|
In starting to organize even a comparatively small shop, containing say from 75 to 100 men, it is best to begin by training in the full number of functional foremen, one for each function, since it must be remembered that about two out of three of those who are taught this work either leave of their own accord or prove unsatisfactory; and in addition, while both the workmen and bosses are adjusting themselves to their new duties, there are needed fully twice the number of bosses as are required to carry on the work after it is fully systematized.
Unfortunately, there is no means of selecting in advance those out of a number of candidates for a given work who are likely to prove successful. Many of those who appear to have all of the desired qualities, and who talk and appear the best, will turn out utter failures, while on the other hand, some of the most unlikely men rise to the top. The fact is that the more attractive qualities of good manners, education, and even special training and skill, which are more apparent on the surface, count for less in an executive position than the grit, determination and bulldog endurance and tenacity that knows no defeat and comes up smiling to be knocked down over and over again. The two qualities which count most for success in this kind of executive work are grit and what may be called "constructive imagination"—the faculty which enables a man to use the few facts that are stored in his mind in getting around the obstacles that oppose him, and in building up something useful in spite of them; and unfortunately, the presence of these qualities, together with honesty and common sense, can only be proved through an actual trial at executive work. As we all know, success at college or in the technical school does not indicate the presence of these qualities, even though the man may have worked hard. Mainly, it would seem, because the work of obtaining an education is principally that of absorption and assimilation; while that of active practical life is principally the direct reverse, namely, that of giving out.
In selecting men to be tried as foremen, or in fact for any position throughout the place, from the day laborer up, one of two different types of men should be chosen, according to the nature of the work to be done. For one class of work, men should be selected who are too good for the job; and for the other class of work, men who are barely good enough.
If the work is of a routine nature, in which the same operations are likely to be done over and over again, with no great variety, and in which there is no apparent prospect of a radical change being made, perhaps through a term of years, even though the work itself may be complicated in its nature, a man should be selected whose abilities are barely equal to the task. Time and training will fit him for his work, and since he will be better paid than in the past, and will realize that he has been given the chance to make his abilities yield him the largest return—all of the elements for promoting contentment will be present; and those men who are blessed with cheerful dispositions will become satisfied and remain so. Of course, a considerable part of mankind is so born or educated that permanent contentment is out of the question. No one, however, should be influenced by the discontent of this class.
On the other hand, if the work to be done is of great variety—particularly if improvements in methods are to be anticipated—throughout the period of active organization the men engaged in systematizing should be too good for their jobs. For such work, men should be selected whose mental caliber and attainments will fit them, ultimately at least, to command higher wages than can be afforded on the work which they are at. It will prove a wise policy to promote such men both to better positions and pay, when they have shown themselves capable of accomplishing results and the opportunity offers. The results which these high-class men will accomplish, and the comparatively short time which they will take in organizing, will much more than pay for the expense and trouble, later on, of training other men, cheaper and of less capacity, to take their places. In many cases, however, gang bosses and men will develop faster than new positions open for them. When this occurs, it will pay employers well to find them positions in other works, either with better pay, or larger opportunities; not only as a matter of kindly feeling and generosity toward their men, but even more with the object of promoting the best interests of their own establishments. For one man lost in this way, five will be stimulated to work to the very limit of their abilities, and will rise ultimately to take the place of the man who has gone, and the best class of men will apply for work where these methods prevail. But few employers, however, are sufficiently broad-minded to adopt this policy. They dread the trouble and temporary inconvenience incident to training in new men.
Mr. James M. Dodge, Chairman of the Board of the Link-Belt Company, is one of the few men with whom the writer is acquainted who has been led by his kindly instincts, as well as by a far-sighted policy, to treat his employees in this way; and this, together with the personal magnetism and influence which belong to men of his type, has done much to render his shop one of the model establishments of the country, certainly as far as the relations of employer and men are concerned. On the other hand, this policy of promoting men and finding them new positions has its limits. No worse mistake can be made than that of allowing an establishment to be looked upon as a training school, to be used mainly for the education of many of its employees. All employees should bear in mind that each shop exists, first, last, and all the time, for the purpose of paying dividends to its owners. They should have patience, and never lose sight of this fact. And no man should expect promotion until after he has trained his successor to take his place. The writer is quite sure that in his own case, as a young man, no one element was of such assistance to him in obtaining new opportunities as the practice of invariably training another man to fill his position before asking for advancement.
The first of the functional foremen to be brought into actual contact with the men should be the inspector; and the whole system of inspection, with its proper safeguards, should be in smooth and successful operation before any steps are taken toward stimulating the men to a larger output; otherwise an increase in quantity will probably be accompanied by a falling off in quality.
Next choose for the application of the two principal functional foremen, viz., the speed boss and the gang boss, that portion of the work in which there is the largest need of, and opportunity for, making a gain. It is of the utmost importance that the first combined application of time study, slide rules, instruction cards, functional foremanship, and a premium for a large daily task should prove a success both for the workmen and for the company, and for this reason a simple class of work should be chosen for a start. The entire efforts of the new management should be centered on one point, and continue there until unqualified success has been attained.
When once this gain has been made, a peg should be put in which shall keep it from sliding back in the least; and it is here that the task idea with a time limit for each job will be found most useful. Under ordinary piece work, or the Towne-Halsey plan, the men are likely at any time to slide back a considerable distance without having it particularly noticed either by them or the management. With the task idea, the first falling off is instantly felt by the workman through the loss of his day's bonus, or his differential rate, and is thereby also forcibly brought to the attention of the management.
There is one rather natural difficulty which arises when the functional foremanship is first introduced. Men who were formerly either gang bosses, or foremen, are usually chosen as functional foremen, and these men, when they find their duties restricted to their particular functions, while they formerly were called upon to do everything, at first feel dissatisfied. They think that their field of usefulness is being greatly contracted. This is, however, a theoretical difficulty, which disappears when they really get into the full swing of their new positions. In fact the new position demands an amount of special information, forethought, and a clear-cut, definite responsibility that they have never even approximated in the past, and which is amply sufficient to keep all of their best faculties and energies alive and fully occupied. It is the experience of the writer that there is a great commercial demand for men with this sort of definite knowledge, who are used to accepting real responsibility and getting results; so that the training in their new duties renders them more instead of less valuable.
As a rule, the writer has found that those who were growling the most, and were loudest in asserting that they ought to be doing the whole thing, were only one-half or one-quarter performing their own particular functions. This desire to do every one's else work in addition to their own generally disappears when they are held to strict account in their particular line, and are given enough work to keep them hustling.
There are many people who will disapprove of the whole scheme of a planning department to do the thinking for the men, as well as a number of foremen to assist and lead each man in his work, on the ground that this does not tend to promote independence, self-reliance, and originality in the individual. Those holding this view, however, must take exception to the whole trend of modern industrial development; and it appears to the writer that they overlook the real facts in the case.
It is true, for instance, that the planning room, and functional foremanship, render it possible for an intelligent laborer or helper in time to do much of the work now done by a machinist. Is not this a good thing for the laborer and helper? He is given a higher class of work, which tends to develop him and gives him better wages. In the sympathy for the machinist the case of the laborer is overlooked. This sympathy for the machinist is, however, wasted, since the machinist, with the aid of the new system, will rise to a higher class of work which he was unable to do in the past, and in addition, divided or functional foremanship will call for a larger number of men in this class, so that men, who must otherwise have remained machinists all their lives, will have the opportunity of rising to a foremanship.
The demand for men of originality and brains was never so great as it is now, and the modern subdivision of labor, instead of dwarfing men, enables them all along the line to rise to a higher plane of efficiency, involving at the same time more brain work and less monotony. The type of man who was formerly a day laborer and digging dirt is now for instance making shoes in a shoe factory. The dirt handling is done by Italians or Hungarians.
After the planning room with functional foremanship has accomplished its most difficult task, of teaching the men how to do a full day's work themselves, and also how to get it out of their machines steadily, then, if desired, the number of non-producers can be diminished, preferably, by giving each type of functional foreman more to do in his specialty; or in the case of a very small shop, by combining two different functions in the same man. The former expedient is, however, much to be preferred to the latter. There need never be any worry about what is to become of those engaged in systematizing after the period of active organization is over. The difficulty will still remain even with functional foremanship, that of getting enough good men to fill the positions, and the demand for competent gang bosses will always be so great that no good boss need look for a job.
Of all the farces in management the greatest is that of an establishment organized along well planned lines, with all of the elements needed for success, and yet which fails to get either output or economy. There must be some man or men present in the organization who will not mistake the form for the essence, and who will have brains enough to find out those of their employees who "get there," and nerve enough to make it unpleasant for those who fail, as well as to reward those who succeed. No system can do away with the need of real men. Both system and good men are needed, and after introducing the best system, success will be in proportion to the ability, consistency, and respected authority of the management.
In a book of this sort, it would be manifestly impossible to discuss at any length all of the details which go toward making the system a success. Some of them are of such importance as to render at least a brief reference to them necessary. And first among these comes the study of unit times.
This, as already explained, is the most important element of the system advocated by the writer. Without it, the definite, clear-cut directions given to the workman, and the assigning of a full, yet just, daily task, with its premium for success, would be impossible; and the arch without the keystone would fall to the ground.
In 1883, while foreman of the machine shop of the Midvale Steel Company of Philadelphia, it occurred to the writer that it was simpler to time with a stop watch each of the elements of the various kinds of work done in the place, and then find the quickest time in which each job could be done by summing up the total times of its component parts, than it was to search through the time records of former jobs and guess at the proper time and price. After practicing this method of time study himself for about a year, as well as circumstances would permit, it became evident that the system was a success.
The writer then established the time-study and rate-fixing department, which has given out piece work prices in the place ever since.
This department far more than paid for itself from the very start; but it was several years before the full benefits of the system were felt, owing to the fact that the best methods of making and recording time observations, as well as of determining the maximum capacity of each of the machines in the place, and of making working tables and time tables, were not at first adopted.
It has been the writer's experience that the difficulties of scientific time study are underestimated at first, and greatly overestimated after actually trying the work for two or three months. The average manager who decides to undertake the study of unit times in his works fails at first to realize that he is starting a new art or trade. He understands, for instance, the difficulties which he would meet with in establishing a drafting room, and would look for but small results at first, if he were to give a bright man the task of making drawings, who had never worked in a drafting room, and who was not even familiar with drafting implements and methods, but he entirely underestimates the difficulties of this new trade.
The art of studying unit times is quite as important and as difficult as that of the draftsman. It should be undertaken seriously, and looked upon as a profession. It has its own peculiar implements and methods, without the use and understanding of which progress will necessarily be slow, and in the absence of which there will be more failures than successes scored at first.
When, on the other hand, an energetic, determined man goes at time study as if it were his life's work, with the determination to succeed, the results which he can secure are little short of astounding. The difficulties of the task will be felt at once and so strongly by any one who undertakes it, that it seems important to encourage the beginner by giving at least one illustration of what has been accomplished.
Mr. Sanford E. Thompson, C. E., started in 1896 with but small help from the writer, except as far as the implements and methods are concerned, to study the time required to do all kinds of work in the building trades. In six years he has made a complete study of eight of the most important trades—excavation, masonry (including sewer-work and paving), carpentry, concrete and cement work, lathing and plastering, slating and roofing and rock quarrying. He took every stop watch observation himself and then, with the aid of two comparatively cheap assistants, worked up and tabulated all of his data ready for the printer. The magnitude of this undertaking will be appreciated when it is understood that the tables and descriptive matter for one of these trades alone take up about 250 pages. Mr. Thompson and the writer are both engineers, but neither of us was especially familiar with the above trades, and this work could not have been accomplished in a lifetime without the study of elementary units with a stop watch.
In the course of this work, Mr. Thompson has developed what are in many respects the best implements in use, and with his permission some of them will be described. The blank form or note sheet used by Mr. Thompson, shown in Fig. 2 (see page 151), contains essentially: [Transcriber's note — Figure 2 omitted]
(1) Space for the description of the work and notes in regard to it.
(2) A place for recording the total time of complete operations—that is, the gross time including all necessary delays, for doing a whole job or large portions of it.
(3) Lines for setting down the "detail operations, or units" into which any piece of work may be divided, followed by columns for entering the averages obtained from the observations.
(4) Squares for recording the readings of the stop watch when observing the times of these elements. If these squares are filled, additional records can be entered on the back. The size of the sheets, which should be of best quality ledger paper, is 8 3/4 inches wide by 7 inches long, and by folding in the center they can be conveniently carried in the pocket, or placed in a case (see Fig. 3, page 153) containing one or more stop watches.
This case, or "watch book," is another device of Mr. Thompson's. It consists of a frame work, containing concealed in it one, two, or three watches, whose stop and start movements can be operated by pressing with the fingers of the left hand upon the proper portion of the cover of the note-book without the knowledge of the workman who is being observed. The frame is bound in a leather case resembling a pocket note-book, and has a place for the note sheets described.
The writer does not believe at all in the policy of spying upon the workman when taking time observations for the purpose of time study. If the men observed are to be ultimately affected by the results of these observations, it is generally best to come out openly, and let them know that they are being timed, and what the object of the timing is. There are many cases, however, in which telling the workman that he was being timed in a minute way would only result in a row, and in defeating the whole object of the timing; particularly when only a few time units are to be studied on one man's work, and when this man will not be personally affected by the results of the observations. In these cases, the watch book of Mr. Thompson, holding the watches in the cover, is especially useful. A good deal of judgment is required to know when to time openly, or the reverse.
FIGURE 3. -WATCH BOOK FOR TIME STUDY [Transcriber's note — Figure 3 omitted]
The operation selected for illustration on the note sheet shown in Fig. 2, page 151, is the excavation of earth with wheelbarrows, and the values given are fair averages of actual contract work where the wheelbarrow man fills his own barrow. It is obvious that similar methods of analyzing and recording may be applied to work ranging from unloading coal to skilled labor on fine machine tools.
The method of using the note sheets for timing a workman is as follows:
After entering the necessary descriptive matter at the top of the sheet, divide the operation to be timed into its elementary units, and write these units one after another under the heading "Detail Operations." If the job is long and complicated, it may be analyzed while the timing is going on, and the elementary units entered then instead of beforehand. In wheelbarrow work as illustrated in the example shown on the note sheet, the elementary units consist of "filling barrow," "starting" (which includes throwing down shovel and lifting handles of barrow), "wheeling full," etc. These units might have been further subdivided—the first one into time for loading one shovelful, or still further into the time for filling and the time for emptying each shovelful. The letters a, b, c, etc., which are printed, are simply for convenience in designating the elements.
We are now ready for the stop watch, which, to save clerical work, should be provided with a decimal dial similar to that shown in Fig. 4. The method of using this and recording the times depends upon the character of the time observations. In all cases, however, the stop watch times are recorded in the columns headed "Time" at the top of the right-hand half of the note sheet. These columns are the only place on the face of the sheet where stop watch readings are to be entered. If more space is required for these times, they should be entered on the back of the sheet. The rest of the figures (except those on the left-hand side of the note sheet, which may be taken from an ordinary timepiece) are the results of calculation, and may be made in the office by any clerk.
FIGURE 4. -STOP WATCH WITH DECIMAL FACE [Transcriber's note — omitted]
As has been stated, the method of recording the stop watch observations depends upon the work which is being observed. If the operation consists of the same element repeated over and over, the time of each may be set down separately; or, if the element is very small, the total time of, say, ten may be entered as a fraction, with the time for all ten observations as the numerator, and the number of observations for the denominator.
In the illustration given on the note sheet, Fig. 2, the operation consists of a series of elements. In such a case, the letters designating each elementary unit are entered under the columns "Op.," the stop watch is thrown to zero, and started as the man commences to work. As each new division of the operation (that is, as each elementary unit or unit time) is begun, the time is recorded. During any special delay the watch may be stopped, and started again from the same point, although, as a rule, Mr. Thompson advocates allowing the watch to run continuously, and enters the time of such a stop, designating it for convenience by the letter "Y."
In the case we are considering, two kinds of materials were handled sand and clay. The time of each of the unit times, except the "filling," is the same for both sand and clay; hence, if we have sufficient observations on either one of the materials, the only element of the other which requires to be timed is the loading. This illustrates one of the merits of the elementary system.
The column "Av." is filled from the preceding column. The figures thus found are the actual net times of the different unit times. These unit times are averaged and entered in the "Time" column, on the lower half of the right-hand page, preceded, in the "No." column, by the number of observations which have been taken of each unit. These times, combined and compared with the gross times on the left-hand page, will determine the percentage lost in resting and other necessary delays. A convenient method for obtaining the time of an operation, like picking, in which the quantity is difficult to measure, is suggested by the records on the left-hand page.
The percentage of the time taken in rest and other necessary delays, which is noted on the sheet as, in this case, about 27 per cent, is obtained by a comparison of the average net "time per barrow" on the right with the "time per barrow" on the left. The latter is the quotient of the total time shoveling and wheeling divided by the number of loads wheeled.
It must be remembered that the example given is simply for illustration. To obtain accurate average times, for any item of work under specified conditions, it is necessary to take observations upon a number of men, each of whom is at work under conditions which are comparable. The total number of observations which should be taken of any one elementary unit depends upon its variableness, and also upon its frequency of occurrence in a day's work.
An expert observer can, on many kinds of work, time two or three men at the same time with the same watch, or he can operate two or three watches—one for each man. A note sheet can contain only a comparatively few observations. It is not convenient to make it of larger size than the dimensions given, when a watch-book is to be used, although it is perfectly feasible to make the horizontal rulings 8 lines to the inch instead of 5 lines to the inch as on the sample sheet. There will have to be, in almost all cases, a large number of note sheets on the same subject. Some system must be arranged for collecting and tabulating these records. On Tables 2A and 2B (pages 160 and 161) is shown the form used for tabulating. The length should be either 17 or 22 inches. The height of the form is 11 inches. With these dimensions a form may be folded and filed with ordinary letter sheets (8 1/2 inches by 11 inches). The ruling which has been found most convenient is for the vertical divisions 3 columns to 1 1/8 inches, while the horizontal lines are ruled 6 to the inch. The columns may, or may not, have printed headings.
The data from the note sheet in Fig. 2 (page 151) is copied on to the table for illustration. The first columns of the table are descriptive. The rest of them are arranged so as to include all of the unit times, with any other data which are to be averaged or used when studying the results. At the extreme right of the sheet the gross times, including rest and necessary delay, are recorded and the percentages of rest are calculated.
Formulae are convenient for combining the elements. For simplicity, in the example of barrow excavation, each of the unit times may be designated by the same letters used on the note sheet (Fig. 2) although in practice each element can best be designated .by the initial letters of the words describing it.
Let
a = time filling a barrow with any material.
b = time preparing to wheel.
c = time wheeling full barrow 100 feet.
d = time dumping and turning.
e = time returning 100 feet with empty barrow.
f = time dropping barrow and starting to shovel.
p = time loosening one cubic yard with the pick.
P = percentage of a day required to rest and necessary delays.
L = load of a barrow in cubic feet.
B = time per cubic yard picking, loading, and wheeling any given kind of earth to any given distance when the wheeler loads his own barrow.
[Transcriber's note — formula and Tables omitted]
This general formula for barrow work can be simplified by choosing average values for the constants, and substituting numerals for the letters now representing them. Substituting the average values from the note sheet on Fig. 2 (page 151), our formula becomes: [Transcriber's note — formula omitted]
In classes of work where the percentage of rest varies with the different elements of an operation it is most convenient to correct all of the elementary times by the proper percentages before combining them. Sometimes after having constructed a general formula, it may be solved by setting down the substitute numerical values in a vertical column for direct addition.
Table 3 (page 164) gives the times for throwing earth to different distances and different heights. It will be seen that for each special material the time for filling shovel remains the same regardless of the distance to which it is thrown. Each kind of material requires a different time for filling the shovel. The time throwing one shovelful, on the other hand, varies with the length of throw, but for any given distance it is the same for all of the earths. If the earth is of such a nature that it sticks to the shovel, this relation does not hold. For the elements of shoveling we have therefore:
s = time filling shovel and straightening up ready to throw.
t = time throwing one shovelful.
w = time walking one foot with loaded shovel.
w1 = time returning one foot with empty shovel.
L = load of a shovel in cubic feet.
P = percentage of a day required for rest and necessary delays.
T = time for shoveling one cubic yard.
Our formula, then, for handling any earth after it is loosened, is: [Transcriber's note — omitted]
Where the material is simply thrown without walking, the formula becomes:
If weights are used instead of volumes: [Transcriber's note — omitted]
The writer has found the printed form shown on the insert, Fig. 5 (opposite page 166), useful in studying unit times in a certain class of the hand work done in a machine shop. This blank is fastened to a thin board held in the left hand and resting on the left arm of the observer. A stop watch is inserted in a small compartment attached to the back of the board at a point a little above its center, the face of the watch being seen from the front of the board through a small flap cut partly loose from the observation blank. While the watch is operated by the fingers of the left hand, the right hand of the operator is at all times free to enter the time observations on the blank. A pencil sketch of the work to be observed is made in the blank space on the upper left-hand portion of the sheet. In using this blank, of course, all attempt at secrecy is abandoned.
The mistake usually made by beginners is that of failing to note in sufficient detail the various conditions surrounding the job. It is not at first appreciated that the whole work of the time observer is useless if there is any doubt as to even one of these conditions. Such items, for instance, as the name of the man or men on the work, the number of helpers, and exact description of all of the implements used, even those which seem unimportant, such, for instance, as the diameter and length of bolts and the style of clamps used, the weight of the piece upon which work is being done, etc.
It is also desirable that, as soon as practicable after taking a few complete sets of time observations, the operator should be given the opportunity of working up one or two sets at least by summing up the unit times and allowing the proper per cent of rest, etc., and putting them into practical use, either by comparing his results with the actual time of a job which is known to be done in fast time, or by setting a time which a workman is to live up to.
The actual practical trial of the time student's work is most useful, both in teaching him the necessity of carefully noting the minutest details, and on the other hand convincing him of the practicability of the whole method, and in encouraging him in future work.
In making time observations, absolutely nothing should be left to the memory of the student. Every item, even those which appear self-evident, should be accurately recorded. The writer, and the assistant who immediately followed him, both made the mistake of not putting the results of much of their time study into use soon enough, so that many times observations which extended over a period of months were thrown away, in most instances because of failure to note some apparently unimportant detail.
It may be needless to state that when the results of time observations are first worked up, it will take far more time to pick out and add up the proper unit times, and allow the proper percentages of rest, etc., than it originally did for the workman to do the job. This fact need not disturb the operator, however. It will be evident that the slow time made at the start is due to his lack of experience, and he must take it for granted that later many short-cuts can be found, and that a man with an average memory will be able with practice to carry all of the important time units in his head.
No system of time study can be looked upon as a success unless it enables the time observer, after a reasonable amount of study, to predict with accuracy how long it should take a good man to do almost any job in the particular trade, or branch of a trade, to which the time student has been devoting himself. It is true that hardly any two jobs in a given trade are exactly the same and that if a time student were to follow the old method of studying and recording the whole time required to do the various jobs which came under his observation, without dividing them into their elements, he would make comparatively small progress in a lifetime, and at best would become a skilful guesser. It is, however, equally true that all of the work done in a given trade can be divided into a comparatively small number of elements or units, and that with proper implements arid methods it is comparatively easy for a skilled observer to determine the time required by a good man to do any one of these elementary units.
Having carefully recorded the time for each of these elements, it is a simple matter to divide each job into its elementary units, and by adding their times together, to arrive accurately at the total time for the job. The elements of the art which at first appear most difficult to investigate are the percentages which should be allowed, under different conditions, for rest and for accidental or unavoidable delays. These elements can, however, be studied with about the same accuracy as the others.
Perhaps the greatest difficulty rests upon the fact that no two men work at exactly the same speed. The writer has found it best to take his time observations on first-class men only, when they can be found; and these men should be timed when working at their best. Having obtained the best time of a first-class man, it is a simple matter to determine the percentage which an average man will fall short of this maximum.
It is a good plan to pay a first-class man an extra price while his work is being timed. When work men once understand that the time study is being made to enable them to earn higher wages, the writer has found them quite ready to help instead of hindering him in his work. The division of a given job into its proper elementary units, before beginning the time study, calls for considerable skill and good judgment. If the job to be observed is one which will be repeated over and over again, or if it is one of a series of similar jobs which form an important part of the standard work of an establishment, or of the trade which is being studied, then it is best to divide the job into elements which are rudimentary. In some cases this subdivision should be carried to a point which seems at first glance almost absurd.
For example, in the case of the study of the art of shoveling earths, referred to in Table 3, page 164, it will be seen that handling a shovelful of dirt is subdivided into, s = "Time filling shovel and straightening up ready to throw," and t = "Time throwing one shovelful."
The first impression is that this minute subdivision of the work into elements, neither of which takes more than five or six seconds to perform, is little short of preposterous; yet if a rapid and thorough time study of the art of shoveling is to be made, this subdivision simplifies the work, and makes time study quicker and more thorough.
The reasons for this are twofold:
First. In the art of shoveling dirt, for instance, the study of fifty or sixty small elements, like those referred to above, will enable one to fix the exact time for many thousands of complete jobs of shoveling, constituting a very considerable proportion of the entire art.
Second. The study of single small elements is simpler, quicker, and more certain to be successful than that of a large number of elements combined. The greater the length of time involved in a single item of time study, the greater will be the likelihood of interruptions or accidents, which will render the results obtained by the observer questionable or even useless.
There is a considerable part of the work of most establishments that is not what may be called standard work, namely, that which is repeated many times. Such jobs as this can be divided for time study into groups, each of which contains several rudimentary elements. A division of this sort will be seen by referring to the data entered on face of note sheet, Fig. 2 (page 151).
In this case, instead of observing, first, the "time to fill a shovel," and then the time to "throw it into a wheelbarrow," etc., a number of these more rudimentary operations are grouped into the single operation of
a = "Time filling a wheelbarrow with any material."
This group of operations is thus studied as a whole.
Another illustration of the degree of subdivision which is desirable will be found by referring to the inserts, Fig. 5 (opposite page 166).
Where a general study is being made of the time required to do all kinds of hand work connected with and using machine tools, the items printed in detail should be timed singly.
When some special job, not to be repeated many times, is to be studied, then several elementary items can be grouped together and studied as a whole, in such groups for example as:
(a) Getting job ready to set.
(b) Setting work.
(c) Setting tool.
(d) Extra hand work.
(e) Removing work.
And in some cases even these groups can be further condensed.
An illustration of the time units which it is desirable to sum up and properly record and index for a certain kind of lathe work is given in Fig. 6.
SIGNED TOTAL FIGURE 6. -INSTRUCTION CARD FOR LATHE WORK (not shown)
The writer has found that when some jobs are divided into their proper elements, certain of these elementary operations are so very small in time that it is difficult, if not impossible, to obtain accurate readings on the watch. In such cases, where the work consists of recurring cycles of elementary operations, that is, where a series of elementary operations is repeated over and over again, it is possible to take sets of observations on two or more of the successive elementary operations which occur in regular order, and from the times thus obtained to calculate the time of each element. An example of this is the work of loading pig iron on to bogies. The elementary operations or elements consist of:
(a) Picking up a pig.
(b) Walking with it to the bogie.
(c) Throwing or placing it on the bogie.
(d) Returning to the pile of pigs.
Here the length of time occupied in picking up the pig and throwing or placing it on the bogie is so small as to be difficult to time, but observations may be taken successively on the elements in sets of three. We may, in other words, take one set of observations upon the combined time of the three elements numbered 1, 2, 3; another set upon elements 2, 3, 4; another set upon elements, 3, 4, 1, and still another upon the set 4,1, 2. By algebraic equations we may solve the values of each of the separate elements.
If we take a cycle consisting of five (5) elementary operations, a, b, c, d, e, and let observations be taken on three of them at a time, we have the equations:
[Transcriber's Note: omitted]
The writer was surprised to find, however, that while in some cases these equations were readily solved, in others they were impossible of solution. My friend, Mr. Carl G. Barth, when the matter was referred to him, soon developed the fact that the number of elements of a cycle which may be observed together is subject to a mathematical law, which is expressed by him as follows:
The number of successive elements observed together must be prime to the total number of elements in the cycle.
Namely, the number of elements in any set must contain no factors; that is, must be divisible by no numbers which are contained in the total number of elements. The following table is, therefore, calculated by Mr. Barth showing how many operations may be observed together in various cases. The last column gives the number of observations in a set which will lead to the determination of the results with the minimum of labor.
[Transcriber's note — Table omitted]
When time study is undertaken in a systematic way, it becomes possible to do greater justice in many ways both to employers and workmen than has been done in the past. For example, we all know that the first time that even a skilled workman does a job it takes him a longer time than is required after he is familiar with his work, and used to a particular sequence of operations. The practiced time student can not only figure out the time in which a piece of work should be done by a good man, after he has become familiar with this particular job through practice, but he should also be able to state how much more time would be required to do the same job when a good man goes at it for the first time; and this knowledge would make it possible to assign one time limit and price for new work, and a smaller time and price for the same job after being repeated, which is much more fair and just to both parties than the usual fixed price.
As the writer has said several times, the difference between the best speed of a first-class man and the actual speed of the average man is very great. One of the most difficult pieces of work which must be faced by the man who is to set the daily tasks is to decide just how hard it is wise for him to make the task. Shall it be fixed for a first-class man, and if not, then at what point between the first-class and the average? One fact is clear, it should always be well above the performance of the average man, since men will invariably do better if a bonus is offered them than they have done without this incentive. The writer has, in almost all cases, solved this part of the problem by fixing a task which required a first-class man to do his best, and then offering a good round premium. When this high standard is set it takes longer to raise the men up to it. But it is surprising after all how rapidly they develop.
The precise point between the average and the first-class, which is selected for the task, should depend largely upon the labor market in which the works is situated. If the works were in a fine labor market, such, for instance, as that of Philadelphia, there is no question that the highest standard should be aimed at. If, on the other hand, the shop required a good deal of skilled labor, and was situated in a small country town, it might be wise to aim rather lower. There is a great difference in the labor markets of even some of the adjoining states in this country, and in one instance, in which the writer was aiming at a high standard in organizing a works, he found it necessary to import almost all of his men from a neighboring state before meeting with success.
Whether the bonus is given only when the work is done in the quickest time or at some point between this and the average time, in all cases the instruction card should state the best time in which the work can be done by a first-class man. There will then be no suspicion on the part of the men when a longer "bonus time" is allowed that the time student does not really know the possibilities of the case. For example, the instruction card might read:
Proper time . . . . . 65 minutes
Bonus given first time job is done. 108 minutes
It is of the greatest importance that the man who has charge of assigning tasks should be perfectly straightforward in all of his dealings with the men. Neither in this nor in any other branch of the management should a man make any pretense of having more knowledge than he really possesses. He should impress the workmen with the fact that he is dead in earnest, and that he fully intends to know all about it some day; but he should make no claim to omniscience, and should always be ready to acknowledge and correct an error if he makes one. This combination of determination and frankness establishes a sound and healthy relation between the management and men.
There is no class of work which cannot be profitably submitted to time study, by dividing it into its time elements, except such operations as take place in the head of the worker; and the writer has even seen a time study made of the speed of an average and first-class boy in solving problems in mathematics.
Clerk work can well be submitted to time study, and a daily task assigned in work of this class which at first appears to be very miscellaneous in its character.
One of the needs of modern management is that of literature on the subject of time study. The writer quotes as follows from his paper on "A Piece Rate System," written in 1895:
"Practically the greatest need felt in an establishment wishing to start a rate-fixing department is the lack of data as to the proper rate of speed at which work should be done. There are hundreds of operations which are common to most large establishments, yet each concern studies the speed problem for itself, and days of labor are wasted in what should be settled once for all, and recorded in a form which is available to all manufacturers.
"What is needed is a hand-book on the speed with which work can be done, similar to the elementary engineering handbooks. And the writer ventures to predict that such a book will before long be forthcoming. Such a book should describe the best method of making, recording, tabulating, and indexing time observations, since much time and effort are wasted by the adoption of inferior methods."
Unfortunately this prediction has not yet been realized. The writer's chief object in inducing Mr. Thompson to undertake a scientific time study of the various building trades and to join him in a publication of this work was to demonstrate on a large scale not only the desirability of accurate time study, but the efficiency and superiority of the method of studying elementary units as outlined above. He trusts that his object may be realized and that the publication of this book may be followed by similar works on other trades and more particularly on the details of machine shop practice, in which he is especially interested.
As a machine shop has been chosen to illustrate the application of such details of scientific management as time study, the planning department, functional foremanship, instruction cards, etc., the description would be far from complete without at least a brief reference to the methods employed in solving the time problem for machine tools.
The study of this subject involved the solution of four important problems:
First. The power required to cut different kinds of metals with tools of various shapes when using different depths of cut and coarseness of feed, and also the power required to feed the tool under varying conditions.
Second. An investigation of the laws governing the cutting of metals with tools, chiefly with the object of determining the effect upon the best cutting speed of each of the following variables:
(a) The quality of tool steel and treatment of tools (i.e., in heating, forging, and tempering them).
(b) The shape of tool (i.e., the curve or line of the cutting edge, the lip angle, and clearance angle)
(c) The duration of cut or the length of time the tool is required to last before being re-ground.
(d) The quality or hardness of the metal being cut (as to its effect on cutting speed).
(e) The depth of the cut.
(f) The thickness of the feed or shaving
(g) The effect on cutting speed of using water or other cooling medium on the tool.
Third. The best methods of analyzing the driving and feeding power of machine tools and, after considering their limitations as to speeds and feeds, of deciding upon the proper counter-shaft or other general driving speeds.
Fourth. After the study of the first, second, and third problems had resulted in the discovery of certain clearly defined laws, which were expressed by mathematical formulae, the last and most difficult task of all lay in finding a means for solving the entire problem which should be so practical and simple as to enable an ordinary mechanic to answer quickly and accurately for each machine in the shop the question, "What driving speed, feed, and depth of cut will in each particular case do the work in the quickest time?"
In 1881, in the machine shop of the Midvale Steel Company, the writer began a systematic study of the laws involved in the first and second problems above referred to by devoting the entire time of a large vertical boring mill to this work, with special arrangements for varying the drive so as to obtain any desired speed. The needed uniformity of the metal was obtained by using large locomotive tires of known chemical composition, physical properties and hardness, weighing from 1,500 to 2,000 pounds.
For the greater part of the succeeding 22 years these experiments were carried on, first at Midvale and later in several other shops, under the general direction of the writer, by his friends and assistants, six machines having been at various times especially fitted up for this purpose.
The exact determination of these laws and their reduction to formulae have proved a slow but most interesting problem; but by far the most difficult undertaking has been the development of the methods and finally the appliances (i.e., slide rules) for making practical use of these laws after they were discovered.
In 1884 the writer succeeded in making a slow solution of this problem with the help of his friend, Mr. Geo. M. Sinclair, by indicating the values of these variables through curves and laying down one set of curves over another. Later my friend, Mr. H. L. Gantt, after devoting about 1 1/2 years exclusively to this work, obtained a much more rapid and simple solution. It was not, however, until 1900, in the works of the Bethlehem Steel Company, that Mr. Carl G. Barth, with the assistance of Mr. Gantt and a small amount of help from the writer, succeeded in developing a slide rule by means of which the entire problem can be accurately and quickly solved by any mechanic.
The difficulty from a mathematical standpoint of obtaining a rapid and accurate solution of this problem will be appreciated when it is remembered that twelve independent variables enter into each problem, and that a change in any of these will affect the answer. The instruction card can be put to wide and varied use. It is to the art of management what the drawing is to engineering, and, like the latter, should vary in size and form according to the amount and variety of the information which it is to convey. In some cases it should consist of a pencil memorandum on a small piece of paper which will be sent directly to the man requiring the instructions, while in others it will be in the form of several pages of typewritten matter, properly varnished and mounted, and issued under the check or other record system, so that it can be used time after time. A description of an instruction card of this kind may be useful.
After the writer had become convinced of the economy of standard methods and appliances, and the desirability of relieving the men as far as possible from the necessity of doing the planning, while master mechanic at Midvale, he tried to get his assistant to write a complete instruction card for overhauling and cleaning the boilers at regular periods, to be sure that the inspection was complete, and that while the work was thoroughly done, the boilers should be out of use as short a time as possible, and also to have the various elements of this work done on piece work instead of by the day. His assistant, not having undertaken work of this kind before, failed at it, and the writer was forced to do it himself. He did all of the work of chipping, cleaning, and overhauling a set of boilers and at the same time made a careful time study of each of the elements of the work. This time study showed that a great part of the time was lost owing to the constrained position of the workman. Thick pads were made to fasten to the elbows, knees, and hips; special tools and appliances were made for the various details of the work; a complete list of the tools and implements was entered on the instruction card, each tool being stamped with its own number for identification, and all were issued from the tool room in a tool box so as to keep them together and save time. A separate piece work price was fixed for each of the elements of the job and a thorough inspection of each part of the work secured as it was completed.
The instruction card for this work filled several typewritten pages, and described in detail the order in which the operations should be done and the exact details of each man's work, with the number of each tool required, piece work prices, etc.
The whole scheme was much laughed at when it first went into use, but the trouble taken was fully justified, for the work was better done than ever before, and it cost only eleven dollars to completely overhaul a set of 300 H.P. boilers by this method, while the average cost of doing the same work on day work without an instruction card was sixty-two dollars.
Regarding the personal relations which should be maintained between employers and their men, the writer quotes the following paragraphs from a paper written in 1895. Additional experience has only served to confirm and strengthen these views; and although the greater part of this time, in his work of shop organization, has been devoted to the difficult and delicate task of inducing workmen to change their ways of doing things he has never been opposed by a strike.
"There has never been a strike by men working under this system, although it has been applied at the Midvale Steel Works for the past ten years; and the steel business has proved during this period the most fruitful field for labor organizations and strikes. And this notwithstanding the fact that the Midvale Company has never prevented its men from joining any labor organization. All of the best men in the company saw clearly that the success of a labor organization meant the lowering of their wages in order that the inferior men might earn more, and, of course, could not be persuaded to join.
"I attribute a great part of this success in avoiding strikes to the high wages which the best men were able to earn with the differential rates, and to the pleasant feeling fostered by this system; but this is by no means the whole cause. It has for years been the policy of that company to stimulate the personal ambition of every man in their employ by promoting them either in wages or position whenever they deserved it and the opportunity came.
"A careful record has been kept of each man's good points as well as his shortcomings, and one of the principal duties of each foreman was to make this careful study of his men so that substantial justice could be done to each. When men throughout an establishment are paid varying rates of day-work wages according to their individual worth, some being above and some below the average, it cannot be for the interest of those receiving high pay to join a union with the cheap men.
"No system of management, however good, should be applied in a wooden way. The proper personal relations should always be maintained between the employers and men; and even the prejudices of the workmen should be considered in dealing with them.
"The employer who goes through his works with kid gloves on, and is never known to dirty his hands or clothes, and who either talks to his men in a condescending or patronizing way, or else not at all, has no chance whatever of ascertaining their real thoughts or feelings.
"Above all is it desirable that men should be talked to on their own level by those who are over them. Each man should be encouraged to discuss any trouble which he may have, either in the works or outside, with those over him. Men would far rather even be blamed by their bosses, especially if the 'tearing out' has a touch of human nature and feeling in it, than to be passed by day after day without a word, and with no more notice than if they were part of the machinery.
"The opportunity which each man should have of airing his mind freely, and having it out with his employers, is a safety-valve; and if the superintendents are reasonable men, and listen to and treat with respect what their men have to say, there is absolutely no reason for labor unions and strikes.
"It is not the large charities (however generous they may be) that are needed or appreciated by workmen so much as small acts of personal kindness and sympathy, which establish a bond of friendly feeling between them and their employers.
"The moral effect of this system on the men is marked. The feeling that substantial justice is being done them renders them on the whole much more manly, straightforward, and truthful. They work more cheerfully, and are more obliging to one another and their employers. They are not soured, as under the old system, by brooding over the injustice done them; and their spare minutes are not spent to the same extent in criticizing their employers."
The writer has a profound respect for the working men of this country. He is proud to say that he has as many firm friends among them as among his other friends who were born in a different class, and he believes that quite as many men of fine character and ability are to be found among the former as in the latter. Being himself a college educated man, and having filled the various positions of foreman, master mechanic, chief draftsman, chief engineer, general superintendent, general manager, auditor, and head of the sales department, on the one hand, and on the other hand having been for several years a workman, as apprentice, laborer, machinist, and gang boss, his sympathies are equally divided between the two classes.
He is firmly convinced that the best interests of workmen and their employers are the same; so that in his criticism of labor unions he feels that he is advocating the interests of both sides. The following paragraphs on this subject are quoted from the paper written in 1895 and above referred to:
"The author is far from taking the view held by many manufacturers that labor unions are an almost unmitigated detriment to those who join them, as well as to employers and the general public.
"The labor unions—particularly the trades unions of England—have rendered a great service, not only to their members, but to the world, in shortening the hours of labor and in modifying the hardships and improving the conditions of wage workers.
"In the writer's judgment the system of treating with labor unions would seem to occupy a middle position among the various methods of adjusting the relations between employers and men.
"When employers herd their men together in classes, pay all of each class the same wages, and offer none of them any inducements to work harder or do better than the average, the only remedy for the men lies in combination; and frequently the only possible answer to encroachments on the part of their employers is a strike.
"This state of affairs is far from satisfactory to either employers or men, and the writer believes the system of regulating the wages and conditions of employment of whole classes of men by conference and agreement between the leaders of unions and manufacturers to be vastly inferior, both in its moral effect on the men and on the material interests of both parties, to the plan of stimulating each workman's ambition by paying him according to his individual worth, and without limiting him to the rate of work or pay of the average of his class."
The amount of work which a man should do in a day, what constitutes proper pay for this work, and the maximum number of hours per day which a man should work, together form the most important elements which are discussed between workmen and their employers. The writer has attempted to show that these matters can be much better determined by the expert time student than by either the union or a board of directors, and he firmly believes that in the future scientific time study will establish standards which will be accepted as fair by both sides.
There is no reason why labor unions should not be so constituted as to be a great help both to employers and men. Unfortunately, as they now exist they are in many, if not most, cases a hindrance to the prosperity of both.
The chief reasons for this would seem to be a failure on the part of the workmen to understand the broad principles which affect their best interests as well as those of their employers. It is undoubtedly true, however, that employers as a whole are not much better informed nor more interested in this matter than their workmen.
One of the unfortunate features of labor unions as they now exist is that the members look upon the dues which they pay to the union, and the time that they devote to it, as an investment which should bring them an annual return, and they feel that unless they succeed in getting either an increase in wages or shorter hours every year or so, the money which they pay into the union is wasted. The leaders of the unions realize this and, particularly if they are paid for their services, are apt to spend considerable of their time scaring up grievances whether they exist or not This naturally fosters antagonism instead of friendship between the two sides. There are, of course, marked exceptions to this rule; that of the Brotherhood of Locomotive Engineers being perhaps the most prominent.
The most serious of the delusions and fallacies under which workmen, and particularly those in many of the unions, are suffering is that it is for their interest to limit the amount of work which a man should do in a day.
There is no question that the greater the daily output of the average individual in a trade the greater will be the average wages earned in the trade, and that in the long run turning out a large amount of work each day will give them higher wages, steadier and more work, instead of throwing them out of work. The worst thing that a labor union can do for its members in the long run is to limit the amount of work which they allow each workman to do in a day. If their employers are in a competitive business, sooner or later those competitors whose workmen do not limit the output will take the trade away from them, and they will be thrown out of work. And in the meantime the small day's work which they have accustomed themselves to do demoralizes them, and instead of developing as men do when they use their strength and faculties to the utmost, and as men should do from year to year, they grow lazy, spend much of their time pitying themselves, and are less able to compete with other men. Forbidding their members to do more than a given amount of work in a day has been the greatest mistake made by the English trades unions. The whole of that country is suffering more or less from this error now. Their workmen are for this reason receiving lower wages than they might get, and in many cases the men, under the influence of this idea, have grown so slow that they would find it difficult to do a good day's work even if public opinion encouraged them in it.
In forcing their members to work slowly they use certain cant phrases which sound most plausible until their real meaning is analyzed. They continually use the expression, "Workmen should not be asked to do more than a fair day's work," which sounds right and just until we come to see how it is applied. The absurdity of its usual application would be apparent if we were to apply it to animals. Suppose a contractor had in his stable a miscellaneous collection of draft animals, including small donkeys, ponies, light horses, carriage horses and fine dray horses, and a law were to be made that no animal in the stable should be allowed to do more than "a fair day's work" for a donkey. The injustice of such a law would be apparent to every one. The trades unions, almost without an exception, admit all of those in the trade to membership—providing they pay their dues. And the difference between the first-class men and the poor ones is quite as great as that between fine dray horses and donkeys. In the case of horses this difference is well known to every one; with men, however, it is not at all generally recognized. When a labor union, under the cloak of the expression "a fair day's work," refuses to allow a first-class man to do any more work than a slow or inferior workman can do, its action is quite as absurd as limiting the work of a fine dray horse to that of a donkey would be.
Promotion, high wages, and, in some cases, shorter hours of work are the legitimate ambitions of a workman, but any scheme which curtails the output should be recognized as a device for lowering wages in the long run.
Any limit to the maximum wages which men are allowed to earn in a trade is equally injurious to their best interests. The "minimum wage" is the least harmful of the rules which are generally adopted by trades unions, though it frequently works an injustice to the better workmen. For example, the writer has been used to having his machinists earn all the way from $1.50 to seven and eight dollars per day, according to the individual worth of the men. Supposing a rule were made that no machinist should be paid less than $2.50 per day. It is evident that if an employer were forced to pay $2.50 per day to men who were only worth $1.50 or $1.75, in order to compete he would be obliged to lower the wages of those who in the past were getting more than $2.50, thus pulling down the better workers in order to raise up the poorer men. Men are not born equal, and any attempt to make them so is contrary to nature's laws and will fail.
Some of the labor unions have succeeded in persuading the people in parts of this country that there is something sacred in the cause of union labor and that, in the interest of this cause, the union should receive moral support whether it is right in any particular case or not.
Union labor is sacred just so long as its acts are fair and good, and it is damnable just as soon as its acts are bad. Its rights are precisely those of nonunion labor, neither greater nor less. The boycott, the use of force or intimidation, and the oppression of non-union workmen by labor unions are damnable; these acts of tyranny are thoroughly un-American and will not be tolerated by the American people.
One of the most interesting and difficult problems connected with the art of management is how to persuade union men to do a full day's work if the union does not wish them to do it. I am glad of the opportunity of saying what I think on the matter, and of explaining somewhat in detail just how I should expect, in fact, how I have time after time induced union men to do a large day's work, quite as large as other men do.
In dealing with union men certain general principles should never be lost sight of. These principles are the proper ones to apply to all men, but in dealing with union men their application becomes all the more imperative.
First. One should be sure, beyond the smallest doubt, that what is demanded of the men is entirely just and can surely be accomplished. This certainty can only be reached by a minute and thorough time study.
Second. Exact and detailed directions should be given to the workman telling him, not in a general way but specifying in every small particular, just what he is to do and how he is to do it.
Third. It is of the utmost importance in starting to make a change that the energies of the management should be centered upon one single workman, and that no further attempt at improvement should be made until entire success has been secured in this case. Judgment should be used in selecting for a start work of such a character that the most clear cut and definite directions can be given regarding it, so that failure to carry out these directions will constitute direct disobedience of a single, straightforward order.
Fourth. In case the workman fails to carry out the order the management should be prepared to demonstrate that the work called for can be done by having some one connected with the management actually do it in the time called for.
The mistake which is usually made in dealing with union men, lies in giving an order which affects a number of workmen at the same time and in laying stress upon the increase in the output which is demanded instead of emphasizing one by one the details which the workman is to carry out in order to attain the desired result. In the first case a clear issue is raised: say that the man must turn out fifty per cent more pieces than he has in the past, and therefore it will be assumed by most people that he must work fifty per cent harder. In this issue the union is more than likely to have the sympathy of the general public, and they can logically take it up and fight upon it. If, however, the workman is given a series of plain, simple, and reasonable orders, and is offered a premium for carrying them out, the union will have a much more difficult task in defending the man who disobeys them. To illustrate: If we take the case of a complicated piece of machine work which is being done on a lathe or other machine tool, and the workman is called upon (under the old type of management) to increase his output by twenty-five or fifty per cent there is opened a field of argument in which the assertion of the man, backed by the union, that the task is impossible or too hard, will have quite as much weight as that of the management. If, however, the management begins by analyzing in detail just how each section of the work should be done and then writes out complete instructions specifying the tools to be used in succession, the cone step on which the driving belt is to run, the depth of cut and the feed to be used, the exact manner in which the work is to be set in the machine, etc., and if before starting to make any change they have trained in as functional foremen several men who are particularly expert and well informed in their specialties, as, for instance, a speed boss, gang boss, and inspector; if you then place for example a speed boss alongside of that workman, with an instruction card clearly written out, stating what both the speed boss and the man whom he is instructing are to do, and that card says you are to use such and such a tool, put your driving belt on this cone, and use this feed on your machine, and if you do so you will get out the work in such and such a time, I can hardly conceive of a case in which a union could prevent the boss from ordering the man to put his driving belt just where he said and using just the feed that he said, and in doing that the workman can hardly fail to get the work out on time. No union would dare to say to the management of a works, you shall not run the machine with the belt on this or that cone step. They do not come down specifically in that way; they say, "You shall not work so fast," but they do not say, "You shall not use such and such a tool, or run with such a feed or at such a speed." However much they might like to do it, they do not dare to interfere specifically in this way. Now, when your single man under the supervision of a speed boss, gang boss, etc., runs day after day at the given speed and feed, and gets work out in the time that the instruction card calls for, and when a premium is kept for him in the office for having done the work in the required time, you begin to have a moral suasion on that workman which is very powerful. At first he won't take the premium if it is contrary to the laws of his union, but as time goes on and it piles up and amounts to a big item, he will be apt to step into the office and ask for his premium, and before long your man will be a thorough convert to the new system. Now, after one man has been persuaded, by means of the four functional foremen, etc., that he will earn more money under the new system than under the laws of the union, you can then take the next man, and so convert one after another right through your shop, and as time goes on public opinion will swing around more and more rapidly your way.
I have a profound respect for the workmen of the United States; they are in the main sensible men—not all of them, of course, but they are just as sensible as are those on the side of the management There are some fools among them; so there are among the men who manage industrial plants. They are in many respects misguided men, and they require a great deal of information that they have not got. So do most managers.
All that most workmen need to make them do what is right is a series of proper object lessons. When they are convinced that a system is offered them which will yield them larger returns than the union provides for, they will promptly acquiesce. The necessary object lessons can best be given by centering the efforts of the management upon one spot. The mistake that ninety-nine men out of a hundred make is that they have attempted to influence a large body of men at once instead of taking one man at a time.
Another important factor is the question of time. If any one expects large results in six months or a year in a very large works he is looking for the impossible. If any one expects to convert union men to a higher rate of production, coupled with high wages, in six months or a year, he is expecting next to an impossibility. But if he is patient enough to wait for two or three years, he can go among almost any set of workmen in the country and get results.
Some method of disciplining the men is unfortunately a necessary element of all systems of management. It is important that a consistent, carefully considered plan should be adopted for this as for all other details of the art. No system of discipline is at all complete which is not sufficiently broad to cover the great variety in the character and disposition of the various men to be found in a shop.
There is a large class of men who require really no discipline in the ordinary acceptance of the term; men who are so sensitive, conscientious and desirous of doing just what is right that a suggestion, a few words of explanation, or at most a brotherly admonition is all that they require. In all cases, therefore, one should begin with every new man by talking to him in the most friendly way, and this should be repeated several times over until it is evident that mild treatment does not produce the desired effect.
Certain men are both thick-skinned and coarse-grained, and these individuals are apt to mistake a mild manner and a kindly way of saying things for timidity or weakness. With such men the severity both of words and manner should be gradually increased until either the desired result has been attained or the possibilities of the English language have been exhausted.
Up to this point all systems of discipline should be alike. There will be found in all shops, however, a certain number of men with whom talk, either mild or severe, will have little or no effect, unless it produces the conviction that something more tangible and disagreeable will come next. The question is what this something shall be.
Discharging the men is, of course, effective as far as that individual is concerned, and this is in all cases the last step; but it is desirable to have several remedies between talking and discharging more severe than the one and less drastic than the other.
Usually one or more of the following expedients are adopted for this purpose:
First. Lowering the man's wages.
Second. Laying him off for a longer or shorter period of time.
Third. Fining him.
Fourth. Giving him a series of "bad marks," and when these sum up to more than a given number per week or month, applying one or the other of the first three remedies.
The general objections to the first and second expedients is that for a large number of offenses they are too severe, so that the disciplinarian hesitates to apply them. The men find this out, and some of them will take advantage of this and keep much of the time close to the limit. In laying a man off, also, the employer is apt to suffer as much in many cases as the man, through having machinery lying idle or work delayed. The fourth remedy is also objectionable because some men will deliberately take close to their maximum of "bad marks."
In the writer's experience, the fining system, if justly and properly applied, is more effective and much to be preferred to either of the others. He has applied this system of discipline in various works with uniform success over a long period of years, and so far as he knows, none of those who have tried it under his directions have abandoned it.
The success of the fining system depends upon two elements:
First. The impartiality, good judgment and justice with which it is applied.
Second. Every cent of the fines imposed should in some form be returned to the workmen. If any part of the fines is retained by the company, it is next to impossible to keep the workmen from believing that at least a part of the motive in fining them is to make money out of them; and this thought works so much harm as to more than overbalance the good effects of the system. If, however, all of the fines are in some way promptly returned to the men, they recognize it as purely a system of discipline, and it is so direct, effective and uniformly just that the best men soon appreciate its value and approve of it quite as much as the company.
In many cases the writer has first formed a mutual beneficial association among the employees, to which all of the men as well as the company contribute. An accident insurance association is much safer and less liable to be abused than a general sickness or life insurance association; so that, when practicable, an association of this sort should be formed and managed by the men. All of the fines can then be turned over each week to this association and so find their way directly back to the men. Like all other elements, the fining system should not be plunged into head first. It should be worked up to gradually and with judgment, choosing at first only the most flagrant cases for fining and those offenses which affect the welfare of some of the other workmen. It will not be properly and most effectively applied until small offenses as well as great receive their appropriate fine. The writer has fined men from one cent to as high as sixty dollars per fine. It is most important that the fines should be applied absolutely impartially to all employees, high and low. The writer has invariably fined himself just as he would the men under him for all offenses committed.
The fine is best applied in the form of a request to contribute a certain amount to the mutual beneficial association, with the understanding that unless this request is complied with the man will be discharged.
In certain cases the fining system may not produce the desired result, so that coupled with it as an additional means of disciplining the men should be the first and second expedients of "lowering wages" and "laying the men off for a longer or shorter time"
The writer does not at all depreciate the value of the many semi-philanthropic and paternal aids and improvements, such as comfortable lavatories, eating rooms, lecture halls, and free lectures, night schools, kindergartens, baseball and athletic grounds, village improvement societies, and mutual beneficial associations, unless done for advertising purposes. This kind of so-called welfare work all tends to improve and elevate the workmen and make life better worth living. Viewed from the managers' standpoint they are valuable aids in making more intelligent and better workmen, and in promoting a kindly feeling among the men for their employers. They are, however, of distinctly secondary importance, and should never be allowed to engross the attention of the superintendent to the detriment of the more important and fundamental elements of management. They should come in all establishments, but they should come only after the great problem of work and wages has been permanently settled to the satisfaction of both parties. The solution of this problem will take more than the entire time of the management in the average case for several years.
Mr. Patterson, of the National Cash Register Company, of Dayton, Ohio, has presented to the world a grand object lesson of the combination of many philanthropic schemes with, in many respects, a practical and efficient management. He stands out a pioneer in this work and an example of a kindhearted and truly successful man. Yet I feel that the recent strike in his works demonstrates all the more forcibly my contention that the establishment of the semi-philanthropic schemes should follow instead of preceding the solution of the wages question; unless, as is very rarely the case, there are brains, energy and money enough available in a company to establish both elements at the same time.
Unfortunately there is no school of management. There is no single establishment where a relatively large part of the details of management can be seen, which represent the best of their kinds. The finest developments are for the most part isolated, and in many cases almost buried with the mass of rubbish which surrounds them.
Among the many improvements for which the originators will probably never receive the credit which they deserve the following may be mentioned.
The remarkable system for analyzing all of the work upon new machines as the drawings arrived from the drafting-room and of directing the movement and grouping of the various parts as they progressed through the shop, which was developed and used for several years by Mr. Wm. II. Thorne, of Wm. Sellers & Co., of Philadelphia, while the company was under the general management of Mr. J. Sellers Bancroft. Unfortunately the full benefit of this method was never realized owing to the lack of the other functional elements which should have accompanied it.
And then the employment bureau which forms such an important element of the Western Electric Company in Chicago; the complete and effective system for managing the messenger boys introduced by Mr. Almon Emrie while superintendent of the Ingersoll Sargent Drill Company, of Easton, Pa.; the mnemonic system of order numbers invented by Mr. Oberlin Smith and amplified by Mr. Henry R. Towne, of The Yale & Towne Company, of Stamford, Conn.; and the system of inspection introduced by Mr. Chas. D. Rogers in the works of the American Screw Company, at Providence, R. I. and the many good points in the apprentice system developed by Mr. Vauclain, of the Baldwin Locomotive Works, of Philadelphia.
The card system of shop returns invented and introduced as a complete system by Captain Henry Metcalfe, U. S. A., in the government shops of the Frankford Arsenal represents another such distinct advance in the art of management. The writer appreciates the difficulty of this undertaking as he was at the same time engaged in the slow evolution of a similar system in the Midvale Steel Works, which, however, was the result of a gradual development instead of a complete, well thought out invention as was that of Captain Metcalfe.
The writer is indebted to most of these gentlemen and to many others, but most of all to the Midvale Steel Company, for elements of the system which he has described. The rapid and successful application of the general principles involved in any system will depend largely upon the adoption of those details which have been found in actual service to be most useful. There are many such elements which the writer feels should be described in minute detail. It would, however, be improper to burden this record with matters of such comparatively small importance.
THE END |
|