rest, when it is plainly shewne, which we commonly call Graffing, or (after some) Grafting. I cannot Etymoligize, nor shew the original of the word, except it come of graving and carving. But the thing or matter is: The reforming of the Fruit of one Tree with the fruit of another, by an artificial transplacing or transposing of a twig, bud or leafe, (commonly called a Graft) taken from one tree of the same, or some other kind, and placed or put to, or into another tree in due time and manner."
If the whip-graft is to be below the ground, it is sufficient to tie the parts tightly with string and cover with earth; if above ground, wax is applied over the string to prevent drying out. On the small shoots of young trees, the whip-graft is often employed, but it is not used in large trees.
The cleft-graft is shown in Fig. 18. The trunk or branch is cut off; two cions are inserted in a cleft made with a knife. The "stub" is covered with grafting-wax (Fig. 19). Cleft-grafting is the usual method for the orchardist.
In either kind of grafting, the cion carries about three leaf-buds. If "wood" (cion-shoots) is scarce, only one bud may be taken, but this reduces the chances of success. One bud may not grow, or the young shoot may be injured. The lowest bud is usually most likely to grow; it pushes through the wax.
In young trees set for the purpose of top-working, the trunk may be cut off at the desired height and two cions inserted. The entire top is then removed at once; this is allowable only on young trees. Probably the better practice is to graft the main small side limbs and the main trunk or leader higher up. Usually it is better to leave some of the branches on the tree, not removing them all till the second or third year.
In old apple-trees, the main branches are grafted, where they are an inch or two in diameter. Care is taken so to choose the branches that a well-shaped free-headed tree will result. Only a small part of the top is removed the first year, and three or four years may be required to change the top all over, the old branches being removed as the new ones grow. In about three years, or four, the grafts should begin to bear,—about as soon as strong three-year-old trees planted in the orchard.
Any variety of the pomological apples will grow on any other variety, but apples do not take well on other species, as does the pear. The pear may be made to grow on the apple, but the graft is short-lived and the practice is not recommended. Boys may graft indiscriminately for practice, but grown-ups, having arrived at the unfortunate age of discretion, must operate only on those kinds known to succeed when joined. I have never known a boy who did not want to graft anything, as soon as his attention was called to the operation. The boy does not take it for granted: he wants to try.
XIII
THE MENDING OF THE APPLE-TREE
Many accidents overtake the apple-tree. The hired man skins the tree with the harrow; fire runs through the dry grass; hard winters shatter the vitality, and parts of the tree die; borers enter; rabbits and mice gnaw the bark in winter; loads of fruit and burdens of ice crush the tree; wind storms play mischief; bad pruning leaves long stubs, and rot develops; cankers produce dead ragged wounds; fire-blight destroys the tissue; a poorly formed tree with bad crotches splits easily; grafts fail to take, and long dead ends are left; the tree is injured by pickers; vandals wreak their havoc. All these accidents must be met and the damages repaired. The surgeon must be summoned.
We must first understand how a wound heals on a tree. Note any wound,—knot-hole on the trunk, place where wood has been removed. The exposed wound itself does not heal; it is covered and inclosed by tissue built out from the edges or periphery of the wound. This tissue is like a roll. It is the callus. Eventually the tissue meets in the center, and the lid is thereby put on the place, and it is sealed. The exposed wood has died, if it is the cross-section of a branch or a deep wound, and it remains under the callus a dead body. If the wood has not started to decay in the meantime, the place is safe, but too often invasion has begun before the process is complete, the rot disease finally extends to the heart of the tree, causing it to become hollow. If the center of the wound falls in, the callus cannot cover it, and an open sore remains. In these cavities birds may sometimes build.
Therefore there are two points for the surgeon to consider in respect to the wound itself—whether it is so placed on the tree that the callus forms readily; whether the wound is kept healthy during exposure.
All ragged tissue being removed, deep-wound surfaces should be kept aseptic. For ordinary cases, white-lead paint with plenty of linseed oil is a good protective from the germs of decay. On old wood, no longer active, creosote is good, perhaps followed by coal-tar. Usually, however, paint is quite sufficient. Small exposures usually receive no dressing. When the fresh surface wood is exposed by removal of bark, it is necessary to keep the tissue from drying out, and antiseptics are usually not applied. Bandaging with cloth is the usual practice, after the wound is cleaned and trimmed.
The repairs fall into two classes,—those that require merely removal of injured parts and treatment of the wounds, and those that demand the ingrafting of new wood.
We have learned, in the discussion of pruning, that long projecting ends of severed branches do not heal. The branches to be removed should be cut back close to the larger branch or to the juncture with another. In repairing injured trees, all projecting parts that do not have life in themselves must be removed. All wounds should be left smooth, without splinters or hanging bark. Decaying wood is to be removed, and the area cleaned out and disinfected.
The nature-lover may find much to interest him in the observation of knot-holes as he comes and goes. Every knot-hole has a history; this history usually can be traced by one whose eye is keen and who becomes practiced in connecting cause with final result. One prides oneself on the ability to work out the obscure cases. An old neglected apple orchard thereby affords much entertainment.
If a very large branch breaks off, the remaining part is cut back to fresh hard wood; antiseptic is applied; the other part of the tree may be shortened-in to aid in restoring the proportion or balance.
Deep cavities caused by rot are cleaned out, disinfected with bordeaux mixture, gas-tar, or other material, and the place filled completely with cement.
In some cases, new wood is added in the form of cions of last year's twigs. Such cions may be set around the edge of a stub, thrust between the bark and the wood, to start new branches where an important one was broken off. The cions are cut wedge-shape (much as those in Fig. 18) and a bandage is tied around the stub to hold them in place; the exposed parts are covered with grafting-wax. The operation is performed in spring.
Sometimes cions are used to bridge a girdle. Usually a girdle heals itself if the injury does not extend into the wood, and if it is bound up to prevent drying out; but when the injury is deep and the exposed wood has become dry and hard, the cions may be used. The cions are somewhat longer than the width of the girdle. The edges of the girdle are trimmed to fresh tight bark; cions are cut wedge-shape at either end; the ends are inserted underneath the bark at bottom and top of the wound; edges of the wound are securely bandaged; entire work is covered with wax. The cions are many, so close that they nearly touch. The buds on the cions are not allowed to produce branches. This process is known as bridge-grafting.
With some experience, the cultivator soon learns to make many deft applications of ingrafting. Sometimes a piece of bark may be used as a patch. In the bracing of crotches in young trees, the two trunks may be joined by uniting a small branch from either one, twisting them together to form a bridge like a bolt; they can be made to grow together, forming a solid union. Bolting the parts with iron rods, or holding them together by means of chains, is the usual and commonly the better method. The iron is not to go around a limb, however, for girdling results; the rods or chains should be secured by bolts bored through the wood and pulling against large heads or washers.
The usual repairs are easily made. When trees are badly injured, and particularly when the tree is low in vitality, it may not be worth while to engage in surgery. It may be better to plant a new tree. Saving very old trees by the mending processes is not likely to be satisfactory. The grower should transfer his affection to a young tree. If the tree has had good care throughout its life, it probably will not need much surgery in old age. The grower will be willing, when the time comes, to take a photograph for memory's sake and to let the tree come to a timely and artistic end.
XIV
CITIZENS OF THE APPLE-TREE
Many years ago, my old friend, the late Dr. J. A. Lintner, State Entomologist of New York, compiled a list of 356 insects that feed on the apple-tree. Later authorities place the number at nearly five hundred species. It must be a good plant that has such a host of denizens. The number of fungi is also large; and the tree often supports lichens, algae, and other forms of life.
The apple-tree is not single in its denizens. No plant lives alone. It has association with its fellows, perhaps contest for space and nourishment. It provides habitat for many organisms, many of which live on its bounty. I have never seen a bearing apple-tree that was not a colonizing place for other living things. We accept these things as matters of course, as being in place, living their part in nature. Therefore, one cannot understand the apple-tree unless one knows something of its citizenry.
Probably the most prominent citizen of the apple-tree is the codlin-moth. Its larva is the apple-worm, the one that makes "wormy apples," the burrows going to the core and out again. The insect is native in Europe, but has been known in North America nearly two hundred years, and is widespread in the apple countries of the world.
If one has screens in the apple cellar, one is likely to find small moths on them in the spring, larger than a clothes moth, about three-fourths inch in spread of the soft gray watered-silk wings. This is the imago or mature form of the insect known as the codlin-moth (it lives on codlins or apples). The larvae or "worms" were brought into the cellar in the apples; some of them crawled out, spun themselves in a cocoon and pupated; in due season the moth emerged, ready to lay the eggs for other larvae. Ordinarily the fruit-grower does not see the moth, for it is a small object amidst the foliage of apple-trees; the larva or apple-worm he knows well.
There may be two or more broods of apple-worms, depending on the length of the season. In the northern apple regions of North America there is usually only one brood, with a partial second brood. The first brood is hatched from eggs laid by moths that emerge in spring. The moths come from larvae that have lain in cocoons all winter, hidden under bark on the trunks and main branches of the apple-tree, in crevices in nearby posts and fences, and sometimes in the ground. The pupae are the transformed larvae or worms that left the apple of the previous year, usually before it fell, and crawled down the tree to find a place to spin the silken brown cocoons in which they wrapped themselves to undergo the wonderful transformation.
So is the cycle complete: egg laid in early spring, mostly on the leaves; larva hatched in about one week, crawling to the young apple to feed, where it lives for perhaps a month; larva departed from the fruit to form a cocoon and to remain quiescent till it pupates the following spring (if there is no second brood) when it transforms into a moth; the moth alive for one week or ten days, laying perhaps as many as one hundred eggs or even more. If there is a second or third brood, the pupa resurrects in ten days or so into the moth; eggs are laid; larvae are hatched; pupae again are formed; and thus is the process continued. But the winter stage is the larva, although perhaps in store-houses the moths may emerge earlier and survive till spring.
The eggs of the first brood are commonly laid on the leaves and fruit. The young larva or worm eats very little on the foliage. It usually crawls into the blossom end of the apple. The young apple stands erect, with the calyx open (Fig. 6); later the calyx closes and protects the larva that hatched there, forming a good cover for its operations (Fig. 7). The worm drives for the core, where it eats the young seeds and burrows extensively; then, when nearly grown, it sets out for the surface, eating a straight burrow; an opening is made through the skin of the apple, but this exit is plugged until the animal is ready to leave the place and to crawl down the tree to pupate. The larvae of later broods may enter at the side of the apple, where a leaf affords protection or where two fruits come together; but the life-history is the same, varying in its rapidity.
This account discloses the vulnerable point in the life-history, if one is to destroy the insects and to grow fair fruit; if poison is lodged on the erect open-topped little apple, the young larva will get it before he injures the fruit. If the application of the poison is delayed until the calyx closes (Fig. 7), there will be small chance of reaching the worm. The best way to reach the second brood is to destroy all the first brood. The standard practice, therefore, is to spray the trees soon after the petals fall, with the idea of depositing arsenic in the blossom end.
But the season of egg-laying is long, often extending over a period of three or four weeks, for the moths do not all emerge from the cocoons simultaneously. It is customary, therefore, to spray again about two weeks after the first application, with the hope of catching the young worms on their way to the fruit.
There is no question about the efficacy of spraying. Its value has been demonstrated time and again. The methods and the materials may be learned from the experiment station publications in any State, wherein the advice is kept up-to-date.
In the days before the perfecting of the spraying processes, the codlin-moth was controlled by catching the pupating larvae. Taking advantage of the habit of the worm to find lodgment under the bark on the trunk, it was the practice to scrape the loose bark from bole and large branches to destroy the hiding-places and then to tie a band of cloth around the trunk. Under this band the worms were taken, as they spun themselves up in the cocoons. This is a lesson taken from the industrious woodpeckers, who, in the winter, search the trees for the pupae and make holes through the flakes of bark to get them. The scraping of apple-trees is not much recommended now for the reason that this special necessity is passed, and because the better tillage and care together with the soaking of the branches and trunk in the spraying operation, tend to keep the tree vigorous and the bark properly exfoliated.
So the worm in the apple has a delicate and interesting history. From egg to imago the transformations proceed with regularity, and they are marvelous. Had we not traced the sequence, no man could tell by appearances that the larva, the pupa and the moth are one and the same animal. They seem to have nothing in common. So is the egg stage as different as the other three, but we are measurably prepared for this epoch, since we know seeds so well; the egg and the seed are analogous. That a moth in the air should come from a crawling worm in an apple is indeed one of the miracles of nature. The worm leaves the apple ere it falls; how the worm knows the time is again a mystery. By some instinct, it is able to cognize a dying apple. The later worms, either the lastlings from the early brood or the product of subsequent broods, may remain in the apple when it is harvested, particularly in an apple picked before it is quite mature and from which the worm has not escaped.
The apple-worm ruins the crop by killing many of the fruits and by blemishing the remainder. Seldom are there two worms in an apple. They seem to respect each other's hunting-ground. From the worm's point of view and from man's, one is enough.
If man has dominion and if he needs apples, then is he within his rights if he joins issue with the insects. Yet is the insect as interesting for all that. I think we should miss many of the satisfactions of life, and certainly some of the disciplines, if there were no insects. My apple-tree is a great place for a naturalist. Van Bruyssel wrote a book on "The Population of an Old Pear-Tree." "When certain blue spirits begin to flit about me," he writes, "I depart from my study to go and read, in what I am allowed, even by my clerical uncle, to call my book of devotions. The devotions I mean are not in my book-case. No publisher, if he ever thought of such a thing, could bring them out. They are a page of the book of Nature, opened in the country, under blue sky, displayed at all season." What a marvelous company Van Bruyssel found on his old pear tree; and what inexhaustible worlds did Fabre discover in the lives of the spider, the fly, the caterpillar, the wasps, the mason-bees and others!
Therefore we need not pause with the other four hundred and more insect citizens of the apple-tree. Some of them, as the San Jose scale, are not peculiarly apple-tree insects. My tree has another crew of inhabitants, and to this company we may now have introduction.
The spots on the leaves and fruits are not deposits of dirt nor are they caused by mysterious conditions in the atmosphere, as once supposed, nor is it in the nature of leaves to be spotted and of fruits to be scabby; nor are the one-sided dwarfed fruits merely accidents. The organism responsible for these blemishes is less evident than the codlin-moth; yet what fruit-grower knows the eggs of the codlin-moth? But the organisms are as definite as are the insects; no longer are the fungi things without form and without positive cycles.
On the ground are apple leaves, shed in the autumn. On the leaves are spots or lesions,—injured or "diseased"—infected with the apple-scab fungus. Under a good microscope the investigator finds immature fruiting bodies in these areas. In the early days of Spring, these bodies or winter-spores mature. A rain discharges them in astonishing numbers. Rising in the air (for they are incredibly light), these spores lodge on the unfolding leaves and flowers of the apple, and there begin to germinate, invading the tissue. The tissue is penetrated and killed so rapidly that the practiced eye soon discovers a "spot." The leaf, if badly infected, may not reach full size; it may curl; it may die and fall; the tree thereby is injured.
From the fungus in the active diseased areas, another kind of spore develops rapidly. It is the summer-spore, which may be produced in prodigious numbers, and being discharged carries the disease elsewhere.
All summer the process of spore-formation and distribution keeps up. If conditions are favorable, the tree is invaded in foliage and fruit. The flower-stems in the unfolding buds are attacked by the winter-spores and the flower falls. The apples become spotted from the invasion of the summer-spores, perhaps misshapen. Late infections may not show at picking time, but develop on the fruit in storage. The affected leaves are cast in the autumn, the winter-spores begin to form, the snows come and hide the processes, in spring the spores mature; and so does the round of life go on and on.
There are beautiful forms in these fragile fungus threads that eat their way into the tissues of the host. There are fascinating phenomena in the growth and reproduction. Even so and for all that, man protects his tree by spraying it with poison, and thereby again does he have dominion.
The spraying for apple-scab is with lime-sulfur to which may be added arsenate of lead. This treatment, properly timed, may suffice also for the codlin-moth. As the fungus may attack the flower-stems and kill them, so is the first application made when the flower-buds open and the stems begin to separate, but before the flowers expand; the operator has a period of one to three days in which to spray. A second spraying is given just after the blossoms fall, as for codlin-moth; if the season is wet, a third application may be made ten to fourteen days later; if the fungus seems to spread, a fourth spraying may be applied in midsummer. These sprayings, variously modified, control not only the codlin-moth and the scab fungus but also scale, blister-mite, plant-lice, leaf-roller, case-bearer, bud-moth, red-bug and others.
In the tropics one sees trees bearing great burdens of orchids and bromeliads and ferns and mosses, and one wonders at the strange and exuberant population. Yet here is my apple-tree supporting epiphytes and parasites and insects, protector and nurse of a goodly company; and birds nest on the branches thereof.
XV
THE APPLE-TREE REGIONS
The northern hemisphere is the home of the apple, particularly Central Europe, Canada, the United States. In certain regions in the southern hemisphere the temperature and humidity are right for the good growing of apples, mostly in elevated areas. In New Zealand and parts of Australia, apple-growing is assuming large proportions. Their export trade to Europe and parts of South America has come to be important and undoubtedly is destined greatly to increase.
In Europe, where land is often limited and high in price, apple-trees may be planted closer than in America, even in field conditions, and more attention is given to pruning, heading-in, and the development of fruit-spurs in the interior of the tree-top. I noticed this practice in New Zealand, also. In these directions, the Europeans have much to teach us in the careful growing of good apples. In Europe, the definite training of the apple-tree begins in the nursery; quantity-production, with standardization, is not there the aim.
In North America the general practice is to let the tree take its course, reaching its full natural stature. The pruning is mostly corrective, to keep the tree in shape and to prevent the top from becoming too thick, rather than in the development of fruiting wood. The consequence is that our trees become very large, specially in New York and New England where they are long-lived. In the western country, as we have learned, the apple-tree tends to be shorter-lived and does not usually attain such great size. In the New York apple country, orchards may be in good bearing at forty to sixty years from planting, and individual trees may be productive much longer than this. The trees come into good bearing in ten to fifteen years. In the irrigated regions of the West, the trees may be expected to bear a good crop two to five years earlier; to what age they may attain, in large plantations, it is yet too early to state.
The commercial apple regions of North America are in Canada and the northern United States, comprising about two or three tiers of States, with important extensions southward into the mountains and in special parts. The Southern States are not known as apple-growing country, except in special restricted elevated areas, although there are considerable plantations near the Gulf of Mexico.
The geography of apple-growing on the North American continent cannot be better displayed than by copying the table of contents of the larger part of Chapters III and II in Folger and Thomson's excellent recent book, "The Commercial Apple Industry of North America:"
Commercial Apple Production in Canada
Nova Scotia Prince Edward Island and New Brunswick Quebec Ontario British Columbia.
Leading Apple Regions of the United States
Western New York Hudson Valley New England Baldwin belt The Champlain district New Jersey Delaware Shenandoah-Cumberland district Piedmont district of Virginia Minor regions in Pennsylvania, West Virginia and Virginia Mountain region of North Carolina Mountain region of Georgia Ohio Southern Ohio, Rome Beauty district Minor regions in Ohio Kentucky Michigan Illinois Southern Illinois early apple region Mississippi Valley region of Illinois Ozark region Missouri River region Arkansas Valley of Kansas Southeastern Illinois Colorado New Mexico Utah Montana Washington Yakima Valley Wenatchee North Central Washington district Spokane district Walla Walla district Oregon Hood River Valley Rogue River Valley Other apple districts in Oregon Idaho Payette district Boise Valley Twin Falls Lewiston section California Watsonville district Sebastopol apple district Yucaipa section Wisconsin Minnesota
The varieties of the South and the North, and largely also of the West and the East, are prevailingly different. Canada has a set of apples quite its own. These differences are marked when one visits exhibitions in the various regions. Let the visitor who is a good judge of apples in Michigan and Ohio attempt to judge them in an exhibition in the Annapolis Valley of Nova Scotia, in the Province of Quebec, in North Carolina, in Minnesota, in Oregon. He will be impressed with the wonderful diversity, as well as the undeveloped resources, of the continent.
Southward, apples do not keep well. There are no true winter apples in the Southern States, outside mountain regions. A winter apple of the North becomes a fall apple in the South. In fact, there are marked differences in keeping quality within a single State. On gravelly lands or warm slopes in the southern part of New York, the Northern Spy may become practically a late autumn apple; in the northern parts of the State it is a firm crisp all-winter keeper. In the winter apple, the ripening process proceeds in storage. When the season is so long that maturity is reached on the tree, the subsequent duration is relatively short.
It is not to be inferred, however, that apples are to be grown only in regions and soils naturally well adapted. Such adaptations should be controlling in commercial plantations; but if man has dominion he should be able to accomplish much in untoward or even in hostile conditions. Even the city lot may be able to yield a harvest, if the occupant of it is minded in fruits rather than in other things. Every observant traveler has noted cases in which good results in the rearing of plants and animals have been attained in places that no one would choose for the purpose: the man has overcome his obstacles. I was impressed with this fact in visiting a greenhouse in the Shetland Islands. Cultivation has been carried far beyond the optimum regions. The merit of the man's performance is measured in the excellence of his result rather than in the quantity of it. The application of skill is the highest test of ability in plant-growing, and this is often expressed in the most difficult places.
Whatever may be the adaptability of any general territory to the growing of apples in a large way, the probability is that a man of resources and skill will be able to raise good apples for himself, unless, of course, the region is prohibitive. The amateur may be a law unto himself in many of these matters, delighting in the ingenuity that enables him to overcome.
XVI
THE HARVEST OF THE APPLE-TREE
Finally the apple is ripe, a fair goodly object joyous in the sun, inviting to every sense. Hanging amidst its foliage, bending the twig with its weight, it is at once a pattern in good shape, perfect in configuration, in sheen beyond imitation, in fragrance the very affluence of all choice clean growth, its surface spread with a bloom often so delicate that the unsympathetic see it not; and yet the rains do not spoil it.
The apple must be picked. Do not let it fall. Probably it is over-ripe when it falls; the hold is loosened; its time is up. Wormy apples may fall before they are ripe; the worm injury, if it begins early, causes them to ripen prematurely. A premature apple is not a good apple, albeit the small boy relishes it but only because he may get his apple earlier; in the apple season, when ripe fruits are abundant, the boy does not choose the wormy one.
Pick the apple from the tree. It will do you good. It is ever so much better than to pick it from a box on the market or out of a quart-can in the ice-chest. You will feel some sense of responsibility when you pick it, some reaction of relationship to its origin. We know that we understand folks better when we see them at home.
In varieties that mature before winter, the apple is of best quality when it ripens on the tree and is picked when fit to eat. In this respect it differs from the pear. One reason why store apples are usually poor is because they must be picked long before ripe to stand shipment. In my experience it is most difficult to find a man who will pick apples when ripe; he is usually possessed to pull them green, thinking that if the fruit is full grown and has a red cheek it is therefore ready to be plucked.
One would expect the best summer and fall apples to come from nearby local orchards, but practically this is not the case because the grower will not allow them to remain on the tree until they are fit. Of course the really ripe apple will not keep long and it does not stand rough handling, but this does not affect the fact that, for eating, an apple should be naturally ripe. In every city, small or large, a good trade can be built up for local ripe hand-picked fruit of the first quality, in competition with the best commercial supply.
Winter apples are picked in the Northern States in October, sometimes late in September. They are then full grown, but are hard and inedible. The red varieties are full colored; the green ones show more or less yellow. Light early frost does not injure them on the tree. Usually they are placed at first in piles or windrows; and from these piles they are barreled or boxed for market. If the choicest grades are to be made, they should be taken to a packing-house.
The apple is an easy fruit to pick. The stem parts readily from the spur or twig. Yet if the harvester is choice of his trees he will work deftly rather than roughly, not to injure the bearing wood. The fruits are placed in baskets as they are plucked, sometimes in a bag slung over the shoulders but this is not the best way when the apples are ripe. In the packing-house, the fruits are sorted into uniform grades if they are for market.
The better the trees are tilled, pruned and sprayed, the more uniform will be the crop, and particularly if the fruit is thinned on the tree; yet the second-class and even cull apples will be many under ordinary conditions. The purchaser, noting the price of extra-grade apples, may not realize that he buys only the remainder in a long process of grading, extending really over the season or even throughout the life of the orchard. In all this time, the grower has borne the risks of frosts and hail, insect and fungus invasions, lack of help, and disastrously low prices. A finished product of high quality is always expensive.
The usual apples on the open market are not the kind I have here tried to describe. They are the product of indifferent orchards or of careless handling. They are purchased for cooking; and the eating of apples out of hand because they are attractive and really good is an unknown experience with great numbers of our people. The polished shiny apples of the fruit-stands are a delusion. The practice of burnishing the fruits produces a most inartistic result, destroying the natural bloom and violating the appearance of a natural apple. It is one thing to clean a fruit if it is soiled (which is seldom the case with boxed or barreled apples); it is quite another thing to rub and furbish an apple as if it were a billiard ball or glass marble and not a living object that grew on a tree,—it sets false standards before the children. Yet all this is in line with much of our practice whereby, in cookery and manipulation, we disguise our foods and show our lack of appreciation of the products themselves.
For home use, winter apples may well be stored in boxes in a cool moist cellar if such a place is available. For best results in long keeping, the temperature should be maintained below 40 degrees F. In a cellar containing a furnace, the fruits shrivel from too much evaporation, as also in an attic or other dry room. If the fruit must be stored in such places, it is well to keep the box or barrel tightly closed, and the individual apples may be wrapped in thin paper.
The apples must be sorted now and then, to remove the decaying ones; if the fruit was carefully sprayed, handled and graded in the first place and not too ripe, the necessity of frequent sorting will be considerably reduced. But in any case, the keeping of apples, except under good cold-storage, is at best a process of continually saving the most durable fruits. An "outside cellar," if properly ventilated, usually is a good place in which to keep apples. With the use of furnaces for heating and the cramped quarters of city apartments, the keeping of apples for home supply is constantly more difficult.
There is no apple like the one that comes up fresh from the cellar on a winter night, cool, crisp, solid yet ready. It is the fruit of the home fireside. I often wonder whether one in a hundred of the people know what a really good and timely apple is.
The yield of an apple-tree depends on many factors,—age, size, thriftiness, care it has received, whether it has escaped frost and other injuries; and some varieties are much more prolific than others. Some apples are "shy bearers," and for this reason soon are lost to propagation unless they have some superlative merit; Yellow Bellflower is an example of a shy, or at least an irregular, bearer. The great commercial varieties are of course good bearers, as Baldwin, Ben Davis, Stayman, York Imperial, Oldenburg, Rome, McIntosh, Wealthy, Yellow Transparent, Jonathan.
An apple-tree at full bearing is a wonderful sight at the harvest, particularly in such varieties as McIntosh and Baldwin, in which the fruit is highly colored and hangs well toward the outside of the tree-top. While the first bearing year may yield only a half dozen fruits, the crop increases rapidly with the added years,—one peck, one bushel, five bushels, ten bushels, thirty bushels, even to sixty and seventy bushels on large sturdy old trees of some varieties. The amateur, however, first prizes the quality and regularity of his product for the sheer joy of it; then every added bushel is so much to the good.
XVII
THE APPRAISAL OF THE APPLE-TREE
Now, therefore, in these sixteen little chapters have I tried to explain what I feel about the apple-tree. It is a version to my friend, the reader, not a treatise.
As the interpretation is in the realm of the sensibilities, so do I aim not directly at concreteness. Yet as it is now the fashion to "score" all our products by a scale of "points," I make a reasonable concession to it. But I do not like the scoring of the fruit independently of the tree on which it grew as if the fruit were only a commodity. I know we cannot bring the tree to the exhibition-room, yet the perfect measure, nevertheless, is the tree and the fruit together. In these later times we have said much against the use of the museum specimen to the exclusion of the living object in its natural place: let us be cautious, then, that we do not forget apple-trees in our studies of apples.
Here I shall not arrange numerical scales of points for the apple-tree. Sufficient for this occasion is the naming of the points, letting the reader place his own percentage-value on each of them; for I am trying to teach, not to instruct.
Yet I must insert, for the reader's benefit, certain good rules and scores that have been adopted for the "judging" of the fruit by those experienced in these matters. This excellent exercise of judging fruits at exhibitions has gained much headway. Students of schools and colleges are trained for the "judging teams," and great technical perfection has been attained.
To be exact is an exigency of science. I fear that we make exactness an end, but that is neither here nor there on this occasion and I shall not now pursue the subject further; I hope the judging trains the judge to see what he looks at in other things as well as in apples, that it leads him into the pleasant paths of causes and effects, that it opens the eyes of the blind.
The customary judging of plants and animals and their products consists in assessing the attributes against a scale of perfection. Thus, if "form" or "conformation" is worth 10 points in the hundred (by the estimation of good authorities), the judge must decide whether the particular animal before him merits 6 or 7, more or less. So if "flavor" in an apple is considered to be worth 20 points of the hundred, the judge makes up his mind what rating, within that limit, he shall accord to the fruit he is testing. The arrangement in tabular form of the features for any product, with the number of points stated for each, all summing 100, constitutes a "score-card." Thus there may be a score-card for Merino sheep, another for Shropshires, one for apples, and for any other objects whatsoever.
At competitive exhibitions, the element of comparison comes in. Perhaps it is the only criterion to be considered in a particular case,—whether this apple is better than that or than any number of others, which of several "plates" or samples of apples merits first mention, which of two or more collections of varieties is altogether most worthy of a prize. In these cases, the different fruits or collections may be scored by the card, and the total footings determine where the award shall go. Or, the different entries may be judged in general, "by the eye;" this is the usual method, and is satisfactory in the hands of persons whose standing and experience carry conviction.
If one is to evaluate an apple-tree against a scale or code, these are some of the features, in relative order of importance, to be considered:
1. Whether the tree is typical of the variety, in shape, manner of growth, character of foliage and bloom.
2. Whether it is sound of all injury and disease, and free of blemish.
3. Whether it is duly vigorous and productive.
4. Whether its fruit is characteristic of the variety or kind.
5. Whether the pruning has been good; the thinning; the spraying.
6. Whether the performance of the tree has fulfilled reasonable expectations.
The judging of fruits is facilitated by such score-cards and explanations as the following:
1. For comparison of different dessert varieties.
Conformation 10 Size 5 Color 20 Core 5 Uniformity 5 Durability (keeping) 10 Condition 5 Freedom from blemish 10 Quality 30 —— 100
2. For comparison of plates or samples of the same variety.
Form 15 Size 15 Color 25 Uniformity 25 Freedom from blemish 20 —— 100
DIRECTIONS FOR JUDGING PLATES OF APPLES IN AN EXHIBITION
Following are directions and explanations issued to judging teams in exhibition contests, by an agricultural college:
(1) Form: The shape and conformation of the apples on any one plate should be typical for the variety, the region of growth being somewhat considered. All specimens on a plate should be uniform in shape. When competition is close, a careful comparison of the more minute characteristics of the basin, cavity and stem are made.
(2) Size: The specimens on any one plate should be uniform in size and of the size most acceptable on the market for the variety. A plate may be marked down for being either under or over the accepted commercial size. In many exhibits, the ideal size is given in the premium announcements.
(3) Colors: All specimens in an entry should be uniformly colored in the way that is considered perfect for the variety in the district where grown. In judging color, one should consider (a) the depth and attractiveness of the ground color, (b) the brightness and attractiveness of the over-color, (c) the amount of the over-color. In a yellow or green apple, the yellow or green should be clear and even all over, considering the maturity of the specimen. In varieties that are typically blushed, (e. g., Maiden Blush) the specimens should show a distinct tinge of red on the cheek exposed to the sun. With such apples as Rhode Island Greening, that are only sometimes blushed, the presence or absence of the blush should not detract except that the apples on any one plate should be uniform. With apples typically over-colored, an intense color for the variety is desirable.
The bloom may be wiped from apples, but in no case should polished specimens be given the preference. Some exhibits have special rules regarding polishing of apples.
(4) Conditions: Refers to the degree of ripeness. An apple to be in perfect condition should be firm for the variety and free from the withering that comes when apples are picked too green or when the fruit is over-ripe or has not been stored properly.
(5) Freedom from blemish: All specimens should be free from blemishes of all kinds. One should look particularly for (a) marks of fungous or other disease, including stippin, (b) injury from insects of all kinds, (c) mechanical injury, including loss of stem. Unmistakable evidence of codlin-moth injury or San Jose scale should disqualify a plate. Other blemishes are considered important in about the order named: Side worms, scab, stippin, curculio or red-bug, skin punctures, bruises, stem pulled, russet (not typical for variety) and limb rub. The extent of scab spots should be considered. Minute spots are not as serious as some other blemishes, while spots which deform the apple should disqualify the plate.
Other information: Five specimens constitute a plate, except when the rules of the contest or exhibit state otherwise. Any variation from this rule disqualifies the plate.
When a plate is not labelled with the correct variety name, it should not be judged, but is disqualified and if possible the correct name is applied. If one specimen on a plate is not as labelled, the whole plate is disqualified.
In some judging contests, the plates are not labelled with the variety name, and the contestant is supposed to make the identification.
Precaution: Avoid pressing the specimens with the thumb and finger so as to bruise the fruit. The degree of firmness can be determined by gentle pressure with the inside of the whole hand.
Defects, apparent or otherwise, should not be probed with the finger nail, pin, or other hard object.
Special care should be exercised to replace all specimens on the right plate.
Having in mind these definite criteria, the reader will know what is meant by a "good apple" and also a good apple-tree. Measurements of perfection aid us to estimate the deficiencies.
* * * * *
He who knows the apple-tree knows also its region. The landscape is his in every blessed year; he sees the chariots of the months come down from the distances and pass by him into the twilights. Clouds are his and the repeating shadows on the hills. The morning when the blossoms are laden with the fragrance of the night, high noon when the bees are busy, the gloaming when the birds drop into the boughs, these are his by divine right. The smell of new-plowed fields is his, with the urgent promise in them. Seed time and harvest, as old as the procreant earth and as new as the latest sunrise, are his to conjure. The verities are his for the asking, the strong things of cultivated fields and of wild places. And mastery is his, that comes of the amelioration of the land and the education of the tree. All these are everyman's, and yet they are his alone.
INDEX
PAGE
Acid phosphate 45
Age of apple-trees 98
Alternate bearing 42
American Pomological Society 66
Apple-scab 95
Appleseed, Johnny 61
Arsenate of lead 95
Australia, Apples in 97
Bacteria 12
Bark of apple-tree 11 of cherry 11 of elm 11 of pear-tree 11
Bearing year 42
Black Gilliflower 73
Bloomless apple 75
Bolting trees 88
Bridge-grafting 88
Brush pile 27
Budding 50, 51
Buds 15, 19, 27
Calyx-tube 26
Canada, apples in 98
Canker 12
Cherimoya 8
Cherry, bark of 11
Christophine 8
Cider, treatise on 62
Cion-grafting 50, 79
Citrus fruits 8
Cleft-grafting 82
Coconut 8
Codlin-moth 12, 89
Custard apple 8
Diseases 46
Distance apart 43
Double apples 74
Doucin stocks 57
Downing, quoted 54, 67
Dwarf apple-trees 54
Elm, bark of 11
Endicott, Gov. 61
Enriching the land 45
Exhibitions 108
Fertilizing 40, 44, 45
Fig 8
Flower, structure of 20
Folger and Thomson, quoted 98
Fructicetum 78
Fruit-spurs and bearing 42
Fungi 12
Girdles 87
Graftage 49, 79
Grafts 81
Guava 8
Harvesting 102
Hillsides for orchards 44
Hogs in orchards 45
Hypanthium 26
Insects 46, 89
Judging apples 108
Knots 11, 85, 87
Land for apples 42
Langley, Batty 82
Lawson, William 82
Leaf-arrangement 29
Lichens 11
Lime-sulphur 95
Linnaeus 62
Lintner, J. A. 89
Malus 62
Mamone 8
Mango 8
Manning, mentioned 67
M'Mahon, quoted 66
Medlar 75
Mending trees 85
Moench, cited 75
Mound-layering 55
Muenchhausen, cited 75
Natural trees 51
New Zealand, apples in 97
Nitrate of soda 45
Origin of apple-tree 60
Ornamental apples 64
Ovary 20
Paint for wounds 86
Papaya 8
Paradise stocks 57
Parkinson, John 58
Pasturing 45
Pear, bark of 11
Phosphate, acid 45
Phyllotaxy 29
Picking apples 102
Piece-roots 50
Pistil 20, 26
Plant-breeder 51
Planting 42, 43
Plant-lice 12
Pollen-tube 20
Pollination 40
Pomegranate 8
Propagation of apple-tree 48, 54
Pruning 36, 40, 86, 104
Pyrus baccata 63 coronaria 63 diocia 75 Ioensis 63 Malus 62, 63 Soulardii 64
Receptacle of flower 26
Regions for apples 97, 99
Repairing trees 85
Root-grafting 50
Roots 43
Scale insects 12
Scale of points 108
Score-card 108
Seedless apple 74
Seedling trees 48, 51
Seeds, planting 48
Sharrock, Robert 81
Sheep in orchards 45
Sheepnose 73
Sod in orchards 44
Soil for apples 42
Spraying 40, 91, 95, 104
Star-apple 8
Stigma 20
Stocks 49
Storing 105
Struggle for existence 47
Style 20
Surgery 86
Surprise 73
Sweet-and-Sour 73
Thinning 38, 39
Thomson and Folger 98
Tilling 40, 44, 47, 104
Tree surgery 86
Varieties 66 list of 70
Water-core 74
Whip-graft 50
Wilder, mentioned 67
Wormy apples 89, 102
* * * * *
Transcriber's Notes
Some illustrations have been moved from their original positions to avoid breaking up the text, and to put them in numerical order.
Variations in spelling and punctuation have been retained from the original book except for the following changes:
Page 51: Both instances of "varities" changed to "varieties".
Page 74: "occuring" changed to "occurring".
Page 75: "dioecious pyrus" was originally typeset with an oe ligature.
Page 91: "foilage" changed to "foliage".
Page 93: "analagous" changed to "analogous".
Page 94: "or" changed to "nor". "investigatior" changed to "investigator".
Page 100: "gravly" changed to "gravelly".
Page 113 (Index): "Appleseed, Johny" changed to "Appleseed, Johnny". "Bark of Cheery" changed to "Bark of Cherry".
Page 115 (Index): "Linnaeus" changed to "Linnaeus" to match text.
THE END |
|