|
Notwithstanding that I have calculated upon nineteen pounds only of twenty-five pounds per barrel of fermentable matter being attenuated, and have even in that quantity included five pounds eight ounces of lees and yest, (the least quantity produced,) such calculation must not be admitted to preclude the practicability of attenuating almost every particle of fermentable matter, and replacing it with an equivalent particle of spirit, if that spirit which is now carried off by the avolation of the fixed air, is, agreeably to my proposal, either arrested in its flight, or filtered, after its escape from the guile tun and cleansing vat, by the proper apparatus.
Having in a former part of these papers observed, that attenuation may be carried too far, it may be necessary for me to reconcile these seemingly opposite positions, which should be understood in this way: When the quantity of fermentable matter, suspended in a barrel of worts, intended for beer, or ale, is from five to ten pounds more than twenty-five pounds per barrel, every particle of it may be safely attenuated, as the quantity of spirit generated will be sufficient to preserve the beer, or ale, for any requisite length of time, provided it has been properly hopped, &c., or in lieu thereof, received certain other additions to improve its vinosity, strength, and keeping; when the quantity of fermentable matter in worts is from five to fifteen pounds per barrel less than twenty-five pounds, the height of the attenuation ought to be limited on keeping beer and ale; the spirit generated being insufficient to preserve so much fermented fluid in a drinkable state for any length of time, with the usual additions only, even during the summer heats of our own climate; and if so, it is totally unfit for either exportation to warm latitudes, or for keeping at home.
For the right understanding of these observations, we should consider that the unattenuated fermentable matter is perpetually furnishing a gradual supply of fixed air and spirit, by means of the imperceptible fermentation always going on in vinous liquors.
Weak beers and ales fret and spoil very soon in warm weather, which proceeds from the development and avolation of their fixed air; strong beers and ales have their limits under the same influence of heat, time, change of the atmosphere, &c., and owe their preservation to two things, viz. to a due proportion of fermentable matter unattenuated, or the quantity of spirit they contain; as under these circumstances they are either preserved by the spirit already formed, or that continually supplied by the spontaneous decomposition of the fermentable matter they contain, slowly developing and yielding a fresh supply of air and spirit; hence beer and ales, not too highly attenuated, derive strength and spirituosity from age, when properly stored or cellared, and duly secured from the changes of the atmosphere.
These observations are applicable to sweets, or made wines, and to those which are the produce of the grape, the progress of fermentation and attenuation being (or ought to be) interrupted in them by racking off, which is similar to cleansing in beers and ales: and in Madeiras, and other dry wines, the incipient acidity is corrected and restrained, by proper additions introduced in the early part of the process, and with others of similar effect when the wines are making up, either for use or exportation.
We may gather from these observations, that worts attenuated for beer or ale, to the decomposition of all their fermentable matter, that is, attenuated so high, or so low, that their specific gravity is reduced to the standard of common water, and from that to the degree of levity spirit is known to give to water, in the proportion to the quantity added, and left to the preservation of the spirit formed, they have little or no auxiliary assistance from their original products, already exhausted by the highest or completest attenuation obtainable; an important circumstance, always to be attended to, particularly by those who affect an unnecessarily high attenuation!
The intelligent brewer may, by the assistance of these observations, form a most accurate rule for the regulation of his future conduct in the management of fermentation, according as his beer or ale is to be weak or strong, or for present use or long keeping; for the accomplishment of which, the use of the hydrometer and thermometer claim his peculiar attention, and will undoubtedly answer his expectations, when joined to the certainty he is now at, of knowing when he is, or is not, to expect the development of fixed air and additional spirit, by which he can govern himself accordingly.
These observations lead to a removal of the difficulties that lay in the way, and, at the same time, suggest a mode of applying the present, or of constructing a future hydrometer, for ascertaining the strength or the quantity of the vinous spirit in beer, wine, ale, and other fermented fluids, which has long been a desirable object.
The distiller, having none of these niceties to attend to, is governed by the ultimate extent of the attenuation the worts, or wash, is found capable of, and which is both assisted and protracted by its superior density, in its progress from specific gravity to specific levity, if such an expression is admissible.
Fermentation, begun in a fluid more or less saturated with saccharine or fermentable matter, the process is finished sooner or later, and usually in proportion to the degree of saturation, and the being conducted with more or less vigour under a well regulated temperature; for the more a fluid abounds with this matter, the grosser and denser it must necessarily be, and the longer will the attenuation be protracted; the longer it is protracted, in air-tight vessels, and in a healthy and vigourous state of decomposition, the more spiritous and strong will that wash turn out, and the greater the produce of spirit in distillation; hence, it is both protracted and assisted by its density.
A languid may be truly called an unhealthy decomposition, it being productive of diseases common to misconducted fermentation, acidity, putridity, and lack of spirits, with a tendency to precipitate and burn upon the bottom of the still; hence, all the decompositions are confounded together, as in spontaneous fermentation.
The formation of acidity during the process, is not of that injury to the distiller that it is to the brewer, nor is this recent acidity vinegar, as has been supposed by some chemists, but the incipient state of combination of resolving elements, whose particles are in that juxtaposition best suited to absorb developing hydrogen in a nascent state, and intimately to combine with it into vinous spirit, the approximation to which is promoted by time and incumbent pressure: these positions shall be explained as I proceed.
The reason that putridity is so rarely discovered in excited fermentation, is, that it is usually counteracted by the previously evolved acidity, and corrected, but not saturated or neutralized; for, were that the case, the putrid could not immediately succeed the acetous process in the same fluid, nor exist together, as they are known to do in declining beer, vinegar, &c.
The reason that acidity is not more frequently observed and attended to than it is, is because of its being sheathed or covered by the unattenuated sweets, or fermentable matter of the wash that remains undecomposed.
On the other hand, when acidity is very prevalent, it may be mistaken for unattenuated fermentable matter, acidity increasing the density and specific gravity of the fluid.
Putridity, from the avolation of its products, promotes levity, and that in proportion as its increase surpasses that of the general acid; and it is not until the action of the acetous becomes languid, that the putrid process gains the ascendency, when it is then difficult to overcome.
Although these observations may show how the hydrometer, or its use, in unexperienced hands may be baffled, they both distinguish and explain the value of its application; they do more—they elucidate the doctrine of fermentation, and illustrate the goodness of Providence, who has made nothing in vain, but provided nature with its own resources for conducting every operation in the great plan of the universe with uniform and unerring security.
In the decomposition of fermentable matter, either by combustion or fermentation, (which I have defined to be synonimous,) a portion of inflammable air, or hydrogen, is first evolved; secondly, another portion of inflammable air, united with pure air, or oxygen gas, evolves under the form of fixed air; this is the constant and uniform phenomena of these decompositions, and are progressively going on from the beginning to the end of the fermentation, while there is any fermentable matter to attenuate. A due portion of oxygen uniting in a nascent state with a correspondent portion of inflammable or hydrogen, and fixed air, forms the spiritous particles dispersed through the fermenting fluid, which create vinosity, and constitute it wine, beer, or wash.
During which, so great is the avolation of fixed air, (as we have seen,) that much of the ethereal part of the new formed, or, rather, the scarcely-formed spirit, is carried off with it in a gaseous state. This is much assisted by the agency of the atmosphere, which is the solvent and receptacle of ethereal products, whose affinity for them must be as great as it is perfect and immediate—which demonstrates the necessity of having air-tight vats. When we consider the composition of the atmosphere, and that it owes its formation and existence to this cause, and, thereby becomes the menstruum of all created matter, we may be better able to understand the composition and formation of vinous spirits, and, by closely copying the original, more successfully imitate nature. We have seen that the principal phenomena in fermenting fluids is a brisk intestine motion of their parts, excited in all directions with a loss of transparency, or a muddiness, a hissing noise, the generating of gentle heat, and an exhalation of gas. This heat, we must now observe, is always very sensible before the extrication of any gas. We have adverted to the similarity existing between respiration and fermentation, which is remarkably so in the equality of heat produced in both in a healthy state of either, and which seldom exceeds ninety-six degrees of Fahrenheit's thermometer; but there are instances of their being much higher in both, without producing much injury to either. Instances of this could be adduced at home, without referring to warmer climates of the East and West Indies, where the temperature of the atmosphere is so much higher than with us; and that the temperature of the fermenting fluid, when at its height, always exceeds that of the surrounding atmosphere in these latitudes, which makes the similarity still stronger between these two decomposing processes. This is a general and just remark; but, in order to regulate it by practical facts, we must name the medium standard of heat, which rarely exceeds eighty-five degrees with the brewers; this is the medium of seventy-four and ninety-six degrees; but the medium heat is not unfrequently up to ninety-six degrees in the distiller's fermenting backs of Great Britain. Much depends on the degree of temperature the fermentation is pitched at: here, nothing is spoken of but the cleansing heat with the brewers, and the medium heat with the distillers.
For the maintenance of combustion, the free access of air being necessary, an objection may be raised to air-tight vats, as unfit to carry on this process in, to the exclusion of external air; which objection may seem to gather force from the compression it occasions of the fixed air on the decomposing fluid, which is allowed to extinguish active combustion. I must acknowledge these are formidable objections to my definition of low combustion, but I by no means find them unanswerable.
The aptitude of new hay, malt, and other vegetable matters, to spontaneous combustion, when impacted together by incumbent pressure, and a certain degree of moisture, should be recollected; and that this tendency is not destroyed by excluding the admission of external air, but by quickly cooling and dividing the impacted hay.
The great quantity of oxygen, or vital air, both in the water of dilution, and in the fermentable matter, with which the fluid is more or less saturated, should be also recollected, which is about eighty-five parts in the former, and sixty-four parts of one hundred in the latter.
Though, in an unelastic or fixed state, it is one of the properties of combustion to disengage and render it elastic, great part of which, during the low combustion which it supports, and in which heat is visible or perceptible, and light in an invisible state developed, three parts of this oxygen, with about one third of its weight of carbon, is converted into an elastic state, under the form of fixed air, that separates from the decomposing mass; a circumstance attending also on the combustion of coal and other combustible substances during their decomposition by that process, which supported in them by the external air of the atmosphere, where heat and light are both visible from the intensity and velocity of the combustion; and wholly invisible in the former, not from exclusion of external air, but from the length of time elapsed in low combustion; the one being performed instantaneously, and the other taking several days from its decomposition. Although fixed air is known to extinguish a lighted candle, and destroy animal life, that is, to be equally unfit for the combustion of inflammable bodies, or the support of animal respiration, it is also known to be as successfully employed as atmospheric air, or even dephlogisticated air, to melt glass, &c., when applied to the clear flame of a wax candle, by passing a current of it through a blow-pipe, to direct that flame on the glass to be melted.[4]
[4] Count Rumford on the Economy of Fuel.
This will not be so much to be wondered at, when we consider that the proportion of vital air in fixed air is as twenty-seven to nine, and in atmospheric air, the proportion of azotic gas or phlogisticated air, to vital air, is as seventy-three to twenty-seven; therefore, the former contains three fourths of vital air, and the latter little better than one fourth; but the fixed air is in a combined, and the phlogisticated air in an uncombined state. Among the processes made use of by nature for the decomposition of vegetable and animal substances, fermentation, or low combustion, is a principle one. Air, in a fixed or unelastic state, may be as necessary here as air in an elastic state is known to be in the active combustion of inflammable bodies. Chemists and philosophers are no strangers to two sorts of combustion, one in external air, and the other in close vessels.
But this is not the combustion alluded to in fermentation, where all the requisites for complete decomposition is to be found independent of contact with the atmosphere; here one part is oxygenated at the expense of the other, and the other disoxygenated in favour of it.
Nor does the solution, or decomposition of metals by acids, the combustion of inflammable and vital air for the production of water, stand in need of external heat or fire, any more than the low combustion in which fermentation consists for the production of spirit, beer, or wine, than that generated by the self-operation of its own temperature; similar to this is the self-animating principle or power with which nature has endowed the animal body of generating its own heat by respiration.
In fermentation, the caloric, or matter of heat, which is plentifully disengaged by the condensation of oxygen, is prevented from breaking out into flame with the condensing hydrogen, from the presence of affinities in the fermenting mass, ready to absorb and fix them into vinous spirit, ale, beer, &c., with the other component element, carbon; by which they are too instantaneously taken up and fixed, to amount to more than bare ebullition, and pass at once from an incipient state of elasticity, to a fixed and non-elastic one, while the redundant heat, which would otherwise appear, is taken up and carried off by the abundant formation of carbonic acid gas, which requires so great a quantity of caloric to render it permanently elastic, as not only keeps this sort of combustion under ignition, but much below the degree of heat at which the accumulating vinous spirit could be raised to the evaporable or distilling point, though capable, as already observed, of detaching a considerable portion of it with the volatile gas, and of the water of solution, or the water of composition recently formed from the present attractions in its most volatile and incipient state of formation; both which we have seen ascend with the fixed air extricated, partly in a combined, and partly in an uncombined state.
One part of hydrogen is sufficient to saturate and fix above five of carbon, and they require nearly sixteen parts of oxygen to complete their formation into alcohol, while the water of dilution undergoes a proportionate decomposition and recomposition, to assist the resolutions and combinations, and support the admirable equilibrium preserved by nature.
At the same time that the extreme levity of the hydrogen gas accounts for the great quantity of heat which it holds in combination, and the high temperature requisite to effect its decomposition, and that such is its capacity for heat, that though combined with oxygen and water, it still possesses the property of absorbing a great deal more. It is this property that renders aqueous vapour lighter than atmospheric air in which it ascends; yet we have just now demonstrated the resolution and combination of hydrogen gas, and oxygen gas, both extricated from the fermentable matter and the water of dilution, and their formation into spirit, &c., at a temperature not many degrees above that of the incumbent atmosphere, and no higher than that excited by respiration in the animal system.
In which we have shown the vegetable oxyde, (saccharine matter,) when reduced by the admixture of water, to form the worts or wash, to be a carbonated hydrogenous fluid, containing the elements of wine, beer, ale, spirit, &c., and the mode of producing them under circumstances conducive to their formation; these are motion, heat, pressure, and mutual attraction, called into existence by a species of low combustion, or fermentation, somewhat similar to respiration. In which the materials, the products, and the liberation of caloric are ultimately the same, whether the operation is attended by visible fire from the velocity of action, or weak incalescence from the slow progression of its motion; in which the component elements are continually assuming a gasseous form, and as constantly losing it by the force of mutual attraction for each other. No sooner is the equilibrium broken, in one instance, by their gasseous appearance, than it is restored by their condensation, and the heat liberated by the latter taken up by the former, by which the equilibrium is preserved; in this consists the increase of temperature above that of the surrounding atmosphere, accompanied by the discharge of fixed air; to fix, and advantageously apply which, shall be the next consideration; and, by an accurate imitation of the modification employed by nature, to render the fermenting fluid so much the stronger by such fixation. To accomplish which, we must advert to what has been delivered in the preceding pages, particularly to the proportions in which the equilibrium preserved by nature consists, and exactly to her manner of combining them in sugar, malt, and other saccharine matter, her mode of breaking this equilibrium, or decomposing them by fermentation, and recombining them into wine, beer, &c., and by the same process restoring the equilibrium.
It cannot be doubted, but that, in the investigation of the acetous process of fermentation with the attenuation we do the vinous, they will mutually reflect light on each other; in which it will come out that wine, beer, ale, vinegar, spirit, &c., are not the only commercial preparation to which the doctrine of fermentation, or low combustion, may be advantageously applied, but also to others, that are perhaps equally important and productive.
The cleansing being at the meridian, or greatest temperature of the heat of the fermenting fluid, and the object of that cleansing being to reduce the heat, and thereby allay the violence of the fermentation, by which an immediate decomposition takes place, the lighter impurities buoyed up to the top of the fluid flows off with the yest, while the heavier dregs descend to the bottom, and the fermentation gradually declines as the cleansing draws to a conclusion, and the fermenting fluid forms a turbid heterogeneous mass, very perceptibly approaching towards a transparent homogeneous fluid in its progress to a drinkable state.
In laying out a brewery, the air should have free access to the coolers on all sides, under and over; cleansing vessels should be similarly situated, and, if avoidable, the coolers should not lay immediately over them, to raise their temperature, which should not be many degrees above that of the atmosphere, at temperate, which is fifty-two degrees; but the descent from the cleansing heat (seventy-five to eighty-five) should be progressive, that is, not sudden. A sudden chill would precipitate the grosser, and diffuse the lighter dregs throughout the fermenting fluid, which should be thrown off from the surface in cleansing; this would retard the fining, and empoverish the beer or ale; while the mode recommended will be found to promote transparency, and give strength and body, that is, fullness and spirituosity. In general, the cleansing commences too soon for the strength and quality of the goods, particularly for porter, since the introduction of a greater proportion of pale malt than formerly used; a more perfect fermentation is now requisite to keep up the genuine distinction in that flavour of porter from ordinary beers and ales, which, since the change of lengths, has much declined, though the only characteristic quality that gives it merit over other malt liquors—an object that deserves consideration in this great commercial branch of trade, and source of national wealth, where the loss of distinction will be the loss of trade. The rough, astringent, thirst-creating smack is the produce of the brown malt, and a well conducted fermentation. The porter now brewed can no more bear the sudden chill of a cooling atmosphere in the barrel cleansing, without too immediate a condensation and separation of its parts, than it is able to sustain the quick changes of a warm atmosphere, without an immediate tendency to acidity. As things now are, either extreme can only be avoided by a more attentive advertence to the mode of cleansing, so as to prevent a predominant tendency to either by adopting the means proposed, or such other, on the same principles, as are equally likely to preserve the quality, increase the strength, promote transparency, and avoid acidity. I know it may be urged by the most able brewers, that a high and rapid fermentation in the cleansing is a principal cause of that flavour for which porter is distinguished; that this kind of fermentation leads to a more perfect attenuation; and some of them may, with great truth, add, a perfect attenuation is the genuine mode of early bringing beer forward. This I most readily grant; it is the doctrine I wish to inculcate. The greater gravity of keeping beers, preserves them in a mild state, while their spirituosity prevents acidity. The flavour of the colouring matter now in use, nor the change it induces, is not, by any means, adapted to preserve the genuine flavour of porter, or compensate for that made in the change of malt; a change I by no means condemn, with respect to the malt; but however advantageous to the length, we must not altogether give up flavour, while we may equally as well, and indeed much better, preserve both by a due admixture of each sort of malt, and with suitable additions and proper correctives in the process or preparation of porter, both salubrious; as by the subsequent mixture of stale and mild beer, before sending out, or, afterwards, by drawing them from different casks into the same pot, when on draught, to suit the palate of each respective customer.
I hope it is by this time understood, that my views are to raise the Process of Brewing above the vulgar error that tyrant custom has entailed on it, and by the free exercise of the brewer's abilities, both in a scientific and tradesman-like manner, so as advantageously to preserve flavour and quality, with almost any proportions of every sort of malt he may occasionally be obliged to use.
The world is continually exclaiming that experience is better than theory. This is very true; for example, he who has had a very long experience, may, in general, perform operations with tolerable exactness; but this he undeviatingly does by certain stated means, without any deeper intelligence of the process. I would, with Mr. Chaptal, compare such a man to a blind person who is acquainted with the road, and can pass along it with ease, and perhaps even with the confidence and assurance of a man who sees perfectly well, but is at the same time incapable of avoiding accidental obstacles, of shortening his way, or taking the most direct course, and alike incapable of laying down any rules which he can communicate to others. This is the state of the artist of mere experience, however long the duration of his practice may have been, as the simple performer of operations.
Brewing, fermenting, distilling, &c., are branches of commercial chemistry, that generally challenge the attention and secure the protection of those governments that constitute them sources of revenue and trade. Chemistry is as much the basis of the arts and manufactures, as mathematics is the fundamental principle of mechanics. In the process of brewing porter, ale, threepenny, &c., to be subsequently treated of, the practical minutia of fermentation and attenuation shall be circumstantially laid down in each, so as to account for, and distinguish the variety of flavour, &c., assignable to each cause effected by the different modes of treatment.
Hops, the best method of cultivating and raising them.
A rich, deep soil, rather inclining to moisture, is, on the whole, the best adapted for the cultivation of hops; but it is observable that any soil (stiff clay only excepted) will suit the growing of hops when properly prepared; and in many parts of Great Britain they use the bog-land, which is fit for little else. The ground on which hops are to be planted should be made rich with that kind of manure best suited to the soil, and rendered fine and mellow by being ploughed deep, and harrowed several times. The hills should be at the distance of six or eight feet apart from each other, according to the richness of the ground. On lands that are rich, the vines will run the most; the hills must therefore be the further apart.
At the first opening of the spring, when the frosts are over, and vegetation begins, sets, or small pieces of the roots of hops, must be obtained from hops that are esteemed the best.[5] Cut off from the main stalk or root, six inches in length, branches or suckers, most healthy, and of the last year's growth, if possible to be procured; if not, they should be wrapped in a cloth, kept in a moist place, excluded from the air. A hole should then be made large and deep, and filled with rich mellow earth. The sprouts should be set in this earth with the bud upwards, and the ground pressed close about them. If the buds have begun to open, the uppermost must be left just out of the ground, otherwise cover it with the earth an inch. Two or three sets to a pole is sufficient, and three poles to a hill will be found most productive; place one of the poles towards the north, the other two at equal distances, about two feet apart. The sets are to be placed in the same manner as the poles, that they may the easier climb. The length of the poles may be from fourteen to eighteen feet, according as the soil is rich or poor. The poles should be placed so as to incline to each other, meet at their tops, and there be tied. This is contrary to the European method, but will be found best in America. In this way they will strengthen and support each other, and form so great a defence against the violent gusts of wind, to which our climate is frequently subject in the months of July and August, as to prevent their being blown down. They will, likewise, form a three-sided pyramid, which will have the greatest possible advantage from the sun. It is suggested by experience, that hops which grow near the ground are the best. Too long poles, therefore, are not good, and care should be taken that the vines do not run beyond the poles, twisting off their tops will prevent it. The best kinds of wood for poles are alder, ash, birch, elm, chestnut, and cedar, their durability is directly the reverse of the order in which they stand; charring, or burning the end put into the ground, will preserve them. Hops should not be poled till the spring of the second year, and then not till they have been dressed. All that is necessary for the first year, is to keep the hops free from weeds, and the ground light and mellow by hoeing and ploughing often, if the yard be large enough to admit of it. The vines, when run to the length of four or five feet, should be twisted together, to prevent their bearing the first year, for that would injure them. In the months of March or April, of the second year, the hills must be opened, and all the sprouts or suckers cut off, within one inch of the old root, but that must be left entire with the roots that run down;[6] then cover the hills with fine earth and manure. The hops must be kept free from weeds and the ground mellow by hoeing often through the season, and hills of earth gradually raised around the vines during the summer. The vines must be assisted in running on the poles with woolen yarn, suffering them to run with the sun. By the last of August, or the first of September, the hops will be ripe, and fit to gather. This may be easily known by their colour changing, and having a fragrant smell; their seed grows brown and hard. As soon as ripe, they must be gathered without delay, for a storm or frost will injure them materially. The most expeditious method of picking hops, is to cut the vines three feet from the ground, pull up the poles and lay them on crotches, horizontally, at a height that may be conveniently reached, put under them a bin of equal length, and four may stand on each side to pick at the same time. Fair weather should always be chosen to gather hops and they should never be gathered when dew or moisture is on them, as it subjects them to mould. They should be dried as soon as possible after they are gathered; if not immediately, they must be spread on a floor to prevent their changing colour. The best mode of drying them is with a fire of charcoal and kiln, covered with hair cloth in the manner of a malt-kiln.[7] The fire should be steady and equal, and the hops gently stirred from time to time. Great attention is necessary in this part of the business, that the hops be uniformly and sufficiently dried; if too much dried they will look brown, and, of course, be materially injured in their quality, and proportionably reduced in their price. If too little dried, they will lose their natural colour and flavour. They should be on the hair cloth about six inches thick after it had been moderately warmed, then a steady fire kept up till the hops are nearly dry, lest the moisture or sweat the fire has raised should fall back and change their colour. After the hops have been in this situation seven, eight, or nine hours, and have got through sweating, and when struck with a stick will leap up; then throw them into a heap, mix them well, and spread them again, and let them remain till they are all equally dry. While they are in a sweat, it will be best not to move them for fear of burning, slacken the fire, when the hops are to be turned, and increase it afterwards. Hops are sufficiently dried, when their inner stalks break short, and their leaves become crisp, and fall off easily. They will crackle a little when their seed is bursting, and then they should be removed from the kiln. Hops that are dried in the sun lose their rich flavour, and, if under cover, they are apt to ferment and change with the weather, and lose their strength; moderate fire preserves the colour and flavour of the hops, by evaporating the water, and retaining the oil of the hop. After the hops are taken from the kiln, they should be laid in a heap, to acquire a little moisture to fit them for bagging. It would be well to exclude them from air by covering them with blankets. Three or four days will be sufficient for them to be in that state. When the hops are so moist that they may be pressed together without breaking, they are fit for bagging. Bags made of coarse linen cloth, eleven feet in length, and seven in circumference, which hold about two hundred pounds weight, are most commonly used in Europe: but any size that best suits may be made use of. To bag hops, a hole is made through the floor of a loft, large enough for a man to pass through with ease. The bag must be fastened to a hoop, larger than the hole, that the floor may serve to support the bag; for the convenience of handling the bags, some hops should be tied up in each corner of the bag, to serve as handles. The hops should be gradually thrown into the bag, and trod down continually, till the bag is filled. The mouth of the bag must then be sown up, and the hops are then fit for market. The closer and harder hops are packed, the longer and better they will keep; but they should be kept dry. In most parts of Great Britain where hops are cultivated, they estimate the charge of cultivating one acre of hops at forty-two dollars, for manuring and tilling, exclusive of poles and rent of land; poles they estimate at sixteen dollars per annum, but in this country they would not amount to half that sum; one acre is computed to require three thousand poles, which will last from eight to twelve years, according to the quality of the wood used. The English growers of hops think they have a very indifferent crop if the produce of one acre does not amount to one hundred and thirty-three dollars, but, much more frequently, it amounts to two hundred dollars, and sometimes so high as four hundred dollars per acre. In this country, experiments have been equally flattering. A gentleman in Massachusetts, in the summer of 1791, raised hops, from one acre of ground that sold for three hundred dollars; it is allowed, that land in this state is equally favourable to the growth of hops. Upon a low estimate, we may fairly compute the nett profit of one acre of hops to be eighty dollars, over and above poles, manure, and labour; and in a good year a great deal more might be expected. There is one circumstance further we think has weight, and ought to be mentioned: in the English estimate the expense put down is what they can hire the labour done for by those who make it their business to perform the different parts of the cultivation. A great saving may, therefore, be made by our farmers in the article of labour, for much of it may be performed by women and children. Added to this, we have another advantage of no small moment in this country: the hop harvest will come between our two great harvests, the small grain and Indian corn, without interfering with either but in England the case is otherwise: the small grain and hop harvest come in together, and create a great scarcity of hands, it being then the most busy season of the year. It is found, by experience, that the soil and climate of the eastern states are more favourable to the growth of hops than Great Britain; they not being so subject to moist, foggy weather of long continuance, which is most injurious to hops; and the southern and middle states are still more favourable to the growth of hops than the eastern states, in point of flavour and strength. The State of New-York unites some advantages from either extreme of the union. The cultivators of land in this state have every inducement, which policy or interest can offer, to enter with spirit into the cultivation of hops; as we shall thereby be able to supply our own demand, which is now every year increasing, instead of sending to our neighbours for every bag we consume; a circumstance the more unaccountable, as hops, are on all hands, allowed to be one of the most profitable crops that can be raised; the culture requires but little land, the labour may be performed at intervals, so as not to interfere with other business of the farm, and be generally performed by women and children. There is hardly a farmer in this state but may, with ease, raise from one quarter of an acre, to as much as three or four acres, the advantage of which would, in a few years, be most sensibly felt both by the individual concerned, and the state at large. In the city of New-York there are, at present, a number of large and respectable breweries, and new ones, from time to time, may reasonably be expected to be added to their number. All these establishments are now supplied with hops from Massachusetts and Connecticut; these considerations should certainly stimulate a few spirited cultivators to lead the way, and raise hops; their laudable example would soon be followed by others; so that in a few years we should have prime hops of our own in abundance, for home consumption or exportation. This subject will, I hope, appear sufficiently important to recommend itself; to say more is therefore unnecessary.
[5] Of the different kinds of hops, the long white is the most esteemed; it yields the greatest quantity, and is the most beautiful. The beauty of hops consists of their being of a pale bright green color. Care should be taken to obtain all of one sort; but if different sorts are used, they must be kept separate in the field, for there is a material difference in their time of ripening; and if mixed in the field, will occasion extra trouble at the time of gathering them in.
[6] Hops must be dressed every year, as soon as the frost will permit; on this being well done depends, in a great measure, the success of the crop. It is thought by many to be the best method to manure the hop yard in the fall, and cover the hills entirely with the manure, asserting, with other advantages, that this prevents the frost from injuring plants during the winter. Hops had better be gathered before they are full ripe than remain till they are over ripe, for then they will lose their seed by the wind, or on being handled. The seed is the strongest part of the hop, and when they get too ripe will lose their green colour, which is very necessary to preserve as the most valuable part of the [remainder of text is illegible]
[7] Kilns covered with the splinters of walnut, or ash, will answer the purpose, and come cheaper than hair cloth.
Barley Cultivation.
However unconnected this subject may appear with a treatise on brewing, I cannot help thinking that, in this country, it is much more intimately connected with it than one would, at a first view, incline to suppose, and for the following reasons; first, Because the proper cultivation of barley is not generally known, save in the eastern states, and but very little raised in any of the others; secondly, Without good barley it is impossible to make good malt, consequently, good beer—and it must be acknowledged, that a great proportion of the barley that is raised, even in the eastern states, is but very imperfectly suited to the purposes of the brewery, being what is termed winter barley, and generally a poor, thin, lank grain, by no means qualified to make good malt. This is so well known in England, that it is very rarely met with in the barley markets, and seldom, or ever, purchased by a brewer. The summer, or spring barley, always getting the preference, being the largest bodied grain, and, of course, the best suited to the purposes of making prime malt, the want of which, is frequently severely felt by the brewers of this country, from the impossibility they often find themselves in of procuring good barley, being obliged to use such as they can get, which, for the most part, is very ill suited to their purpose. It will be, then, their interest to give every encouragement to the farmer to raise spring barley in preference to the winter, to procure the best seed, of that description, that he can find, to clean it well, to steep it in well or spring water for twelve hours, stirring it frequently from the bottom of the tub or vessel all around; and previous to each stirring, all the floating grains, seed weeds, &c., should be carefully skimmed off: thus nothing will remain for seed but sound and perfect grain. The first water should be drawn off at the end of six hours, and immediately replaced by fresh; this again drawn off at the end of six hours more; it should be sown, broad cast, the following day, being first previously mixed with a sufficient quantity of wood ashes to dry it as much as will be necessary for the purpose of sowing. Thus managed, if the ground be in proper tilth, and fitly prepared, this grain will make its appearance the fifth or sixth day after sowing; whereas, if the seed be sown dry, it will probably be three weeks or more before it comes up, particularly if the season be dry. I cannot more forcibly recommend this practice than by giving a brief sketch of an experiment made in England, and taken from the Bath and West of England Society's reports. A farmer selected four acres of the same field, treated and prepared it for seeding exactly in the same way, he then divided it into two equal parts; he sowed one part with dry seed, in the common way, the other with steeped seed, as here recommended, and the consequence was, that the latter produced a double crop, although the seed in both cases was the same, save the difference of treatment. The superior quality and condition of the crop seemed to keep pace with the increased quantity. The beginning or middle of March, if the weather be dry, is the best time to sow spring or summer barley. This mode of preparing seed wheat, is highly recommended as an assured preservative against the smut, fly, &c., insuring a sound good crop of grain. Barley should be always cut in dry weather, yet not suffered to be too ripe before cutting; stacking it in the field for a few weeks before removing it to the barn, helps and prepares it for malting, by sweating and drying it. Barley, immediately brought to the malt house from the field, rarely makes good malt, as a great proportion of it becomes staggy, and will not grow. Those who can corroborate the truth of these remarks, and sufficiently appreciate them, will readily justify and excuse this seeming departure from the original plan of this little work.
Table Beer.
There is no production of the brewery more important to society than good table beer, whether it be considered as a diluent to animal food, or a diet drink in fever cases, even of the most malignant kind, where, to my knowledge, it has been preferred to all others, and that with the greatest success, sanctioned by the advice of some of the most eminent physicians. This justifies my recommending it, and giving several processes for making this useful liquor.
Small Beer for Shipping.
12 Bushels of Pale Malt. 12 Bushels of Amber Malt. — 24 — 14 lb. of Hops.
Cleansed 24 Barrels.
Let your malt be fine ground; first liquor 172; mash one hour, stand one hour, run down smartly; beat of second mash 180; mash one hour, stand two hours, boil two hours; making your length sufficiently long to give one barrel of beer to each bushel of malt. Pitch your tun at 70 degrees, giving one gallon of solid yest; cleanse within twenty-four hours. The fresher this beer is sent out the better: being very thin in body and low priced, it cannot be expected to last long.
Keeping Table Beer.
PROCESS.
Commenced brewing at six in the morning, heat of the air 60 degrees, per Fahrenheit's Thermometer.
48 Bushels of Pale Malt. 16 Bushels of Amber Malt. — 64 — 72 lb. of Hops.
Cleansed 45 Barrels of Table Beer.
10 lb. liquorice ball, which was previously melted down in boiling water, by frequent stirring, to a liquid, and then put in with the hops when added to the worts. Ran the necessary quantity of boiling water into the mash tun for the first mash, and when cooled down to 168, commenced mashing, which continued three quarters of an hour, stood one hour, ran down briskly; mashed a second time at 180, for half an hour; stood half an hour; mixed both worts, boiled one hour and a half as hard as possible, throwing into the copper, before boiling, half a pound of ground ginger, with half a pound of ground mustard; pitched these worts at 70 degrees, giving 3 gallons of solid yest; remained in the tun 36 hours, and was headed over, before cleansing, with four pounds of flour and one pound of salt mixed together. This kind of beer will have attenuated sufficiently in from 30 to 36 hours.
Small Beer of the best kind, how brewed, which, in a good cellar, will keep as long as can be reasonably wanted.
MATERIALS.
15 bushels of Pale Malt. 7 lb. Hops.
Cleansed 10 1/2 Barrels Beer, heat of the air 50 by Fahrenheit's Thermometer.
Boiled the first copper; drew the fire; then ran ten inches of boiling hot water into the keeve; added two inches of cold water, mixed both well together, which made up at 168; then put in the malt gradually, mashing all the time, for about half an hour; the mash being thin, did not require a longer operation. Before mashing, rubbed the 7 pounds of hops in a tub, sprinkling over them, when rubbed, about one quarter of a pound of white salt, then poured on boiling water in sufficient quantity to saturate them well, after which they were close covered; the keeve having stood two hours, the tap was set, and ran down twelve inches. Did not boil the second copper, but raised its heat to 184, mashed a second time, and stood one hour, ran down as before, and completed the length in the underbank, cleared the copper, had it rinced out, got up the worts, put in the hops, extract and all, made up the fire, and boiled one hour and a half as hard as possible, previously adding to them four pounds of brown sugar that had been dissolved in a bucket with hot water, also half a pound of ground mustard; this beer remained on the coolers about eight hours, pitched it next morning at 72 degrees, adding only one gallon of solid yest, ran slowly into the tun which made up at 61 degrees; came on gradually, remained in the tun 31 hours, and raised to 66, affording but two degrees of attenuation. Notwithstanding this beer worked well in the casks, yet moderately, was frequently filled at close intervals, and was glass fine the fifth day. The sugar was added to assist the colour as well as the strength, the mustard to give flavour.
Another Method.
To brew small beer somewhat stronger, take 30 bushels of pale malt, (have it ground fine,) 10 pound of hops, steep them as in the preceding process. Turn out of your copper 16 barrels of beer, give your first liquor at 165, your second at 175, mash, run down, stand, and boil as before. But before you commence brewing, take five pounds of brown sugar, put it into a metal pot with some water, set it on the fire, keep it constantly stirring till it begins to smell strong, then take it off the fire, and add to it, gradually, three gallons of water, at the temperature of blood heat, stirring the water and the sugar well together, till the whole be perfectly blended; this prepared liquor should be added to the worts in the copper before boiling. The fermentation, &c., to be conducted as before, save only the pitching, yest, to be increased by half a gallon, which half gallon is not to be added to the worts until twelve hours after the first gallon. Attenuation should proceed until the heat rises four degrees above the pitching heat, which should be the same as in the preceding process. In both instances, the tuns should be covered during the period of fermentation, but taken off for the purpose of rousing before cleansing; these covers should be put on again, in order to prevent the dispersion or waste of the gasses, which is always a loss of spirituosity.
A good sound keeping Table Beer may be Brewed from wheaten Bran and Shorts, and, in many situations, when Malt cannot be procured, would be found an excellent substitute. This process is well worth the attention of housekeepers.
PROCESS AS FOLLOWS:
40 Bushels of Shorts. 20 Bushels of Bran.
16 lb. of Hops will give 25 Barrels of Small Beer.
Boil your first copper, run into your mash tun as much boiling water as, when reduced with cold, will bring it to the temperature of 1.0, then commence your mashing operation, putting in two bushels of shorts, and one bushel of bran at a time; when these are well mixed with the water, put in more, mash again, and so continue to do till all is in; it will take from half an hour to three quarters to mash this quantity properly; let your mash stand two hours, run down as in the preceding processes, and give your second liquor 165; mash a second time, stand one hour, boil your first wort one hour very hard with half your hops, which should have been steeped, rubbed, and salted, as before directed; boil your second wort one hour and a half in the same way, putting on the remainder of your hops, with one pound of ground mustard, and five pounds of brown sugar, reduced, by boiling, to a colouring matter, as already directed in the previous process; make up your two boilings in your tun at the heat of 65, giving three gallons of solid yest; let your attenuation proceed ten degrees, or to 75, then cleanse, and continue to fill your casks in the usual way. It has been found that beer brewed from these materials has stood the summer heats much better than beer brewed from malt alone; this may be accounted for by the extract of malt possessing a much larger proportion of saccharine matter than that obtainable from bran and shorts. In families, this beer may be brewed in the proportion of one or two barrels at a time; and in the country, where brewer's yest may not be procurable, leaven, diluted with blood-warm water, may be substituted for brewer's yest, and will answer, but not so well; neither will attenuation go so high, as fermentation with leaven, when applied to liquids, is generally languid and slow.
Single Ale and Table Beer.
100 Bushels of Malt. 60 lb. of Hops.
Heat of the air 50 degrees.
Cleansed or tunned 30 Barrels of Single Ale; with 16 Barrels of Table Beer after.
First, or mashing liquor, 168, run your whole quantity of boiling liquor into your mash tun, and when it cools down to the above point of 168, begin to run in your malt gradually from your malt bin; this quantity will require four or five hands to mash it well, which will generally take three quarters of an hour; when sufficiently mashed, cover your tun, let it stand two hours; run down this first mash smartly by two cocks within the hour; let your hops be rubbed, steeped, and salted, as before directed; added to these worts, as they began to boil, three gallons of the essentia bina or liquid colouring, with one pound and a half of ground mustard, and one pound of liquorice root finely powdered, boiled the whole two hours as hard as possible, there being a second copper for this operation, there was liquor prepared for the small beer and run on the keeve at the heat of 185; mashed well a second time, and stood two hours; by this time the first wort was let run into the hop back, and so on the cooler. After which, ran down the small beer, got it into the small copper, adding about six hand buckets of the hops that had been boiled on the single ale; these answered to preserve the beer, with one pound of ground mustard to assist flavour, and two gallons of the essentia bina to give colour; boiled the small beer one hour smartly. The strong worts were let into the tun in three portions, there being three coolers; the first division, at 65, had two gallons and a half of yest given to it; the second, at 66, the same quantity of yest; the third, at 65, was let down without yest, when all were in the tun made up at 64; in thirteen hours the tun had a handsome appearance of work; came on regularly, and attenuated to 76, having gained 12 degrees within sixty hours, then cleansed and filled the casks every three hours for the first eight fillings. Thus managed, this single ale was fit to send out the fifth day after brewing. When this ale is racking off the butts, to be sent out, would recommend putting two ounces of ground rice into each barrel which will create briskness, and much improve the beer. Ran the small beer into the hop back of the strong beer, and so on the coolers, thereby giving it a chance to lick up all the strong ale it met with in its progress to the tun, which it entered at 65 with three gallons of yest, and was cleansed within thirty-six hours. The quantity of beer here mentioned would be much improved by the addition of six or seven pounds of brown sugar or molasses; but if good table beer is wanted, it can be only obtained from whole grists of malt, and is well worth the difference of expense to those who can afford it, and appreciate quality.
Strong Beer.
Brewed, November, 1810, the following materials. Heat of the air 50 degrees.
40 Bushels of Pale Malt. 20 Bushels of Amber Malt. — 60 — 40 lb. of Hops, the best quality.
Cleansed 20 Barrels of Beer.
Rubbed, salted, and steeped the hops, as already directed, in a close vessel, ran a sufficient quantity of boiling water on the mash tun for the first mash, which was suffered to cool down to 165; mashed well for nearly one hour, stood two hours; ran down smartly, boiled the first wort one hour very hard, with about half the hops; mashed a second time at about 185: took about half an hour in the operation, ran down smartly after two hours' standing, got up this second mash smartly into the copper, taking the necessary precaution of rincing the copper out clean, for the reception of the second wort, which was boiled two hours very hard, with the remainder of the hops; these two worts were run together on the same cooler; after standing a few hours, were run on a second cooler, and there suffered to remain till they came down to 65; were then let into the tun, with two gallons of solid yest, by a large plug hole in a few minutes so as to have scarcely suffered any diminution of their heat; in twelve hours after, there was added two gallons more of yest, roused the tun a second time, came on gradually, and attenuated within 56 hours ten degrees, and so was cleansed at the heat of 75, this beer was filled every two hours, for the first twenty-four, and in a few days more became transparently fine; this beer should have added to it, before sending out, four ounces of steeped hops, and two ounces of ground rice to each barrel; the five pounds of hops wanted for this operation is previously put to steep in a clean tub with some of the beer. This beer, if thus brewed with good materials, and treated as directed, will be found to give satisfaction. During the winter half year, the fermenting tun should be always covered; in summer, only partially so; the less strong beer is attempted to be brewed in that season the better, as it will not keep, necessity alone should compel the brewer to work, in this country, during the summer months; and then at small beer only.
Table Beer, English method of brewing it.
Take 8 bushels of Malt, and 6 lb. of Hops.
This quantity of materials should deliver four barrels of beer.
First liquor 161; mash the first time one hour.
Second liquor 170; mash the second time half an hour.
Third liquor 152; mash the third time twenty minutes.
Boil the three runnings together for two hours in a close covered copper; three pints of good solid yest will be sufficient to pitch this quantity, mixing it, before adding, with about one gallon of the wort, then add this to the rest; a low attenuation for this kind of beer will not answer, the specific gravity being too light, the fermentation rarely exceeding 30 hours in the tun. It being generally wanted for immediate use; it is pitched high, and worked quick. It is further important to bung it down close as soon as it has done working. This kind of beer may be securely and advantageously administered to fever patients, instead of other drink: I have known it to be attended with the happiest consequences.
Unboiled beer, how Brewed.
The following process, I confess, I never myself tried, but, from the manner it was spoken of by the party giving it, I would strongly recommend a trial of it on a small scale, at first, until its advantages and superiority was well ascertained over the old and long established mode of boiling wort. Mash your full complement of malt, or rather one third more, and that in the usual way, (suppose you are brewing strong beer,) and while your mash stands, let your copper have as much cold water run into it as will save it from burning; rouse your fire, salt and rub your hops, as recommended in previous processes; let their quantity be increased one third more than if brewed in the ordinary way; and when got into your copper, cover close, and let these hops simmer for two hours, but not boil; then run down your first wort in sufficient quantity as, when added to the water and the extract of the hops, will give you the length you contemplate; you will observe the malt is increased to meet the quantity of water in the copper; but this cannot be considered a loss, as the second mash will answer for single ale, or good table beer; the hops in the same way. When you have got your intended complement of strong wort in your copper, rouse it well, cover close, and let your copper stand two hours more, keeping up a moderate fire just enough to make it simmer but not boil; during this time your second mash may be going on with water from your second copper; this, as already stated, will make single ale, or good table beer; if the latter, it may be boiled in the usual way, but not longer than half an hour, on account of the increased quantity of hops; which hops should be all retained in the copper after the first worts are run off, by means of a strainer placed at the mouth of the cock hole; one hour strong boiling will be sufficient for the succeeding wort, if single ale be wanted; the remainder of the process for both worts is the same as already directed for such quality of drinks. It was further stated to me that unboiled beer will appear very turbid and unpromising for some time after it is brewed, and will take three months at least to come round; but that after that period it will improve rapidly, and become transparently fine; when second worts are found too weak, they may be assisted with good Muscovado sugar, of which eight pounds is considered equivalent to one bushel of malt. In fact, pleasant beer might be made from sugar alone, without any malt.
Strong Beer, of an excellent quality and flavour, brewed from the extract of the Hop only, rejecting the substance.
This extract was obtained by the hot infusion, in a close covered wooden vessel set to infuse the evening before brewing; in this process one third more hops should be allowed; these hops need not be wasted, as they will answer well for table beer, or single ale, brewed according to the preceding processes; but, in either case, one hour's strong boiling will answer for single ale, half an hour for table beer will be sufficient, on account of the increased quantity of hops.
When you have got up your first wort in your copper, that you intend to preserve with extract, boil the first half hour without it, and one hour with it, very hard in both instances. It should have been mentioned that, in preparing your first, or mashing liquor, two pounds of rice is to be added to your water in the copper before boiling, supposing the length of your brewing 20 barrels, or in that proportion.
Strong beer brewed with the extract alone, as here recommended, has turned out remarkably well, and if the hops are good, will be found more delicately flavoured than other beer; supposing the malt alike good. Pitching, cleansing, and filling, to be conducted as already recommended in preceding processes, with the tun close covered during the fermentation.
Table Beer.
Table beer, of a superior quality, may be brewed in the following manner, a process well worth the attention of the brewer, the gentleman and the farmer, whereby the beer is altogether prevented from working out of the cask, and the fermentation conducted without any apparent admission of the external air. I have made the scale for one barrel, in order to make it more generally useful to the community at large; however, the same proportions will answer for a greater or less quantity, only proportioning the materials and utensils. Take one peck of good malt ground, one pound of hops, put them in twenty gallons of water, and boil them for half an hour, then run them into a hair cloth bag, or sieve, so as to keep back the hops and malt from the wort, which, when cooled down to 65 degrees by Fahrenheit's thermometer, add to them 2 gallons of molasses, with one pint, or a little less, of good yest, mix these with your wort, and put the whole into a clean barrel, and fill it up with cold water to within four inches of the bung hole, (this space is requisite to leave room for fermentation,) bung down tight, and if brewed for family use, would recommend putting in the cock at the same time, as it will prevent the necessity of disturbing the cask afterwards; in one fortnight this beer might be drawn, and will be found to improve to the last.
Fermenting and Cleansing in the same Vessel.
The following recommendation to brewers is well worth their attention, that is, to ferment their strong, or what they call their stock beer, in the vat they propose to keep it in, until fit to turn out; this practice will be found advantageous to the flavour and preserving quality of such beer, as close fermentation has a decided preference over what is termed open. One or more workers may be placed in the side of such vat, a few inches above the surface of the enclosed liquor; thus the head as it rises will have the opportunity of running off; such fermentation should further be conducted coolly and slowly, the pitching heat, in this case, should not exceed 60 degrees of Fahrenheit, and the yest one third in quantity less than if applied in open vessels, but the yest should be mixed with a double quantity of the wort at 65, in a separate vessel before pitching. When vats are wanting, the operation may be conducted in hogsheads or butts, allowing a tin or wooden worker to each cask. In brewing small quantities of strong beer, this contrivance supersedes the necessity of fermenting tuns, or troughs, no small saving of expense, whilst it makes the beer more spiritous and preserving. The annexed plate shows the form and application of the worker, whether of tin or wood.
Another Method of fermenting Strong Beer that might be expected to produce a pure and excellent liquor.
Mash, run down, and boil in the usual way, suffer your worts, after drawing your fire, to remain on your copper two hours, doors and hatch open. If in winter, the deeper your worts lie on the cooler the better; when they have come down to the proper heat of pitching, give your yest to them on the cooler, mixing it gently with the whole guile, and when properly headed with yest, which will probably happen within twenty-four hours, run off your worts gently into barrels, leaving your top and bottom yest on the cooler undisturbed, till all the cooler is cleared; but previous to running your worts into the barrels, put half a pint of good solid yest into each, and when full, clap your tin workers into the bung holes, and so let it finish its fermentation for about a week longer, filling the casks occasionally as they work. When done working, bung down or vat them; if you wish to add any kind of flavouring substance to this beer, the best time to do it is at commencing the second fermentation, experience teaching that all fermented liquors should have such substances added to them during, or at the commencement of their fermentation, which is preferable to adding these substances in the boil; I mean spices, and delicate flavouring substances.
Process of Brewing Windsor Ale on a small scale.
Windsor ale is a very pale, light, agreeable ale, as fine as wine, and unquestionably the best fermented of any malt liquor sent to the London market.
Length drawn, three barrels per quarter of eight bushels, the malt pale, with two pounds of hops of the first quality; heat of the first liquor 182, two barrels of which is generally allowed to each quarter of malt, for the first mash; one barrel per quarter for the second; the same quantity for the third is as little liquor as can be dispensed with in three mashings; for short liquor and stiff mashes are essential to this quality of ale, in order to leave as little as possible in the copper for evaporation on account of the short boiling. Mash quick, run down quick, get your wort as fine as possible into your underbank; let your first mash stand two hours, your second one hour and three quarters. Give your second mashing liquor at 190; if you mash a third time, give your liquor at 175; stand half an hour; these worts should be pitched from 52 to 60, but not higher. The mode of doing so is also different from the generality of other malt liquor; your yest should be fresh, smooth, and solid. Begin yesting this ale a few barrels at a time, and when that has caught, add the remainder gradually, in about 48 hours, or from that to 60. This guile of ale will assume a close head of yest, which should be carefully skimmed off as fast as it forms after the first skimming: by this is not meant the first or worty head formed soon after the yest has taken, but the close yesty head already mentioned, which usually takes the time stated, say from 48 to 60 hours, when no more yest rises, and the guile remains quite flat; you will find the heat you pitched at, say 56, 58, or 60 degrees will by this time have increased to 80, or even more, and the specific gravity of the wort diminished from 26 or 27 pound per barrel, to six or seven pound per barrel; this attenuation will give it all the pungency and spirituosity it stands in need of. At this time your cleansing operation commences; after which it will work but little in the casks. It should be filled regularly every two or three hours, after cleansing, for the first twenty-four. After it has done working, you should immediately start it into an air-tight vat, with about one pound of hops well rubbed to every three barrels of ale in your brewing; if you use spent hops, such as has been boiled on the first mash, you may use a greater quantity, say half a pound more to each three barrels of beer, taking the precaution that they are become quite cool. This ale, thus treated, will be found glass fine in the course of a fortnight, and fit to be racked off into hogsheads or barrels. It will improve by age both in flavour and quality. But it should not be boiled more than fifteen minutes.
Reading Beer, how made.
Reading beer is made in a town of that name about thirty miles distant from London; the quality of its beer is much spoken of, the mode of brewing it is stated to be as follows:
Scale of Brewing, suppose 22 Barrels.
80 Bushels of Pale Malt. 98 lb. of Hops. 3 lb. of Grains of Paradise, pounded or ground. 5 lb. of Coriander Seed, do. 14 lb. of the best brown Sugar.
Your malt should be some days ground, and if exposed on an open loft, after grinding, so much the better. Boil your first copper, run on your mash tun till you have your complement, then occasionally rouse your water with your mashing oars, or dashers, till you get it down to 175: put your malt in slowly, for fear of setting; keep mashing all the time, which should be continued full one hour, stand two hours, run your worts, when you set tap, as fine as you can get them into your underbank; this you will effect by drawing off successively five or six buckets of the first run, and throwing them over your grains in the mash tun; when you perceive they come off glass fine, lay by your bucket. Give your second mashing liquor at 178 degrees, mash three quarters of an hour, stand one hour. Give your third liquor at 158, mash half an hour, stand one hour; boil your first copper of worts, which should take the half of your three runs, one hour as hard as you can; your second, two hours in the same way; run the two boilings into one cooler, and pitch at 64, giving one gallon of solid smooth yest; skim off the yest, as in the case of Windsor ale, until the attenuation rises to 80 degrees, which will have advanced it, from the pitching heat of 64, sixteen degrees. Before you commence the operation of cleansing, mix one quarter of a pound of bay salt, with half a peck of malted bean flour, scatter this mixture over the surface of your tun, rouse well, cleanse, and fill in the usual way.
Two-penny Amber Beer, as brewed in London.
This beer is in great demand, and large quantities of it consumed, and is supposed more profitable to the brewer than any other species of malt liquor, it being generally brewed, drank, and paid for within the fortnight.
PROCESS.
200 Bushels of Pale Malt. 112 lb. of Hops. 20 lb. of Liquorice Ball 30 lb. of Molasses, 4 lb. of Grains of Paradise, ground.
Cleansed 81 Barrels.
Heat of first mashing liquor 169; mash one hour, stand two hours, run down smartly; specific gravity of this wort 26 pound per barrel; second mash 170, mash half an hour, stand one hour, run down as before; specific gravity of this wort 11 pound and a half per barrel; third mash 160, mash twenty minutes, stand half an hour; gravity six pound per barrel; divide these three runnings into two boilings; boil the first copper for three quarters of an hour, the second one hour, in both cases as hard as possible; the hops and other ingredients should be put in at the first boil, and so retained in the copper by means of a strainer; pitch these worts at 64 degrees, giving two gallons of solid yest at first, with two gallons more in twelve hours after: remained in the tun about 60 hours, or until its attenuation reached 80 degrees; used over the surface of the tun, before cleansing, four pound of ground ginger, half a pound of bay salt, and about half a peck of wheaten flour, mixed all together, and scattered over the surface of the tun; roused well, and cleansed 81 barrels. This quality of beer, when brewed from good materials, and managed as directed, makes a wholesome and a pleasant beverage; but, to do it justice, should have more time allowed it for coming to perfection.
London Ale, how brewed.
Ale is, of all other malt liquor, the most delicate, and will bear less tampering with. It will therefore require your nicest care through every part of the process. Transparency, pungency, and flavour, are qualities that highly recommend this liquor, and should be particularly aimed at by the brewer. Hard water is, by some, supposed to be more favourable for making this kind of ale than soft.
Heat of the air 60 degrees.
200 Bushels of Pale Malt 206 lb. of Hops. 4 lb. of Grains of Paradise, pounded or ground. 4 lb. of Coriander Seed, do. 1 lb. of Orange Powder, do.
Cleansed 65 Barrels of Beer.
First mash 173, mashed one hour, stood one hour, ran down smartly; specific gravity of this wort 32 pounds per barrel; the heat appears more favourable for obtaining the whole sweet of the mash than the preceding one by six pounds per barrel, an object well worth the attention of the brewer; second mash 172, specific gravity of this wort 22 pounds per barrel; mashing, standing, &c., the same as in the preceding process; boiled the first wort one hour; the second wort two hours, very hard in both instances; pitched the tun at 62 degrees giving two gallons of yest at first, and two gallons twelve hours after.
Remained in the tun about 80 hours, or until it attenuated to 74, or twelve degrees over the heat it was pitched at; used over the surface of the tun, at cleansing, four pound of ground ginger, half a pound of bay salt, with half a peck of wheat flour well mixed, roused the tun well.
You should observe, in working amber beer, to cleanse with the sweets on, but in ale you should work it low in order to get the sweets off. This ale should be carefully filled as it works and closely attended to until done working; then put into each cask, if of a large size, two handfuls of spent hops, that have been previously cooled, and but a short time boiled; then bung down, and it will be fit to send out.
Windsor Ale, brewed on a large Scale.
This ale has experienced so great a demand in London and its vicinity for a few years back, as materially to affect the London pale beer brewery; it is a liquor better calculated for winter than the summer season. The London brewers have been induced to brew on the same principle, and in many instances they exceed the original. Here follows the London process for brewing this kind of beer, which, I apprehend, will be well worth the American brewers' imitation, as good ale is a species of malt liquor rarely met with in this country.
200 Bushels of Pale Malt. 224 lb. of Hops. 40 lb of Honey. 4 lb. of Coriander Seed, ground. 2 lb. of the Grains of Paradise, ground.
65 Barrels Cleansed.
Procure your hops of the best quality, rub them in one or more large tubs, pour cold water on them in sufficient quantity to wet them all over, and so let them infuse till the next day, which should be the day on which you brew. When your first copper has just boiled, run a sufficient quantity of water into your mash tun for your first mash; and when this has cooled down to 176 degrees, run in your malt slowly, and mash well for one hour and a quarter; after which, let your mash tun stand two hours, run down smartly and fine; keep your mash tun close covered from the time you have done mashing till you begin to set tap; give your second mashing liquor at 186, mash one hour, stand one hour, run down as before; give your third liquor for the last mash at 160, mash one hour, stand one hour run down as before; divide these three worts into two parts, boil your first copper one hour, putting in your ingredients with your hops, save the 40 pounds of honey, which should be reserved to be put into the copper a few minutes before striking off; rouse your copper well at the time of putting in the honey, and continue the same till run off, otherwise, it will pitch to the bottom of the copper, and likely be the cause of burning; your second worts should boil two hours on the same hops and ingredients, which should be retained in the copper by a strainer, pitch your tun at 62 degrees, giving two gallons of good yest at first, and two gallons more in twelve hours after; let your fermenting heat rise to 80 degrees; thus your attenuation will have gained 18 degrees, which will probably cause your guile to remain in the tun from 60 to 80 hours. Use salt and bean meal flour as directed in the preceding process, and in the same proportion, before cleansing; fill, &c., as already directed.
Welsh Ale, how brewed.
This it a luscious and richly flavoured ale, much liked, but very heady.
PROCESS.
72 Bushels of Pale Malt. 70 lb. of Hops. 20 lb. of best brown Sugar. 2 lb. of Grains of Paradise, ground.
Heat of the first mashing liquor 175, mash one hour and a half, putting in your malt very gradually, and mash uncommonly well, and let it stand two hours; second liquor at 190, mash one hour, and stand two more; run down as before, boil these two runs together for one hour and a half, putting in your hops, &c., save the sugar, which is to be put in but a few minutes before striking off, at which time the rousing of the copper should commence, and so continue until the worts are nearly run off. Small beer may be brewed, in the usual way, after both these worts, in which case, cold water will answer full as well as hot; pitch your strong worts at 62, with a small proportion of good yest, and let your fermenting heat rise to 80; thus your attenuation will proceed 18 degrees; cleanse with salt and bean flour as already directed, but in suitable proportion in point of quantity to your malt, fill in the usual way, and when nearly done working, use fine ale to top with, before you bung down, putting into each barrel one large handful of scalded hops, that have been previously cooled down.
Wirtemberg Ale.
BREWED AS FOLLOWS:
128 Bushels of Pale Malt. 32 Bushels of Amber Malt. —- 160 Bushels of Malt. —- 188 lb. of Hops. 28 lb. of Honey. 20 lb. of Sugar. 4 lb. of Hartshorn Shavings. 4 lb. of Coriander Seed, ground. 1 lb. of Caraway Seed, ground.
Cleansed 50 Barrels of Ale.
Give your first mashing liquor at 172, mash for one hour and a half, stand two hours, run down fine, but smartly.
Second mashing liquor 180, mash one hour, stand two hours, run down as before; get up your two worts; put in, with your hops, the other ingredients, save the honey and sugar, which is to be put into your copper but a few minutes before striking off, rousing your copper while any wort remains in it. This ale should be boiled hard for one hour and a half; pitch your tun at 62, raise your fermenting heat to 80, which will generally rise in the course of 70 hours. Give of good solid yest four gallons, two gallons at first, and two gallons more in twelve hours after, rouse your tun each time.
Hock.
This is a beer that has within a few years had a great run, particularly in Germany.
PROCESS AS FOLLOWS:
112 Bushels of Pale Malt. 48 Bushels of Amber Malt. —- 160 Bushels. —- 206 lb. of Hops. 4 lb. of Cocculus Indicus Berry, ground. 2 lb. of Fabia Amora, or Bitter Bean. 20 lb. of Brown Sugar, of good quality.
Cleansed 54 Barrels.
First liquor 176, mash one hour and a quarter, stand one hour and a half; second liquor 182, mash one hour, stand two hours; when both worts are in the copper, add your hops and other ingredients, except the sugar, which is to be put in as already directed a little time before striking off, boil two hours and a quarter as hard as you can. Pitch your tun at 64, giving four gallons of solid yest at once, and cleanse the second day, or in forty-eight hours; fill as already directed, and put into each barrel one handful of fresh steeped hops before bunging down.
Scurvy Grass Ale.
This species of ale is considered a great sweetener of the blood, has been much approved of, and is strongly recommended as a wholesome and pleasant medicine.
PROCESS AS FOLLOWS:
40 Bushels of Pale Malt. 25 lb. of Hops. 10 lb. of Molasses. 2 lb. of Alexandrian Senna. 5 Bushels of Garden Scurvy Grass.
Cleansed 14 Barrels of Ale.
Your malt should be fine ground; give your first liquor at 170, mash one hour, stand one hour; heat of your second liquor 172, mash three quarters of an hour, stand one hour; give your third mashing liquor at 160, mash twenty minutes, stand half an hour; these three worts should be run into your copper together, and boil together for one hour gently, for one quarter of an hour more as hard as you can; all your ingredients to be put in with your hops, except the molasses, which should only be put in a few minutes before striking off; from the time you put in your molasses, keep stirring your copper until its contents is nearly off. About the middle of your fermentation, procure one pound of horse-radish, wash it well, dry it with a cloth, after which slice it thin, and throw it into your tun, rousing immediately after; when done, replace your tun cover, pitch your worts at 66 degrees, with about two gallons of solid yest; cleanse the third day, with the sweets on. This ale is drank both hot and cold.
Dorchester Ale.
This quality of ale is by many esteemed the best in England, when the materials are good, and the management judicious.
54 Bushels of the best Pale Malt. 50 lb. of the best Hops. 1 lb. of Ginger. 1/4 of a lb. of Cinnamon, pounded.
Cleansed 14 Barrels, reserving enough for filling.
Boil your copper, temper your liquor in the same to 185, and when ready, run it on your keeve a little at a time, putting in the malt and the water gradually together, mashing at the same time; when the whole of your malt is thus got in, continue the operation of mashing half an hour, cap with dry malt, and let your mash stand one hour and a half. Second liquor 190, mash three quarters of an hour, stand two hours; in both mashes get your worts as fine as you can into your underbank; rub and salt, before mashing, 30 pounds of your hops; infuse them in boiling water before mashing, and let the vessel containing them be close covered. The other twenty pounds of hops should have been rubbed the evening before brewing, but not salted, put into another close vessel, covered with boiling water, and there suffered to digest for 12 hours: at the time of putting the hops in your copper, the extract, in both cases, is to be added; but the first 30 pounds of hops in substance only to be added; these, with the two extracts will be sufficient for the brewing; the remaining 20 pounds of hops will answer for single ale, or table beer, but should be used on the same day. Your worts being now in the copper, with the hops and extract, boil hard for one hour; after which, draw your fire, open your copper and ash-pit doors, and so let it stand one hour, then strike off gently on your cooler; when your worts are cooled down to 55, prepare your puncheons, suppose four, containing four barrels each; see that they are dry, sweet, and clean; take three pints of solid yest for each puncheon, to which you should add three quarts of the wort at 65, mix and blend the wort and yest together, putting this proportion to each cask, containing four barrels, then fill up with the wort, at the heat of 55, already mentioned; put in your tin workers, one into each puncheon, and when you perceive it begins to work freely, which probably will not be till the third or fourth day, begin to fill up your casks, and so continue doing from time to time, till they have done working. (The tin worker is described in page 139.) This mode of brewing appears to be peculiarly adapted for shipping to warm climates; the fermentation being slowly and coolly conducted: it is also well calculated for bottling.
Table beer may be made, after this strong, of good quality, with cold water, if not over drawn; 10 pound of the steeped hops will be sufficient to preserve this beer; one hour's boiling will be enough; ferment as already directed, and add six pounds of sugar just before striking off, rousing, as already directed, while any remains in the copper.
Porter.
In England, is a liquor of modern date, which has nearly superseded the use of brown stout, and very much encroached on the consumption of other malt liquors, till it has become the staple commodity of the English brewery, and of such consequence to the government, in point of revenue, that it may be fairly said to produce more than all the rest. Porter, when well brewed, and of a proper age, is considered a wholesome and pleasant liquor, particularly when drank out of the bottle; a free use is made of it in the East and West Indies, where physicians frequently recommend the use of it in preference to Madeira wine: the following three processes are given under the denomination of No. I., II., and III., the first and second of which I knew to be the practice of two eminent houses in the trade. The third I cannot so fully answer for. An essential object to attend to, in order to ensure complete success to the porter process, is the preparation of the malt. Directions for that purpose will be found at the end of these processes.
Porter Process.
No. I.
MATERIALS.
186 Bushels of Pale Malt. 94 Bushels of Brown Malt. —- 280 Bushels of Malt. —- 300 lb. of Hops. 10 lb. of Gentian Root, sliced. 10 lb. of Calamus. 10 lb. of the essence of Gentian.
Cleansed 121 barrels. The hops, with the other ingredients, to be put in with the first boil, and retained in the copper by wire strainers, or otherwise, for the succeeding worts.
First mashing liquor 165, mash one hour, stand one hour, run down smartly; second mash 170, mash one hour, stand one hour, run down as before; third mash 180, mash half an hour, stand half an hour, run down smartly; divide these three runs into two boilings, boil your first copper as hard as you can for half an hour, the second for three hours as hard as possible; pitch your first wort at 65 degrees, with 10 gallons of smooth yest; pitch your second at 70 degrees, with six gallons, both runs to mix in the same tun, as soon as the head of your tun begins to fall and close, which will possibly happen from thirty to forty hours, at which time it is expected the fermenting heat will rise to 80, but in no case should it be suffered to exceed it; two pecks of bean meal flour, with two pounds of bay salt mixed together, should be evenly scattered over the surface of the tun, before cleansing, and then well roused. After cleansing, this drink should be filled every two hours, for the first twelve fillings, after which, twice a day will be sufficient; and, in about a week after cleansing, porter so brewed, and treated as here directed, will be glass fine, and in a week more may be vatted. As porter is generally sent out in iron-bound hogsheads of seventy gallons each, there should, at the time of going out, be three half pints of finings, with as much heading mixed through the finings at will go on a two shilling piece; this fining and heading should be well stirred in the hogshead by means of a fining brush used for the purpose, with a long iron handle; treated thus, porter will fall fine in a few days. The faster draught porter is drawn off the cask the better it will drink; for when too long, it is apt to get flat, and sour.
Porter Process.
No. II.
160 Bushels of Pale Malt. 120 Bushels of Brown Malt. —- 280 —- 350 lb. of Hops.
Cleansed 121 Barrels of Porter.
Heat of the first mashing liquor one hundred and seventy-two, mash one hour, stand one hour, run down smartly; second mashing liquor one hundred and eighty, mash one hour, stand two hours, run down as before; third mash one hundred and sixty-four, mash half an hour, stand half an hour, run down smartly; boil the extract of the first, with half the extract of the second mash; boil as hard as you can for one hour and a quarter, then strike off, retaining your hops in the copper for your second boil, which includes half your second wort, and the whole of your third; these should be boiled for four hours as hard as you can make them; pitch your first wort at seventy, or so high that, when in the tun, it will make up at sixty-four, to which give six gallons of smooth yest; pitch your second wort at sixty-five, giving seven gallons more of yest; when all your worts are in your tun, it should make up at sixty-four. Thus managed, it will be fit to cleanse in thirty-six or forty hours; the closing and falling in of the head will direct the period of performing this operation; fill, &c., as in the foregoing process.
Porter Process.
No. III.
88 Bushels of Pale Malt. 102 lb. of Hops. 12 Gallons of Essentia Bina, or sugar colouring.
Cleansed twenty-seven and a half Barrels of Porter.
First mashing liquor one hundred and sixty, mash one hour, stand one hour; second mashing liquor one hundred and seventy, mash one hour, stand one hour and three quarters; third mashing liquor one hundred and seventy-five, mash half an hour, stand one hour; divide these three runs into two equal parts, boil the first one hour, the second two hours and a half, as hard as you can in both instances; pitch your first wort at sixty, giving two gallons of solid yest; your second at sixty-five, giving the same complement of yest; let your fermenting heat rise to eighty, then cleanse, first topping your tun with two pounds of bean meal flour, and half a pound of bay salt pounded and mixed with the flour; fill fine, and head your porter casks, as already directed to do with hogsheads; let your finings and heading be in that proportion with lesser casks.
Porter Malt.
This species of malt should be made from strong, well-bodied barley, the process exactly the same as for pale malt, until it is about half dried on the kiln; you then change your fuel under the kiln from coak or coal to ash or beech wood, which should be split into small handy billets, and a fierce, strong fire kept up, so as to complete the drying and colouring in three hours, during which time it should be frequently turned; when the colour is found sufficiently high, it may be thrown off; the workmen should be provided with wooden shoes, to protect their feet from the uncommon heat of the kiln in this last part of the process, which requires the grain to snap again from the excessive heat of the kiln. For the better performing this part of the process, I would recommend a wire kiln to be placed adjoining the tiled one, from which it may be cast on the wire; this would be a better and more certain mode of conveying the porter flavour to the malt, than if the drying was finished on the tiled kiln. Where a wire kiln was thought too dear, a tiled one might be made to answer.
Porter Colouring.
In modern language, is termed essentia bina. This is made from brown sugar, and is now generally substituted by the London brewers for porter malt, as more economical, and full as well calculated to answer all the purposes of flavour and colouring. Muscovado, or raw sugar, with lime water, are the usual ingredients of this colouring matter. Another kind, of inferior quality, is prepared from molasses, boiled until it is considerably darker, bitter, and of a thicker consistence; and when judiciously made, at the close of the boiling, it is set on fire and suffered to burn five or six minutes, then it is extinguished, and cautiously diluted with water to the original consistence of treacle. The burning or setting on fire gives it the greater part of its flavour, which is an agreeable bitterness, and burns out the unassimilating oil. Muscovado, or raw sugar, when treated in a similar manner, and diluted to the same consistence before it sets, obtains a bitterness that more nearly strikes the porter flavour on the palate; it is of a deep dark colour, between black and red. To prepare it to advantage, take three pounds, or three hundred weight of Muscovado sugar, for every two pounds, or two hundred pounds, of essentia bina intended to be made, put it into an iron boiler set in brick work, so that the flue for conveying the smoke of the fire into the chimney, rises but about two thirds of the height of the boiler in its passage to the chimney. The boiler should have a socket or pivot in the centre of its bottom to receive the spindle of wrought iron, with a crank in it, above the brim of the boiler, the upper end of which turns on a corresponding pivot in an iron bar fixed across several feet above the boiler, with a transverse iron arm to reach from the crank for some feet over the boiler for a man to stand, and turn it with its scraper of iron also, which works on the bottom of the boiler to keep the sugar from burning on the bottom before the upper part melts; this arm may be placed in a wooden handle at the end, and held by the man, lest it become too hot for his hand. Put one gallon of pure water into the boiler with every hundred weight of sugar to be employed, that is, one pint to every fourteen pounds weight of sugar, then add the sugar, light the fire, and keep it stirring until it boils, regulating the fire so as not to suffer it to boil over; as it begins to lessen in quantity, dip the end of the poker into it, to see if it candies as it cools, and grows proportionably bitter to its consistence; mark the height of the sugar in the boiler when it is all melted, to assist in judging of its decrease; when the specimen taken out candies, or sets hard pretty quickly, put out the fire under the boiler, and set the vapour or smoke arising from the boiler on fire, which will communicate to the boiling sugar, and let it burn for ten or twelve minutes, then extinguish it with a cover ready provided for the purpose, and faced with sheet iron, to be let down on the mouth of the boiler with a chain or rope, so as exactly to close the boiler.
As soon as it is extinguished, cautiously add strong lime water by a little at a time, working the iron stirrer well all the time the water is adding, so as to mix and dilute it all alike to the consistence of treacle; before it sets in the boiler, which it would do, as the heat declined, in a manner that would give a great deal of trouble to dilute it after, and be imperfectly done then, it is easy to conceive this kind of work requires to be done in an open place, or out-house, to prevent accidents from fire. If the essentia bina is neither burned too little nor too much, it is a rich, high-flavoured, grateful bitter, that preserves and gives an inimitable flavour and good face to porter; to be added in proportion as the nature and composition of the grist is varied with a greater or less proportion of pale malt. To convert old hock into brown stout, it will take three pounds of essentia bina of middling or ordinary kind, and but two pounds of the best made from Muscovado raw sugar as directed, it should weigh ten pounds to the gallon. The essentia bina should be mixed with some finings, and roused into the tun soon after the yesty head gathers pretty strong, in order to undergo the decomposing power of fermentation, part of it being prone to float on the surface of the beer under the form of a flying lee. When employed in the usual way of colour, with this precaution, the colouring and preserving parts unite with the beer, and the gross charry parts precipitate with the lees, and other feculencies in the tun, previous to cleansing, adding a firm and keeping quality to the beer. Lime water for diluting the burnt sugar, in the proportion of essentia bina: thirty pounds of lime will make one puncheon, or one hundred and twenty gallons of lime water: put fresh lime from the kiln, previously slaked into coarse powder, into an airtight cask, gradually add the water, stirring up the lime to expose a fresh surface to the solvent powers of the water, which will rarely dissolve more than one ounce troy weight in the gallon, or retain so much when kept ever so closely excluded from the external air. If Roche lime was first grossly pounded, and slaked in the cask, the lime water might be made still stronger; the reason for directing the water to be slowly and cautiously added at the first, is for the more conveniently mixing the lime with the water, which otherwise would not be properly wet. Do not fill the vessel within a few gallons of the bung-hole, that it may be rolled over and over with effect, fifteen or twenty different times before left to settle, in order to have the water fully saturated with the lime; when settled it should be perfectly clear. It is important, as well at necessary to state, that when the lime water is about to be added to the essentia bina in the kettle, it should be hot, otherwise there would be danger of cracking the cast iron, of which the kettle is composed, as well as causing a partial explosion and waste of the sugar when coming in contact with the cold medium of the lime water; this precaution should be carefully attended to.
Strong Beer.
Process for brewing strong beer, alleged to be the practice in Switzerland, by which it is asserted that an excellent and preserving beer will be produced. I would recommend a small experiment to be made at first, in order to establish its character and success on a more extended scale. At a first view, there appears to be one serious objection to this process, and that is, that it requires but a small quantity of oily or fatty matter to destroy the fermentation of any guile of beer. In answer, it may perhaps be truly said, that the precaution of skimming off the fatty matter, as it rises on the surface of this beer while in the copper, as well as the time allowed it there to settle, also, its straining through the hops before getting on the cooler, gives another chance to deposite this matter in the hops, if any should remain in the copper after the skimming off.
PROCESS AS FOLLOWS:
60 Bushels of Pale Barley Malt. 20 Bushels of Pale Wheat Malt. —- 80 Bushels. —- 170 lb. of the best Hops, to be rubbed, salted, and steeped in one or more close vessels before mashing, or the evening before brewing, still better. 54 lb. of lean Beef to be put into the copper with the worts, this will average two pounds to the barrel. 7 lb. of Rice, also, to be put in with the Beef. 1 lb. of ground Mustard to be put in with the Hops.
Cleansed 27 Barrels.
These worts are to be boiled one hour without the hops, in order to afford the greater facility of skimming the fat off the surface. After they have boiled the first half hour, the fire is damped, the boil left to subside, and the copper to be then carefully skimmed. (This points out the necessity of an open copper for this operation.) After which, the fire is started again, and the worts made to boil another half hour, and skimmed a second time in the same way; after which the hops and mustard are added with three gallons of the essentia bina, and then boiled for one hour and a half, as hard as the copper will allow without boiling over or wasting; the fire is then drawn, ash-pit and copper doors left open, the copper covered, and suffered to stand two hours, then struck off on the hop back. The temperature of the external air at the time you brew this quality of beer should not be higher than fifty degrees. Your first, or mashing liquor, should boil, then run your whole complement into your mash tun, which when cooled down to one hundred and sixty-five, begin putting in your malt, one sack at a time, and mash for one hour and a quarter, stand one hour, run down as fine as you can, yet smartly; second mash one hundred and eighty-five, need not boil, but when brought to that heat in your copper, begin mashing, and mash well for three quarters of an hour, stand two hours; boil, skim, and hop, as already directed. It is to be understood that the produce of these two mashes are to be boiled together, forming a clear length, when cleansed, of twenty-seven barrels; pitch your worts at sixty, previously mixing in a tub, fifteen gallons of your wort at seventy, with one gallon of solid yest, some time before pitching, which will give it time to catch before adding to the remainder of the wort. Twelve hours after another gallon of pure yest is to be added, and the tun well roused, then covered; the attenuation suffered to proceed to eighty degrees, but not higher. This mode of pitching worts might be successfully applied to other qualities of beer and ale, and will be found a safe and good process. |
|