|
2. But if there are no sandpits from which it can be dug, then we must sift it out from river beds or from gravel or even from the sea beach. This kind, however, has these defects when used in masonry: it dries slowly; the wall cannot be built up without interruption but from time to time there must be pauses in the work; and such a wall cannot carry vaultings. Furthermore, when sea-sand is used in walls and these are coated with stucco, a salty efflorescence is given out which spoils the surface.
3. But pitsand used in masonry dries quickly, the stucco coating is permanent, and the walls can support vaultings. I am speaking of sand fresh from the sandpits. For if it lies unused too long after being taken out, it is disintegrated by exposure to sun, moon, or hoar frost, and becomes earthy. So when mixed in masonry, it has no binding power on the rubble, which consequently settles and down comes the load which the walls can no longer support. Fresh pitsand, however, in spite of all its excellence in concrete structures, is not equally useful in stucco, the richness of which, when the lime and straw are mixed with such sand, will cause it to crack as it dries on account of the great strength of the mixture. But river sand, though useless in "signinum" on account of its thinness, becomes perfectly solid in stucco when thoroughly worked by means of polishing instruments.
CHAPTER V
LIME
1. Sand and its sources having been thus treated, next with regard to lime we must be careful that it is burned from a stone which, whether soft or hard, is in any case white. Lime made of close-grained stone of the harder sort will be good in structural parts; lime of porous stone, in stucco. After slaking it, mix your mortar, if using pitsand, in the proportions of three parts of sand to one of lime; if using river or sea-sand, mix two parts of sand with one of lime. These will be the right proportions for the composition of the mixture. Further, in using river or sea-sand, the addition of a third part composed of burnt brick, pounded up and sifted, will make your mortar of a better composition to use.
2. The reason why lime makes a solid structure on being combined with water and sand seems to be this: that rocks, like all other bodies, are composed of the four elements. Those which contain a larger proportion of air, are soft; of water, are tough from the moisture; of earth, hard; and of fire, more brittle. Therefore, if limestone, without being burned, is merely pounded up small and then mixed with sand and so put into the work, the mass does not solidify nor can it hold together. But if the stone is first thrown into the kiln, it loses its former property of solidity by exposure to the great heat of the fire, and so with its strength burnt out and exhausted it is left with its pores open and empty. Hence, the moisture and air in the body of the stone being burned out and set free, and only a residuum of heat being left lying in it, if the stone is then immersed in water, the moisture, before the water can feel the influence of the fire, makes its way into the open pores; then the stone begins to get hot, and finally, after it cools off, the heat is rejected from the body of the lime.
3. Consequently, limestone when taken out of the kiln cannot be as heavy as when it was thrown in, but on being weighed, though its bulk remains the same as before, it is found to have lost about a third of its weight owing to the boiling out of the water. Therefore, its pores being thus opened and its texture rendered loose, it readily mixes with sand, and hence the two materials cohere as they dry, unite with the rubble, and make a solid structure.
CHAPTER VI
POZZOLANA
1. There is also a kind of powder which from natural causes produces astonishing results. It is found in the neighbourhood of Baiae and in the country belonging to the towns round about Mt. Vesuvius. This substance, when mixed with lime and rubble, not only lends strength to buildings of other kinds, but even when piers of it are constructed in the sea, they set hard under water. The reason for this seems to be that the soil on the slopes of the mountains in these neighbourhoods is hot and full of hot springs. This would not be so unless the mountains had beneath them huge fires of burning sulphur or alum or asphalt. So the fire and the heat of the flames, coming up hot from far within through the fissures, make the soil there light, and the tufa found there is spongy and free from moisture. Hence, when the three substances, all formed on a similar principle by the force of fire, are mixed together, the water suddenly taken in makes them cohere, and the moisture quickly hardens them so that they set into a mass which neither the waves nor the force of the water can dissolve.
2. That there is burning heat in these regions may be proved by the further fact that in the mountains near Baiae, which belongs to the Cumaeans, there are places excavated to serve as sweating-baths, where the intense heat that comes from far below bores its way through the earth, owing to the force of the fire, and passing up appears in these regions, thus making remarkably good sweating-baths. Likewise also it is related that in ancient times the tides of heat, swelling and overflowing from under Mt. Vesuvius, vomited forth fire from the mountain upon the neighbouring country. Hence, what is called "sponge-stone" or "Pompeian pumice" appears to have been reduced by burning from another kind of stone to the condition of the kind which we see.
3. The kind of sponge-stone taken from this region is not produced everywhere else, but only about Aetna and among the hills of Mysia which the Greeks call the "Burnt District," and in other places of the same peculiar nature. Seeing that in such places there are found hot springs and warm vapour in excavations on the mountains, and that the ancients tell us that there were once fires spreading over the fields in those very regions, it seems to be certain that moisture has been extracted from the tufa and earth, by the force of fire, just as it is from limestone in kilns.
4. Therefore, when different and unlike things have been subjected to the action of fire and thus reduced to the same condition, if after this, while in a warm, dry state, they are suddenly saturated with water, there is an effervescence of the heat latent in the bodies of them all, and this makes them firmly unite and quickly assume the property of one solid mass.
There will still be the question why Tuscany, although it abounds in hot springs, does not furnish a powder out of which, on the same principle, a wall can be made which will set fast under water. I have therefore thought best to explain how this seems to be, before the question should be raised.
5. The same kinds of soil are not found in all places and countries alike, nor is stone found everywhere. Some soils are earthy; others gravelly, and again pebbly; in other places the material is sandy; in a word, the properties of the soil are as different and unlike as are the various countries. In particular, it may be observed that sandpits are hardly ever lacking in any place within the districts of Italy and Tuscany which are bounded by the Apennines; whereas across the Apennines toward the Adriatic none are found, and in Achaea and Asia Minor or, in short, across the sea, the very term is unknown. Hence it is not in all the places where boiling springs of hot water abound, that there is the same combination of favourable circumstances which has been described above. For things are produced in accordance with the will of nature; not to suit man's pleasure, but as it were by a chance distribution.
6. Therefore, where the mountains are not earthy but consist of soft stone, the force of the fire, passing through the fissures in the stone, sets it afire. The soft and delicate part is burned out, while the hard part is left. Consequently, while in Campania the burning of the earth makes ashes, in Tuscany the combustion of the stone makes carbuncular sand. Both are excellent in walls, but one is better to use for buildings on land, the other for piers under salt water. The Tuscan stone is softer in quality than tufa but harder than earth, and being thoroughly kindled by the violent heat from below, the result is the production in some places of the kind of sand called carbuncular.
CHAPTER VII
STONE
1. I have now spoken of lime and sand, with their varieties and points of excellence. Next comes the consideration of stone-quarries from which dimension stone and supplies of rubble to be used in building are taken and brought together. The stone in quarries is found to be of different and unlike qualities. In some it is soft: for example, in the environs of the city at the quarries of Grotta Rossa, Palla, Fidenae, and of the Alban hills; in others, it is medium, as at Tivoli, at Amiternum, or Mt. Soracte, and in quarries of this sort; in still others it is hard, as in lava quarries. There are also numerous other kinds: for instance, in Campania, red and black tufas; in Umbria, Picenum, and Venetia, white tufa which can be cut with a toothed saw, like wood.
2. All these soft kinds have the advantage that they can be easily worked as soon as they have been taken from the quarries. Under cover they play their part well; but in open and exposed situations the frost and rime make them crumble, and they go to pieces. On the seacoast, too, the salt eats away and dissolves them, nor can they stand great heat either. But travertine and all stone of that class can stand injury whether from a heavy load laid upon it or from the weather; exposure to fire, however, it cannot bear, but splits and cracks to pieces at once. This is because in its natural composition there is but little moisture and not much of the earthy, but a great deal of air and of fire. Therefore, it is not only without the earthy and watery elements, but when fire, expelling the air from it by the operation and force of heat, penetrates into its inmost parts and occupies the empty spaces of the fissures, there comes a great glow and the stone is made to burn as fiercely as do the particles of fire itself.
3. There are also several quarries called Anician in the territory of Tarquinii, the stone being of the colour of peperino. The principal workshops lie round the lake of Bolsena and in the prefecture of Statonia. This stone has innumerable good qualities. Neither the season of frost nor exposure to fire can harm it, but it remains solid and lasts to a great age, because there is only a little air and fire in its natural composition, a moderate amount of moisture, and a great deal of the earthy. Hence its structure is of close texture and solid, and so it cannot be injured by the weather or by the force of fire.
4. This may best be seen from monuments in the neighbourhood of the town of Ferento which are made of stone from these quarries. Among them are large statues exceedingly well made, images of smaller size, and flowers and acanthus leaves gracefully carved. Old as these are, they look as fresh as if they were only just finished. Bronze workers, also, make moulds for the casting of bronze out of stone from these quarries, and find it very useful in bronze-founding. If the quarries were only near Rome, all our buildings might well be constructed from the products of these workshops.
5. But since, on account of the proximity of the stone-quarries of Grotta Rossa, Palla, and the others that are nearest to the city, necessity drives us to make use of their products, we must proceed as follows, if we wish our work to be finished without flaws. Let the stone be taken from the quarry two years before building is to begin, and not in winter but in summer. Then let it lie exposed in an open place. Such stone as has been damaged by the two years of exposure should be used in the foundations. The rest, which remains unhurt, has passed the test of nature and will endure in those parts of the building which are above ground. This precaution should be observed, not only with dimension stone, but also with the rubble which is to be used in walls.
CHAPTER VIII
METHODS OF BUILDING WALLS
1. There are two styles of walls: "opus reticulatum," now used by everybody, and the ancient style called "opus incertum." Of these, the reticulatum looks better, but its construction makes it likely to crack, because its beds and builds spread out in every direction. On the other hand, in the opus incertum, the rubble, lying in courses and imbricated, makes a wall which, though not beautiful, is stronger than the reticulatum.
2. Both kinds should be constructed of the smallest stones, so that the walls, being thoroughly puddled with the mortar, which is made of lime and sand, may hold together longer. Since the stones used are soft and porous, they are apt to suck the moisture out of the mortar and so to dry it up. But when there is abundance of lime and sand, the wall, containing more moisture, will not soon lose its strength, for they will hold it together. But as soon as the moisture is sucked out of the mortar by the porous rubble, and the lime and sand separate and disunite, the rubble can no longer adhere to them and the wall will in time become a ruin.
3. This we may learn from several monuments in the environs of the city, which are built of marble or dimension stone, but on the inside packed with masonry between the outer walls. In the course of time, the mortar has lost its strength, which has been sucked out of it by the porousness of the rubble; and so the monuments are tumbling down and going to pieces, with their joints loosened by the settling of the material that bound them together.
4. He who wishes to avoid such a disaster should leave a cavity behind the facings, and on the inside build walls two feet thick, made of red dimension stone or burnt brick or lava in courses, and then bind them to the fronts by means of iron clamps and lead. For thus his work, being no mere heap of material but regularly laid in courses, will be strong enough to last forever without a flaw, because the beds and builds, all settling equally and bonded at the joints, will not let the work bulge out, nor allow the fall of the face walls which have been tightly fastened together.
5. Consequently, the method of construction employed by the Greeks is not to be despised. They do not use a structure of soft rubble polished on the outside, but whenever they forsake dimension stone, they lay courses of lava or of some hard stone, and, as though building with brick, they bind the upright joints by interchanging the direction of the stones as they lie in the courses. Thus they attain to a perfection that will endure to eternity. These structures are of two kinds. One of them is called "isodomum," the other "pseudisodomum."
6. A wall is called isodomum when all the courses are of equal height; pseudisodomum, when the rows of courses do not match but run unequally. Both kinds are strong: first, because the rubble itself is of close texture and solid, unable to suck the moisture out of the mortar, but keeping it in its moist condition for a very long period; secondly, because the beds of the stones, being laid smooth and level to begin with, keep the mortar from falling, and, as they are bonded throughout the entire thickness of the wall, they hold together for a very long period.
7. Another method is that which they call [Greek: emplekton], used also among us in the country. In this the facings are finished, but the other stones left in their natural state and then laid with alternate bonding stones. But our workmen, in their hurry to finish, devote themselves only to the facings of the walls, setting them upright but filling the space between with a lot of broken stones and mortar thrown in anyhow. This makes three different sections in the same structure; two consisting of facing and one of filling between them. The Greeks, however, do not build so; but laying their stones level and building every other stone length-wise into the thickness, they do not fill the space between, but construct the thickness of their walls in one solid and unbroken mass from the facings to the interior. Further, at intervals they lay single stones which run through the entire thickness of the wall. These stones, which show at each end, are called [Greek: diatonoi], and by their bonding powers they add very greatly to the solidity of the walls.
8. One who in accordance with these notes will take pains in selecting his method of construction, may count upon having something that will last. No walls made of rubble and finished with delicate beauty—no such walls can escape ruin as time goes on. Hence, when arbitrators are chosen to set a valuation on party walls, they do not value them at what they cost to build, but look up the written contract in each case and then, after deducting from the cost one eightieth for each year that the wall has been standing, decide that the remainder is the sum to be paid. They thus in effect pronounce that such walls cannot last more than eighty years.
9. In the case of brick walls, however, no deduction is made provided that they are still standing plumb, but they are always valued at what they cost to build. Hence in some states we may see public buildings and private houses, as well as those of kings, built of brick: in Athens, for example, the part of the wall which faces Mt. Hymettus and Pentelicus; at Patras, the cellae of the temple of Jupiter and Hercules, which are brick, although on the outside the entablature and columns of the temple are of stone; in Italy, at Arezzo, an ancient wall excellently built; at Tralles, the house built for the kings of the dynasty of Attalus, which is now always granted to the man who holds the state priesthood. In Sparta, paintings have been taken out of certain walls by cutting through the bricks, then have been placed in wooden frames, and so brought to the Comitium to adorn the aedileship of Varro and Murena.
10. Then there is the house of Croesus which the people of Sardis have set apart as a place of repose for their fellow-citizens in the retirement of age,—a "Gerousia" for the guild of the elder men. At Halicarnassus, the house of that most potent king Mausolus, though decorated throughout with Proconnesian marble, has walls built of brick which are to this day of extraordinary strength, and are covered with stucco so highly polished that they seem to be as glistening as glass. That king did not use brick from poverty; for he was choke-full of revenues, being ruler of all Caria.
11. As for his skill and ingenuity as a builder, they may be seen from what follows. He was born at Melassa, but recognizing the natural advantages of Halicarnassus as a fortress, and seeing that it was suitable as a trading centre and that it had a good harbour, he fixed his residence there. The place had a curvature like that of the seats in a theatre. On the lowest tier, along the harbour, was built the forum. About halfway up the curving slope, at the point where the curved cross-aisle is in a theatre, a broad wide street was laid out, in the middle of which was built the Mausoleum, a work so remarkable that it is classed among the Seven Wonders of the World. At the top of the hill, in the centre, is the fane of Mars, containing a colossal acrolithic statue by the famous hand of Leochares. That is, some think that this statue is by Leochares, others by Timotheus. At the extreme right of the summit is the fane of Venus and Mercury, close to the spring of Salmacis.
12. There is a mistaken idea that this spring infects those who drink of it with an unnatural lewdness. It will not be out of place to explain how this idea came to spread throughout the world from a mistake in the telling of the tale. It cannot be that the water makes men effeminate and unchaste, as it is said to do; for the spring is of remarkable clearness and excellent in flavour. The fact is that when Melas and Arevanias came there from Argos and Troezen and founded a colony together, they drove out the Carians and Lelegans who were barbarians. These took refuge in the mountains, and, uniting there, used to make raids, plundering the Greeks and laying their country waste in a cruel manner. Later, one of the colonists, to make money, set up a well-stocked shop, near the spring because the water was so good, and the way in which he carried it on attracted the barbarians. So they began to come down, one at a time, and to meet with society, and thus they were brought back of their own accord, giving up their rough and savage ways for the delights of Greek customs. Hence this water acquired its peculiar reputation, not because it really induced unchastity, but because those barbarians were softened by the charm of civilization.
13. But since I have been tempted into giving a description of this fortified place, it remains to finish my account of it. Corresponding to the fane of Venus and the spring described above, which are on the right, we have on the extreme left the royal palace which king Mausolus built there in accordance with a plan all his own. To the right it commands a view of the forum, the harbour, and the entire line of fortifications, while just below it, to the left, there is a concealed harbour, hidden under the walls in such a way that nobody could see or know what was going on in it. Only the king himself could, in case of need, give orders from his own palace to the oarsmen and soldiers, without the knowledge of anybody else.
14. After the death of Mausolus, his wife Artemisia became queen, and the Rhodians, regarding it as an outrage that a woman should be ruler of the states of all Caria, fitted out a fleet and sallied forth to seize upon the kingdom. When news of this reached Artemisia, she gave orders that her fleet should be hidden away in that harbour with oarsmen and marines mustered and concealed, but that the rest of the citizens should take their places on the city wall. After the Rhodians had landed at the larger harbour with their well-equipped fleet, she ordered the people on the wall to cheer them and to promise that they would deliver up the town. Then, when they had passed inside the wall, leaving their fleet empty, Artemisia suddenly made a canal which led to the sea, brought her fleet thus out of the smaller harbour, and so sailed into the larger. Disembarking her soldiers, she towed the empty fleet of the Rhodians out to sea. So the Rhodians were surrounded without means of retreat, and were slain in the very forum.
15. So Artemisia embarked her own soldiers and oarsmen in the ships of the Rhodians and set forth for Rhodes. The Rhodians, beholding their own ships approaching wreathed with laurel, supposed that their fellow-citizens were returning victorious, and admitted the enemy. Then Artemisia, after taking Rhodes and killing its leading men, put up in the city of Rhodes a trophy of her victory, including two bronze statues, one representing the state of the Rhodians, the other herself. Herself she fashioned in the act of branding the state of the Rhodians. In later times the Rhodians, labouring under the religious scruple which makes it a sin to remove trophies once they are dedicated, constructed a building to surround the place, and thus by the erection of the "Grecian Station" covered it so that nobody could see it, and ordered that the building be called "[Greek: abaton]."
16. Since such very powerful kings have not disdained walls built of brick, although with their revenues and from booty they might often have had them not only of masonry or dimension stone but even of marble, I think that one ought not to reject buildings made of brick-work, provided that they are properly "topped." But I shall explain why this kind of structure should not be used by the Roman people within the city, not omitting the reasons and the grounds for them.
17. The laws of the state forbid that walls abutting on public property should be more than a foot and a half thick. The other walls are built of the same thickness in order to save space. Now brick walls, unless two or three bricks thick, cannot support more than one story; certainly not if they are only a foot and a half in thickness. But with the present importance of the city and the unlimited numbers of its population, it is necessary to increase the number of dwelling-places indefinitely. Consequently, as the ground floors could not admit of so great a number living in the city, the nature of the case has made it necessary to find relief by making the buildings high. In these tall piles reared with piers of stone, walls of burnt brick, and partitions of rubble work, and provided with floor after floor, the upper stories can be partitioned off into rooms to very great advantage. The accommodations within the city walls being thus multiplied as a result of the many floors high in the air, the Roman people easily find excellent places in which to live.
18. It has now been explained how limitations of building space necessarily forbid the employment of brick walls within the city. When it becomes necessary to use them outside the city, they should be constructed as follows in order to be perfect and durable. On the top of the wall lay a structure of burnt brick, about a foot and a half in height, under the tiles and projecting like a coping. Thus the defects usual in these walls can be avoided. For when the tiles on the roof are broken or thrown down by the wind so that rainwater can leak through, this burnt brick coating will prevent the crude brick from being damaged, and the cornice-like projection will throw off the drops beyond the vertical face, and thus the walls, though of crude brick structure, will be preserved intact.
19. With regard to burnt brick, nobody can tell offhand whether it is of the best or unfit to use in a wall, because its strength can be tested only after it has been used on a roof and exposed to bad weather and time—then, if it is good it is accepted. If not made of good clay or if not baked sufficiently, it shows itself defective there when exposed to frosts and rime. Brick that will not stand exposure on roofs can never be strong enough to carry its load in a wall. Hence the strongest burnt brick walls are those which are constructed out of old roofing tiles.
20. As for "wattle and daub" I could wish that it had never been invented. The more it saves in time and gains in space, the greater and the more general is the disaster that it may cause; for it is made to catch fire, like torches. It seems better, therefore, to spend on walls of burnt brick, and be at expense, than to save with "wattle and daub," and be in danger. And, in the stucco covering, too, it makes cracks from the inside by the arrangement of its studs and girts. For these swell with moisture as they are daubed, and then contract as they dry, and, by their shrinking, cause the solid stucco to split. But since some are obliged to use it either to save time or money, or for partitions on an unsupported span, the proper method of construction is as follows. Give it a high foundation so that it may nowhere come in contact with the broken stone-work composing the floor; for if it is sunk in this, it rots in course of time, then settles and sags forward, and so breaks through the surface of the stucco covering.
I have now explained to the best of my ability the subject of walls, and the preparation of the different kinds of material employed, with their advantages and disadvantages. Next, following the guidance of Nature, I shall treat of the framework and the kinds of wood used in it, showing how they may be procured of a sort that will not give way as time goes on.
CHAPTER IX
TIMBER
1. Timber should be felled between early Autumn and the time when Favonius begins to blow. For in Spring all trees become pregnant, and they are all employing their natural vigour in the production of leaves and of the fruits that return every year. The requirements of that season render them empty and swollen, and so they are weak and feeble because of their looseness of texture. This is also the case with women who have conceived. Their bodies are not considered perfectly healthy until the child is born; hence, pregnant slaves, when offered for sale, are not warranted sound, because the fetus as it grows within the body takes to itself as nourishment all the best qualities of the mother's food, and so the stronger it becomes as the full time for birth approaches, the less compact it allows that body to be from which it is produced. After the birth of the child, what was heretofore taken to promote the growth of another creature is now set free by the delivery of the newborn, and the channels being now empty and open, the body will take it in by lapping up its juices, and thus becomes compact and returns to the natural strength which it had before.
2. On the same principle, with the ripening of the fruits in Autumn the leaves begin to wither and the trees, taking up their sap from the earth through the roots, recover themselves and are restored to their former solid texture. But the strong air of winter compresses and solidifies them during the time above mentioned. Consequently, if the timber is felled on the principle and at the time above mentioned, it will be felled at the proper season.
3. In felling a tree we should cut into the trunk of it to the very heart, and then leave it standing so that the sap may drain out drop by drop throughout the whole of it. In this way the useless liquid which is within will run out through the sapwood instead of having to die in a mass of decay, thus spoiling the quality of the timber. Then and not till then, the tree being drained dry and the sap no longer dripping, let it be felled and it will be in the highest state of usefulness.
4. That this is so may be seen in the case of fruit trees. When these are tapped at the base and pruned, each at the proper time, they pour out from the heart through the tapholes all the superfluous and corrupting fluid which they contain, and thus the draining process makes them durable. But when the juices of trees have no means of escape, they clot and rot in them, making the trees hollow and good for nothing. Therefore, if the draining process does not exhaust them while they are still alive, there is no doubt that, if the same principle is followed in felling them for timber, they will last a long time and be very useful in buildings.
5. Trees vary and are unlike one another in their qualities. Thus it is with the oak, elm, poplar, cypress, fir, and the others which are most suitable to use in buildings. The oak, for instance, has not the efficacy of the fir, nor the cypress that of the elm. Nor in the case of other trees, is it natural that they should be alike; but the individual kinds are effective in building, some in one way, some in another, owing to the different properties of their elements.
6. To begin with fir: it contains a great deal of air and fire with very little moisture and the earthy, so that, as its natural properties are of the lighter class, it is not heavy. Hence, its consistence being naturally stiff, it does not easily bend under the load, and keeps its straightness when used in the framework. But it contains so much heat that it generates and encourages decay, which spoils it; and it also kindles fire quickly because of the air in its body, which is so open that it takes in fire and so gives out a great flame.
7. The part which is nearest to the earth before the tree is cut down takes up moisture through the roots from the immediate neighbourhood and hence is without knots and is "clear." But the upper part, on account of the great heat in it, throws up branches into the air through the knots; and this, when it is cut off about twenty feet from the ground and then hewn, is called "knotwood" because of its hardness and knottiness. The lowest part, after the tree is cut down and the sapwood of the same thrown away, is split up into four pieces and prepared for joiner's work, and so is called "clearstock."
8. Oak, on the other hand, having enough and to spare of the earthy among its elements, and containing but little moisture, air, and fire, lasts for an unlimited period when buried in underground structures. It follows that when exposed to moisture, as its texture is not loose and porous, it cannot take in liquid on account of its compactness, but, withdrawing from the moisture, it resists it and warps, thus making cracks in the structures in which it is used.
9. The winter oak, being composed of a moderate amount of all the elements, is very useful in buildings, but when in a moist place, it takes in water to its centre through its pores, its air and fire being expelled by the influence of the moisture, and so it rots. The Turkey oak and the beech, both containing a mixture of moisture, fire, and the earthy, with a great deal of air, through this loose texture take in moisture to their centre and soon decay. White and black poplar, as well as willow, linden, and the agnus castus, containing an abundance of fire and air, a moderate amount of moisture, and only a small amount of the earthy, are composed of a mixture which is proportionately rather light, and so they are of great service from their stiffness. Although on account of the mixture of the earthy in them they are not hard, yet their loose texture makes them gleaming white, and they are a convenient material to use in carving.
10. The alder, which is produced close by river banks, and which seems to be altogether useless as building material, has really excellent qualities. It is composed of a very large proportion of air and fire, not much of the earthy, and only a little moisture. Hence, in swampy places, alder piles driven close together beneath the foundations of buildings take in the water which their own consistence lacks and remain imperishable forever, supporting structures of enormous weight and keeping them from decay. Thus a material which cannot last even a little while above ground, endures for a long time when covered with moisture.
11. One can see this at its best in Ravenna; for there all the buildings, both public and private, have piles of this sort beneath their foundations. The elm and the ash contain a very great amount of moisture, a minimum of air and fire, and a moderate mixture of the earthy in their composition. When put in shape for use in buildings they are tough and, having no stiffness on account of the weight of moisture in them, soon bend. But when they become dry with age, or are allowed to lose their sap and die standing in the open, they get harder, and from their toughness supply a strong material for dowels to be used in joints and other articulations.
12. The hornbeam, which has a very small amount of fire and of the earthy in its composition, but a very great proportion of air and moisture, is not a wood that breaks easily, and is very convenient to handle. Hence, the Greeks call it "zygia," because they make of it yokes for their draught-animals, and their word for yoke is [Greek: zyga]. Cypress and pine are also just as admirable; for although they contain an abundance of moisture mixed with an equivalent composed of all the other elements, and so are apt to warp when used in buildings on account of this superfluity of moisture, yet they can be kept to a great age without rotting, because the liquid contained within their substances has a bitter taste which by its pungency prevents the entrance of decay or of those little creatures which are destructive. Hence, buildings made of these kinds of wood last for an unending period of time.
13. The cedar and the juniper tree have the same uses and good qualities, but, while the cypress and pine yield resin, from the cedar is produced an oil called cedar-oil. Books as well as other things smeared with this are not hurt by worms or decay. The foliage of this tree is like that of the cypress but the grain of the wood is straight. The statue of Diana in the temple at Ephesus is made of it, and so are the coffered ceilings both there and in all other famous fanes, because that wood is everlasting. The tree grows chiefly in Crete, Africa, and in some districts of Syria.
14. The larch, known only to the people of the towns on the banks of the river Po and the shores of the Adriatic, is not only preserved from decay and the worm by the great bitterness of its sap, but also it cannot be kindled with fire nor ignite of itself, unless like stone in a limekiln it is burned with other wood. And even then it does not take fire nor produce burning coals, but after a long time it slowly consumes away. This is because there is a very small proportion of the elements of fire and air in its composition, which is a dense and solid mass of moisture and the earthy, so that it has no open pores through which fire can find its way; but it repels the force of fire and does not let itself be harmed by it quickly. Further, its weight will not let it float in water, so that when transported it is loaded on shipboard or on rafts made of fir.
15. It is worth while to know how this wood was discovered. The divine Caesar, being with his army in the neighbourhood of the Alps, and having ordered the towns to furnish supplies, the inhabitants of a fortified stronghold there, called Larignum, trusting in the natural strength of their defences, refused to obey his command. So the general ordered his forces to the assault. In front of the gate of this stronghold there was a tower, made of beams of this wood laid in alternating directions at right angles to each other, like a funeral pyre, and built high, so that they could drive off an attacking party by throwing stakes and stones from the top. When it was observed that they had no other missiles than stakes, and that these could not be hurled very far from the wall on account of the weight, orders were given to approach and to throw bundles of brushwood and lighted torches at this outwork. These the soldiers soon got together.
16. The flames soon kindled the brushwood which lay about that wooden structure and, rising towards heaven, made everybody think that the whole pile had fallen. But when the fire had burned itself out and subsided, and the tower appeared to view entirely uninjured, Caesar in amazement gave orders that they should be surrounded with a palisade, built beyond the range of missiles. So the townspeople were frightened into surrendering, and were then asked where that wood came from which was not harmed by fire. They pointed to trees of the kind under discussion, of which there are very great numbers in that vicinity. And so, as that stronghold was called Larignum, the wood was called larch. It is transported by way of the Po to Ravenna, and is to be had in Fano, Pesaro, Ancona, and the other towns in that neighbourhood. If there were only a ready method of carrying this material to Rome, it would be of the greatest use in buildings; if not for general purposes, yet at least if the boards used in the eaves running round blocks of houses were made of it, the buildings would be free from the danger of fire spreading across to them, because such boards can neither take fire from flames or from burning coals, nor ignite spontaneously.
17. The leaves of these trees are like those of the pine; timber from them comes in long lengths, is as easily wrought in joiner's work as is the clearwood of fir, and contains a liquid resin, of the colour of Attic honey, which is good for consumptives.
With regard to the different kinds of timber, I have now explained of what natural properties they appear to be composed, and how they were produced. It remains to consider the question why the highland fir, as it is called in Rome, is inferior, while the lowland fir is extremely useful in buildings so far as durability is concerned; and further to explain how it is that their bad or good qualities seem to be due to the peculiarities of their neighbourhood, so that this subject may be clearer to those who examine it.
CHAPTER X
HIGHLAND AND LOWLAND FIR
1. The first spurs of the Apennines arise from the Tuscan sea between the Alps and the most distant borders of Tuscany. The mountain range itself bends round and, almost touching the shores of the Adriatic in the middle of the curve, completes its circuit by extending to the strait on the other shore. Hence, this side of the curve, sloping towards the districts of Tuscany and Campania, lies basking in the sun, being constantly exposed to the full force of its rays all day. But the further side, sloping towards the Upper Sea and having a northern exposure, is constantly shrouded in shadowy darkness. Hence the trees which grow on that side, being nourished by the moisture, not only themselves attain to a very large size, but their fibre too, filled full of moisture, is swollen and distended with abundance of liquid. When they lose their vitality after being felled and hewn, the fibre retains its stiffness, and the trees as they dry become hollow and frail on account of their porosity, and hence cannot last when used in buildings.
2. But trees which grow in places facing the course of the sun are not of porous fibre but are solid, being drained by the dryness; for the sun absorbs moisture and draws it out of trees as well as out of the earth. The trees in sunny neighbourhoods, therefore, being solidified by the compact texture of their fibre, and not being porous from moisture, are very useful, so far as durability goes, when they are hewn into timber. Hence the lowland firs, being conveyed from sunny places, are better than those highland firs, which are brought here from shady places.
3. To the best of my mature consideration, I have now treated the materials which are necessary in the construction of buildings, the proportionate amount of the elements which are seen to be contained in their natural composition, and the points of excellence and defects of each kind, so that they may be not unknown to those who are engaged in building. Thus those who can follow the directions contained in this treatise will be better informed in advance, and able to select, among the different kinds, those which will be of use in their works. Therefore, since the preliminaries have been explained, the buildings themselves will be treated in the remaining books; and first, as due order requires, I shall in the next book write of the temples of the immortal gods and their symmetrical proportions.
BOOK III
INTRODUCTION
1. Apollo at Delphi, through the oracular utterance of his priestess, pronounced Socrates the wisest of men. Of him it is related that he said with sagacity and great learning that the human breast should have been furnished with open windows, so that men might not keep their feelings concealed, but have them open to the view. Oh that nature, following his idea, had constructed them thus unfolded and obvious to the view! For if it had been so, not merely the virtues and vices of the mind would be easily visible, but also its knowledge of branches of study, displayed to the contemplation of the eyes, would not need testing by untrustworthy powers of judgement, but a singular and lasting influence would thus be lent to the learned and wise. However, since they are not so constructed, but are as nature willed them to be, it is impossible for men, while natural abilities are concealed in the breast, to form a judgement on the quality of the knowledge of the arts which is thus deeply hidden. And if artists themselves testify to their own skill, they can never, unless they are wealthy or famous from the age of their studios, or unless they are also possessed of the public favour and of eloquence, have an influence commensurate with their devotion to their pursuits, so that people may believe them to have the knowledge which they profess to have.
2. In particular we can learn this from the case of the sculptors and painters of antiquity. Those among them who were marked by high station or favourably recommended have come down to posterity with a name that will last forever; for instance, Myron, Polycletus, Phidias, Lysippus, and the others who have attained to fame by their art. For they acquired it by the execution of works for great states or for kings or for citizens of rank. But those who, being men of no less enthusiasm, natural ability, and dexterity than those famous artists, and who executed no less perfectly finished works for citizens of low station, are unremembered, not because they lacked diligence or dexterity in their art, but because fortune failed them; for instance, Teleas of Athens, Chion of Corinth, Myager the Phocaean, Pharax of Ephesus, Boedas of Byzantium, and many others. Then there were painters like Aristomenes of Thasos, Polycles and Andron of Ephesus, Theo of Magnesia, and others who were not deficient in diligence or enthusiasm for their art or in dexterity, but whose narrow means or ill-luck, or the higher position of their rivals in the struggle for honour, stood in the way of their attaining distinction.
3. Of course, we need not be surprised if artistic excellence goes unrecognized on account of being unknown; but there should be the greatest indignation when, as often, good judges are flattered by the charm of social entertainments into an approbation which is a mere pretence. Now if, as Socrates wished, our feelings, opinions, and knowledge gained by study had been manifest and clear to see, popularity and adulation would have no influence, but men who had reached the height of knowledge by means of correct and definite courses of study, would be given commissions without any effort on their part. However, since such things are not plain and apparent to the view, as we think they should have been, and since I observe that the uneducated rather than the educated are in higher favour, thinking it beneath me to engage with the uneducated in the struggle for honour, I prefer to show the excellence of our department of knowledge by the publication of this treatise.
4. In my first book, Emperor, I described to you the art, with its points of excellence, the different kinds of training with which the architect ought to be equipped, adding the reasons why he ought to be skilful in them, and I divided up the subject of architecture as a whole among its departments, duly defining the limits of each. Next, as was preeminent and necessary, I explained on scientific principles the method of selecting healthy sites for fortified towns, pointed out by geometrical figures the different winds and the quarters from which they blow, and showed the proper way to lay out the lines of streets and rows of houses within the walls. Here I fixed the end of my first book. In the second, on building materials, I treated their various advantages in structures, and the natural properties of which they are composed. In this third book I shall speak of the temples of the immortal gods, describing and explaining them in the proper manner.
CHAPTER I
ON SYMMETRY: IN TEMPLES AND IN THE HUMAN BODY
1. The design of a temple depends on symmetry, the principles of which must be most carefully observed by the architect. They are due to proportion, in Greek [Greek: analogia]. Proportion is a correspondence among the measures of the members of an entire work, and of the whole to a certain part selected as standard. From this result the principles of symmetry. Without symmetry and proportion there can be no principles in the design of any temple; that is, if there is no precise relation between its members, as in the case of those of a well shaped man.
2. For the human body is so designed by nature that the face, from the chin to the top of the forehead and the lowest roots of the hair, is a tenth part of the whole height; the open hand from the wrist to the tip of the middle finger is just the same; the head from the chin to the crown is an eighth, and with the neck and shoulder from the top of the breast to the lowest roots of the hair is a sixth; from the middle of the breast to the summit of the crown is a fourth. If we take the height of the face itself, the distance from the bottom of the chin to the under side of the nostrils is one third of it; the nose from the under side of the nostrils to a line between the eyebrows is the same; from there to the lowest roots of the hair is also a third, comprising the forehead. The length of the foot is one sixth of the height of the body; of the forearm, one fourth; and the breadth of the breast is also one fourth. The other members, too, have their own symmetrical proportions, and it was by employing them that the famous painters and sculptors of antiquity attained to great and endless renown.
3. Similarly, in the members of a temple there ought to be the greatest harmony in the symmetrical relations of the different parts to the general magnitude of the whole. Then again, in the human body the central point is naturally the navel. For if a man be placed flat on his back, with his hands and feet extended, and a pair of compasses centred at his navel, the fingers and toes of his two hands and feet will touch the circumference of a circle described therefrom. And just as the human body yields a circular outline, so too a square figure may be found from it. For if we measure the distance from the soles of the feet to the top of the head, and then apply that measure to the outstretched arms, the breadth will be found to be the same as the height, as in the case of plane surfaces which are perfectly square.
4. Therefore, since nature has designed the human body so that its members are duly proportioned to the frame as a whole, it appears that the ancients had good reason for their rule, that in perfect buildings the different members must be in exact symmetrical relations to the whole general scheme. Hence, while transmitting to us the proper arrangements for buildings of all kinds, they were particularly careful to do so in the case of temples of the gods, buildings in which merits and faults usually last forever.
5. Further, it was from the members of the body that they derived the fundamental ideas of the measures which are obviously necessary in all works, as the finger, palm, foot, and cubit. These they apportioned so as to form the "perfect number," called in Greek [Greek: teleion], and as the perfect number the ancients fixed upon ten. For it is from the number of the fingers of the hand that the palm is found, and the foot from the palm. Again, while ten is naturally perfect, as being made up by the fingers of the two palms, Plato also held that this number was perfect because ten is composed of the individual units, called by the Greeks [Greek: monades]. But as soon as eleven or twelve is reached, the numbers, being excessive, cannot be perfect until they come to ten for the second time; for the component parts of that number are the individual units.
6. The mathematicians, however, maintaining a different view, have said that the perfect number is six, because this number is composed of integral parts which are suited numerically to their method of reckoning: thus, one is one sixth; two is one third; three is one half; four is two thirds, or [Greek: dimoiros] as they call it; five is five sixths, called [Greek: pentamoiros]; and six is the perfect number. As the number goes on growing larger, the addition of a unit above six is the [Greek: ephektos]; eight, formed by the addition of a third part of six, is the integer and a third, called [Greek: epitritos]; the addition of one half makes nine, the integer and a half, termed [Greek: hemiolios]; the addition of two thirds, making the number ten, is the integer and two thirds, which they call [Greek: epidimoiros]; in the number eleven, where five are added, we have the five sixths, called [Greek: epipemptos]; finally, twelve, being composed of the two simple integers, is called [Greek: diplasios].
7. And further, as the foot is one sixth of a man's height, the height of the body as expressed in number of feet being limited to six, they held that this was the perfect number, and observed that the cubit consisted of six palms or of twenty-four fingers. This principle seems to have been followed by the states of Greece. As the cubit consisted of six palms, they made the drachma, which they used as their unit, consist in the same way of six bronze coins, like our asses, which they call obols; and, to correspond to the fingers, divided the drachma into twenty-four quarter-obols, which some call dichalca others trichalca.
8. But our countrymen at first fixed upon the ancient number and made ten bronze pieces go to the denarius, and this is the origin of the name which is applied to the denarius to this day. And the fourth part of it, consisting of two asses and half of a third, they called "sesterce." But later, observing that six and ten were both of them perfect numbers, they combined the two, and thus made the most perfect number, sixteen. They found their authority for this in the foot. For if we take two palms from the cubit, there remains the foot of four palms; but the palm contains four fingers. Hence the foot contains sixteen fingers, and the denarius the same number of bronze asses.
9. Therefore, if it is agreed that number was found out from the human fingers, and that there is a symmetrical correspondence between the members separately and the entire form of the body, in accordance with a certain part selected as standard, we can have nothing but respect for those who, in constructing temples of the immortal gods, have so arranged the members of the works that both the separate parts and the whole design may harmonize in their proportions and symmetry.
CHAPTER II
CLASSIFICATION OF TEMPLES
1. There are certain elementary forms on which the general aspect of a temple depends. First there is the temple in antis, or [Greek: naos en parastasin] as it is called in Greek; then the prostyle, amphiprostyle, peripteral, pseudodipteral, dipteral, and hypaethral. These different forms may be described as follows.
2. It will be a temple in antis when it has antae carried out in front of the walls which enclose the cella, and in the middle, between the antae, two columns, and over them the pediment constructed in the symmetrical proportions to be described later in this work. An example will be found at the Three Fortunes, in that one of the three which is nearest the Colline gate.
3. The prostyle is in all respects like the temple in antis, except that at the corners, opposite the antae, it has two columns, and that it has architraves not only in front, as in the case of the temple in antis, but also one to the right and one to the left in the wings. An example of this is the temple of Jove and Faunus in the Island of the Tiber.
4. The amphiprostyle is in all other respects like the prostyle, but has besides, in the rear, the same arrangement of columns and pediment.
5. A temple will be peripteral that has six columns in front and six in the rear, with eleven on each side including the corner columns. Let the columns be so placed as to leave a space, the width of an intercolumniation, all round between the walls and the rows of columns on the outside, thus forming a walk round the cella of the temple, as in the cases of the temple of Jupiter Stator by Hermodorus in the Portico of Metellus, and the Marian temple of Honour and Valour constructed by Mucius, which has no portico in the rear.
6. The pseudodipteral is so constructed that in front and in the rear there are in each case eight columns, with fifteen on each side, including the corner columns. The walls of the cella in front and in the rear should be directly over against the four middle columns. Thus there will be a space, the width of two intercolumniations plus the thickness of the lower diameter of a column, all round between the walls and the rows of columns on the outside. There is no example of this in Rome, but at Magnesia there is the temple of Diana by Hermogenes, and that of Apollo at Alabanda by Mnesthes.
7. The dipteral also is octastyle in both front and rear porticoes, but it has two rows of columns all round the temple, like the temple of Quirinus, which is Doric, and the temple of Diana at Ephesus, planned by Chersiphron, which is Ionic.
8. The hypaethral is decastyle in both front and rear porticoes. In everything else it is the same as the dipteral, but inside it has two tiers of columns set out from the wall all round, like the colonnade of a peristyle. The central part is open to the sky, without a roof. Folding doors lead to it at each end, in the porticoes in front and in the rear. There is no example of this sort in Rome, but in Athens there is the octastyle in the precinct of the Olympian.
CHAPTER III
THE PROPORTIONS OF INTERCOLUMNIATIONS AND OF COLUMNS
1. There are five classes of temples, designated as follows: pycnostyle, with the columns close together; systyle, with the intercolumniations a little wider; diastyle, more open still; araeostyle, farther apart than they ought to be; eustyle, with the intervals apportioned just right.
2. The pycnostyle is a temple in an intercolumniation of which the thickness of a column and a half can be inserted: for example, the temple of the Divine Caesar, that of Venus in Caesar's forum, and others constructed like them. The systyle is a temple in which the thickness of two columns can be placed in an intercolumniation, and in which the plinths of the bases are equivalent to the distance between two plinths: for example, the temple of Equestrian Fortune near the stone theatre, and the others which are constructed on the same principles.
3. These two kinds have practical disadvantages. When the matrons mount the steps for public prayer or thanksgiving, they cannot pass through the intercolumniations with their arms about one another, but must form single file; then again, the effect of the folding doors is thrust out of sight by the crowding of the columns, and likewise the statues are thrown into shadow; the narrow space interferes also with walks round the temple.
4. The construction will be diastyle when we can insert the thickness of three columns in an intercolumniation, as in the case of the temple of Apollo and Diana. This arrangement involves the danger that the architraves may break on account of the great width of the intervals.
5. In araeostyles we cannot employ stone or marble for the architraves, but must have a series of wooden beams laid upon the columns. And moreover, in appearance these temples are clumsy-roofed, low, broad, and their pediments are adorned in the Tuscan fashion with statues of terra-cotta or gilt bronze: for example, near the Circus Maximus, the temple of Ceres and Pompey's temple of Hercules; also the temple on the Capitol.
6. An account must now be given of the eustyle, which is the most approved class, and is arranged on principles developed with a view to convenience, beauty, and strength. The intervals should be made as wide as the thickness of two columns and a quarter, but the middle intercolumniations, one in front and the other in the rear, should be of the thickness of three columns. Thus built, the effect of the design will be beautiful, there will be no obstruction at the entrance, and the walk round the cella will be dignified.
7. The rule of this arrangement may be set forth as follows. If a tetrastyle is to be built, let the width of the front which shall have already been determined for the temple, be divided into eleven parts and a half, not including the substructures and the projections of the bases; if it is to be of six columns, into eighteen parts. If an octastyle is to be constructed, let the front be divided into twenty-four parts and a half. Then, whether the temple is to be tetrastyle, hexastyle, or octastyle, let one of these parts be taken, and it will be the module. The thickness of the columns will be equal to one module. Each of the intercolumniations, except those in the middle, will measure two modules and a quarter. The middle intercolumniations in front and in the rear will each measure three modules. The columns themselves will be nine modules and a half in height. As a result of this division, the intercolumniations and the heights of the columns will be in due proportion.
8. We have no example of this in Rome, but at Teos in Asia Minor there is one which is hexastyle, dedicated to Father Bacchus.
These rules for symmetry were established by Hermogenes, who was also the first to devise the principle of the pseudodipteral octastyle. He did so by dispensing with the inner rows of thirty-eight columns which belonged to the symmetry of the dipteral temple, and in this way he made a saving in expense and labour. He thus provided a much wider space for the walk round the cella between it and the columns, and without detracting at all from the general effect, or making one feel the loss of what had been really superfluous, he preserved the dignity of the whole work by his new treatment of it.
9. For the idea of the pteroma and the arrangement of the columns round a temple were devised in order that the intercolumniations might give the imposing effect of high relief; and also, in case a multitude of people should be caught in a heavy shower and detained, that they might have in the temple and round the cella a wide free space in which to wait. These ideas are developed, as I have described, in the pseudodipteral arrangement of a temple. It appears, therefore, that Hermogenes produced results which exhibit much acute ingenuity, and that he left sources from which those who came after him could derive instructive principles.
10. In araeostyle temples, the columns should be constructed so that their thickness is one eighth part of their height. In the diastyle, the height of a column should be measured off into eight and a half parts, and the thickness of the column fixed at one of these parts. In the systyle, let the height be divided into nine and a half parts, and one of these given to the thickness of the column. In the pycnostyle, the height should be divided into ten parts, and one of these used for the thickness of the column. In the eustyle temple, let the height of a column be divided, as in the systyle, into nine and a half parts, and let one part be taken for the thickness at the bottom of the shaft. With these dimensions we shall be taking into account the proportions of the intercolumniations.
11. For the thickness of the shafts must be enlarged in proportion to the increase of the distance between the columns. In the araeostyle, for instance, if only a ninth or tenth part is given to the thickness, the column will look thin and mean, because the width of the intercolumniations is such that the air seems to eat away and diminish the thickness of such shafts. On the other hand, in pycnostyles, if an eighth part is given to the thickness, it will make the shaft look swollen and ungraceful, because the intercolumniations are so close to each other and so narrow. We must therefore follow the rules of symmetry required by each kind of building. Then, too, the columns at the corners should be made thicker than the others by a fiftieth of their own diameter, because they are sharply outlined by the unobstructed air round them, and seem to the beholder more slender than they are. Hence, we must counteract the ocular deception by an adjustment of proportions.
12. Moreover, the diminution in the top of a column at the necking seems to be regulated on the following principles: if a column is fifteen feet or under, let the thickness at the bottom be divided into six parts, and let five of those parts form the thickness at the top. If it is from fifteen feet to twenty feet, let the bottom of the shaft be divided into six and a half parts, and let five and a half of those parts be the upper thickness of the column. In a column of from twenty feet to thirty feet, let the bottom of the shaft be divided into seven parts, and let the diminished top measure six of these. A column of from thirty to forty feet should be divided at the bottom into seven and a half parts, and, on the principle of diminution, have six and a half of these at the top. Columns of from forty feet to fifty should be divided into eight parts, and diminish to seven of these at the top of the shaft under the capital. In the case of higher columns, let the diminution be determined proportionally, on the same principles.
13. These proportionate enlargements are made in the thickness of columns on account of the different heights to which the eye has to climb. For the eye is always in search of beauty, and if we do not gratify its desire for pleasure by a proportionate enlargement in these measures, and thus make compensation for ocular deception, a clumsy and awkward appearance will be presented to the beholder. With regard to the enlargement made at the middle of columns, which among the Greeks is called [Greek: entasis], at the end of the book a figure and calculation will be subjoined, showing how an agreeable and appropriate effect may be produced by it.
CHAPTER IV
THE FOUNDATIONS AND SUBSTRUCTURES OF TEMPLES
1. The foundations of these works should be dug out of the solid ground, if it can be found, and carried down into solid ground as far as the magnitude of the work shall seem to require, and the whole substructure should be as solid as it can possibly be laid. Above ground, let walls be laid under the columns, thicker by one half than the columns are to be, so that the lower may be stronger than the higher. Hence they are called "stereobates"; for they take the load. And the projections of the bases should not extend beyond this solid foundation. The wall-thickness is similarly to be preserved above ground likewise, and the intervals between these walls should be vaulted over, or filled with earth rammed down hard, to keep the walls well apart.
2. If, however, solid ground cannot be found, but the place proves to be nothing but a heap of loose earth to the very bottom, or a marsh, then it must be dug up and cleared out and set with piles made of charred alder or olive wood or oak, and these must be driven down by machinery, very closely together like bridge-piles, and the intervals between them filled in with charcoal, and finally the foundations are to be laid on them in the most solid form of construction. The foundations having been brought up to the level, the stylobates are next to be put in place.
3. The columns are then to be distributed over the stylobates in the manner above described: close together in the pycnostyle; in the systyle, diastyle, or eustyle, as they are described and arranged above. In araeostyle temples one is free to arrange them as far apart as one likes. Still, in peripterals, the columns should be so placed that there are twice as many intercolumniations on the sides as there are in front; for thus the length of the work will be twice its breadth. Those who make the number of columns double, seem to be in error, because then the length seems to be one intercolumniation longer than it ought to be.
4. The steps in front must be arranged so that there shall always be an odd number of them; for thus the right foot, with which one mounts the first step, will also be the first to reach the level of the temple itself. The rise of such steps should, I think, be limited to not more than ten nor less than nine inches; for then the ascent will not be difficult. The treads of the steps ought to be made not less than a foot and a half, and not more than two feet deep. If there are to be steps running all round the temple, they should be built of the same size.
5. But if a podium is to be built on three sides round the temple, it should be so constructed that its plinths, bases, dies, coronae, and cymatiumare appropriate to the actual stylobate which is to be under the bases of the columns.
The level of the stylobate must be increased along the middle by the scamilli impares; for if it is laid perfectly level, it will look to the eye as though it were hollowed a little. At the end of the book a figure will be found, with a description showing how the scamilli may be made to suit this purpose.
CHAPTER V
PROPORTIONS OF THE BASE, CAPITALS, AND ENTABLATURE IN THE IONIC ORDER
1. This finished, let the bases of the columns be set in place, and constructed in such proportions that their height, including the plinth, may be half the thickness of a column, and their projection (called in Greek [Greek: ekphora]) the same.[1] Thus in both length and breadth it will be one and one half thicknesses of a column.
[Note 1: Reading aeque tantam as in new Rose. Codd. sextantem; Schn. quadrantem.]
2. If the base is to be in the Attic style, let its height be so divided that the upper part shall be one third part of the thickness of the column, and the rest left for the plinth. Then, excluding the plinth, let the rest be divided into four parts, and of these let one fourth constitute the upper torus, and let the other three be divided equally, one part composing the lower torus, and the other, with its fillets, the scotia, which the Greeks call [Greek: trochilos].
3. But if Ionic bases are to be built, their proportions shall be so determined that the base may be each way equal in breadth to the thickness of a column plus three eighths of the thickness; its height that of the Attic base, and so too its plinth; excluding the plinth, let the rest, which will be a third part of the thickness of a column, be divided into seven parts. Three of these parts constitute the torus at the top, and the other four are to be divided equally, one part constituting the upper trochilus with its astragals and overhang, the other left for the lower trochilus. But the lower will seem to be larger, because it will project to the edge of the plinth. The astragals must be one eighth of the trochilus. The projection of the base will be three sixteenths of the thickness of a column.
4. The bases being thus finished and put in place, the columns are to be put in place: the middle columns of the front and rear porticoes perpendicular to their own centre; the corner columns, and those which are to extend in a line from them along the sides of the temple to the right and left, are to be set so that their inner sides, which face toward the cella wall, are perpendicular, but their outer sides in the manner which I have described in speaking of their diminution. Thus, in the design of the temple the lines will be adjusted with due regard to the diminution.
5. The shafts of the columns having been erected, the rule for the capitals will be as follows. If they are to be cushion-shaped, they should be so proportioned that the abacus is in length and breadth equivalent to the thickness of the shaft at its bottom plus one eighteenth thereof, and the height of the capital, including the volutes, one half of that amount. The faces of the volutes must recede from the edge of the abacus inwards by one and a half eighteenths of that same amount. Then, the height of the capital is to be divided into nine and a half parts, and down along the abacus on the four sides of the volutes, down along the fillet at the edge of the abacus, lines called "catheti" are to be let fall. Then, of the nine and a half parts let one and a half be reserved for the height of the abacus, and let the other eight be used for the volutes.
6. Then let another line be drawn, beginning at a point situated at a distance of one and a half parts toward the inside from the line previously let fall down along the edge of the abacus. Next, let these lines be divided in such a way as to leave four and a half parts under the abacus; then, at the point which forms the division between the four and a half parts and the remaining three and a half, fix the centre of the eye, and from that centre describe a circle with a diameter equal to one of the eight parts. This will be the size of the eye, and in it draw a diameter on the line of the "cathetus." Then, in describing the quadrants, let the size of each be successively less, by half the diameter of the eye, than that which begins under the abacus, and proceed from the eye until that same quadrant under the abacus is reached.
7. The height of the capital is to be such that, of the nine and a half parts, three parts are below the level of the astragal at the top of the shaft, and the rest, omitting the abacus and the channel, belongs to its echinus. The projection of the echinus beyond the fillet of the abacus should be equal to the size of the eye. The projection of the bands of the cushions should be thus obtained: place one leg of a pair of compasses in the centre of the capital and open out the other to the edge of the echinus; bring this leg round and it will touch the outer edge of the bands. The axes of the volutes should not be thicker than the size of the eye, and the volutes themselves should be channelled out to a depth which is one twelfth of their height. These will be the symmetrical proportions for capitals of columns twenty-five feet high and less. For higher columns the other proportions will be the same, but the length and breadth of the abacus will be the thickness of the lower diameter of a column plus one ninth part thereof; thus, just as the higher the column the less the diminution, so the projection of its capital is proportionately increased and its breadth[2] is correspondingly enlarged.
[Note 2: Codd. altitudo.]
8. With regard to the method of describing volutes, at the end of the book a figure will be subjoined and a calculation showing how they may be described so that their spirals may be true to the compass.
The capitals having been finished and set up in due proportion to the columns (not exactly level on the columns, however, but with the same measured adjustment, so that in the upper members there may be an increase corresponding to that which was made in the stylobates), the rule for the architraves is to be as follows. If the columns are at least twelve feet and not more than fifteen feet high, let the height of the architrave be equal to half the thickness of a column at the bottom. If they are from fifteen feet to twenty, let the height of a column be measured off into thirteen parts, and let one of these be the height of the architrave. If they are from twenty to twenty-five feet, let this height be divided into twelve and one half parts, and let one of them form the height of the architrave. If they are from twenty-five feet to thirty, let it be divided into twelve parts, and let one of them form the height. If they are higher, the heights of the architraves are to be worked out proportionately in the same manner from the height of the columns.
9. For the higher that the eye has to climb, the less easily can it make its way through the thicker and thicker mass of air. So it fails when the height is great, its strength is sucked out of it, and it conveys to the mind only a confused estimate of the dimensions. Hence there must always be a corresponding increase in the symmetrical proportions of the members, so that whether the buildings are on unusually lofty sites or are themselves somewhat colossal, the size of the parts may seem in due proportion. The depth of the architrave on its under side just above the capital, is to be equivalent to the thickness of the top of the column just under the capital, and on its uppermost side equivalent to the foot of the shaft.
10. The cymatium of the architrave should be one seventh of the height of the whole architrave, and its projection the same. Omitting the cymatium, the rest of the architrave is to be divided into twelve parts, and three of these will form the lowest fascia, four, the next, and five, the highest fascia. The frieze, above the architrave, is one fourth less high than the architrave, but if there are to be reliefs upon it, it is one fourth higher than the architrave, so that the sculptures may be more imposing. Its cymatium is one seventh of the whole height of the frieze, and the projection of the cymatium is the same as its height.
11. Over the frieze comes the line of dentils, made of the same height as the middle fascia of the architrave and with a projection equal to their height. The intersection (or in Greek [Greek: metope]) is apportioned so that the face of each dentil is half as wide as its height and the cavity of each intersection two thirds of this face in width. The cymatium here is one sixth of the whole height of this part. The corona with its cymatium, but not including the sima, has the height of the middle fascia of the architrave, and the total projection of the corona and dentils should be equal to the height from the frieze to the cymatium at the top of the corona.
And as a general rule, all projecting parts have greater beauty when their projection is equal to their height.
12. The height of the tympanum, which is in the pediment, is to be obtained thus: let the front of the corona, from the two ends of its cymatium, be measured off into nine parts, and let one of these parts be set up in the middle at the peak of the tympanum, taking care that it is perpendicular to the entablature and the neckings of the columns. The coronae over the tympanum are to be made of equal size with the coronae under it, not including the simae. Above the coronae are the simae (in Greek [Greek: epaietides]), which should be made one eighth higher than the height of the coronae. The acroteria at the corners have the height of the centre of the tympanum, and those in the middle are one eighth part higher than those at the corners.
13. All the members which are to be above the capitals of the columns, that is, architraves, friezes, coronae, tympana, gables, and acroteria, should be inclined to the front a twelfth part of their own height, for the reason that when we stand in front of them, if two lines are drawn from the eye, one reaching to the bottom of the building and the other to the top, that which reaches to the top will be the longer. Hence, as the line of sight to the upper part is the longer, it makes that part look as if it were leaning back. But when the members are inclined to the front, as described above, they will seem to the beholder to be plumb and perpendicular.
14. Each column should have twenty-four flutes, channelled out in such a way that if a carpenter's square be placed in the hollow of a flute and turned, the arm will touch the corners of the fillets on the right and left, and the tip of the square may keep touching some point in the concave surface as it moves through it. The breadth of the flutes is to be equivalent to the enlargement in the middle of a column, which will be found in the figure.
15. In the simae which are over the coronae on the sides of the temple, lion's heads are to be carved and arranged at intervals thus: First one head is marked out directly over the axis of each column, and then the others are arranged at equal distances apart, and so that there shall be one at the middle of every roof-tiling. Those that are over the columns should have holes bored through them to the gutter which receives the rainwater from the tiles, but those between them should be solid. Thus the mass of water that falls by way of the tiles into the gutter will not be thrown down along the intercolumniations nor drench people who are passing through them, while the lion's heads that are over the columns will appear to be vomiting as they discharge streams of water from their mouths.
In this book I have written as clearly as I could on the arrangements of Ionic temples. In the next I shall explain the proportions of Doric and Corinthian temples.
BOOK IV
INTRODUCTION
1. I have observed, Emperor, that many in their treatises and volumes of commentaries on architecture have not presented the subject with well-ordered completeness, but have merely made a beginning and left, as it were, only desultory fragments. I have therefore thought that it would be a worthy and very useful thing to reduce the whole of this great art to a complete and orderly form of presentation, and then in different books to lay down and explain the required characteristics of different departments. Hence, Caesar, in my first book I have set forth to you the function of the architect and the things in which he ought to be trained. In the second I have discussed the supplies of material of which buildings are constructed. In the third, which deals with the arrangements of temples and their variety of form, I showed the nature and number of their classes, with the adjustments proper to each form according to the usage of the Ionic order, one of the three which exhibit the greatest delicacy of proportion in their symmetrical measurements. In the present book I shall speak of the established rules for the Doric and Corinthian orders, and shall explain their differences and peculiarities.
CHAPTER I
THE ORIGINS OF THE THREE ORDERS, AND THE PROPORTIONS OF THE CORINTHIAN CAPITAL
1. Corinthian columns are, excepting in their capitals, of the same proportions in all respects as Ionic; but the height of their capitals gives them proportionately a taller and more slender effect. This is because the height of the Ionic capital is only one third of the thickness of the column, while that of the Corinthian is the entire thickness of the shaft. Hence, as two thirds are added in Corinthian capitals, their tallness gives a more slender appearance to the columns themselves.
2. The other members which are placed above the columns, are, for Corinthian columns, composed either of the Doric proportions or according to the Ionic usages; for the Corinthian order never had any scheme peculiar to itself for its cornices or other ornaments, but may have mutules in the coronae and guttae on the architraves according to the triglyph system of the Doric style, or, according to Ionic practices, it may be arranged with a frieze adorned with sculptures and accompanied with dentils and coronae.
3. Thus a third architectural order, distinguished by its capital, was produced out of the two other orders. To the forms of their columns are due the names of the three orders, Doric, Ionic, and Corinthian, of which the Doric was the first to arise, and in early times. For Dorus, the son of Hellen and the nymph Phthia, was king of Achaea and all the Peloponnesus, and he built a fane, which chanced to be of this order, in the precinct of Juno at Argolis, a very ancient city, and subsequently others of the same order in the other cities of Achaea, although the rules of symmetry were not yet in existence.
4. Later, the Athenians, in obedience to oracles of the Delphic Apollo, and with the general agreement of all Hellas, despatched thirteen colonies at one time to Asia Minor, appointing leaders for each colony and giving the command-in-chief to Ion, son of Xuthus and Creusa (whom further Apollo at Delphi in the oracles had acknowledged as his son). Ion conducted those colonies to Asia Minor, took possession of the land of Caria, and there founded the grand cities of Ephesus, Miletus, Myus (long ago engulfed by the water, and its sacred rites and suffrage handed over by the Ionians to the Milesians), Priene, Samos, Teos, Colophon, Chius, Erythrae, Phocaea, Clazomenae, Lebedos, and Melite. This Melite, on account of the arrogance of its citizens, was destroyed by the other cities in a war declared by general agreement, and in its place, through the kindness of King Attalus and Arsinoe, the city of the Smyrnaeans was admitted among the Ionians. |
|