p-books.com
Ten Books on Architecture
by Vitruvius
Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse

4. This kind of colonnade is called among the Greeks [Greek: xystos], because athletes during the winter season exercise in covered running tracks. Next to this "xystus" and to the double colonnade should be laid out the uncovered walks which the Greeks term [Greek: paradromides] and our people "xysta," into which, in fair weather during the winter, the athletes come out from the "xystus" for exercise. The "xysta" ought to be so constructed that there may be plantations between the two colonnades, or groves of plane trees, with walks laid out in them among the trees and resting places there, made of "opus signinum." Behind the "xystus" a stadium, so designed that great numbers of people may have plenty of room to look on at the contests between the athletes.

I have now described all that seemed necessary for the proper arrangement of things within the city walls.



CHAPTER XII

HARBOURS, BREAKWATERS, AND SHIPYARDS

1. The subject of the usefulness of harbours is one which I must not omit, but must explain by what means ships are sheltered in them from storms. If their situation has natural advantages, with projecting capes or promontories which curve or return inwards by their natural conformation, such harbours are obviously of the greatest service. Round them, of course, colonnades or shipyards must be built, or passages from the colonnades to the business quarters, and towers must be set up on both sides, from which chains can be drawn across by machinery.

2. But if we have a situation without natural advantages, and unfit to shelter ships from storms, it is obvious that we must proceed as follows. If there is no river in the neighbourhood, but if there can be a roadstead on one side, then, let the advances be made from the other side by means of walls or embankments, and let the enclosing harbour be thus formed. Walls which are to be under water should be constructed as follows. Take the powder which comes from the country extending from Cumae to the promontory of Minerva, and mix it in the mortar trough in the proportion of two to one.

3. Then, in the place previously determined, a cofferdam, with its sides formed of oaken stakes with ties between them, is to be driven down into the water and firmly propped there; then, the lower surface inside, under the water, must be levelled off and dredged, working from beams laid across; and finally, concrete from the mortar trough—the stuff having been mixed as prescribed above—must be heaped up until the empty space which was within the cofferdam is filled up by the wall. This, however, is possessed as a gift of nature by such places as have been described above.

But if by reason of currents or the assaults of the open sea the props cannot hold the cofferdam together, then, let a platform of the greatest possible strength be constructed, beginning on the ground itself or on a substructure; and let the platform be constructed with a level surface for less than half its extent, while the rest, which is close to the beach, slopes down and out.

4. Then, on the water's edge and at the sides of the platform, let marginal walls be constructed, about one and one half feet thick and brought up to a level with the surface above mentioned; next, let the sloping part be filled in with sand and levelled off with the marginal wall and the surface of the platform. Then, upon this level surface construct a block as large as is required, and when it is finished, leave it for not less than two months to dry. Then, cut away the marginal wall which supports the sand. Thus, the sand will be undermined by the waves, and this will cause the block to fall into the sea. By this method, repeated as often as necessary, an advance into the water can be made.

5. But in places where this powder is not found, the following method must be employed. A cofferdam with double sides, composed of charred stakes fastened together with ties, should be constructed in the appointed place, and clay in wicker baskets made of swamp rushes should be packed in among the props. After this has been well packed down and filled in as closely as possible, set up your water-screws, wheels, and drums, and let the space now bounded by the enclosure be emptied and dried. Then, dig out the bottom within the enclosure. If it proves to be of earth, it must be cleared out and dried till you come to solid bottom and for a space wider than the wall which is to be built upon it, and then filled in with masonry consisting of rubble, lime, and sand.

6. But if the place proves to be soft, the bottom must be staked with piles made of charred alder or olive wood, and then filled in with charcoal as has been prescribed in the case of the foundations of theatres and the city wall. Finally, build the wall of dimension stone, with the bond stones as long as possible, so that particularly the stones in the middle may be held together by the joints. Then, fill the inside of the wall with broken stone or masonry. It will thus be possible for even a tower to be built upon it.

7. When all this is finished, the general rule for shipyards will be to build them facing the north. Southern exposures from their heat produce rot, the wood worm, shipworms, and all sorts of other destructive creatures, and strengthen and keep them alive. And these buildings must by no means be constructed of wood, for fear of fire. As for their size, no definite limit need be set, but they must be built to suit the largest type of ship, so that if even larger ships are hauled up, they may find plenty of room there.

I have described in this book the construction and completion of all that I could remember as necessary for general use in the public places of cities. In the following book I shall consider private houses, their conveniences, and symmetrical proportions.



BOOK VI



INTRODUCTION

1. It is related of the Socratic philosopher Aristippus that, being shipwrecked and cast ashore on the coast of the Rhodians, he observed geometrical figures drawn thereon, and cried out to his companions: "Let us be of good cheer, for I see the traces of man." With that he made for the city of Rhodes, and went straight to the gymnasium. There he fell to discussing philosophical subjects, and presents were bestowed upon him, so that he could not only fit himself out, but could also provide those who accompanied him with clothing and all other necessaries of life. When his companions wished to return to their country, and asked him what message he wished them to carry home, he bade them say this: that children ought to be provided with property and resources of a kind that could swim with them even out of a shipwreck.

2. These are indeed the true supports of life, and neither Fortune's adverse gale, nor political revolution, nor ravages of war can do them any harm. Developing the same idea, Theophrastus, urging men to acquire learning rather than to put their trust in money, states the case thus: "The man of learning is the only person in the world who is neither a stranger when in a foreign land, nor friendless when he has lost his intimates and relatives; on the contrary, he is a citizen of every country, and can fearlessly look down upon the troublesome accidents of fortune. But he who thinks himself entrenched in defences not of learning but of luck, moves in slippery paths, struggling through life unsteadily and insecurely."

3. And Epicurus, in much the same way, says that the wise owe little to fortune; all that is greatest and essential is under the direction of the thinking power of the mind and the understanding. Many other philosophers have said the same thing. Likewise the poets who wrote the ancient comedies in Greek have expressed the same sentiments in their verses on the stage: for example, Eucrates, Chionides, Aristophanes, and with them Alexis in particular, who says that the Athenians ought to be praised for the reason that, while the laws of all Greeks require the maintenance of parents by their children, the laws of the Athenians require this only in the case of those who have educated their children in the arts. All the gifts which fortune bestows she can easily take away; but education, when combined with intelligence, never fails, but abides steadily on to the very end of life.

4. Hence, I am very much obliged and infinitely grateful to my parents for their approval of this Athenian law, and for having taken care that I should be taught an art, and that of a sort which cannot be brought to perfection without learning and a liberal education in all branches of instruction. Thanks, therefore, to the attention of my parents and the instruction given by my teachers, I obtained a wide range of knowledge, and by the pleasure which I take in literary and artistic subjects, and in the writing of treatises, I have acquired intellectual possessions whose chief fruits are these thoughts: that superfluity is useless, and that not to feel the want of anything is true riches. There may be some people, however, who deem all this of no consequence, and think that the wise are those who have plenty of money. Hence it is that very many, in pursuit of that end, take upon themselves impudent assurance, and attain notoriety and wealth at the same time.

5. But for my part, Caesar, I have never been eager to make money by my art, but have gone on the principle that slender means and a good reputation are preferable to wealth and disrepute. For this reason, only a little celebrity has followed; but still, my hope is that, with the publication of these books, I shall become known even to posterity. And it is not to be wondered at that I am so generally unknown. Other architects go about and ask for opportunities to practise their profession; but I have been taught by my instructors that it is the proper thing to undertake a charge only after being asked, and not to ask for it; since a gentleman will blush with shame at petitioning for a thing that arouses suspicion. It is in fact those who can grant favours that are courted, not those who receive them. What are we to think must be the suspicions of a man who is asked to allow his private means to be expended in order to please a petitioner? Must he not believe that the thing is to be done for the profit and advantage of that individual?

6. Hence it was that the ancients used to entrust their work in the first place to architects of good family, and next inquired whether they had been properly educated, believing that one ought to trust in the honour of a gentleman rather than in the assurance of impudence. And the architects themselves would teach none but their own sons or kinsmen, and trained them to be good men, who could be trusted without hesitation in matters of such importance.

But when I see that this grand art is boldly professed by the uneducated and the unskilful, and by men who, far from being acquainted with architecture, have no knowledge even of the carpenter's trade, I can find nothing but praise for those householders who, in the confidence of learning, are emboldened to build for themselves. Their judgment is that, if they must trust to inexperienced persons, it is more becoming to them to use up a good round sum at their own pleasure than at that of a stranger.

7. Nobody, therefore, attempts to practise any other art in his own home—as, for instance, the shoemaker's, or the fuller's, or any other of the easier kinds—but only architecture, and this is because the professionals do not possess the genuine art but term themselves architects falsely. For these reasons I have thought proper to compose most carefully a complete treatise on architecture and its principles, believing that it will be no unacceptable gift to all the world. In the fifth book I have said what I had to say about the convenient arrangement of public works; in this I shall set forth the theoretical principles and the symmetrical proportions of private houses.



CHAPTER I

ON CLIMATE AS DETERMINING THE STYLE OF THE HOUSE

1. If our designs for private houses are to be correct, we must at the outset take note of the countries and climates in which they are built. One style of house seems appropriate to build in Egypt, another in Spain, a different kind in Pontus, one still different in Rome, and so on with lands and countries of other characteristics. This is because one part of the earth is directly under the sun's course, another is far away from it, while another lies midway between these two. Hence, as the position of the heaven with regard to a given tract on the earth leads naturally to different characteristics, owing to the inclination of the circle of the zodiac and the course of the sun, it is obvious that designs for houses ought similarly to conform to the nature of the country and to diversities of climate.

2. In the north, houses should be entirely roofed over and sheltered as much as possible, not in the open, though having a warm exposure. But on the other hand, where the force of the sun is great in the southern countries that suffer from heat, houses must be built more in the open and with a northern or north-eastern exposure. Thus we may amend by art what nature, if left to herself, would mar. In other situations, also, we must make modifications to correspond to the position of the heaven and its effects on climate.

3. These effects are noticeable and discernible not only in things in nature, but they also are observable in the limbs and bodies of entire races. In places on which the sun throws out its heat in moderation, it keeps human bodies in their proper condition, and where its path is very close at hand, it parches them up, and burns out and takes away the proportion of moisture which they ought to possess. But, on the other hand, in the cold regions that are far away from the south, the moisture is not drawn out by hot weather, but the atmosphere is full of dampness which diffuses moisture into the system, and makes the frame larger and the pitch of the voice deeper. This is also the reason why the races that are bred in the north are of vast height, and have fair complexions, straight red hair, grey eyes, and a great deal of blood, owing to the abundance of moisture and the coolness of the atmosphere.

4. On the contrary, those that are nearest to the southern half of the axis, and that lie directly under the sun's course, are of lower stature, with a swarthy complexion, hair curling, black eyes, strong legs, and but little blood on account of the force of the sun. Hence, too, this poverty of blood makes them over-timid to stand up against the sword, but great heat and fevers they can endure without timidity, because their frames are bred up in the raging heat. Hence, men that are born in the north are rendered over-timid and weak by fever, but their wealth of blood enables them to stand up against the sword without timidity.



5. The pitch of the voice is likewise different and varying in quality with different nations, for the following reasons. The terminating points east and west on the level of the earth, where the upper and lower parts of the heaven are divided, seem to lie in a naturally balanced circle which mathematicians call the Horizon. Keeping this idea definitely in mind, if we imagine a line drawn from the northern side of the circumference (N) to the side which lies above the southern half of the axis (S), and from here another line obliquely up to the pivot at the summit, beyond the stars composing the Great Bear (the pole star P), we shall doubtless see that we have in the heaven a triangular figure like that of the musical instrument which the Greeks call the "sambuca."

6. And so, under the space which is nearest to the pivot at the bottom, off the southern portions of the line of the axis, are found nations that on account of the slight altitude of the heaven above them, have shrill and very high-pitched voices, like the string nearest to the angle in the musical instrument. Next in order come other nations as far as the middle of Greece, with lower elevations of the voice; and from this middle point they go on in regular order up to the extreme north, where, under high altitudes, the vocal utterance of the inhabitants is, under natural laws, produced in heavier tones. Thus it is obvious that the system of the universe as a whole is, on account of the inclination of the heaven, composed in a most perfect harmony through the temporary power of the sun.

7. The nations, therefore, that lie midway between the pivots at the southern and the northern extremities of the axis, converse in a voice of middle pitch, like the notes in the middle of a musical scale; but, as we proceed towards the north, the distances to the heaven become greater, and so the nations there, whose vocal utterance is reduced by the moisture to the "hypates" and to "proslambanomenon," are naturally obliged to speak in heavier tones. In the same way, as we proceed from the middle point to the south, the voices of the nations there correspond in extreme height of pitch and in shrillness to the "paranetes" and "netes."

8. That it is a fact that things are made heavier from being in places naturally moist, and higher pitched from places that are hot, may be proved from the following experiment. Take two cups which have been baked in the same oven for an equal time, which are of equal weight, and which give the same note when struck. Dip one of them into water and, after taking it out of water, strike them both. This done, there will be a great difference in their notes, and the cups can no longer be equal in weight. Thus it is with men: though born in the same general form and under the same all-embracing heaven, yet in some of them, on account of the heat in their country, the voice strikes the air on a high note, while in others, on account of abundance of moisture, the quality of tones produced is very heavy.

9. Further, it is owing to the rarity of the atmosphere that southern nations, with their keen intelligence due to the heat, are very free and swift in the devising of schemes, while northern nations, being enveloped in a dense atmosphere, and chilled by moisture from the obstructing air, have but a sluggish intelligence. That this is so, we may see from the case of snakes. Their movements are most active in hot weather, when they have got rid of the chill due to moisture, whereas at the winter solstice, and in winter weather, they are chilled by the change of temperature, and rendered torpid and motionless. It is therefore no wonder that man's intelligence is made keener by warm air and duller by cold.

10. But although southern nations have the keenest wits, and are infinitely clever in forming schemes, yet the moment it comes to displaying valour, they succumb because all manliness of spirit is sucked out of them by the sun. On the other hand, men born in cold countries are indeed readier to meet the shock of arms with great courage and without timidity, but their wits are so slow that they will rush to the charge inconsiderately and inexpertly, thus defeating their own devices. Such being nature's arrangement of the universe, and all these nations being allotted temperaments which are lacking in due moderation, the truly perfect territory, situated under the middle of the heaven, and having on each side the entire extent of the world and its countries, is that which is occupied by the Roman people.

11. In fact, the races of Italy are the most perfectly constituted in both respects—in bodily form and in mental activity to correspond to their valour. Exactly as the planet Jupiter is itself temperate, its course lying midway between Mars, which is very hot, and Saturn, which is very cold, so Italy, lying between the north and the south, is a combination of what is found on each side, and her preeminence is well regulated and indisputable. And so by her wisdom she breaks the courageous onsets of the barbarians, and by her strength of hand thwarts the devices of the southerners. Hence, it was the divine intelligence that set the city of the Roman people in a peerless and temperate country, in order that it might acquire the right to command the whole world.

12. Now if it is a fact that countries differ from one another, and are of various classes according to climate, so that the very nations born therein naturally differ in mental and physical conformation and qualities, we cannot hesitate to make our houses suitable in plan to the peculiarities of nations and races, since we have the expert guidance of nature herself ready to our hand.

I have now set forth the peculiar characteristics of localities, so far as I could note them, in the most summary way, and have stated how we ought to make our houses conform to the physical qualities of nations, with due regard to the course of the sun and to climate. Next I shall treat the symmetrical proportions of the different styles of houses, both as wholes and in their separate parts.



CHAPTER II

SYMMETRY, AND MODIFICATIONS IN IT TO SUIT THE SITE

1. There is nothing to which an architect should devote more thought than to the exact proportions of his building with reference to a certain part selected as the standard. After the standard of symmetry has been determined, and the proportionate dimensions adjusted by calculations, it is next the part of wisdom to consider the nature of the site, or questions of use or beauty, and modify the plan by diminutions or additions in such a manner that these diminutions or additions in the symmetrical relations may be seen to be made on correct principles, and without detracting at all from the effect.

2. The look of a building when seen close at hand is one thing, on a height it is another, not the same in an enclosed place, still different in the open, and in all these cases it takes much judgment to decide what is to be done. The fact is that the eye does not always give a true impression, but very often leads the mind to form a false judgment. In painted scenery, for example, columns may appear to jut out, mutules to project, and statues to be standing in the foreground, although the picture is of course perfectly flat. Similarly with ships, the oars when under the water are straight, though to the eye they appear to be broken. To the point where they touch the surface of the sea they look straight, as indeed they are, but when dipped under the water they emit from their bodies undulating images which come swimming up through the naturally transparent medium to the surface of the water, and, being there thrown into commotion, make the oars look broken.

3. Now whether this appearance is due to the impact of the images, or to the effusion of the rays from the eye, as the physicists hold, in either case it is obvious that the vision may lead us to false impressions.

4. Since, therefore, the reality may have a false appearance, and since things are sometimes represented by the eyes as other than they are, I think it certain that diminutions or additions should be made to suit the nature or needs of the site, but in such fashion that the buildings lose nothing thereby. These results, however, are also attainable by flashes of genius, and not only by mere science.

5. Hence, the first thing to settle is the standard of symmetry, from which we need not hesitate to vary. Then, lay out the ground lines of the length and breadth of the work proposed, and when once we have determined its size, let the construction follow this with due regard to beauty of proportion, so that the beholder may feel no doubt of the eurythmy of its effect. I must now tell how this may be brought about, and first I will speak of the proper construction of a cavaedium.



CHAPTER III

PROPORTIONS OF THE PRINCIPAL ROOMS

1. There are five different styles of cavaedium, termed according to their construction as follows: Tuscan, Corinthian, tetrastyle, displuviate, and testudinate.

In the Tuscan, the girders that cross the breadth of the atrium have crossbeams on them, and valleys sloping in and running from the angles of the walls to the angles formed by the beams, and the rainwater falls down along the rafters to the roof-opening (compluvium) in the middle.

In the Corinthian, the girders and roof-opening are constructed on these same principles, but the girders run in from the side walls, and are supported all round on columns.

In the tetrastyle, the girders are supported at the angles by columns, an arrangement which relieves and strengthens the girders; for thus they have themselves no great span to support, and they are not loaded down by the crossbeams.



2. In the displuviate, there are beams which slope outwards, supporting the roof and throwing the rainwater off. This style is suitable chiefly in winter residences, for its roof-opening, being high up, is not an obstruction to the light of the dining rooms. It is, however, very troublesome to keep in repair, because the pipes, which are intended to hold the water that comes dripping down the walls all round, cannot take it quickly enough as it runs down from the channels, but get too full and run over, thus spoiling the woodwork and the walls of houses of this style.



The testudinate is employed where the span is not great, and where large rooms are provided in upper stories.

3. In width and length, atriums are designed according to three classes. The first is laid out by dividing the length into five parts and giving three parts to the width; the second, by dividing it into three parts and assigning two parts to the width; the third, by using the width to describe a square figure with equal sides, drawing a diagonal line in this square, and giving the atrium the length of this diagonal line.

4. Their height up to the girders should be one fourth less than their width, the rest being the proportion assigned to the ceiling and the roof above the girders.

The alae, to the right and left, should have a width equal to one third of the length of the atrium, when that is from thirty to forty feet long. From forty to fifty feet, divide the length by three and one half, and give the alae the result. When it is from fifty to sixty feet in length, devote one fourth of the length to the alae. From sixty to eighty feet, divide the length by four and one half and let the result be the width of the alae. From eighty feet to one hundred feet, the length divided into five parts will produce the right width for the alae. Their lintel beams should be placed high enough to make the height of the alae equal to their width.

5. The tablinum should be given two thirds of the width of the atrium when the latter is twenty feet wide. If it is from thirty to forty feet, let half the width of the atrium be devoted to the tablinum. When it is from forty to sixty feet, divide the width into five parts and let two of these be set apart for the tablinum. In the case of smaller atriums, the symmetrical proportions cannot be the same as in larger. For if, in the case of the smaller, we employ the proportion that belong to the larger, both tablina and alae must be unserviceable, while if, in the case of the larger, we employ the proportions of the smaller, the rooms mentioned will be huge monstrosities. Hence, I have thought it best to describe exactly their respective proportionate sizes, with a view both to convenience and to beauty.



6. The height of the tablinum at the lintel should be one eighth more than its width. Its ceiling should exceed this height by one third of the width. The fauces in the case of smaller atriums should be two thirds, and in the case of larger one half the width of the tablinum. Let the busts of ancestors with their ornaments be set up at a height corresponding to the width of the alae. The proportionate width and height of doors may be settled, if they are Doric, in the Doric manner, and if Ionic, in the Ionic manner, according to the rules of symmetry which have been given about portals in the fourth book. In the roof-opening let an aperture be left with a breadth of not less than one fourth nor more than one third the width of the atrium, and with a length proportionate to that of the atrium.



7. Peristyles, lying athwart, should be one third longer than they are deep, and their columns as high as the colonnades are wide. Intercolumniations of peristyles should be not less than three nor more than four times the thickness of the columns. If the columns of the peristyle are to be made in the Doric style, take the modules which I have given in the fourth book, on the Doric order, and arrange the columns with reference to these modules and to the scheme of the triglyphs.



8. Dining rooms ought to be twice as long as they are wide. The height of all oblong rooms should be calculated by adding together their measured length and width, taking one half of this total, and using the result for the height. But in the case of exedrae or square oeci, let the height be brought up to one and one half times the width. Picture galleries, like exedrae, should be constructed of generous dimensions. Corinthian and tetrastyle oeci, as well as those termed Egyptian, should have the same symmetrical proportions in width and length as the dining rooms described above, but, since they have columns in them, their dimensions should be ampler.

9. The following will be the distinction between Corinthian and Egyptian oeci: the Corinthian have single tiers of columns, set either on a podium or on the ground, with architraves over them and coronae either of woodwork or of stucco, and carved vaulted ceilings above the coronae. In the Egyptian there are architraves over the columns, and joists laid thereon from the architraves to the surrounding walls, with a floor in the upper story to allow of walking round under the open sky. Then, above the architrave and perpendicularly over the lower tier of columns, columns one fourth smaller should be imposed. Above their architraves and ornaments are decorated ceilings, and the upper columns have windows set in between them. Thus the Egyptian are not like Corinthian dining rooms, but obviously resemble basilicas.

10. There are also, though not customary in Italy, the oeci which the Greeks call Cyzicene. These are built with a northern exposure and generally command a view of gardens, and have folding doors in the middle. They are also so long and so wide that two sets of dining couches, facing each other, with room to pass round them, can be placed therein. On the right and left they have windows which open like folding doors, so that views of the garden may be had from the dining couches through the opened windows. The height of such rooms is one and one half times their width.

11. All the above-mentioned symmetrical relations should be observed, in these kinds of buildings, that can be observed without embarrassment caused by the situation. The windows will be an easy matter to arrange if they are not darkened by high walls; but in cases of confined space, or when there are other unavoidable obstructions, it will be permissible to make diminutions or additions in the symmetrical relations,—with ingenuity and acuteness, however, so that the result may be not unlike the beauty which is due to true symmetry.



CHAPTER IV

THE PROPER EXPOSURES OF THE DIFFERENT ROOMS

1. We shall next explain how the special purposes of different rooms require different exposures, suited to convenience and to the quarters of the sky. Winter dining rooms and bathrooms should have a southwestern exposure, for the reason that they need the evening light, and also because the setting sun, facing them in all its splendour but with abated heat, lends a gentler warmth to that quarter in the evening. Bedrooms and libraries ought to have an eastern exposure, because their purposes require the morning light, and also because books in such libraries will not decay. In libraries with southern exposures the books are ruined by worms and dampness, because damp winds come up, which breed and nourish the worms, and destroy the books with mould, by spreading their damp breath over them.

2. Dining rooms for Spring and Autumn to the east; for when the windows face that quarter, the sun, as he goes on his career from over against them to the west, leaves such rooms at the proper temperature at the time when it is customary to use them. Summer dining rooms to the north, because that quarter is not, like the others, burning with heat during the solstice, for the reason that it is unexposed to the sun's course, and hence it always keeps cool, and makes the use of the rooms both healthy and agreeable. Similarly with picture galleries, embroiderers' work rooms, and painters' studios, in order that the fixed light may permit the colours used in their work to last with qualities unchanged.



CHAPTER V

HOW THE ROOMS SHOULD BE SUITED TO THE STATION OF THE OWNER

1. After settling the positions of the rooms with regard to the quarters of the sky, we must next consider the principles on which should be constructed those apartments in private houses which are meant for the householders themselves, and those which are to be shared in common with outsiders. The private rooms are those into which nobody has the right to enter without an invitation, such as bedrooms, dining rooms, bathrooms, and all others used for the like purposes. The common are those which any of the people have a perfect right to enter, even without an invitation: that is, entrance courts, cavaedia, peristyles, and all intended for the like purpose. Hence, men of everyday fortune do not need entrance courts, tablina, or atriums built in grand style, because such men are more apt to discharge their social obligations by going round to others than to have others come to them.

2. Those who do business in country produce must have stalls and shops in their entrance courts, with crypts, granaries, store-rooms, and so forth in their houses, constructed more for the purpose of keeping the produce in good condition than for ornamental beauty.

For capitalists and farmers of the revenue, somewhat comfortable and showy apartments must be constructed, secure against robbery; for advocates and public speakers, handsomer and more roomy, to accommodate meetings; for men of rank who, from holding offices and magistracies, have social obligations to their fellow-citizens, lofty entrance courts in regal style, and most spacious atriums and peristyles, with plantations and walks of some extent in them, appropriate to their dignity. They need also libraries, picture galleries, and basilicas, finished in a style similar to that of great public buildings, since public councils as well as private law suits and hearings before arbitrators are very often held in the houses of such men.

3. If, therefore, houses are planned on these principles to suit different classes of persons, as prescribed in my first book, under the subject of Propriety, there will be no room for criticism; for they will be arranged with convenience and perfection to suit every purpose. The rules on these points will hold not only for houses in town, but also for those in the country, except that in town atriums are usually next to the front door, while in country seats peristyles come first, and then atriums surrounded by paved colonnades opening upon palaestrae and walks.

I have now set forth the rules for houses in town so far as I could describe them in a summary way. Next I shall state how farmhouses may be arranged with a view to convenience in use, and shall give the rules for their construction.



CHAPTER VI

THE FARMHOUSE

1. In the first place, inspect the country from the point of view of health, in accordance with what is written in my first book, on the building of cities, and let your farmhouses be situated accordingly. Their dimensions should depend upon the size of the farm and the amount of produce. Their courtyards and the dimensions thereof should be determined by the number of cattle and the number of yokes of oxen that will need to be kept therein. Let the kitchen be placed on the warmest side of the courtyard, with the stalls for the oxen adjoining, and their cribs facing the kitchen fire and the eastern quarter of the sky, for the reason that oxen facing the light and the fire do not get rough-coated. Even peasants wholly without knowledge of the quarters of the sky believe that oxen ought to face only in the direction of the sunrise.



2. Their stalls ought to be not less than ten nor more than fifteen feet wide, and long enough to allow not less than seven feet for each yoke. Bathrooms, also, should adjoin the kitchen; for in this situation it will not take long to get ready a bath in the country.

Let the pressing room, also, be next to the kitchen; for in this situation it will be easy to deal with the fruit of the olive. Adjoining it should be the wine room with its windows lighted from the north. In a room with windows on any other quarter so that the sun can heat it, the heat will get into the wine and make it weak.

3. The oil room must be situated so as to get its light from the south and from warm quarters; for oil ought not to be chilled, but should be kept thin by gentle heat. In dimensions, oil rooms should be built to accommodate the crop and the proper number of jars, each of which, holding about one hundred and twenty gallons, must take up a space four feet in diameter. The pressing room itself, if the pressure is exerted by means of levers and a beam, and not worked by turning screws, should be not less than forty feet long, which will give the lever man a convenient amount of space. It should be not less than sixteen feet wide, which will give the men who are at work plenty of free space to do the turning conveniently. If two presses are required in the place, allow twenty-four feet for the width.

4. Folds for sheep and goats must be made large enough to allow each animal a space of not less than four and a half, nor more than six feet. Rooms for grain should be set in an elevated position and with a northern or north-eastern exposure. Thus the grain will not be able to heat quickly, but, being cooled by the wind, keeps a long time. Other exposures produce the corn weevil and the other little creatures that are wont to spoil the grain. To the stable should be assigned the very warmest place in the farmhouse, provided that it is not exposed to the kitchen fire; for when draught animals are stabled very near a fire, their coats get rough.

5. Furthermore, there are advantages in building cribs apart from the kitchen and in the open, facing the east; for when the oxen are taken over to them on early winter mornings in clear weather, their coats get sleeker as they take their fodder in the sunlight. Barns for grain, hay, and spelt, as well as bakeries, should be built apart from the farmhouse, so that farmhouses may be better protected against danger from fire. If something more refined is required in farmhouses, they may be constructed on the principles of symmetry which have been given above in the case of town houses, provided that there is nothing in such buildings to interfere with their usefulness on a farm.

6. We must take care that all buildings are well lighted, but this is obviously an easier matter with those which are on country estates, because there can be no neighbour's wall to interfere, whereas in town high party walls or limited space obstruct the light and make them dark. Hence we must apply the following test in this matter. On the side from which the light should be obtained let a line be stretched from the top of the wall that seems to obstruct the light to the point at which it ought to be introduced, and if a considerable space of open sky can be seen when one looks up above that line, there will be no obstruction to the light in that situation.

7. But if there are timbers in the way, or lintels, or upper stories, then, make the opening higher up and introduce the light in this way. And as a general rule, we must arrange so as to leave places for windows on all sides on which a clear view of the sky can be had, for this will make our buildings light. Not only in dining rooms and other rooms for general use are windows very necessary, but also in passages, level or inclined, and on stairs; for people carrying burdens too often meet and run against each other in such places.

I have now set forth the plans used for buildings in our native country so that they may be clear to builders. Next, I shall describe summarily how houses are planned in the Greek fashion, so that these also may be understood.



CHAPTER VII

THE GREEK HOUSE

1. The Greeks, having no use for atriums, do not build them, but make passage-ways for people entering from the front door, not very wide, with stables on one side and doorkeepers' rooms on the other, and shut off by doors at the inner end. This place between the two doors is termed in Greek [Greek: thyroreion]. From it one enters the peristyle. This peristyle has colonnades on three sides, and on the side facing the south it has two antae, a considerable distance apart, carrying an architrave, with a recess for a distance one third less than the space between the antae. This space is called by some writers "prostas," by others "pastas."



2. Hereabouts, towards the inner side, are the large rooms in which mistresses of houses sit with their wool-spinners. To the right and left of the prostas there are chambers, one of which is called the "thalamos," the other the "amphithalamos." All round the colonnades are dining rooms for everyday use, chambers, and rooms for the slaves. This part of the house is termed "gynaeconitis."

3. In connexion with these there are ampler sets of apartments with more sumptuous peristyles, surrounded by four colonnades of equal height, or else the one which faces the south has higher columns than the others. A peristyle that has one such higher colonnade is called a Rhodian peristyle. Such apartments have fine entrance courts with imposing front doors of their own; the colonnades of the peristyles are decorated with polished stucco in relief and plain, and with coffered ceilings of woodwork; off the colonnades that face the north they have Cyzicene dining rooms and picture galleries; to the east, libraries; exedrae to the west; and to the south, large square rooms of such generous dimensions that four sets of dining couches can easily be arranged in them, with plenty of room for serving and for the amusements.

4. Men's dinner parties are held in these large rooms; for it was not the practice, according to Greek custom, for the mistress of the house to be present. On the contrary, such peristyles are called the men's apartments, since in them the men can stay without interruption from the women. Furthermore, small sets of apartments are built to the right and left, with front doors of their own and suitable dining rooms and chambers, so that guests from abroad need not be shown into the peristyles, but rather into such guests' apartments. For when the Greeks became more luxurious, and their circumstances more opulent, they began to provide dining rooms, chambers, and store-rooms of provisions for their guests from abroad, and on the first day they would invite them to dinner, sending them on the next chickens, eggs, vegetables, fruits, and other country produce. This is why artists called pictures representing the things which were sent to guests "xenia." Thus, too, the heads of families, while being entertained abroad, had the feeling that they were not away from home, since they enjoyed privacy and freedom in such guests' apartments.



5. Between the two peristyles and the guests' apartments are the passage-ways called "mesauloe," because they are situated midway between two courts; but our people called them "andrones."

This, however, is a very strange fact, for the term does not fit either the Greek or the Latin use of it. The Greeks call the large rooms in which men's dinner parties are usually held [Greek: andrones], because women do not go there. There are other similar instances as in the case of "xystus," "prothyrum," "telamones," and some others of the sort. As a Greek term, [Greek: xystos] means a colonnade of large dimensions in which athletes exercise in the winter time. But our people apply the term "xysta" to uncovered walks, which the Greeks call [Greek: paradromides]. Again, [Greek: prothyra] means in Greek the entrance courts before the front doors; we, however, use the term "prothyra" in the sense of the Greek [Greek: diathyra].



6. Again, figures in the form of men supporting mutules or coronae, we term "telamones"—the reasons why or wherefore they are so called are not found in any story—but the Greeks name them [Greek: atlantes]. For Atlas is described in story as holding up the firmament because, through his vigorous intelligence and ingenuity, he was the first to cause men to be taught about the courses of the sun and moon, and the laws governing the revolutions of all the constellations. Consequently, in recognition of this benefaction, painters and sculptors represent him as holding up the firmament, and the Atlantides, his daughters, whom we call "Vergiliae" and the Greeks [Greek: Pleiades], are consecrated in the firmament among the constellations.

7. All this, however, I have not set forth for the purpose of changing the usual terminology or language, but I have thought that it should be explained so that it may be known to scholars.

I have now explained the usual ways of planning houses both in the Italian fashion and according to the practices of the Greeks, and have described, with regard to their symmetry, the proportions of the different classes. Having, therefore, already written of their beauty and propriety, I shall next explain, with reference to durability, how they may be built to last to a great age without defects.



CHAPTER VIII

ON FOUNDATIONS AND SUBSTRUCTURES

1. Houses which are set level with the ground will no doubt last to a great age, if their foundations are laid in the manner which we have explained in the earlier books, with regard to city walls and theatres. But if underground rooms and vaults are intended, their foundations ought to be thicker than the walls which are to be constructed in the upper part of the house, and the walls, piers, and columns of the latter should be set perpendicularly over the middle of the foundation walls below, so that they may have solid bearing; for if the load of the walls or columns rests on the middle of spans, they can have no permanent durability.

2. It will also do no harm to insert posts between lintels and sills where there are piers or antae; for where the lintels and beams have received the load of the walls, they may sag in the middle, and gradually undermine and destroy the walls. But when there are posts set up underneath and wedged in there, they prevent the beams from settling and injuring such walls.

3. We must also manage to discharge the load of the walls by means of archings composed of voussoirs with joints radiating to the centre. For when arches with voussoirs are sprung from the ends of beams, or from the bearings of lintels, in the first place they will discharge the load and the wood will not sag; secondly, if in course of time the wood becomes at all defective, it can easily be replaced without the construction of shoring.

4. Likewise in houses where piers are used in the construction, when there are arches composed of voussoirs with joints radiating to the centre, the outermost piers at these points must be made broader than the others, so that they may have the strength to resist when the wedges, under the pressure of the load of the walls, begin to press along their joints towards the centre, and thus to thrust out the abutments. Hence, if the piers at the ends are of large dimensions, they will hold the voussoirs together, and make such works durable.

5. Having taken heed in these matters to see that proper attention is paid to them, we must also be equally careful that all walls are perfectly vertical, and that they do not lean forward anywhere. Particular pains, too, must be taken with substructures, for here an endless amount of harm is usually done by the earth used as filling. This cannot always remain of the same weight that it usually has in summer, but in winter time it increases in weight and bulk by taking up a great deal of rain water, and then it bursts its enclosing walls and thrusts them out.

6. The following means must be taken to provide against such a defect. First, let the walls be given a thickness proportionate to the amount of filling; secondly, build counterforts or buttresses at the same time as the wall, on the outer side, at distances from each other equivalent to what is to be the height of the substructure and with the thickness of the substructure. At the bottom let them run out to a distance corresponding to the thickness that has been determined for the substructure, and then gradually diminish in extent so that at the surface their projection is equal to the thickness of the wall of the building.



7. Furthermore, inside, to meet the mass of earth, there should be saw-shaped constructions attached to the wall, the single teeth extending from the wall for a distance equivalent to what is to be the height of the substructure, and the teeth being constructed with the same thickness as the wall. Then at the outermost angles take a distance inwards, from the inside of the angle, equal to the height of the substructure, and mark it off on each side; from these marks build up a diagonal structure and from the middle of it a second, joined on to the angle of the wall. With this arrangement, the teeth and diagonal structures will not allow the filling to thrust with all its force against the wall, but will check and distribute the pressure.

8. I have now shown how buildings can be constructed without defects, and the way to take precautions against the occurrence of them. As for replacing tiles, roof timbers, and rafters, we need not be so particular about them as about the parts just mentioned, because they can easily be replaced, however defective they may become. Hence, I have shown by what methods the parts which are not considered solid can be rendered durable, and how they are constructed.

9. As for the kind of material to be used, this does not depend upon the architect, for the reason that all kinds of materials are not found in all places alike, as has been shown in the first book. Besides, it depends on the owner whether he desires to build in brick, or rubble work, or dimension stone. Consequently the question of approving any work may be considered under three heads: that is, delicacy of workmanship, sumptuousness, and design. When it appears that a work has been carried out sumptuously, the owner will be the person to be praised for the great outlay which he has authorized; when delicately, the master workman will be approved for his execution; but when proportions and symmetry lend it an imposing effect, then the glory of it will belong to the architect.

10. Such results, however, may very well be brought about when he allows himself to take the advice both of workmen and of laymen. In fact, all kinds of men, and not merely architects, can recognize a good piece of work, but between laymen and the latter there is this difference, that the layman cannot tell what it is to be like without seeing it finished, whereas the architect, as soon as he has formed the conception, and before he begins the work, has a definite idea of the beauty, the convenience, and the propriety that will distinguish it.

I have now described as clearly as I could what I thought necessary for private houses, and how to build them. In the following book I shall treat of the kinds of polished finish employed to make them elegant, and durable without defects to a great age.



BOOK VII



INTRODUCTION

1. It was a wise and useful provision of the ancients to transmit their thoughts to posterity by recording them in treatises, so that they should not be lost, but, being developed in succeeding generations through publication in books, should gradually attain in later times, to the highest refinement of learning. And so the ancients deserve no ordinary, but unending thanks, because they did not pass on in envious silence, but took care that their ideas of every kind should be transmitted to the future in their writings.

2. If they had not done so, we could not have known what deeds were done in Troy, nor what Thales, Democritus, Anaxagoras, Xenophanes, and the other physicists thought about nature, and what rules Socrates, Plato, Aristotle, Zeno, Epicurus, and other philosophers laid down for the conduct of human life; nor would the deeds and motives of Croesus, Alexander, Darius, and other kings have been known, unless the ancients had compiled treatises, and published them in commentaries to be had in universal remembrance with posterity.

3. So, while they deserve our thanks, those, on the contrary, deserve our reproaches, who steal the writings of such men and publish them as their own; and those also, who depend in their writings, not on their own ideas, but who enviously do wrong to the works of others and boast of it, deserve not merely to be blamed, but to be sentenced to actual punishment for their wicked course of life. With the ancients, however, it is said that such things did not pass without pretty strict chastisement. What the results of their judgments were, it may not be out of place to set forth as they are transmitted to us.

4. The kings of the house of Attalus having established, under the influence of the great charms of literature, an excellent library at Pergamus to give pleasure to the public, Ptolemy also was aroused with no end of enthusiasm and emulation into exertions to make a similar provision with no less diligence at Alexandria. Having done so with the greatest care, he felt that this was not enough without providing for its increase and development, for which he sowed the seed. He established public contests in honour of the Muses and Apollo, and appointed prizes and honours for victorious authors in general, as is done in the case of athletes.

5. These arrangements having been made, and the contests being at hand, it became necessary to select literary men as judges to decide them. The king soon selected six of the citizens, but could not so easily find a proper person to be the seventh. He therefore turned to those who presided over the library, and asked whether they knew anybody who was suitable for the purpose. Then they told him that there was one Aristophanes who was daily engaged in reading through all the books with the greatest enthusiasm and the greatest care. Hence, when the gathering for the contests took place, and separate seats were set apart for the judges, Aristophanes was summoned with the rest, and sat down in the place assigned to him.

6. A group of poets was first brought in to contend, and, as they recited their compositions, the whole audience by its applause showed the judges what it approved. So, when they were individually asked for their votes, the six agreed, and awarded the first prize to the poet who, as they observed, had most pleased the multitude, and the second to the one who came next. But Aristophanes, on being asked for his vote, urged that the poet who had least pleased the audience should be declared to be the first.

7. As the king and the entire assembly showed great indignation, he arose, and asked and received permission to speak. Silence being obtained, he stated that only one of them—his man—was a poet, and that the rest had recited things not their own; furthermore, that judges ought to give their approval, not to thefts, but to original compositions. The people were amazed, and the king hesitated, but Aristophanes, trusting to his memory, had a vast number of volumes brought out from bookcases which he specified, and, by comparing them with what had been recited, obliged the thieves themselves to make confession. So, the king gave orders that they should be accused of theft, and after condemnation sent them off in disgrace; but he honoured Aristophanes with the most generous gifts, and put him in charge of the library.

8. Some years later, Zoilus, who took the surname of Homeromastix, came from Macedonia to Alexandria and read to the king his writings directed against the Iliad and Odyssey. Ptolemy, seeing the father of poets and captain of all literature abused in his absence, and his works, to which all the world looked up in admiration, disparaged by this person, made no rejoinder, although he thought it an outrage. Zoilus, however, after remaining in the kingdom some time, sank into poverty, and sent a message to the king, requesting that something might be bestowed upon him.

9. But it is said that the king replied, that Homer, though dead a thousand years ago, had all that time been the means of livelihood for many thousands of men; similarly, a person who laid claim to higher genius ought to be able to support not one man only, but many others. And in short, various stories are told about his death, which was like that of one found guilty of parricide. Some writers have said that he was crucified by Philadelphus; others that he was stoned at Chios; others again that he was thrown alive upon a funeral pyre at Smyrna. Whichever of these forms of death befell him, it was a fitting punishment and his just due; for one who accuses men that cannot answer and show, face to face, what was the meaning of their writings, obviously deserves no other treatment.

10. But for my part, Caesar, I am not bringing forward the present treatise after changing the titles of other men's books and inserting my own name, nor has it been my plan to win approbation by finding fault with the ideas of another. On the contrary, I express unlimited thanks to all the authors that have in the past, by compiling from antiquity remarkable instances of the skill shown by genius, provided us with abundant materials of different kinds. Drawing from them as it were water from springs, and converting them to our own purposes, we find our powers of writing rendered more fluent and easy, and, relying upon such authorities, we venture to produce new systems of instruction.

11. Hence, as I saw that such beginnings on their part formed an introduction suited to the nature of my own purpose, I set out to draw from them, and to go somewhat further.

In the first place Agatharcus, in Athens, when Aeschylus was bringing out a tragedy, painted a scene, and left a commentary about it. This led Democritus and Anaxagoras to write on the same subject, showing how, given a centre in a definite place, the lines should naturally correspond with due regard to the point of sight and the divergence of the visual rays, so that by this deception a faithful representation of the appearance of buildings might be given in painted scenery, and so that, though all is drawn on a vertical flat facade, some parts may seem to be withdrawing into the background, and others to be standing out in front.

12. Afterwards Silenus published a book on the proportions of Doric structures; Theodorus, on the Doric temple of Juno which is in Samos; Chersiphron and Metagenes, on the Ionic temple at Ephesus which is Diana's; Pytheos, on the Ionic fane of Minerva which is at Priene; Ictinus and Carpion, on the Doric temple of Minerva which is on the acropolis of Athens; Theodorus the Phocian, on the Round Building which is at Delphi; Philo, on the proportions of temples, and on the naval arsenal which was[9] at the port of Peiraeus; Hermogenes, on the Ionic temple of Diana which is at Magnesia, a pseudodipteral, and on that of Father Bacchus at Teos, a monopteral; Arcesius, on the Corinthian proportions, and on the Ionic temple of Aesculapius at Tralles, which it is said that he built with his own hands; on the Mausoleum, Satyrus and Pytheos who were favoured with the greatest and highest good fortune.

[Note 9: Codd. fuerat.]

13. For men whose artistic talents are believed to have won them the highest renown for all time, and laurels forever green, devised and executed works of supreme excellence in this building. The decoration and perfection of the different facades were undertaken by different artists in emulation with each other: Leochares, Bryaxis, Scopas, Praxiteles, and, as some think, Timotheus; and the distinguished excellence of their art made that building famous among the seven wonders of the world.

14. Then, too, many less celebrated men have written treatises on the laws of symmetry, such as Nexaris, Theocydes, Demophilus, Pollis, Leonidas, Silanion, Melampus, Sarnacus, and Euphranor; others again on machinery, such as Diades, Archytas, Archimedes, Ctesibius, Nymphodorus, Philo of Byzantium, Diphilus, Democles, Charias, Polyidus, Pyrrus, and Agesistratus. From their commentaries I have gathered what I saw was useful for the present subject, and formed it into one complete treatise, and this principally, because I saw that many books in this field had been published by the Greeks, but very few indeed by our countrymen. Fuficius, in fact, was the first to undertake to publish a book on this subject. Terentius Varro, also, in his work "On the Nine Sciences" has one book on architecture, and Publius Septimius, two.

15. But to this day nobody else seems to have bent his energies to this branch of literature, although there have been, even among our fellow-citizens in old times, great architects who could also have written with elegance. For instance, in Athens, the architects Antistates, Callaeschrus, Antimachides, and Pormus laid the foundations when Peisistratus began the temple of Olympian Jove, but after his death they abandoned the undertaking, on account of political troubles. Hence it was that when, about four hundred years later, King Antiochus promised to pay the expenses of that work, the huge cella, the surrounding columns in dipteral arrangement, and the architraves and other ornaments, adjusted according to the laws of symmetry, were nobly constructed with great skill and supreme knowledge by Cossutius, a citizen of Rome. Moreover, this work has a name for its grandeur, not only in general, but also among the select few.

16. There are, in fact, four places possessing temples embellished with workmanship in marble that causes them to be mentioned in a class by themselves with the highest renown. To their great excellence and the wisdom of their conception they owe their place of esteem in the ceremonial worship of the gods. First there is the temple of Diana at Ephesus, in the Ionic style, undertaken by Chersiphron of Gnosus and his son Metagenes, and said to have been finished later by Demetrius, who was himself a slave of Diana, and by Paeonius the Milesian. At Miletus, the temple of Apollo, also Ionic in its proportions, was the undertaking of the same Paeonius and of the Ephesian Daphnis. At Eleusis, the cella of Ceres and Proserpine, of vast size, was completed to the roof by Ictinus in the Doric style, but without exterior columns and with plenty of room for the customary sacrifices.

17. Afterwards, however, when Demetrius of Phalerum was master of Athens, Philo set up columns in front before the temple, and made it prostyle. Thus, by adding an entrance hall, he gave the initiates more room, and imparted the greatest dignity to the building. Finally, in Athens, the temple of the Olympion with its dimensions on a generous scale, and built in the Corinthian style and proportions, is said to have been constructed, as written above, by Cossutius, no commentary by whom has been found. But Cossutius is not the only man by whom we should like to have writings on our subject. Another is Gaius Mucius, who, having great knowledge on which to rely, completed the cella, columns, and entablature of the Marian temple of Honour and Valour, in symmetrical proportions according to the accepted rules of the art. If this building had been of marble, so that besides the refinement of its art it possessed the dignity coming from magnificence and great outlay, it would be reckoned among the first and greatest of works.

18. Since it appears, then, that our architects in the old days, and a good many even in our own times, have been as great as those of the Greeks, and nevertheless only a few of them have published treatises, I resolved not to be silent, but to treat the different topics methodically in different books. Hence, since I have given an account of private houses in the sixth book, in this, which is the seventh in order, I shall treat of polished finishings and the methods of giving them both beauty and durability.



CHAPTER I

FLOORS

1. First I shall begin with the concrete flooring, which is the most important of the polished finishings, observing that great pains and the utmost precaution must be taken to ensure its durability. If this concrete flooring is to be laid level with the ground, let the soil be tested to see whether it is everywhere solid, and if it is, level it off and upon it lay the broken stone with its bedding. But if the floor is either wholly or partly filling, it should be rammed down hard with great care. In case a wooden framework is used, however, we must see that no wall which does not reach up to the top of the house is constructed under the floor. Any wall which is there should preferably fall short, so as to leave the wooden planking above it an unsupported span. If a wall comes up solid, the unyielding nature of its solid structure must, when the joists begin to dry, or to sag and settle, lead to cracks in the floor on the right and left along the line of wall.

2. We must also be careful that no common oak gets in with the winter oak boards, for as soon as common oak boards get damp, they warp and cause cracks in floors. But if there is no winter oak, and necessity drives, for lack of this it seems advisable to use common oak boards cut pretty thin; for the less thick they are, the more easily they can be held in place by being nailed on. Then, at the ends of every joist, nail on two boards so that they shall not be able to warp and stick up at the edges. As for Turkey oak or beech or ash, none of them can last to a great age.

When the wooden planking is finished, cover it with fern, if there is any, otherwise with straw, to protect the wood from being hurt by the lime.

3. Then, upon this lay the bedding, composed of stones not smaller than can fill the hand. After the bedding is laid, mix the broken stone in the proportions, if it is new, of three parts to one of lime; if it is old material used again, five parts may answer to two in the mixture. Next, lay the mixture of broken stone, bring on your gangs, and beat it again and again with wooden beetles into a solid mass, and let it be not less than three quarters of a foot in thickness when the beating is finished. On this lay the nucleus, consisting of pounded tile mixed with lime in the proportions of three parts to one, and forming a layer not less than six digits thick. On top of the nucleus, the floor, whether made of cut slips or of cubes, should be well and truly laid by rule and level.

4. After it is laid and set at the proper inclination, let it be rubbed down so that, if it consists of cut slips, the lozenges, or triangles, or squares, or hexagons may not stick up at different levels, but be all jointed together on the same plane with one another; if it is laid in cubes, so that all the edges may be level; for the rubbing down will not be properly finished unless all the edges are on the same level plane. The herring-bone pattern, made of Tibur burnt brick, must also be carefully finished, so as to be without gaps or ridges sticking up, but all flat and rubbed down to rule. When the rubbing down is completely finished by means of the smoothing and polishing processes, sift powdered marble on top, and lay on a coating of lime and sand.

5. In the open air, specially adapted kinds of floors must be made, because their framework, swelling with dampness, or shrinking from dryness, or sagging and settling, injures the floors by these changes; besides, the frost and rime will not let them go unhurt. Hence, if necessity drives, we must proceed as follows in order to make them as free from defects as possible. After finishing the plank flooring, lay a second plank flooring over it at right angles, and nail it down so as to give double protection to the framework. Then, mix with new broken stone one third the quantity of pounded tile, and let lime be added to the mixture in the mortar trough in the proportion of two parts to five.

6. Having made the bedding, lay on this mixture of broken stone, and let it be not less than a foot thick when the beating is finished. Then, after laying the nucleus, as above described, construct the floor of large cubes cut about two digits each way, and let it have an inclination of two digits for every ten feet. If it is well put together and properly rubbed down, it will be free from all flaws. In order that the mortar in the joints may not suffer from frosts, drench it with oil-dregs every year before winter begins. Thus treated, it will not let the hoarfrost enter it.

7. If, however, it seems needful to use still greater care, lay two-foot tiles, jointed together in a bed of mortar, over the broken stone, with little channels of one finger's breadth cut in the faces of all the joints. Connect these channels and fill them with a mixture of lime and oil; then, rub the joints hard and make them compact. Thus, the lime sticking in the channels will harden and solidify into a mass, and so prevent water or anything else from penetrating through the joints. After this layer is finished, spread the nucleus upon it, and work it down by beating it with rods. Upon this lay the floor, at the inclination above described, either of large cubes or burnt brick in herring-bone pattern, and floors thus constructed will not soon be spoiled.



CHAPTER II

THE SLAKING OF LIME FOR STUCCO

1. Leaving the subject of floors, we must next treat of stucco work. This will be all right if the best lime, taken in lumps, is slaked a good while before it is to be used, so that if any lump has not been burned long enough in the kiln, it will be forced to throw off its heat during the long course of slaking in the water, and will thus be thoroughly burned to the same consistency. When it is taken not thoroughly slaked but fresh, it has little crude bits concealed in it, and so, when applied, it blisters. When such bits complete their slaking after they are on the building, they break up and spoil the smooth polish of the stucco.

2. But when the proper attention has been paid to the slaking, and greater pains have thus been employed in the preparation for the work, take a hoe, and apply it to the slaked lime in the mortar bed just as you hew wood. If it sticks to the hoe in bits, the lime is not yet tempered; and when the iron is drawn out dry and clean, it will show that the lime is weak and thirsty; but when the lime is rich and properly slaked, it will stick to the tool like glue, proving that it is completely tempered. Then get the scaffolding ready, and proceed to construct the vaultings in the rooms, unless they are to be decorated with flat coffered ceilings.



CHAPTER III

VAULTINGS AND STUCCO WORK

1. When vaulting is required, the procedure should be as follows. Set up horizontal furring strips at intervals of not more than two feet apart, using preferably cypress, as fir is soon spoiled by decay and by age. Arrange these strips so as to form a curve, and make them fast to the joists of the floor above or to the roof, if it is there, by nailing them with many iron nails to ties fixed at intervals. These ties should be made of a kind of wood that neither decay nor time nor dampness can spoil, such as box, juniper, olive, oak, cypress, or any other similar wood except common oak; for this warps, and causes cracks in work in which it is used.

2. Having arranged the furring strips, take cord made of Spanish broom, and tie Greek reeds, previously pounded flat, to them in the required contour. Immediately above the vaulting spread some mortar made of lime and sand, to check any drops that may fall from the joists or from the roof. If a supply of Greek reed is not to be had, gather slender marsh reeds, and make them up with silk cord into bundles all of the same thickness and adjusted to the proper length, provided that the bundles are not more than two feet long between any two knots. Then tie them with cord to the beams, as above described, and drive wooden pegs into them. Make all the other preparations as above described.

3. Having thus set the vaultings in their places and interwoven them, apply the rendering coat to their lower surface; then lay on the sand mortar, and afterwards polish it off with the powdered marble. After the vaultings have been polished, set the impost mouldings directly beneath them. These obviously ought to be made extremely slender and delicate, for when they are large, their weight carries them down, and they cannot support themselves. Gypsum should by no means be used in their composition, but powdered marble should be laid on uniformly, lest gypsum, by setting too quickly should keep the work from drying uniformly. We must also beware of the ancients' scheme for vaultings; for in their mouldings the soffits overhang very heavily, and are dangerous.

4. Some mouldings are flat, others in relief. In rooms where there has to be a fire or a good many lights, they should be flat, so that they can be wiped off more easily. In summer apartments and in exedrae where there is no smoke nor soot to hurt them, they should be made in relief. It is always the case that stucco, in the pride of its dazzling white, gathers smoke not only from its own house but also from others.

5. Having finished the mouldings, apply a very rough rendering coat to the walls, and afterwards, when the rendering coat gets pretty dry, spread upon it the layers of sand mortar, exactly adjusted in length to rule and line, in height to the plummet, and at the angles to the square. The stucco will thus present a faultless appearance for paintings. When it gets pretty dry, spread on a second coat and then a third. The better the foundation of sand mortar that is laid on, the stronger and more durable in its solidity will be the stucco.

6. When not less than three coats of sand mortar, besides the rendering coat, have been laid on, then, we must make the mixture for the layers of powdered marble, the mortar being so tempered that when mixed it does not stick to the trowel, but the iron comes out freely and clean from the mortar trough. After this powdered marble has been spread on and gets dry, lay on a medium second coat. When that has been applied and well rubbed down, spread on a finer coat. The walls, being thus rendered solid by three coats of sand mortar and as many of marble, will not possibly be liable to cracks or to any other defect.

7. And further, such walls, owing to the solid foundation given by thorough working with polishing instruments, and the smoothness of it, due to the hard and dazzling white marble, will bring out in brilliant splendour the colours which are laid on at the same time with the polishing.

These colours, when they are carefully laid on stucco still wet, do not fade but are permanent. This is because the lime, having had its moisture burned out in the kiln, becomes porous and loses its strength, and its dryness makes it take up anything that may come in contact with it. On mixing with the seeds or elements that come from other substances, it forms a solid mass with them and, no matter what the constituent parts may then be, it must, obviously, on becoming dry, possess the qualities which are peculiar to its own nature.

8. Hence, stucco that is properly made does not get rough as time goes on, nor lose its colours when it is wiped off, unless they have been laid on with little care and after it is dry. So, when the stucco on walls is made as described above, it will have strength and brilliancy, and an excellence that will last to a great age. But when only one coat of sand mortar and one of fine marble have been spread on, its thin layer is easily cracked from want of strength, and from its lack of thickness it will not take on the brilliance, due to polishing, which it ought to have.

9. Just as a silver mirror that is formed of a thin plate reflects indistinctly and with a feeble light, while one that is substantially made can take on a very high polish, and reflects a brilliant and distinct image when one looks therein, so it is with stucco. When the stuff of which it is formed is thin, it not only cracks but also soon fades; when, however, it has a solid foundation of sand mortar and of marble, thickly and compactly applied, it is not only brilliant after being subjected to repeated polishings, but also reflects from its surface a clear image of the beholder.

10. The Greek stucco-workers not only employ these methods to make their works durable, but also construct a mortar trough, mix the lime and sand in it, bring on a gang of men, and beat the stuff with wooden beetles, and do not use it until it has been thus vigorously worked. Hence, some cut slabs out of old walls and use them as panels, and the stucco of such panels and "reflectors" has projecting bevelled edges all round it.

11. But if stucco has to be made on "wattle and daub," where there must be cracks at the uprights and cross-sticks, because they must take in moisture when they are daubed with the mud, and cause cracks in the stucco when they dry and shrink, the following method will prevent this from happening. After the whole wall has been smeared with the mud, nail rows of reeds to it by means of "fly-nails," then spread on the mud a second time, and, if the first rows have been nailed with the shafts transverse, nail on a second set with the shafts vertical, and then, as above described, spread on the sand mortar, the marble, and the whole mass of stucco. Thus, the double series of reeds with their shafts crossing on the walls will prevent any chipping or cracking from taking place.



CHAPTER IV

ON STUCCO WORK IN DAMP PLACES, AND ON THE DECORATION OF DINING ROOMS

1. Having spoken of the method by which stucco work should be done in dry situations, I shall next explain how the polished finish is to be accomplished in places that are damp, in such a way that it can last without defects. First, in apartments which are level with the ground, apply a rendering coat of mortar, mixed with burnt brick instead of sand, to a height of about three feet above the floor, and then lay on the stucco so that those portions of it may not be injured by the dampness. But if a wall is in a state of dampness all over, construct a second thin wall a little way from it on the inside, at a distance suited to circumstances, and in the space between these two walls run a channel, at a lower level than that of the apartment, with vents to the open air. Similarly, when the wall is brought up to the top, leave airholes there. For if the moisture has no means of getting out by vents at the bottom and at the top, it will not fail to spread all over the new wall. This done, apply a rendering coat of mortar made with burnt brick to this wall, spread on the layer of stucco, and polish it.

2. But if there is not room enough for the construction of a wall, make channels with their vents extending to the open air. Then lay two-foot tiles resting on the margin of the channel on one side, and on the other side construct a foundation of pillars for them, made of eight-inch bricks, on top of each of which the edges of two tiles may be supported, each pillar being not more than a hand's breadth distant from the wall. Then, above, set hooked tiles fastened to the wall from bottom to top, carefully covering the inner sides of them with pitch so that they will reject moisture. Both at the bottom and at the top above the vaulting they should have airholes.

3. Then, whitewash them with lime and water so that they will not reject the rendering coat of burnt brick. For, as they are dry from the loss of water burnt out in the kiln, they can neither take nor hold the rendering coat unless lime has been applied beneath it to stick the two substances together, and make them unite. After spreading the rendering coat upon this, apply layers of burnt brick mortar instead of sand mortar, and finish up all the rest in the manner described above for stucco work.

4. The decorations of the polished surfaces of the walls ought to be treated with due regard to propriety, so as to be adapted to their situations, and not out of keeping with differences in kind. In winter dining rooms, neither paintings on grand subjects nor delicacy of decoration in the cornice work of the vaultings is a serviceable kind of design, because they are spoiled by the smoke from the fire and the constant soot from the lamps. In these rooms there should be panels above the dadoes, worked in black, and polished, with yellow ochre or vermilion blocks interposed between them. After the vaulting has been treated in the flat style, and polished, the Greek method of making floors for use in winter dining rooms may not be unworthy of one's notice, as being very inexpensive and yet serviceable.

5. An excavation is made below the level of the dining room to a depth of about two feet, and, after the ground has been rammed down, the mass of broken stones or the pounded burnt brick is spread on, at such an inclination that it can find vents in the drain. Next, having filled in with charcoal compactly trodden down, a mortar mixed of gravel, lime, and ashes is spread on to a depth of half a foot. The surface having been made true to rule and level, and smoothed off with whetstone, gives the look of a black pavement. Hence, at their dinner parties, whatever is poured out of the cups, or spirted from the mouth, no sooner falls than it dries up, and the servants who wait there do not catch cold from that kind of floor, although they may go barefoot.



CHAPTER V

THE DECADENCE OF FRESCO PAINTING

1. For the other apartments, that is, those intended to be used in Spring, Autumn, and Summer, as well as for atriums and peristyles, the ancients required realistic pictures of real things. A picture is, in fact, a representation of a thing which really exists or which can exist: for example, a man, a house, a ship, or anything else from whose definite and actual structure copies resembling it can be taken. Consequently the ancients who introduced polished finishings began by representing different kinds of marble slabs in different positions, and then cornices and blocks of yellow ochre arranged in various ways.

2. Afterwards they made such progress as to represent the forms of buildings, and of columns, and projecting and overhanging pediments; in their open rooms, such as exedrae, on account of the size, they depicted the facades of scenes in the tragic, comic, or satyric style; and their walks, on account of the great length, they decorated with a variety of landscapes, copying the characteristics of definite spots. In these paintings there are harbours, promontories, seashores, rivers, fountains, straits, fanes, groves, mountains, flocks, shepherds; in some places there are also pictures designed in the grand style, with figures of the gods or detailed mythological episodes, or the battles at Troy, or the wanderings of Ulysses, with landscape backgrounds, and other subjects reproduced on similar principles from real life.

3. But those subjects which were copied from actual realities are scorned in these days of bad taste. We now have fresco paintings of monstrosities, rather than truthful representations of definite things. For instance, reeds are put in the place of columns, fluted appendages with curly leaves and volutes, instead of pediments, candelabra supporting representations of shrines, and on top of their pediments numerous tender stalks and volutes growing up from the roots and having human figures senselessly seated upon them; sometimes stalks having only half-length figures, some with human heads, others with the heads of animals.

4. Such things do not exist and cannot exist and never have existed. Hence, it is the new taste that has caused bad judges of poor art to prevail over true artistic excellence. For how is it possible that a reed should really support a roof, or a candelabrum a pediment with its ornaments, or that such a slender, flexible thing as a stalk should support a figure perched upon it, or that roots and stalks should produce now flowers and now half-length figures? Yet when people see these frauds, they find no fault with them but on the contrary are delighted, and do not care whether any of them can exist or not. Their understanding is darkened by decadent critical principles, so that it is not capable of giving its approval authoritatively and on the principle of propriety to that which really can exist. The fact is that pictures which are unlike reality ought not to be approved, and even if they are technically fine, this is no reason why they should offhand be judged to be correct, if their subject is lacking in the principles of reality carried out with no violations.

5. For instance, at Tralles, Apaturius of Alabanda designed with skilful hand the scaena of the little theatre which is there called the [Greek: ekklesiasterion], representing columns in it and statues, Centaurs supporting the architraves, rotundas with round roofs on them, pediments with overhanging returns, and cornices ornamented with lions' heads, which are meant for nothing but the rainwater from the roofs,—and then on top of it all he made an episcaenium in which were painted rotundas, porticoes, half-pediments, and all the different kinds of decoration employed in a roof. The effect of high relief in this scaena was very attractive to all who beheld it, and they were ready to give their approval to the work, when Licymnius the mathematician came forward and said that (6.) the Alabandines were considered bright enough in all matters of politics, but that on account of one slight defect, the lack of the sense of propriety, they were believed to be unintelligent. "In their gymnasium the statues are all pleading causes, in their forum, throwing the discus, running, or playing ball. This disregard of propriety in the interchange of statues appropriate to different places has brought the state as a whole into disrepute. Let us then beware lest this scaena of Apaturius make Alabandines or Abderites of us. Which of you can have houses or columns or extensive pediments on top of his tiled roof? Such things are built above the floors, not above the tiled roofs. Therefore, if we give our approval to pictures of things which can have no reason for existence in actual fact, we shall be voluntarily associating ourselves with those communities which are believed to be unintelligent on account of just such defects."

7. Apaturius did not venture to make any answer, but removed the scaena, altered it so that it conformed to reality, and gave satisfaction with it in its improved state. Would to God that Licymnius could come to life again and reform the present condition of folly and mistaken practices in fresco painting! However, it may not be out of place to explain why this false method prevails over the truth. The fact is that the artistic excellence which the ancients endeavoured to attain by working hard and taking pains, is now attempted by the use of colours and the brave show which they make, and expenditure by the employer prevents people from missing the artistic refinements that once lent authority to works.

Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse