p-books.com
Special Report on Diseases of Cattle
by U.S. Department of Agriculture
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17     Next Part
Home - Random Browse

As additional precautions, no cow with a retained afterbirth or unhealthy discharge from the womb should be left with the other cows. Such cows doubtless infect their own udders and those of the cows next them by lashing with the soiled tail. If milkers handle retained afterbirth or vaginal discharge, or unhealthy wounds, or assist in a difficult and protracted parturition, they should wash the hands and arms thoroughly with soap and warm water and then rub them with the corrosive-sublimate solution, or if not, at least with one of carbolic acid. Clothes stained with such offensive products should be thoroughly washed.

The general treatment of contagious mammitis does not differ from that of the simple form, except that antiseptics should be given by the mouth as well as applied locally (hyposulphite of soda, one-half ounce daily).

COWPOX.

This is another form of contagious inflammation of the udder which does not spread readily from animal to animal except by the hands of the milker. It is held to occur spontaneously in the cow, but this is altogether improbable, and so-called spontaneous cases are rather to be looked on as instances in which the germs have been preserved dry in the buildings or introduced in some unknown manner. It is not uncommon in the horse, attacking the heels, the lips, or some other inoculated part of the body, and is then easily transferred to the cow, if the same man grooms and dresses the horse and milks the cow. It may also appear in the cow by infection, more or less direct, from a person who has been successfully vaccinated. Many believe that it is only a form of the smallpox of man modified by passing through the system of cow or horse. It is, however, unreasonable to suppose that this alleged modified smallpox could have been transmitted from child to child (the most susceptible of the human race) for 90 years, under all possible conditions, without once reverting to its original type of smallpox. Chauveau's experiments on both cattle and horses with the virus of smallpox and its inoculation back on the human subject go far to show that in the climate of western Europe, at least, no such transformation takes place. Smallpox remains smallpox and cowpox, cowpox. Again, smallpox is communicable to a person who visits the patient in his room but avoids touching him, while cowpox is never thus transferred through the air unless deliberately diffused in the form of spray.

The disease in the cow is ushered in by a slight fever, which, however, is usually overlooked, and the first sign is tenderness of the teats. Examined, these may be redder and hotter than normal, and at the end of two days there appear little nodules, like small peas, of a pale-red color, and increasing so that by the seventh day they may measure three-fourths of an inch to 1 inch in diameter. The yield of milk diminishes, and when heated it coagulates slightly. From the seventh to the tenth day the eruption forms into a blister, with raised margins and a depression in the center, and from which the whole of the liquid can not be drawn by a single puncture. The blister, in other words, is chambered, and each chamber must be opened to evacuate the whole of the contents. If the pock forms on a surface where there is thick hair it does not rise as a blister, but oozes out a straw-colored fluid which concretes on the hairs in an amber-colored mass. In one or two days after the pock is full it becomes yellow from contained pus and then dries into a brownish-yellow scab, which finally falls, leaving one or more distinct pits in the skin. Upon the teats, however, this regular course is rarely seen; the vesicles are burst by the hands of the milker as soon as liquid is formed, and as they continue to suffer at each milking they form raw, angry sores, scabbing more or less at intervals, but are slow to undergo healing.

The only treatment required is to heal the sores. As milking is the main cause of their persistence, that must be done as gently as possible, or even with the teat tube or dilator. (Pl. XXIV, figs. 3 and 4.) It is essential to check the propagation of the germ, and for this purpose the sore teats may be washed frequently with a solution of half an ounce hyposulphite of soda in a pint of water. This will usually check the inflammation and cut short the malady.

SUPPRESSION OF MILK.

The absence of milk in the udder may result from ill health, debility, emaciation, chronic disease of the bag, wasting of the gland from previous disease, or insufficient feed, but sometimes it will occur suddenly without any appreciable cause. The treatment consists in removing the cause of the disease, giving rich albuminoid feed made into warm mashes, and administering ounce doses of aromatic carminatives, like anise seed, fennel seed, etc. Rubbing and stripping the udder are useful; the application of oil of lavender or of turpentine, or even a blister of Spanish flies, will sometimes succeed.

BLOODY MILK.

Blood may escape with the milk when the udder has been injured by blows; also when it is congested or inflamed, when the circulation through it has been suddenly increased by richer and more abundant feed, or when the cow is under the excitement of heat. The milk frothing up and assuming a pink tinge is often the first sign of red water, and it may result from eating acrid or irritant plants, like the Ranunculaceae, resinous plants, etc. Deposits of tubercle or tumors in the udder, or induration of the gland, may be efficient causes, the irritation caused by milking contributing to draw the blood. Finally, there may be a reddish tinge or sediment when madder or logwood has been eaten.

In milk which becomes red after it is drawn it may be from the presence in it of the Bacillus prodigiosus. This also grows on bread, and is the explanation of the supposed miracle of the "bleeding host."

The treatment will vary with the cause. In congested glands give 1 pound of Epsom salt, and daily thereafter one-half ounce saltpeter, with a dram of chlorate of potassium; the bag should be bathed with hot or cold water, and rubbed with camphorated lard. If the feed is too rich or abundant it must be reduced. If from acrid plants, they must be removed from pasture or fodder. Induration of the udder may be met by rubbing with a combination of iodin ointment 1 part, soft soap 2 parts; mercurial ointment and soap also may be used. Careful milking is imperative.

BLUE MILK.

Watery milk is blue, but the presence of a germ (Bacillus cyanogenes) causes a distinct blue shade even in rich milk and cream. It may reach the milk after it has been drawn, or it may find its way into the opening of the milk ducts and enter the milk as it is drawn. In the latter case frequent milking and the injection of a solution of 2 drams of hyposulphite of soda in a pint of water into the teats will serve to destroy the germs.

STRINGY MILK.

This may be caused by fungi developing in the liquid, and that the spores are present in the system of the cow may be safely inferred from the fact that in a large herd two or three cows only will yield such milk at a time, and that after a run of 10 days or a fortnight they will recover and others will be attacked. I have found that such affected cows had the temperature raised one or two degrees above the others. Like most other fungi this does not grow out into filaments within the body of the cow, but in five or six hours after milking the surface layers are found to be one dense network of filaments. If a needle is dipped in this and lifted the liquid is drawn out into a long thread. In one case which I investigated near Ithaca, N. Y., the contamination was manifestly from a spring which oozed out of a bank of black-muck soil and stood in pools mixed with the dejections of the animals. Inoculation of pure milk with the water as it flowed out of this bank developed in it the fungus and the stringy characters. By fencing the spring in and giving the affected cows each 2 drams bisulphite of soda daily, the trouble was arrested promptly and permanently.

CHAPPED TEATS.

These may be caused by anything which irritates them. The powerful sucking of the calf; the sudden chilling of the teat in winter after the calf has just let it go or after the completion of milking with a wet hand; contact with cold water or stagnant, putrid water, or with filth or irritants when lying down; slight congestions of the skin in connection with overstocking; indeed, any source of local irritation may cause chapping. This may be slight or extend into great, gaping sores and induce retention of milk or even mammitis. Soothing applications of vaseline or a combination of equal parts of spermaceti and oil of sweet almonds may be applied. If healing is tardy, add 10 grains balsam of Peru to the ounce of ointment. If the irritation is very great, wash first with a solution of 1 dram sugar of lead in 1 pint of water and then apply benzoated zinc-oxid ointment.

WARTS ON THE TEATS.

These are often very troublesome, yet they may be greatly benefited or entirely removed by smearing them thickly with pure olive oil after each milking. If they persist they may be cut off with a pair of sharp scissors and the sore touched with a stick of lunar caustic. They may now be oiled and the caustic repeated as demanded to prevent their renewed growth.

Scabby teats may be smeared with vaseline containing carbolic acid enough to give it an odor.

TEAT BLOCKED BY CONCRETION OF CASEIN.

Under unhealthy conditions of the gland or milk ducts clots of casein form which, pressed clear of most of their liquid and rolled into rounded masses, may block the passage. They can be moved up and down by manipulation of the teat, and if they can not be pressed out they may be extracted by using the spring teat dilator (Pl. XXIV, fig. 3), being held surrounded by its three limbs. Before extraction is attempted an ounce of almond oil, boiled, should be injected into the teat.

TEAT BLOCKED BY CALCULUS.

When the calcareous matter of the milk has been precipitated in the form of a smooth, rounded stone, a rough, conglomerated concretion, or a fine, sandlike debris, it may cause obstruction and irritation. These bodies are felt to be much harder than those formed by casein, and the milk usually contains gritty particles. Extraction may be attempted, in the case of the finely divided gritty matter, by simple milking or with the spring dilator (Pl. XXIV, fig. 3) in the case of the larger masses. Should this fail the teat may be laid open with the knife and sewed up again or closed with collodion, but such an operation is best deferred until the cow is dry.

TEAT BLOCKED BY A WARTY OR OTHER GROWTH INSIDE.

In this case the obstruction may be near the orifice of the teat or farther up, and the solid mass is not movable up and down with the same freedom as are concretions and calculi. The movement is limited by the elasticity of the inner membrane of the teat from which it grows, and is somewhat freer in certain cases because the growth has become loose and hangs by a narrow neck. In the case of the looser growths they may be snared by a fine, spring wire passed as a loop through a fine tube (like a teat tube open at each end) and introduced into the teat. When this can not be done, the only resort is to cut in and excise it while the cow is dry.

THICKENING OF THE MUCOUS MEMBRANE AND CLOSURE OF THE MILK DUCT.

As a result of inflammation extending from without inward, a gradual narrowing of the milk duct may occur from thickening and narrowing of its lining membrane. This may be limited to a small area near the lower end, or it may extend through the whole length of the teat. The stream of milk becomes finer and finer until it finally ceases altogether, and a firm cord is felt running through the teat. If the constriction is only at the outlet, the teat may be seized and distended by pressing the milk down into it from above, and an incision may be made with a sharp penknife in two directions at right angles to each other and directly in the original opening. The knife should be first cleansed in boiling water. The opening may be kept from closing by a dumb-bell shaped bougie of gutta-percha (Pl. XXIV, fig. 5) or by the spring dilator. If the obstruction is more extended it may be perforated by Luethi's perforating sound. (Pl. XXIV, fig. 1A and 1B.) This is a steel wire with a ring at one end, and at the other is screwed on to the wire a conical cap with sharp cutting edges at the base, which scrapes away the thickened masses of cells as it is drawn back. This may be passed again and again to enlarge the passages sufficiently, and then the passage may be kept open by wearing a long, dumb-bell bougie, a thick piece of carbolized catgut, or a spring dilator. If the passage can not be sufficiently opened with the sound it may be incised by the hidden bistoury. (Pl. XXIV, fig. 2.) This is a knife lying alongside a flattened protector with smooth, rounded edges, but which can be projected to any required distance by a lever on the handle. The incisions are made in four directions, as deep as may be necessary, and the walls then can be held apart by the spring dilator until they heal. In case the constriction and thickening of the canal extend the whole length of the teat, it is practically beyond remedy, as the gland is usually involved so as to render it useless.

CLOSURE OF THE MILK DUCT BY A MEMBRANE.

In this form the duct of the teat is closed by the constriction of its lining membrane at one point, usually without thickening. The closure usually takes place while the cow is dry; otherwise its progress is gradual, and for a time the milk may still be pressed through slowly. In such case, if left at rest, the lower part of the teat fills up and the milk flows in a full stream at the first pressure, but after this it will not fill up again without sufficient time for it to filter through. This is to be cut open by the hidden bistoury (Pl. XXIV, fig. 2), which may be first passed through the opening of the membrane, if such exists. If not it may be bored through, or it may be pressed up against the membrane at one side of the teat and opened toward the center, so as to cut its way through. Incisions should be made in at least two opposite directions, and the edges then may be held apart by wearing the spring dilator until healing has been completed.

In all cases of operations on the teats the instruments must be thoroughly disinfected with hot water, or by dipping in carbolic acid and then in water that has been boiled.

OPENING IN THE SIDE OF THE TEAT (MILK FISTULA).

This may occur from wounds penetrating the milk duct and failing to close, or it may be congenital, and then very often it leads to a distinct milk duct and an independent portion of the gland. In the first form it is necessary only to dissect away the skin leading into the opening for some distance down, to close the orifice with stitches, and to cover the whole with collodion. A teat tube or spring dilator may be worn to drain the milk off and prevent distention and reopening of the orifice. In case of an independent milk duct and gland one of two courses may be selected—to open the one duct into the other by incision and then close the offending opening, or to inject the superfluous gland through its duct with a caustic solution, so as to destroy its secreting power. In both cases it is desirable to wait until the cow goes dry.

* * * * *

DISEASES FOLLOWING PARTURITION. DESCRIPTION OF PLATES.

PLATES XXII, XXIII. Supports for prolapsed uterus. These illustrations show various appliances used in prolapse or inversion of the uterus. The uterus should first be returned to its proper situation and then some apparatus applied to prevent a recurrence of the inversion or protrusion.

PLATE XXII:

Fig. 1. Crupper, strap truss. (From Hill's Bovine Medicine and Surgery.)

Fig. 2. Renault's rope truss. The rope for this truss should be from 25 to 30 feet long and about the thickness of the little finger.

PLATE XXIII:

Fig. 1. Cow to which Delwart's rope truss has been applied.

Fig. 1a shows the loop of Delwart's truss.

Fig. 2. Zundel's labial sutures. These consist of two wires passed through the lips of the vulva in a horizontal direction, and two additional wires passed through the loops at the ends of the horizontal wires in order to hold them in place.

Fig. 3. Iron truss for holding the vagina or uterus in place after calving. The cords are passed through the eyes at the corners of the triangular iron; the base of the triangle fits under the tail. The truss is from 5 to 7 inches long and about 2-1/2 inches wide.

PLATE XXIV. Instruments used in diseases following parturition.

Fig. 1. Luethi's perforating sound, for opening the milk canal through the teat when this has become occluded; A, the sound one-half the natural size; B, section of head of sound, natural size, showing cutting edge.

Fig. 2. Bistouri cache. A blade hidden in its sheath which by pressure of the finger may be made to protrude a certain distance. This distance is regulated by the screw near the handle. The instrument is used to open the milk canal when closed up. It is introduced into the milk canal with its blade in the sheath and withdrawn with the blade protruding.

Fig. 3. Spring teat dilator, about one-half natural size, for dilating the milk canal.

Fig. 4. Ring teat syphon, for withdrawing milk when the teat is sore or injured.

Fig. 5. Gutta-percha bougie, for dilating the opening of the teat.

Fig. 6. Truss applied to calf for umbilical or navel hernia. (From Fleming's Veterinary Obstetrics.)

Fig. 7. Armatage's iron clamp for umbilical or navel hernia. When this clamp is applied care must be taken not to include a portion of the bowel.

* * * * *









DISEASES OF YOUNG CALVES.

By JAMES LAW, F. R. C. V. S.,

Formerly Professor of Veterinary Science, etc., in Cornell University.

SUSPENDED BREATHING.

The moment the circulation through the navel string is stopped the blood of the calf begins to become overcharged with carbon dioxid (CO_{2}), and unless breathing is speedily established death promptly follows. Fortunately the desire to breathe, roused by the circulation of the venous blood and the reflex action from the wet and chilling skin, usually starts the contractions of the diaphragm at once and life is insured. Among the obstacles to breathing may be named suffocation before or during birth from compression of the navel cord and the arrest of its circulation; the detachment of the fetal membranes from the womb before the calf is born; a too free communication between the two auricles (foramen ovale) of the heart by which the nonaerated blood has mixed too abundantly with the aerated and induced debility and profound weakness; a condition of ill health and debility of the calf as a result of semistarvation, overwork, or disease of the cow; fainting in the debilitated calf when calving has been difficult and prolonged; the birth of the calf with its head enveloped in the fetal membranes, so that it has been unable to breathe, and the presence of tenacious phlegm in the mouth and nose, acting in the same manner.

Besides the importance of proper care and feeding of the cow as a preventive measure, attention should be given at once to relieve the newborn calf of its investing membrane and of any mucus that has collected in mouth or nostrils. Wiping out the nose deeply with a finger or feather excites to sneezing, hence to breathing. Blowing into the nose has a similar effect. Sucking the nostril through a tube applied to it is even more effective. Slapping the chest with the palm of the hand or with a towel dipped in cold water, compression and relaxation alternately of the walls of the chest, may start the action, and ammonia or even tobacco smoke blown into the nose may suffice. Every second is precious, however, and if possible the lungs should be dilated by forcibly introducing air from a bellows or from the human lungs. As the air is blown in through bellows or a tube the upper end of the windpipe must be pressed back against the gullet, as otherwise the air will go to the stomach. In a large dairy a piece of elastic tubing one-third of an inch in bore should be kept at hand for sucking and blowing in such cases.

BLEEDING FROM THE NAVEL.

This may occur in two conditions—when the cord is cut off too close to the navel and left untied and when it tears off at the navel. (Pl. XIV.) It may also bleed when torn across naturally, if it is sucked by the dam or another calf. In an animal with little plasticity to its blood it will flow under almost any circumstances. When any cord is left it is always safe to tie it, and it is only when it is swollen and may possibly contain a loop of the bowel that there is danger in doing so. By pressing upward any bulky contents such danger is avoided. If torn or cut too close to be tied the bleeding may be checked by applying alum, copperas, or for a fraction of a second the end of an iron rod at a dull-red heat. If much blood has been lost it may be requisite to transfuse several ounces of blood or of a weak, common-salt solution into the open, umbilical vein.

URINE DISCHARGED THROUGH THE NAVEL (PERSISTENT URACHUS).

Before birth the urine passes from the bladder by a special tube through the navel and navel string into the outer water bag (allantois). (Pl. XII.) This closes at birth, and the tube shrinks into a fine cord up to the bladder. It is only in the bull calf that it is liable to remain open, doubtless because of the long, narrow channel through which the urine must otherwise escape. The urethra, too, is sometimes abnormally narrow, or even closed, in the male. If part of the cord remains, it should be tied and the whole allowed to wither up naturally. If the cord has been removed and the tube (urachus) protrudes, discharging the urine, that alone must be tied. If there is nothing pendent the urachus must be seized, covered by the skin, and a curved needle being passed through the skin and above the duct, it may be tied along with this skin. A blister of Spanish flies, causing swelling of the skin, will often close the orifice—so with the hot iron. If the urethra of the male is impervious it can rarely be remedied.

INFLAMMATION OF THE URACHUS (NAVEL URINE DUCT).

This may originate in direct, mechanical injury to the navel in calving, or shortly after, with or without the lodgment of irritant or septic matter on its lacerated or cut end. The mere contact with healthy urine, hitherto harmless, can now be looked on as becoming suddenly irritating. The affection is usually marked by the presence of redness and swelling at the posterior part of the navel and the escape of urine and a few drops of whitish, serous pus from the orifice of the urachus. In those cases in which urine is not discharged a tender swelling, like a thick cord extending upward and backward from the navel into the abdomen, may be identified. The navel enlargement may be considerable, but it is solid, does not gurgle on handling, and can not be done away with by pressing it back into the abdomen, as in a case of hernia.

In cases at first closed the pus may burst out later, coming from the back part of the navel and the swelling extending backward. In other cases whitish pus may pass with the urine by the ordinary channel, showing that it has opened back into the bladder. In other cases the umbilical veins become involved, in which case the swelling extends forward as well as backward. Thus the disease may result in destructive disorders of the liver, lungs, and, above all, of the joints.

The disease may usually be warded off or rendered simple and comparatively harmless by applying antiseptics to the navel string at birth (carbolic acid 1 part, water and glycerin 5 parts each, or wood tar). Later, antiseptics may be freely used (hyposulphite of soda 4 drams, water 1 quart) as an application to the surface and as an injection into the urachus, or even into the bladder if the two still communicate. If they no longer communicate, a stronger injection may be used (tincture of chlorid of iron 60 drops, alcohol 1 ounce). Several weeks will be required for complete recovery.

ABSCESS OF THE NAVEL.

As the result of irritation at calving or by the withered cord, or by licking with the rough tongue of the cow, inflammation may attack the loose connective tissue of the navel to the exclusion of the urachus and veins, and go on to the formation of matter. In this case a firm swelling appears as large as the fist, which softens in the center and may finally burst and discharge. The opening, however, is usually small and may close prematurely, so that abscess after abscess is formed. It is distinguished from hernia by the fact that it can not be returned into the abdomen, and from inflammations of the veins and urachus by the absence of swellings forward and backward along the lines of these canals.

Treatment consists in an early opening of the abscess by a free incision and the injection twice a day of an astringent antiseptic (chlorid of zinc one-half dram, water 1 pint).

INFLAMMATION OF THE NAVEL VEINS (UMBILICAL PHLEBITIS).

In this affection of the navel the inflammation may start directly from mechanical injury, as in either of the two forms just described, but on this are inoculated infective microbes, derived from a retained and putrefying afterbirth, an abortion, a metritis, a fetid discharge from the womb, an unhealthy open sore, a case of erysipelas, from overcrowding, from filthy floor or bedding, or from an offensive accumulation of manure, solid or liquid. As the microbes vary in different cases, given outbreaks will differ materially in their nature. One is erysipelatoid; another purulent infection with the tendency to secondary abscesses in the joints, liver, lungs, etc.; another is from a septic germ and is associated with fetid discharge from the navel and general putrid blood poisoning. In estimating the causes of the disease we must not omit debility of the calf when the mother has been underfed or badly housed or when either she or the fetus has been diseased.

Symptoms.—The symptoms vary. With the chain-form germs (streptococci) the navel becomes intensely red, with a very firm, painful swelling, ending abruptly at the edges in sound skin and extending forward along the umbilical veins. The secondary diseases are circumscribed, black engorgements (infarctions) or abscesses of the liver, lungs, kidneys, bowels, or other internal organs, and sometimes disease of the joints.

With the ordinary pus-producing germs (Staphylococcus pyogenes aureus and Streptococcus pyogenes) the local inflammation in the navel causes a hot, painful swelling, which rapidly advances to the formation of matter (pus), and the raw, exposed surface, at first bright red, becomes dark red or black, soft, friable, and pultaceous. If the pus is white, creamy, and comparatively inoffensive in odor, the secondary formations in internal organs and joints are mainly of the same purulent character (secondary abscesses).

If, on the other hand, the discharge is very offensive and the pus more serous, watery, or bloody, there is reason to suspect the presence of some of the septic bacteria, and the results on the general system are a high fever and softening of the liver and spleen and no tendency to abscesses of the internal organs. Diarrhea is a common symptom, and death ensues early, the blood after death being found unclotted.

Complicated cases are common, and in all alike the umbilical veins usually remain open and can be explored by a probe passed at first upward and then forward toward the liver.

Prevention is sought by applying a lotion of carbolic acid or iodin solution to the navel string at birth, or it may be smeared with common wood tar, which is at once antiseptic and a protective covering against germs. In the absence of either a strong decoction of oak bark may be used.

Local treatment consists in the application of antiseptic to the surface and their injection into the vein. As a lotion carbolic acid, 1 ounce in a quart of strong decoction of oak bark, should be used, or salicylic acid or salol may be sprinkled on the surface. The interior of the vein should be swabbed out with a probe wrapped around with cotton wool and dipped in boracic salicylic acid.

If complications have extended to the liver or other internal organs, or the joints, other treatment will be demanded. In acute cases of general infection an early fatal result is to be expected.

PYEMIC AND SEPTICEMIC INFLAMMATION OF JOINTS IN CALVES (JOINT ILL).

This occurs in young calves within the first month after birth. It persists in the joints when once attacked, and is usually connected with disease of the navel. Rheumatism, on the other hand, rarely occurs in a calf under a month old. It tends to shift from joint to joint, and is independent of any navel disease. Again, it affects the fibrous structures of the joints, and rarely results in the formation of white matter, while the affection before named attacks the structures outside as well as inside the joints and, above all, the ends of the bones, and tends to the destruction and crumbling of their tissue, and even to the formation of open sores, through which the fragile bones are exposed. The microbes from the unhealthy and infected wound in the navel pass into the system through the veins, or lymphatics, and form colonies and local inflammations and abscesses in and around the joints.

Symptoms.—The symptoms are the swelling of one or more joints, which are very hot and tender. The calf is stiff and lame, lies down constantly, and does not care to suck. There is very high fever, accelerated breathing and pulse, and there is swelling and purulent discharge (often fetid) from the navel. There may be added symptoms of disease of the liver, lungs, heart, or bowels, on which we need not here delay. The important point is to determine the condition of the navel in all such cases of diseased and swollen joints beginning in the first month of life, and in all cases of general stiffness, for besides the diseases of the internal organs there may be abscesses formed among the muscles of the trunk, though the joints appear sound. Cases of this kind, if they do not speedily die, tend to become emaciated and perish later in a state of weakness and exhaustion.

Prevention.—Prevention must begin with the purity of the buildings and the navel, as noted in the last article.

Treatment.—Treatment is in the main antiseptic. The slighter forms may be painted daily with tincture of iodin, or an ointment of biniodid of mercury (1 dram) and lard (2 ounces) may be rubbed on the affected joints daily until they are blistered. In case of swellings containing matter, this may be drawn through the nozzle of a hypodermic syringe and the following solution injected: Compound tincture of iodin, 1 dram; distilled (or boiled) water, 2 ounces. Internally the calf may take 5 grains quinin twice daily and 15 grains hyposulphite of soda, or 20 grains salicylate of soda three times a day.

UMBILICAL HERNIA (BREACH AT THE NAVEL).

This may exist at birth from imperfect closure of the muscles around the opening; it may even extend backward for a distance, from the two sides failing to come together. Apart from this, the trouble rarely appears after the calf has been some time on solid feed, as the paunch then extends down to the right immediately over the navel, and thus forms an internal pad, preventing the protrusion of intestine.

Symptoms.—The symptoms of umbilical hernia are a soft swelling at the navel, with contents that usually gurgle on handling, and can be entirely returned into the abdomen by pressure. The diseases of the navel hitherto considered have no gurgling contents and can not be completely returned into the abdomen. The only exception in the case of the hernia is when the walls of the sac have become greatly thickened. These will, of course, remain as a swelling after the bowel has been returned; and when the protruding bowel has contracted permanent adhesion to the sac, it is impossible to return it fully without first severing that connection.

Treatment.—Treatment is not always necessary. A small hernia, like an egg, in a new-born calf, usually recovers of itself as the animal changes its diet to solid feed and has the paunch fully developed as an internal pad.

In other cases apply a leather pad 8 inches square attached around the body by two elastic bands connected with its four corners, and an elastic band passing from its front border to a collar encircling the neck, and two other elastic bands from the neck collar along the two sides of the body to the two bands passing up over the back. (Pl. XXIV, fig. 6.)

For small hernias nitric acid may be used to destroy the skin and cause such swelling as to close the orifice before the skin is separated. For a mass like a large goose egg one-half ounce of the acid may be rubbed in for three minutes. No more must be applied for 15 days. For large masses this is inapplicable, and with too much loss of skin the orifice may fail to close and the bowels may escape.

The application of a clamp like those used in castration is a most effective method, but great care must be taken to see that all the contents of the sac are returned so that none may be inclosed in the clamp. (Pl. XXIV, fig. 7.)

Another most effective resort is to make a saturated solution of common salt, filter and boil it, and when cool inject under the skin (not into the sac) on each side of the hernia a dram of the fluid. A bandage may then be put around the body. In 10 hours an enormous swelling will have taken place, pressing back the bowel into the abdomen. When this subsides the wound will have closed.

DROPSY OF THE NAVEL.

A sac formed at the navel, by contained liquid accumulated by reason of sucking by other calves, is unsightly and sometimes injurious. After making sure that it is simply a dropsical collection it may be deeply punctured at various points with a large-sized lancet or knife, fomented with hot water, and then daily treated with a strong decoction of white-oak bark.

BLUE DISEASE (CYANOSIS).

This appearing in the calf at birth is due to the orifice between the two auricles of the heart (foramen ovale) remaining too open, allowing the nonaerated (venous) blood to mix with the aerated (arterial) blood, and it is beyond the reach of treatment. It is recognized by the blueness of the eyes, nose, mouth, and other mucous membranes, the coldness of the surface, and the extreme sensitiveness to cold.

CONSTIPATION.

At birth the bowels of the calf contain the meconium, a tenacious, gluey, brownish-yellow material largely derived from the liver, which must be expelled before they can start their functions normally. The first milk of the cow (colostrum, beestings), rich in albumin and salts, is nature's laxative to expel this now offensive material and should never be withheld from the calf. If, for lack of this, from the dry feeding of the cow, or from any other cause, the calf is costive, straining violently without passage, lying down and rising as in colic, and failing in appetite, no time should be lost in giving relief by an ounce dose of castor oil, assisting its action by injections of soapsuds or oil. Whatever meconium is within reach of the finger should be carefully removed. It is also important to give the cow a sloppy, laxative diet.

INDIGESTION.

This may occur from many different causes, as costiveness; a too liberal supply of milk; milk too rich; the furnishing of the milk of a cow long after calving to a very young calf; allowing a calf to suck the first milk of a cow that has been hunted, driven by road, shipped by rail, or otherwise violently excited; allowing the calf too long time between meals, so that impelled by hunger it quickly overloads and clogs the stomach; feeding from the pail milk that has been held over in unwashed (unscalded) buckets, so that it is fermented and spoiled; feeding the milk of cows kept on unwholesome feed; keeping the calves in cold, damp, dark, filthy, or bad-smelling pens; feeding the calves on artificial mixtures containing too much starchy matter; or overfeeding the calves on artificial feed that may be appropriate enough in smaller quantity. The licking of hair from themselves or others and its formation into balls in the stomach will cause obstinate indigestion in the calf.

Symptoms.—The symptoms are dullness, indisposition to move, uneasiness, eructations of gas from the stomach, sour breath, entire loss of appetite, lying down and rising as if in pain, fullness of the abdomen, which gives out a drumlike sound when tapped with the fingers.

The costiveness may be marked at first, but soon it gives place to diarrhea, by which the offensive matters may be carried off and health restored. In other cases it becomes aggravated, merges into inflammation of the bowels, fever sets in, and the calf gradually sinks.

Prevention.—Prevention consists in avoiding the causes enumerated above or any others that may be detected.

Treatment.—Treatment consists in first clearing away the irritant present in the bowels. For this purpose 1 or 2 ounces of castor oil with 20 drops of laudanum may be given, and if the sour eructations are marked a tablespoonful of limewater or one-fourth ounce calcined magnesia may be given and repeated two or three times a day. If the disorder continues after the removal of the irritant, a large tablespoonful of rennet, or 30 grains of pepsin, may be given at each meal along with a teaspoonful of tincture of gentian. Any return of constipation must be treated by injections of warm water and soap, while the persistence of diarrhea must be met as advised under the discussion following this. In case of the formation of loose hair balls inclosing milk undergoing putrid fermentation, temporary benefit may be obtained by giving a tablespoonful of vegetable charcoal three or four times a day, but the only real remedy is to cut the paunch open and extract them. At this early age they may be found in the third or even the fourth stomach; in the adult they are confined to the first two and are comparatively harmless.

DIARRHEA (SCOURING) IN CALVES (SIMPLE AND CONTAGIOUS).

As stated in the last article, scouring is a common result of indigestion, and at first may be nothing more than an attempt of nature to relieve the stomach and bowels of offensive and irritating contents. As the indigestion persists, however, the fermentations going on in the undigested masses become steadily more complex and active, and what was at first the mere result of irritation or suspended digestion comes to be a genuine contagious disease, in which the organized ferments (bacteria) propagate the affection from animal to animal and from herd to herd. More than once I have seen such epizootic diarrhea start on the headwaters of a creek and, traveling along that stream, follow the watershed and attack the herds supplied with water from the contaminated channel. In the same way the disease, once started in a cow stable, is liable to persist for years, or until the building has been thoroughly cleansed and disinfected. It may be carried into a healthy stable by the introduction of a cow brought from an infected stable when she is closely approaching calving. Another method of its introduction is by the purchase of a calf from a herd where the infection exists.

In enumerating the other causes of this disease we may refer to those noted above as inducing indigestion. As a primary consideration any condition which lowers the vitality or vigor of the calf must be accorded a prominent place among factors which, apart from contagion, contribute to start the disease de novo. Other things being equal, the strong, vigorous races are the least predisposed to the malady, and in this respect the compact form, the healthy coat, the clear eye, and the bold, active carriage are desirable. Even the color of the hair is not unimportant, as in the same herd I have found a far greater number of victims among the light colors (light yellow, light brown) than among those of a darker tint. This constitutional predisposition to indigestion and diarrhea is sometimes fostered by too close breeding, without taking due account of the maintenance of a robust constitution; hence animals that are very much inbred need to be especially observed and cared for unless their inherent vigor has been thoroughly attested.

The surroundings of the calf are powerful influences. Calves kept indoors suffer to a greater extent than those running in the open air and having the invigorating influences of sunshine, pure air, and exercise; close, crowded, filthy, bad-smelling buildings are especially causative of the complaint. The presence in the air of carbon dioxid, the product of breathing, and of the fetid, gaseous products of decomposing dung and urine diminish by about one-fourth of their volume the life-giving oxygen and in the same ratio hinder the aeration of the blood and the maintenance of vigorous health. Worse than this, such fetid gases are usually direct poisons to the animal breathing them; for example, sulphureted hydrogen (hydrogen sulphid 2 SH_{2}) and various alkaloids (ptomaines) and toxins (neutral poisonous principles) produced in the filth fermentations. These lower the general health and stamina, impair digestion, and by leading to the accumulation in stomach and bowels of undigested materials they lay the foundation for offensive fermentations within these organs and consequent irritation, poisoning, and diarrhea. They further weaken the system so that it can no longer resist and overcome the trouble.

The condition of the nursing cow and her milk is another potent cause of trouble. The feed of the cow is important. The influence of this is shown in the following tables:

Influence of feed on milk. (From Becquerel and Vernois.)

+ + + + + + + Casein Character of feed. Water. and Milk extractive sugar. Butter. Salts. matter. + + + + + + + Parts Parts Parts Parts Parts in 1,000 in 1,000 in 1,000in 1,000in 1,000 Cows on winter feed: Trefoil or lucern, 12-13 pounds; oat straw, 9-10 pounds; beets, 7 pounds; water, 2 buckets 871.26 47.81 33.47 42.07 5.34 Cows on summer feed: Green trefoil, lucern, maize, barley, grass, 2 buckets water 859.56 54.70 36.38 42.76 6.80 Goat's milk on different feed: On straw and trefoil 858.68 47.38 35.47 52.54 5.93 On beets 888.77 33.81 38.02 33.68 5.72 Normal mean 844.90 35.14 36.90 56.87 6.18 + + + + + + +

In these examples the deterioration of the milk in casein on the less nutritious winter feeding is very marked, although the relative quantity of butter remains almost unchanged. In the case of the goat the result is even more striking, the beet diet giving a very large decrease of both casein and butter and an increase of milk sugar.

The second table following, condensed from the Iowa Agricultural Experiment Station Bulletin, gives the results in butter and total solids when the same cows were fed on different rations in succession. Each cow was fed a daily ration of 12 pounds corn fodder and 4 pounds clover hay, besides the test diet of (1) 12-1/4 pounds corn-and-cob meal, and (2) 10 pounds sugar meal—a product of the glucose manufacture. This special feed was given seven days before the commencement of each test period to obviate the effects of transition. The analyses of the special rations are given below:

Analyses of special rations.

+ + -+ Constituents. Corn-and-cob Sugar meal. meal. + + -+ Per cent. Per cent. Moisture 13.37 6.10 Salts 1.43 1.17 Fat 2.81 11.16 Carbohydrates (heat formers). 65.99 52.66 Woody fiber 8.03 8.64 Proteids (flesh formers) 8.37 20.27 + + -+

The great excess of fat and nitrogenous or flesh-forming principles in the sugar meal is very evident.

Influence of feed on milk. (Iowa station.)

- - - Ratio of fat Animal. Milk. Fat. Solids. Fat. Solids. to solids not fat. - - - PoundsPct Pct PoundsPounds Grade Shorthorn cow: First period, 21 days, corn-and-cob meal 631.25 3.43 11.57 21.67 73.02 422.0:1,000 Second period, 21 days sugar meal 641.50 4.04 12.53 25.93 83.38 476.2:1,000 Third period, 21 days, corn-and-cob meal 559.00 3.22 11.86 17.97 66.32 371.7:1,000 Grade Shorthorn cow: First period, 21 days, corn-and-cob meal 604.75 3.57 11.95 21.56 72.28 425.1:1,000 Second period, 21 days sugar meal 582.00 3.91 12.37 22.74 72.57 456.3:1,000 Third period, 21 days, corn-and-cob meal 527.00 3.37 12.05 17.78 63.48 389.1:1,000 Grade Shorthorn cow: First period, 21 days, sugar meal 753.50 3.97 12.43 29.94 93.67 469.8:1,000 Second period, 21 days corn-and-cob meal 601.50 3.15 11.45 18.97 68.89 380.0:1,000 Third period, 21 days, sugar meal 560.50 3.85 12.16 21.58 68.16 463.3:1,000 Grade Holstein cow: First period, 21 days, sugar meal 487.50 4.15 13.27 20.25 64.69 455.6:1,000 Second period, 21 days corn-and-cob meal 379.00 3.51 12.69 13.30 48.09 382.3:1,000 Third period, 21 days, sugar meal 374.50 3.72 13.01 13.95 48.74 401.0:1,000 - - -

Here we see in every instance a marked relative increase of the butter, and to a less extent of the other milk solids whenever the sugar meal—rich in fat and albuminoids—was furnished. The opposite theory having been largely taught, it becomes needful thus to sustain the old and well-founded belief of the dairymen.

Not only does the richness of the milk vary with the nature of the food, but it varies also according to the time of the day when it is drawn, the morning milk giving 7-1/2 per cent of cream and the evening milk 9-1/2 per cent (Hassall). Boedecker found that the morning milk had 10 per cent of solids, while the evening milk had 13 per cent. Again, the milk first drawn at any milking is always poorer than the last drawn. The first may have only one-half, or in extreme cases one-fourth, the cream of the last. Once more, when the cow is in heat the milk becomes richer in solids (casein and butter), and contains granular and white blood cells like the colostrum, and often disagrees with the young animal living on it. Now, while these various modifications in the amount of solid matters may prove harmless to a strong and vigorous calf, they can easily be the occasion of intestinal disorder in a weaker one, or in one with health already somewhat impaired by sickness, exposure, or unwholesome buildings. The casein of the cow's milk coagulates in one solid mass, and is much less easily penetrated by the digesting fluids than the fine, flaky coagula of woman's or mare's milk. An excess of casein, therefore, thrown on an already overtaxed stomach can all the more readily induce disorder. So it is with butter fat. While a most important element in nutrition, it may be present in the stomach in such quantity as to interfere with the action of the gastric juice on the casein, and with the interruption of the natural stomach digestion the fats themselves undergo decomposition with the production of offensive and irritating fatty acids.

The milk of the very young cow is usually more watery than that of the mature animal, and that of the old cow has a greater liability to become acid. It varies much with the breed, the Channel Island cattle being notorious for the relatively large quantity of cream, while the Holsteins, Ayrshires, and Shorthorns are remarkable rather for the quantity of casein. The milk of cows fed on potatoes and grass is very poor and watery; that from cows fed on cabbage or Swedish turnips has a disagreeable taste and odor (from the former an offensive liquid has been distilled).

Cows fed on overkept, fermented, and soured rations have acid milk, which readily turns and coagulates. Thus old, long-kept brewer's grains, swill, the refuse of glucose factories, and ensilage which has been put up too green all act in this way. The same may come from disease in the cow's udder, or any general disease of the cow with attendant fever, and in all such cases the tendency is to rapid change and unwholesomeness. If the milk is drawn and fed from a pail, there is the added danger of all sorts of poisonous ferments getting into it and multiplying; it may be from the imperfect cleansing and scalding of the pail; from rinsing the pails with water that is impure; from the entrance of bacterial ferments floating in the filthy atmosphere of the stable, or from the entrance of the volatile chemical products of fermentation.

In addition to the dangers coming through the milk, the calf suffers in its digestive powers from any temporary illness, and among others from the excitement attendant on the cutting of teeth, and impaired digestion means fermentations in the undigested masses and the excessive production of poisonous ptomaines and toxins.

Whatever may be the starting or predisposing cause of this malady, when once established it is liable to perpetuate itself by contagion and to prove a veritable plague in a herd or a district.

Symptoms.—The symptoms of a diarrhea may appear so promptly after birth as to lead to the idea that the cause already existed in the body of the calf, and it usually shows itself before the end of the second week. It may be preceded by constipation, as in retained meconium, or by fetid eructations and colicky pains, as in acute indigestion. The tail is stained by the liquid dejections, which are at first simply soft and mixed with mucus with a sour odor, accompanied with a peculiar and characteristic fetor (suggesting rotten cheese), which continually grows worse. The quantity of water and mucus steadily increases, the normal predominance of fatty matters becoming modified by the presence of considerable undigested casein, which is not present in the normal feces, and in acute cases death may result in one or two days from the combined drain on the system and the poisoning by the absorbed products of the decomposition in the stomach and bowels. When the case is prolonged the passages, at first 5 or 6 a day, increase to 15 or 20, and pass with more and more straining, so that they are projected from the animal in a liquid stream. The color of the feces, at first yellow, becomes a lighter grayish yellow or a dirty white (hence the name white scour), and the fetor becomes intolerable.

At first the calf retains its appetite, but as the severity of the disease increases the animal shows less and less disposition to suck, and has lost all vivacity, lying dull and listless, and, when raised, walking weakly and unsteadily. Flesh is lost rapidly, the hair stands erect, the skin gets dry and scurfy, the nose is dry and hot, or this condition alternates with a moist and cool one. By this time the mouth and skin, as well as the breath and dung, exhale the peculiar, penetrating, sour, offensive odor, and the poor calf has become an object of disgust to all that approach it. At first, and unless inflammation of the stomach and bowels supervenes (and unless the affection has started in indigestion and colic), the belly is not bloated or painful on pressure, symptoms of acute colicky pains are absent, and the bowels do not rumble; neither are bubbles of gas mingled with the feces. The irritant products of the intestinal fermentations may, however, irritate and excoriate the skin around the anus, which becomes red, raw, and broken out in sores for some distance. Similarly the rectum, exposed by reason of the relaxed condition of the anus, or temporarily in straining to pass the liquid dejection, is of a more or less deep red, and it may be ulcerated. Fever, with rapid pulse and increased breathing and temperature, usually comes on with the very fetid character of the feces and is more pronounced as the bowels become inflamed, the abdomen sore to the touch and tucked up, and the feces more watery and even mixed with blood.

Prevention.—The prevention of these cases is the prevention of constipation and indigestion, with all their varied causes as above enumerated, the selection of a strong, vigorous stock, and, above all, the combating of contagion, especially in the separation of the sick from the healthy, and in the thorough purification and disinfection of the buildings. The cleansing and sweetening of all drains, the removal of dung heaps, and the washing and scraping of floors and walls, followed by a liberal application of chlorid of lime (bleaching powder), 4 ounces to the gallon, are indicated. Great care must be exercised in the feeding of the cow to have sound and wholesome feed and water, so apportioned as to make the milk neither too rich nor too poor, and to her health, so that the calf may be saved from the evil consequences of poisonous principles that may be produced in the body of the cow. The calves should be carefully kept apart from all calving cows and their discharges. Similarly each calf must have special attention to see that its nurse gives milk which agrees with it, and that this is furnished at suitable times. If allowed to suck, it should either be left with the cow or be fed three times a day. If it becomes hungry twice a day, it is more liable to overload and derange the stomach, and if left too long hungry it is tempted to take in unsuitable and unwholesome feed, for which its stomach is as yet unprepared. So, if fed from the pail, it is safer to do so three times daily than twice. There should be the utmost cleanliness of feeding dishes, and the feeder must be ever on the alert to prevent the strong and hungry from drinking the milk of the weaker in addition to their own. In case the cow nurse has been subjected to any great excitement by reason of travel, hunting, or carrying, the first milk she yields thereafter should be used for some other purpose and only the second allowed to the calf. Indeed, one and all of the conditions indicated above as causes should be judiciously guarded against.

Treatment.—Treatment varies according to the nature and stage of the disease. When the disease is not widespread, but isolated cases only occur, it may be assumed to be a simple diarrhea and is easily dealt with. The first object is to remove the irritant matter from stomach and bowels, and for this 1 or 2 ounces of castor oil may be given, according to the size of the calf. Reduce the milk by one-half or two-thirds. If the stools smell particularly sour, the milk may be replaced by 1 ounce calcined magnesia, and in any case a tablespoonful or two of limewater must be given with each meal. Great harm is often done by giving opium and astringents at the outset. These serve merely to bind up the bowels and retain the irritant source of the trouble; literally, "to shut up the wolf in the sheep-fold." When the offending agents have been expelled in this way, carminatives and demulcent agents may be given—1 dram of anise water, 1 dram nitrate of bismuth, and 1 dram of gum arabic, three times a day. Under such course the consistency of the stools should increase until in a day or two they become natural.

If, however, the outbreak is more general and evidently the result of contagion, the first consideration is to remove all sources of such contamination. Test the milk of the cow with blue litmus paper; if it reddens, reject the milk until by sound, dry feeding, with perhaps a course of hyposulphite of soda and gentian root, the milk is made alkaline. The castor oil or magnesia will be demanded to clear away the (now infecting) irritants, but they should be combined with antiseptics, and, while the limewater and the carminative mixture may still be used, a most valuable addition will be found in the following: Calomel, 10 grains; prepared chalk, 1 ounce; creosote, 1 teaspoonful; mix, divide into 10 parts, and give one four times a day. Or the following may be given four times a day: One dram Dover's powder, 6 grains powdered ipecacuanha; mix, divide into 10 equal parts. Injections of solutions of gum arabic are often useful, and if the anus is red and excoriated, one-half dram of copperas may be added to each pint of the gummy solution. All the milk given must be boiled, and if that does not agree, eggs made into an emulsion with barley water may be substituted. As the feces lose their watery character and become more consistent, tincture of gentian in doses of 2 teaspoonfuls may be given three or four times a day. Counter-irritants, such as mustard, ammonia, or oil of turpentine, may be rubbed on the abdomen when it becomes tender to the touch.

ACUTE CONTAGIOUS SCOURING IN THE NEWBORN.

The most violent and deadly form of diarrhea in the newborn calf deserves a special mention. This may appear immediately after birth, and shows itself almost invariably within the first or second day. The most intense symptoms of white scour are complicated by great dullness, weakness, and prostration, sunken eyes, retracted belly, short, hurried breathing, and very low temperature, the calf lying on its side, with the head resting on the ground, lethargic and unconscious or regardless of all around it. The bowel discharges are profuse, yellowish white, and very offensive. As a rule death ensues within 24 to 36 hours.

A marked characteristic of this form of illness is that it attacks almost every calf born in the herd, or in the building, rather, and if the calf escapes an attack in the first two or three days of its life it usually survives. Those that recover from an attack, however, are liable one or two weeks later to suffer from an infective inflammation of the lungs. The infection clings to a stable for years, in many cases rendering it impossible to preserve and raise the calves. It has frequently coincided with abortions and failures to conceive in the same herd, so that it has been thought that the same infective germ produces one type of abortion. On the other hand, the removal of the calving cow from the herd to calve in a separate building, hitherto unused and therefore uninfected, usually effects the escape and survival of the offspring.

The disease has been traced by Nocard and Lignieres to a small bacillus having the general characters of those that produce hemorrhagic septicemia, which is usually combined with a variety of others, but is in some cases alone and in pure culture, especially in the joints. The theory of Lignieres is that this bacillus is the primary offender, and that once introduced it so depresses the vital powers of the system and tissue cells that the healthy resistance to other bacteria is impaired or suspended, and hence the general and deadly invasion of the latter.

Inoculations with this bacillus killed guinea pigs or rabbits in 6 to 18 hours, and calves in 30 hours, with symptoms and lesions of hemorrhagic septicemia, including profuse fetid diarrhea.

The predominance of the early and deadly lesions in the alimentary tract would seem to imply infection through the feed, and the promptitude of the attack after birth, together with the frequent coincidence of contagious abortion in the herd, suggest the presence of the germ in the cow; yet the escape of the calf when the cow calves in a fresh building is equally suggestive of the infection through germs laid up in the building. This conclusion is further sustained by the observation that the bacillus evidently enters by the raw, unhealed navel, that it is diffused in the blood, and that a very careful preservation of the navel against infection gives immunity from attack.

Prevention.—The disease is so certainly and speedily fatal that it is hopeless to expect recovery, and therefore prevention is the rational resort.

When a herd is small, the removal of the dam to a clean, unused stable a few days before calving and her retention there for a week usually succeeds. It is in the large herd that the disease is mainly to be dreaded, however, and in this it is impossible to furnish new and pure stables for each successive group of two or three calving cows. The thorough disinfection of the general stable ought to succeed, yet I have seen the cleanest and purest stable repeatedly disinfected with corrosive sublimate without stopping the malady. It would appear as if the germ lodged on the surface or in the bowels of the cow and tided the infection over the period of stable disinfection. Though insufficient of themselves, the supply of separate calving boxes and the frequent thorough cleaning and disinfection of both these and the stables should not be neglected. The most important measure, however, is the disinfection of the navel.

The cow should be furnished with abundance of dry, clean bedding, sprinkled with a solution of carbolic acid. As soon as calving sets in the tail and hips and anus and vulva should be sponged with a carbolic-acid solution (one-half ounce to the quart), and the vagina injected with a weaker solution (2 drams to the quart). Fresh carbolized bedding should be constantly supplied, so that the calf may be dropped on that and not on soaked litter nor manure. The navel string should be at once tied with a cord that has been taken from a strong solution of carbolic acid. The stump of the cord and the adjacent skin should then be washed with the following solution: Iodin, one-half dram; iodid of potassium, one-half dram; water, 1 quart. When dry it may be covered with a coating of collodion or tar, each containing 1 per cent of iodin.

Whenever a calf shows any sign of scouring it should be instantly removed to another pen and building, and the vacated one should be thoroughly cleaned and disinfected. Different attendants should take care of the sound calves and the infected ones, and all utensils, litter, etc., kept scrupulously apart.

After one week the healthy calves may usually be safely herded together, or they may be safely placed in the cow stable.

OTHER AILMENTS OF THE CALF.

Among these may be named several congenital imperfections, such as imperforate anus, vulva, or prepuce, which are to be recognized by the inability to pass dung or urine, in spite of straining, and the formation of swellings in the anus, vulva, or sheath. Each must be carefully incised with the knife, taking care not to injure the muscles which circumscribe the respective openings; also tongue-tie, in which the thin, flaccid, mucous membrane passing from the median line of the lower surface of the tongue binds the latter too closely to the floor of the mouth and renders the tongue unfit for gathering in the food in after life. This must be cut with knife or scissors, so as to give the tongue a reasonable degree of liberty.

APHTHA, or THRUSH, is another trouble of the sucking calf, showing itself as a white, curdy elevation on the tongue, lips, cheeks, or gums, and when detached leaving a raw, red, angry surface. It is due to the growth of a vegetable parasite long recognized as the Oidium albicans (Saccharomyces albicans). It is easily removed by rubbing with powdered borax, but inasmuch as other colonies are liable to start either in the mouth or in the pharynx, gullet, or stomach, it is well to give a dose of one-half dram of hyposulphite of soda in water day by day for several days.

RICKETS is not a common disease in calves, and comes on, if at all, later than those we have been considering. It consists in softening and friability of the bones from a deficiency of lime salts, and appears to be mainly connected with an inherited weakness of constitution, unsuitable feeding, cold, close, damp buildings, microbian infection, and other conditions inimical to health. The prevention and treatment of rickets consists essentially in the improvement of the digestion and general health; hence sunshine, open air, exercise, nourishing food, and tonics are indicated. (See p. 267.)



BONES: DISEASES AND ACCIDENTS.

By V. T. ATKINSON, V. S.

[Revised by John R. Mohler, V. M. D.]

Some knowledge of the skeleton is advisable to facilitate the study of diseases of bones and the accidental injuries to which they are exposed. The skeleton of the adult ox is made up of the following number of bones:

Spinal column 45 Head 28 Chest 27 Shoulder 2— 1 on each side. Arm 2— 1 on each side. Forearm 4— 2 on each side. Forefoot 40—20 on each side. Pelvis 2— 1 on each side. Thigh 2— 1 on each side. Leg 6— 3 on each side. Hind foot 38—19 on each side. —— Total 196

Without attempting to burden the reader with the technical names and a scientific classification of each, it appears desirable to describe some of the characteristics of forms in general and of a few classes into which they may be divided, leaving the special study of individual bones to the illustrations of the skeleton (Pl. XXV), which will serve better than a great deal of writing to fix in the mind of the reader the location, relation, and function of each one. In early fetal life the place of bone is supplied by temporary cartilage, which gradually changes to bone. For convenience of study, bones may be said to be composed of a form of dense connective tissue impregnated with lime salts and to contain two elementary constituents—the organic or animal and the inorganic or earthy. In young animals the former predominates; with increasing years the relative proportions of the two change, so that when advanced age is reached the proportion of inorganic far exceeds the organic. The gradual change with advancing years from organic to inorganic has the effect of rendering the bone harder and more brittle, and though it is stronger, the reparative process is slower when injury does occur.

The bones are nourished in two ways: First, from the outside through their covering, called the periosteum—the thin, strong membrane that covers every part of the bone except the articular surface of the joints; and, second, from within through the minute branches of blood vessels which pass into the bones through holes (foramina) on their surface and are distributed in the soft structure (medulla) of the inside. The structure of the bone is divided into two parts—the compact or hard material of the outside, which gives strength and is more abundant in the shafts of long bones, and the cancellated, softer tissue of the inside, which affords accommodation to the blood vessels necessary for the nourishment of that part of the structure.

In shape, bones are divided into three classes—long, flat, and short. The long bones are the ribs and those mostly found in the limbs; the flat bones are found in the head, the shoulder, and the pelvis; the short bones in the spinal column and in the lower portions of the limbs.

With this little introduction, which seems almost indispensable, we will proceed at once to the consideration of diseases of bones, for they undergo disease processes like any other living tissue.

OSTEITIS.

Inflammation of the compact structure of bones (osteitis) may be either acute or chronic, and may involve the whole extent of the bone affected or may be confined to only a portion of it. This inflammation results from injury, such as concussion, laceration, or a crushing bruise; also from specific influences, as in actinomycosis (lumpy jaw) or cases of foul foot. The latter affection frequently involves the bones, and for this reason the pastern is the most frequent seat of osteitis. There is dull pain on pressure and a painful swelling of bone when pus is present. Suppuration may involve the overlying soft tissues, causing an abscess, which may finally break through the skin. The inflammatory condition sometimes assumes an ulcerated form (caries) or from interrupted nutrition of the part deprived of the blood necessary to its nourishment may cause death of a large section of bone (necrosis); this dead fragment (sequestrum), becoming separated from the main portion of bone, acts as a foreign body.

Treatment.—This consists in resting the affected part and in giving vent at the earliest possible moment to whatever pus may be present. Free drainage should then be maintained. Apply dressings of lactic acid or inject with 5 per cent zinc-chlorid solution and pack with tampons of cotton soaked in antiseptic solutions. A laxative to keep the bowels moving freely is the only internal treatment necessary.

PERIOSTITIS.

This disease is an inflammation of the external covering of bone (periosteum) and is usually produced by wounds, pressure, or crushing the part. The periosteum is well supplied with sensitive nerve endings and when inflamed is very sensitive to pressure and may cause lameness. This condition is often difficult to determine, and even an acute observer may fail to locate the point of its existence. There are three forms of periostitis—aseptic, purulent, and fibrous.

ASEPTIC PERIOSTITIS when it becomes chronic causes such a bony enlargement (exostosis) as is seen in the callous formation following the fracture of a bone. The formation of such a tumor or enlargement on the surface of a bone is liable to occur in any part of the bone covered with periosteum, and when found near a joint involving two or more bones it is liable to result in their union (anchylosis).

Treatment.—Applications of cold water to check the inflammatory processes is indicated for the first few days in aseptic periostitis, followed by hot fomentations to hurry resorption of fluids. Massage should then be given with camphor ointment, mercurial ointment, soap liniment, or Lugol's solution. In the chronic form point firing or a biniodid-of-mercury blister will be found beneficial.

PURULENT PERIOSTITIS follows wounds which reach the periosteum and become infected, as observed in compound fractures, or it may result from advancing purulent conditions in neighboring structures, as in foul foot. It may also occur in the course of an infectious disease, when small abscesses are formed under the periosteum (subperiosteal abscess). It may lead to necrosis of the bone or a fistulous tract from the bone to the surface. There is usually much pain and fever, and the odor from the wound is offensive.

Treatment.—In this form of periostitis the periosteum should be freely incised, followed either by continuous irrigation or frequent injection of the wound with antiseptic solutions.

FIBROUS PERIOSTITIS.—This form of the disease consists in the thickening of the outer layer of the periosteum from the inflammation reaching it from neighboring structures. This newly formed fibrous tissue may become ossified or may transmit the inflammation to the deeper bony structures. It is frequently seen in cases in which there has been an intense inflammation of the skin close to an underlying bone.

Treatment.—The treatment should be the same as that recommended for aseptic periostitis.

OSTEOMYELITIS.

This term refers to an inflammation of the bone marrow, which is most commonly seen following the bacterial infection of a compound fracture and usually results in pus formation. The bone is melted away and pus escapes from the bone under the periosteum, involving the soft tissues. It is principally confined to the long bones and seldom affects more than one.

Treatment.—The bone should be opened for the purpose of curetting out the diseased portion of the marrow cavity and removing all the necrotic pieces of bone. This should be undertaken only by a competent veterinarian. The after-treatment consists in tamponing the wound with pledgets of iodoform gauze or a mixture of iodoform 1 part and glycerin 4 parts. The wound in the soft tissue should be kept open until the cavity in the bone has filled with granulation tissue.

RICKETS.

This disease, also called "rachitis," is an inflammatory affection of young, growing bones, and mostly involves the ribs and long bones of the legs. It consists in a failure of the organism to deposit lime salts in bone, and for this reason the bones do not ossify so rapidly as they should. The cartilaginous ends of the bones grow rapidly, but ossification does not keep pace with it. The bones become long and their ends bend at the joints, the legs become crooked, and the joints are large and irregular. All the bones affected with this disease are thicker than normal, and the gait of the animal is stiff and painful. A row of bony enlargements may be found where the ribs articulate with the cartilages connecting them with the breastbone and is called the "beaded line." A catarrhal condition of the digestive tract is usually observed. The disease may result from an inherited weakness of constitution, poor hygienic surroundings, or improper diet. Calves and foals are less frequently affected with rickets than dogs and pigs.

Treatment.—The affected animal should have nourishing feed containing a proper quantity of lime salts. Outdoor exercise and plenty of fresh air are indispensable. Limewater should be given once daily for drinking purposes and ground bone meal mixed with the food. Phosphorus, one-fortieth of a grain, and calcium phosphate, 1 dram, given twice daily to a 2-month-old calf, and proportionally increased for older animals, has proved efficacious in this disease. In some cases the long bones of the limbs are too weak at birth to support the weight of the animal, and temporary splints, carefully padded and wrapped on with some soft bandages, become necessary.

OSTEOMALACIA (CREEPS).

This is a condition of bone brittleness or softening of bone found usually in adult life. It consists in the decalcification of mature bone, with the advancing diminution of the compact portion of bone by absorption. The periosteum strips very easily from the bone. This disease is seen in milch cows during the period of heavy lactation or in the later stages of pregnancy, and the greater the yield of milk the more rapid the progress of the disease. Heifers with their first calves are frequently affected, as these animals require a considerable quantity of mineral salts for their own growth and for the nourishment of their offspring.

Symptoms.—In marked cases there is a gradual emaciation and symptoms of gastrointestinal catarrh, with depraved appetite, the animal eating manure, decayed wood, dirt, leather, etc. Muscular weakness is prominent, together with muscle tremors, which simulate chills, but are not accompanied with any rise of temperature. The animal has a stiff, laborious gait; there is pain and swelling of the joints, and constant shifting of the weight from one leg to another. The restricted movements of the joints are frequently accompanied with a crackling sound, which has caused the name of "creeps" to be applied to the disease. The coat is dull and rough and the skin dry and hidebound. The animal is subject to frequent sprains or fracture of bones without apparent cause, as in lying down or turning around, and when such fractures occur they are difficult to unite. The bones principally involved are the upper bones of the legs, the haunch bone, and the middle bones of the spinal column. The disease in this country is confined to localized areas in the Southwest, known as the "alkali districts," and in the old dairy sections of New York State. The cause of this affection is the insufficiency of lime salts in the food, also to feeding hay of low, damp pastures, kitchen slops, and potatoes, or to overstocking lands. It occurs on old, worn-out soil poor in lime salts, and has also been observed to follow a dry season.

Treatment.—This should consist in a change of feed and the artificial feeding of lime salts, such as magnesium and sodium phosphate. Feed rich in mineral salts may be given, such as beans, cowpeas, oats, cottonseed meal, or wheat bran. Cottonseed meal is one of the best feeds for this purpose, but it should be fed carefully, as too large quantities of it are injurious to cows. Phosphorus may also be given in one-fourth grain doses twice daily, together with a tablespoonful of powdered bone meal or crude calcium phosphate at each meal. Ordinary lime dissolved in drinking water (limewater) will also be found efficacious in combating this disease, and can be provided at slight expense. A change of pasture to a locality where the disease is unknown and a free supply of common salt and bone meal will be the most convenient method of treating range cattle.

SPRAINS.

The most common accident occurring to bones and joints is a sprain of the ligaments uniting the bones, or the tendons uniting the muscles and bones. A sprain is the result of a sudden forcing of a joint in an unnatural direction, or, if in a natural direction, beyond the power of the ligament or tendon to restrain it properly, so that part of the fibers of either are ruptured. When such an accident occurs pain is immediately inflicted, varying in degree with the extent of the injury, which is soon followed by swelling, with more or less heat and tenderness. If the seat of the injury be in any of the limbs, lameness is likely to result. Of the causes of sprain, slipping on ice or a wet floor, playing, and fighting with another animal are the most common.

SPRAIN OF THE SHOULDER JOINT.—This is liable to occur from any of the causes mentioned above or from the animal slipping suddenly into a rut or hole. When such an accident occurs, sudden lameness will attract attention. The animal will be noticed to drag the leg when walking and to carry it in a circular direction, outward and forward, at each step. The leg should be carefully examined, pressure over the joint causing the animal to evince pain. If the person making the examination is in doubt, it is well to make a comparison between the shoulders by pressing first on one and then the other. After such an accident the animal should be tied up so as to limit so far as possible the use of the injured joint.

Soft feed should be given with a view of keeping the bowels acting freely.

Treatment.—During the first three days the treatment should consist of cold-water irrigation to check the inflammation and relieve the pain. Hot fomentations may then be applied to hasten the absorption of the inflammatory fluids. When the pain has somewhat abated, equal parts of mercurial ointment and green soap may be rubbed into the swollen tissue. Should lameness continue after the tenth day, good results will be obtained from the application of a blister. This may be done by carefully clipping off the hair over the joint, including a surface of 4 or 5 inches in circumference, and rubbing in the following preparation:

Powdered cantharides dram 1 Biniodid of mercury do 1 Vaseline ounce 1

The animal's head should be carefully tied until the third day, to prevent its licking the blister. The blistered surface should then be smeared with lard or vaseline every other day until the scabs fall off. Gentle exercise should be allowed after the fourth or fifth day from the application of the blister. If the lameness still remains the blister may be repeated in three weeks or a month.

SPRAIN OF THE FETLOCK.—This may occur from misstep when the animal is moving rapidly, and the twisting or wrenching of the foot is sufficient to rupture partially the ligaments which bind the bones together at that part. Such an accident also frequently occurs by the foot getting fastened in a hole in the floor; the wrenching is the result of the animal's attempt to liberate it. Lameness, followed by swelling of the joint and pain when it is handled, or when the animal moves the joint, and heat, are the more noticeable symptoms. If the sprain is very severe, the animal occasionally does not bear its weight on the limb.

Treatment.—The most important consideration in the treatment of this affection is rest, which is best enforced by keeping the animal in the stall and placing strong, muslin bandages about the inflamed joint. As in the sprain of the shoulder, cold water in the form of douches, continuous irrigation with hose or soaking tub, or finely chopped ice poultices are indicated for the first three days. Following this apply a Priessnitz bandage[2] moderately tight about the joint, which not only conduces to rest, but also favors absorption. Massage with stimulating liniments, such as soap or camphor, may later be applied to the affected parts.

If the lameness has not disappeared by the tenth day, the blister advised for the sprain of the shoulder should be applied and the same precautions observed as to tying the animal's head and subsequent smearing with vaseline. When a blister is applied in this locality, the back part of the heel should be first filled with lard or vaseline, and care taken to prevent any of the blistering preparation from coming in contact with the skin of that part. If this precaution is not observed, scratches may ensue and prove troublesome.

SPRAIN OF THE HIP.—This is liable to result from the animal's slipping in such way as to spread the hind feet wide apart. The patient goes stiff in the hind legs, or lame in one hind leg, walking with a straddling gait and swinging the leg outward as it is carried forward. Tenderness may occasionally be detected on pressure, but owing to the heavy covering of muscles outside the joint this test is not always reliable.

In the acute cases give rest and cold local applications. After the fourth or fifth day the blister mentioned for sprain of the shoulder may be applied with advantage, and if this proves insufficient, as a last resort we may fire in points over the joint.

SPRAIN OF THE BACK.—Sprain of the back, particularly in the region of the loins, is not an uncommon accident among cattle. It is liable to occur from the animals slipping with both hind feet sidewise so as to twist the back, or from slipping violently backward so that great stress is thrown on the loins. The patient moves with difficulty, using the hind parts in a guarded manner, as if afraid of causing severe pain. Occasionally, if the sprain is severe, the animal will rise with difficulty. Pressure on the back in the immediate region of the loins causes pain. Such cases may be mistaken for paralysis, and, in fact, in severe cases, during the early stages of the injury, although the nerve supply is not interfered with, the injury to the muscles and resulting pain is so great that the condition is almost equal to paralysis, although liable to be attended with more favorable results. Hot applications, such as blankets wrung out of hot water and changed often, will be likely to afford relief during the earlier stages. Afterwards the blister mentioned for sprain of the shoulder may be applied with advantage.

FRACTURES (BROKEN BONES).

Bones may be accidentally broken in many ways and from different causes. Fractures in general are liable to be produced by external force suddenly and violently applied, either directly to the part or at a distance, the force being transmitted through the stronger bones until it expends itself by breaking a weaker one remote from the seat of the injury. Occasionally violent contraction of muscles is sufficient to break a bone. Certain bones, those of the limbs in particular, owing to their exposed position, are more liable to fracture than others. Owing to certain predisposing causes, such as age, habit, or hereditary constitutional weakness, the bones of some animals are more easily fractured than those of others. The bones of an animal advanced in years are more subject to fracture because of the preponderance of inorganic matter rendering them more brittle. They are also occasionally rendered liable to fracture by a previously existing diseased condition. Fractures are divided into four classes—partial, simple, compound, and comminuted.

PARTIAL FRACTURES.—Partial fractures are those which are liable to occur in a young animal in which the preponderance of animal matter or the semicartilaginous condition of the bone renders it tough, so that even when considerable force is applied the bone bends, breaking on the side opposite that to which the force was applied, after the manner in which a green stick bends and breaks.

SIMPLE FRACTURES. Simple fracture is one in which the bone is severed in two parts, transversely, longitudinally, or obliquely, without serious injury to the adjoining structures.

COMPOUND FRACTURES.—Compound fracture is one in which there is an open wound permitting the air to communicate with the ends of the broken bones.

COMMINUTED FRACTURES.—Comminuted fracture is one in which the bone is shattered or divided into a number of fragments.

COMPLICATED FRACTURES.—Complicated fracture is one in which other structures surrounding the bones are injured.

GENERAL SYMPTOMS OF FRACTURE.—When a fracture of one or more of the large bones of a limb occurs, symptoms are sure to be well marked. After the accident the animal refuses to touch the foot to the ground and, if compelled to move, does so with great pain and reluctance. There is more or less shortening of the limb, with trembling of the muscles in the vicinity of the injury; deformity, and increased mobility, so that, instead of the natural joints of the limb and the natural, muscular control of their motion, a new joint, over which the animal has no control, is formed where the fracture occurred. As the leg, shortened by the ends of the bones being forced past one another from the muscular contraction which invariably takes place, hangs dependent from the body it swings in an awkward and unnatural manner, permitting the toe and foot to assume positions in their relations to other parts of the body which otherwise would be impossible. If the fractured bone is so situated that the parts may be moved one upon another, a grating sound, known as crepitus, will be heard.

GENERAL TREATMENT OF FRACTURES.—When a fracture occurs, the advisability of attempting treatment must first be determined. If the animal is young, valuable, and of reasonably quiet temperament, and the fracture is not too great in extent, the chances of recovery are fair. On the other hand, if the animal should be of little value, irritable, advanced in years, and the fracture is a serious compound or comminuted one, the wiser course would generally be to put the creature out of its misery.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17     Next Part
Home - Random Browse