p-books.com
Seasoning of Wood
by Joseph B. Wagner
Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse

34. Rock Elm (Ulmus racemosa) (Cork Elm, Hickory Elm, White Elm, Cliff Elm). Medium- to large-sized tree of rapid growth. Heartwood light brown, often tinged with red, sapwood yellowish or greenish white, compact structure, fibres interlaced. Wood heavy, hard, very tough, strong, elastic, difficult to split, takes a fine polish. Used for agricultural implements, automobiles, crating, boxes, cooperage, tool handles, wheel stock, bridge timbers, sills, interior finish, and maul heads. Fairly free from knots and has only a small quantity of sapwood. Michigan, Ohio, from Vermont to Iowa, and southward to Kentucky.

35. Red Elm (Ulmus fulva var. pubescens) (Slippery Elm, Moose Elm). The red or slippery elm is not as large a tree as the white elm (Ulmus Americana), though it occasionally attains a height of 135 feet and a diameter of 4 feet. It grows tall and straight, and thrives in river valleys. The wood is heavy, hard, strong, tough, elastic, commonly cross-grained, moderately durable in contact with the soil, splits easily when green, works fairly well, and stands well if properly handled. Careful seasoning and handling are essential for the best results. Trees can be utilized for posts when very small. When green the wood rots very quickly in contact with the soil. Poles for posts should be cut in summer and peeled and dried before setting. The wood becomes very tough and pliable when steamed, and is of value for sleigh runners and for ribs of canoes and skiffs. Together with white elm (Ulmus Americana) it is extensively used for barrel staves in slack cooperage and also for furniture. The thick, viscous inner bark, which gives the tree its descriptive name, is quite palatable, slightly nutritious, and has a medicinal value. Found chiefly along water courses. New York to Minnesota, and southward to Florida and Texas.

36. Cedar Elm (Ulmus crassifolia). Medium- to small-sized tree, locally quite common. Arkansas and Texas.

37. Winged Elm (Ulmus alata) (Wahoo). Small-sized tree, locally quite common. Heartwood light brown, sapwood yellowish white. Wood heavy, hard, tough, strong, and close-grained. Arkansas, Missouri, and eastern Virginia.



GUM

This general term applies to three important species of gum in the South, the principal one usually being distinguished as "red" or "sweet" gum (see Fig. 10). The next in importance being the "tupelo" or "bay poplar," and the least of the trio is designated as "black" or "sour" gum (see Fig. 11). Up to the year 1900 little was known of gum as a wood for cooperage purposes, but by the continued advance in price of the woods used, a few of the most progressive manufacturers, looking into the future, saw that the supply of the various woods in use was limited, that new woods would have to be sought, and gum was looked upon as a possible substitute, owing to its cheapness and abundant supply. No doubt in the future this wood will be used to a considerable extent in the manufacture of both "tight" and "slack" cooperage. In the manufacture of the gum, unless the knives and saws are kept very sharp, the wood has a tendency to break out, the corners splitting off; and also, much difficulty has been experienced in seasoning and kiln-drying.



In the past, gum, having no marketable value, has been left standing after logging operations, or, where the land has been cleared for farming, the trees have been "girdled" and allowed to rot, and then felled and burned as trash. Now, however, that there is a market for this species of timber, it will be profitable to cut the gum with the other hardwoods, and this species of wood will come in for a greater share of attention than ever before.

38. Red Gum (Liquidamber styraciflua) (Sweet Gum, Hazel Pine, Satin Walnut, Liquidamber, Bilsted). The wood is about as stiff and as strong as chestnut, rather heavy, it splits easily and is quite brash, commonly cross-grained, of fine texture, and has a large proportion of whitish sapwood, which decays rapidly when exposed to the weather; but the reddish brown heartwood is quite durable, even in the ground. The external appearance of the wood is of fine grain and smooth, close texture, but when broken the lines of fracture do not run with apparent direction of the growth; possibly it is this unevenness of grain which renders the wood so difficult to dry without twisting and warping. It has little resiliency; can be easily bent when steamed, and when properly dried will hold its shape. The annual rings are not distinctly marked, medullary rays fine and numerous. The green wood contains much water, and consequently is heavy and difficult to float, but when dry it is as light as basswood. The great amount of water in the green wood, particularly in the sap, makes it difficult to season by ordinary methods without warping and twisting. It does not check badly, is tasteless and odorless, and when once seasoned, swells and shrinks but little unless exposed to the weather. Used for boat finish, veneers, cabinet work, furniture, fixtures, interior decoration, shingles, paving blocks, woodenware, cooperage, machinery frames, refrigerators, and trunk slats.

Range of Red Gum

Red gum is distributed from Fairfield County, Conn., to southeastern Missouri, through Arkansas and Oklahoma to the valley of the Trinity River in Texas, and eastward to the Atlantic coast. Its commercial range is restricted, however, to the moist lands of the lower Ohio and Mississippi basins and of the Southeastern coast. It is one of the commonest timber trees in the hardwood bottoms and drier swamps of the South. It grows in mixture with ash, cottonwood and oak (see Fig. 12). It is also found to a considerable extent on the lower ridges and slopes of the southern Appalachians, but there it does not reach merchantable value and is of little importance. Considerable difference is found between the growth in the upper Mississippi bottoms and that along the rivers on the Atlantic coast and on the Gulf. In the latter regions the bottoms are lower, and consequently more subject to floods and to continued overflows (see Fig. 11). The alluvial deposit is also greater, and the trees grow considerably faster. Trees of the same diameter show a larger percentage of sapwood there than in the upper portions of the Mississippi Valley. The Mississippi Valley hardwood trees are for the most part considerably older, and reach larger dimensions than the timber along the coast.

Form of the Red Gum

In the best situations red gum reaches a height of 150 feet, and a diameter of 5 feet. These dimensions, however are unusual. The stem is straight and cylindrical, with dark, deeply-furrowed bark, and branches often winged with corky ridges. In youth, while growing vigorously under normal conditions, it assumes a long, regular, conical crown, much resembling the form of a conifer (see Fig. 12). After the tree has attained its height growth, however, the crown becomes rounded, spreading and rather ovate in shape. When growing in the forest the tree prunes itself readily at an early period, and forms a good length of clear stem, but it branches strongly after making most of its height growth. The mature tree is usually forked, and the place where the forking commences determines the number of logs in the tree or its merchantable length, by preventing cutting to a small diameter in the top. On large trees the stem is often not less than eighteen inches in diameter where the branching begins. The over-mature tree is usually broken and dry topped, with a very spreading crown, in consequence of new branches being sent out.

Tolerance of Red Gum

Throughout its entire life red gum is intolerant in shade, there are practically no red seedlings under the dense forest cover of the bottom land, and while a good many may come up under the pine forest on the drier uplands, they seldom develop into large trees. As a rule seedlings appear only in clearings or in open spots in the forest. It is seldom that an over-topped tree is found, for the gum dies quickly if suppressed, and is consequently nearly always a dominant or intermediate tree. In a hardwood bottom forest the timber trees are all of nearly the same age over considerable areas, and there is little young growth to be found in the older stands. The reason for this is the intolerance of most of the swamp species. A scale of intolerance containing the important species, and beginning with the most light-demanding, would run as follows: Cottonwood, sycamore, red gum, white elm, white ash, and red maple.

Demands upon Soil and Moisture

While the red gum grows in various situations, it prefers the deep, rich soil of the hardwood bottoms, and there reaches its best development (see Fig. 10). It requires considerable soil moisture, though it does not grow in the wetter swamps, and does not thrive on dry pine land. Seedlings, however, are often found in large numbers on the edges of the uplands and even on the sandy pine land, but they seldom live beyond the pole stage. When they do, they form small, scrubby trees that are of little value. Where the soil is dry the tree has a long tap root. In the swamps, where the roots can obtain water easily, the development of the tap root is poor, and it is only moderate on the glade bottom lands, where there is considerable moisture throughout the year, but no standing water in the summer months.

Reproduction of Red Gum



Red gum reproduces both by seed and by sprouts (see Fig. 12). It produces seed fairly abundantly every year, but about once in three years there is an extremely heavy production. The tree begins to bear seed when twenty-five to thirty years old, and seeds vigorously up to an age of one hundred and fifty years, when its productive power begins to diminish. A great part of the seed, however, is abortive. Red gum is not fastidious in regard to its germinating bed; it comes up readily on sod in old fields and meadows, on decomposing humus in the forest, or on bare clay-loam or loamy sand soil. It requires a considerable degree of light, however, and prefers a moist seed bed. The natural distribution of the seed takes place for several hundred feet from the seed trees, the dissemination depending almost entirely on the wind. A great part of the seed falls on the hardwood bottom when the land is flooded, and is either washed away or, if already in the ground and germinating, is destroyed by the long-continued overflow. After germinating, the red gum seedling demands, above everything else, abundant light for its survival and development. It is for this reason that there is very little growth of red gum, either in the unculled forest or on culled land, where, as is usually the case, a dense undergrowth of cane, briers, and rattan is present. Under the dense underbrush of cane and briers throughout much of the virgin forest, reproduction of any of the merchantable species is of course impossible. And even where the land has been logged over, the forest is seldom open enough to allow reproduction of cottonwood and red gum. Where, however, seed trees are contiguous to pastures or cleared land, scattered seedlings are found springing up in the open, and where openings occur in the forest, there are often large numbers of red gum seedlings, the reproduction generally occurring in groups. But over the greater part of the Southern hardwood bottom land forest reproduction is very poor. The growth of red gum during the early part of its life, and up to the time it reaches a diameter of eight inches breast-high, is extremely rapid, and, like most of the intolerant species, it attains its height growth at an early period. Gum sprouts readily from the stump, and the sprouts surpass the seedlings in rate of height growth for the first few years, but they seldom form large timber trees. Those over fifty years of age seldom sprout. For this reason sprout reproduction is of little importance in the forest. The principal requirements of red gum, then, are a moist, fairly rich soil and good exposure to light. Without these it will not reach its best development.



Second-Growth Red Gum

Second-growth red gum occurs to any considerable extent only on land which has been thoroughly cleared. Throughout the South there is a great deal of land which was in cultivation before the Civil War, but which during the subsequent period of industrial depression was abandoned and allowed to revert to forest. These old fields now mostly covered with second-growth forest, of which red gum forms an important part (see Fig. 12). Frequently over fifty per cent of the stand consists of this species, but more often, and especially on the Atlantic coast, the greater part is of cottonwood or ash. These stands are very dense, and the growth is extremely rapid. Small stands of young growth are also often found along the edges of cultivated fields. In the Mississippi Valley the abandoned fields on which young stands have sprung up are for the most part being rapidly cleared again. The second growth here is considered of little value in comparison with the value of the land for agricultural purposes. In many cases, however, the farm value of the land is not at present sufficient to make it profitable to clear it, unless the timber cut will at least pay for the operation. There is considerable land upon which the second growth will become valuable timber within a few years. Such land should not be cleared until it is possible to utilize the timber.

39. Tupelo Gum (Nyssa aquatica) (Bay Poplar, Swamp Poplar, Cotton Gum, Hazel Pine, Circassian Walnut, Pepperidge, Nyssa). The close similarity which exists between red and tupelo gum, together with the fact that tupelo is often cut along with red gum, and marketed with the sapwood of the latter, makes it not out of place to give consideration to this timber. The wood has a fine, uniform texture, is moderately hard and strong, is stiff, not elastic, very tough and hard to split, but easy to work with tools. Tupelo takes glue, paint, or varnish well, and absorbs very little of the material. In this respect it is equal to yellow poplar and superior to cottonwood. The wood is not durable in contact with ground, and requires much care in seasoning. The distinction between the heartwood and sapwood of this species is marked. The former varies in color from a dull gray to a dull brown; the latter is whitish or light yellow like that of poplar. The wood is of medium weight, about thirty-two pounds per cubic foot when dry, or nearly that of red gum and loblolly pine. After seasoning it is difficult to distinguish the better grades of sapwood from poplar. Owing to the prejudice against tupelo gum, it was until recently marketed under such names as bay poplar, swamp poplar, nyssa, cotton gum, circassian walnut, and hazel pine. Since it has become evident that the properties of the wood fit it for many uses, the demand for tupelo has largely increased, and it is now taking rank with other standard woods under its rightful name. Heretofore the quality and usefulness of this wood were greatly underestimated, and the difficulty of handling it was magnified. Poor success in seasoning and kiln-drying was laid to defects of the wood itself, when, as a matter of fact, the failures were largely due to the absence of proper methods in handling. The passing of this prejudice against tupelo is due to a better understanding of the characteristics and uses of the wood. Handled in the way in which its particular character demands, tupelo is a wood of much value.

Uses of Tupelo Gum

Tupelo gum is now used in slack cooperage, principally for heading. It is used extensively for house flooring and inside finishing, such as mouldings, door jambs, and casings. A great deal is now shipped to European countries, where it is highly valued for different classes of manufacture. Much of the wood is used in the manufacture of boxes, since it works well upon rotary veneer machines. There is also an increasing demand for tupelo for laths, wooden pumps, violin and organ sounding boards, coffins, mantelwork, conduits and novelties. It is also used in the furniture trade for backing, drawers, and panels.

Range of Tupelo Gum

Tupelo occurs throughout the coastal region of the Atlantic States, from southern Virginia to northern Florida, through the Gulf States to the valley of the Nueces River in Texas, through Arkansas and southern Missouri to western Kentucky and Tennessee, and to the valley of the lower Wabash River. Tupelo is being extensively milled at present only in the region adjacent to Mobile Ala., and in southern and central Louisiana, where it occurs in large merchantable quantities, attaining its best development in the former locality. The country in this locality is very swampy (see Fig. 11), and within a radius of one hundred miles tupelo gum is one of the principal timber trees. It grows only in the swamps and wetter situations (see Fig. 11), often in mixture with cypress, and in the rainy season it stands in from two to twenty feet of water.

40. Black Gum (Nyssa sylvatica) (Sour Gum). Black gum is not cut to much extent, owing to its less abundant supply and poorer quality, but is used for repair work on wagons, for boxes, crates, wagon hubs, rollers, bowls, woodenware, and for cattle yokes and other purposes which require a strong, non-splitting wood. Heartwood is light brown in color, often nearly white; sapwood hardly distinguishable, fine grain, fibres interwoven. Wood is heavy, not hard, difficult to work, strong, very tough, checks and warps considerably in drying, not durable. It is distributed from Maine to southern Ontario, through central Michigan to southeastern Missouri, southward to the valley of the Brazos River in Texas, and eastward to the Kissimmee River and Tampa Bay in Florida. It is found in the swamps and hardwood bottoms, but is more abundant and of better size on the slightly higher ridges and hummocks in these swamps, and on the mountain slopes in the southern Alleghany region. Though its range is greater than that of either red or tupelo gum, it nowhere forms an important part of the forest.

HACKBERRY

41. Hackberry (Celtis occidentalis) (Sugar Berry, Nettle Tree). The wood is handsome, heavy, hard, strong, quite tough, of moderately fine texture, and greenish or yellowish color, shrinks moderately, works well and stands well, and takes a good polish. Used to some extent in cooperage, and in the manufacture of cheap furniture. Medium- to large-sized tree, locally quite common, largest in the lower Mississippi Valley. Occurs in nearly all parts of the eastern United States.

HICKORY

The hickories of commerce are exclusively North American and some of them are large and beautiful trees of 60 to 70 feet or more in height. They are closely allied to the walnut, and the wood is very like walnut in grain and color, though of a somewhat darker brown. It is one of the finest of American hardwoods in point of strength; in toughness it is superior to ash, rather coarse in texture, smooth and of straight grain, very heavy and strong as well as elastic and tenacious, but decays rapidly, especially the sapwood when exposed to damp and moisture, and is very liable to attack from worms and boring insects. The cross-section of hickory is peculiar, the annual rings appear like fine lines instead of like the usual pores, and the medullary rays, which are also very fine but distinct, in crossing these form a peculiar web-like pattern which is one of the characteristic differences between hickory and ash. Hickory is rarely subjected to artificial treatment, but there is this curious fact in connection with the wood, that, contrary to most other woods, creosote is only with difficulty injected into the sap, although there is no difficulty in getting it into the heartwood. It dries slowly, shrinks and checks considerably in seasoning; is not durable in contact with the soil or if exposed. Hickory excels as wagon and carriage stock, for hoops in cooperage, and is extensively used in the manufacture of implements and machinery, for tool handles, timber pins, harness work, dowel pins, golf clubs, and fishing rods. The hickories are tall trees with slender stems, never forming forests, occasionally small groves, but usually occur scattered among other broad-leaved trees in suitable localities. The following species all contribute more or less to the hickory of the markets:

42. Shagbark Hickory (Hicoria ovata) (Shellbark Hickory, Scalybark Hickory). A medium- to large-sized tree, quite common; the favorite among the hickories. Heartwood light brown, sapwood ivory or cream-colored. Wood close-grained, compact structure, annual rings clearly marked. Very hard, heavy, strong, tough, and flexible, but not durable in contact with the soil or when exposed. Used for agricultural implements, wheel runners, tool handles, vehicle parts, baskets, dowel pins, harness work, golf clubs, fishing rods, etc. Best developed in the Ohio and Mississippi basins; from Lake Ontario to Texas, Minnesota to Florida.

43. Mockernut Hickory (Hicoria alba) (Black Nut Hickory, Black Hickory, Bull Nut Hickory, Big Bud Hickory, White Heart Hickory). A medium- to large-sized tree. Wood in its quality and uses similar to the preceding. Its range is the same as that of Hicoria ovata. Common, especially in the South.

44. Pignut Hickory (Hicoria glabra) (Brown Hickory, Black Hickory, Switchbud Hickory). A medium- to large-sized tree. Heavier and stronger than any of the preceding. Heartwood light to dark brown, sapwood nearly white. Abundant, all eastern United States.

45. Bitternut Hickory (Hicoria minima) (Swamp Hickory). A medium-sized tree, favoring wet localities. Heartwood light brown, sapwood lighter color. Wood in its quality and uses not so valuable as Hicoria ovata, but is used for the same purposes. Abundant, all eastern United States.

46. Pecan (Hicoria pecan) (Illinois Nut). A large tree, very common in the fertile bottoms of the western streams. Indiana to Nebraska and southward to Louisiana and Texas.

HOLLY

47. Holly (Ilex opaca). Small to medium-sized tree. Wood of medium weight, hard, strong, tough, of exceedingly fine grain, closer in texture than most woods, of white color, sometimes almost as white as ivory; requires great care in its treatment to preserve the whiteness of the wood. It does not readily absorb foreign matter. Much used by turners and for all parts of musical instruments, for handles on whips and fancy articles, draught-boards, engraving blocks, cabinet work, etc. The wood is often dyed black and sold as ebony; works well and stands well. Most abundant in the lower Mississippi Valley and Gulf States, but occurring eastward to Massachusetts and north to Indiana.

48. Holly (Ilex monticolo) (Mountain Holly). Small-sized tree. Wood in its quality and uses similar to the preceding, but is not very generally known. It is found in the Catskill Mountains and extends southward along the Alleghanies as far as Alabama.

HORSE CHESTNUT (See Buckeye)

IRONWOOD

49. Ironwood (Ostrya Virginiana) (Hop Hornbeam, Lever Wood). Small-sized tree, common. Heartwood light brown tinged with red, sapwood nearly white. Wood heavy, tough, exceedingly close-grained, very strong and hard, durable in contact with the soil, and will take a fine polish. Used for small articles like levers, handles of tools, mallets, etc. Ranges throughout the United States east of the Rocky Mountains.

LAUREL

50. Laurel (Umbellularia Californica) (Myrtle). A Western tree, produces timber of light brown color of great size and beauty, and is very valuable for cabinet and inside work, as it takes a fine polish. California and Oregon, coast range of the Sierra Nevada Mountains.

LOCUST

51. Black Locust (Robinia pseudacacia) (Locust, Yellow Locust, Acacia). Small to medium-sized tree. Wood very heavy, hard, strong, and tough, rivalling some of the best oak in this latter quality. The wood has great torsional strength, excelling most of the soft woods in this respect, of coarse texture, close-grained and compact structure, takes a fine polish. Annual rings clearly marked, very durable in contact with the soil, shrinks and checks considerably in drying, the very narrow sapwood greenish yellow, the heartwood brown, with shades of red and green. Used for wagon hubs, trenails or pins, but especially for railway ties, fence posts, and door sills. Also used for boat parts, turnery, ornamentations, and locally for construction. Abroad it is much used for furniture and farming implements and also in turnery. At home in the Alleghany Mountains, extensively planted, especially in the West.

52. Honey Locust (Gleditschia triacanthos) (Honey Shucks, Locust, Black Locust, Brown Locust, Sweet Locust, False Acacia, Three-Thorned Acacia). A medium-sized tree. Wood heavy, hard, strong, tough, durable in contact with the soil, of coarse texture, susceptible to a good polish. The narrow sapwood yellow, the heartwood brownish red. So far, but little appreciated except for fences and fuel. Used to some extent for wheel hubs, and locally in rough construction. Found from Pennsylvania to Nebraska, and southward to Florida and Texas; locally quite abundant.

53. Locust (Robinia viscosa) (Clammy Locust). Usually a shrub five or six feet high, but known to reach a height of 40 feet in the mountains of North Carolina, with the habit of a tree. Wood light brown, heavy, hard, and close-grained. Not used to much extent in manufacture. Range same as the preceding.

MAGNOLIA

54. Magnolia (Magnolia glauca) (Swamp Magnolia, Small Magnolia, Sweet Bay, Beaver Wood). Small-sized tree. Heartwood reddish brown, sap wood cream white. Sparingly used in manufacture. Ranges from Essex County, Mass., to Long Island, N. Y., from New Jersey to Florida, and west in the Gulf region to Texas.

55. Magnolia (Magnolia tripetala) (Umbrella Tree). A small-sized tree. Wood in its quality similiar to the preceding. It may be easily recognized by its great leaves, twelve to eighteen inches long, and five to eight inches broad. This species as well as the preceding is an ornamental tree. Ranges from Pennsylvania southward to the Gulf.

56. Cucumber Tree (Magnolia accuminata) (Tulip-wood, Poplar). Medium- to large-sized tree. Heartwood yellowish brown, sapwood almost white. Wood light, soft, satiny, close-grained, durable in contact with the soil, resembling and sometimes confounded with tulip tree (Liriodendron tulipifera) in the markets. The wood shrinks considerably, but seasons without much injury, and works and stands well. It bends readily when steamed, and takes stain and paint well. Used in cooperage, for siding, for panelling and finishing lumber in house, car and shipbuilding, etc., also in the manufacture of toys, culinary woodenware, and backing for drawers. Most common in the southern Alleghanies, but distributed from western New York to southern Illinois, south through central Kentucky and Tennessee to Alabama, and throughout Arkansas.

MAPLE

Wood heavy, hard, strong, stiff, and tough, of fine texture, frequently wavy-grained, this giving rise to "curly" and "blister" figures which are much admired. Not durable in the ground, or when exposed. Maple is creamy white, with shades of light brown in the heartwood, shrinks moderately, seasons, works, and stands well, wears smoothly, and takes a fine polish. The wood is used in cooperage, and for ceiling, flooring, panelling, stairway, and other finishing lumber in house, ship, and car construction. It is used for the keels of boats and ships, in the manufacture of implements and machinery, but especially for furniture, where entire chamber sets of maple rival those of oak. Maple is also used for shoe lasts and other form blocks; for shoe pegs; for piano actions, school apparatus, for wood type in show bill printing, tool handles, in wood carving, turnery, and scroll work, in fact it is one of our most useful woods. The maples are medium-sized trees, of fairly rapid growth, sometimes form forests, and frequently constitute a large proportion of the arborescent growth. They grow freely in parts of the Northern Hemisphere, and are particularly luxuriant in Canada and the northern portions of the United States.

57. Sugar Maple (Acer saccharum) (Hard Maple, Rock Maple). Medium- to large-sized tree, very common, forms considerable forests, and is especially esteemed. The wood is close-grained, heavy, fairly hard and strong, of compact structure. Heartwood brownish, sapwood lighter color; it can be worked to a satin-like surface and take a fine polish, it is not durable if exposed, and requires a good deal of seasoning. Medullary rays small but distinct. The "curly" or "wavy" varieties furnish wood of much beauty, the peculiar contortions of the grain called "bird's eye" being much sought after, and used as veneer for panelling, etc. It is used in all good grades of furniture, cabinetmaking, panelling, interior finish, and turnery; it is not liable to warp and twist. It is also largely used for flooring, for rollers for wringers and mangling machines, for which there is a large and increasing demand. The peculiarity known as "bird's eye," and which causes a difficulty in working the wood smooth, owing to the little pieces like knots lifting up, is supposed to be due to the action of boring insects. Its resistance to compression across the grain is higher than that of most other woods. Ranges from Maine to Minnesota, abundant, with birch, in the region of the Great Lakes.

58. Red Maple (Acer rubrum) (Swamp Maple, Soft Maple, Water Maple). Medium-sized tree. Like the preceding but not so valuable. Scattered along water-courses and other moist localities. Abundant. Maine to Minnesota, southward to northern Florida.

59. Silver Maple (Acer saccharinum) (Soft Maple, White Maple, Silver-Leaved Maple). Medium- to large-sized tree, common. Wood lighter, softer, and inferior to Acer saccharum, and usually offered in small quantities and held separate in the markets. Heartwood reddish brown, sapwood ivory white, fine-grained, compact structure. Fibres sometimes twisted, weaved, or curly. Not durable. Used in cooperage for woodenware, turnery articles, interior decorations and flooring. Valley of the Ohio, but occurs from Maine to Dakota and southward to Florida.

60. Broad-Leaved Maple (Acer macrophyllum) (Oregon Maple). Medium-sized tree, forms considerable forests, and, like the preceding has a lighter, softer, and less valuable wood than Acer saccharum. Pacific Coast regions.

61. Mountain Maple (Acer spicatum). Small-sized tree. Heartwood pale reddish brown, sapwood lighter color. Wood light, soft, close-grained, and susceptible of high polish. Ranges from lower St. Lawrence River to northern Minnesota and regions of the Saskatchewan River; south through the Northern States and along the Appalachian Mountains to Georgia.

62. Ash-Leaved Maple (Acer negundo) (Box Elder). Medium- to large-sized tree. Heartwood creamy white, sapwood nearly white. Wood light, soft, close-grained, not strong. Used for woodenware and paper pulp. Distributed across the continent, abundant throughout the Mississippi Valley along banks of streams and borders of swamps.

63. Striped Maple (Acer Pennsylvanicum) (Moose-wood). Small-sized tree. Produces a very white wood much sought after for inlaid and for cabinet work. Wood is light, soft, close-grained, and takes a fine polish. Not common. Occurs from Pennsylvania to Minnesota.

MULBERRY

64. Red Mulberry (Morus rubra). A small-sized tree. Wood moderately heavy, fairly hard and strong, rather tough, of coarse texture, very durable in contact with the soil. The sapwood whitish, heartwood yellow to orange brown, shrinks and checks considerably in drying, works well and stands well. Used in cooperage and locally in construction, and in the manufacture of farm implements. Common in the Ohio and Mississippi Valleys, but widely distributed in the eastern United States.

MYRTLE (See Laurel)

OAK

Wood very variable, usually very heavy and hard, very strong and tough, porous, and of coarse texture. The sapwood whitish, the heartwood "oak" to reddish brown. It shrinks and checks badly, giving trouble in seasoning, but stands well, is durable, and little subject to the attacks of boring insects. Oak is used for many purposes, and is the chief wood used for tight cooperage; it is used in shipbuilding, for heavy construction, in carpentry, in furniture, car and wagon work, turnery, and even in woodcarving. It is also used in all kinds of farm implements, mill machinery, for piles and wharves, railway ties, etc., etc. The oaks are medium- to large-sized trees, forming the predominant part of a large proportion of our broad-leaved forests, so that these are generally termed "oak forests," though they always contain considerable proportion of other kinds of trees. Three well-marked kinds—white, red, and live oak—are distinguished and kept separate in the markets. Of the two principal kinds "white oak" is the stronger, tougher, less porous, and more durable. "Red oak" is usually of coarser texture, more porous, often brittle, less durable, and even more troublesome in seasoning than white oak. In carpentry and furniture work red oak brings the same price at present as white oak. The red oaks everywhere accompany the white oaks, and, like the latter, are usually represented by several species in any given locality. "Live oak," once largely employed in shipbuilding, possesses all the good qualities, except that of size, of white oak, even to a greater degree. It is one of the heaviest, hardest, toughest, and most durable woods of this country. In structure it resembles the red oak, but is less porous.

65. White Oak (Quercus alba) (American Oak). Medium-to large-sized tree. Heartwood light brown, sapwood lighter color. Annual rings well marked, medullary rays broad and prominent. Wood tough, strong, heavy, hard, liable to check in seasoning, durable in contact with the soil, takes a high polish, very elastic, does not shrink much, and can be bent to any form when steamed. Used for agricultural implements, tool handles, furniture, fixtures, interior finish, car and wagon construction, beams, cabinet work, tight cooperage, railway ties, etc., etc. Because of the broad medullary rays, it is generally "quarter-sawn" for cabinet work and furniture. Common in the Eastern States, Ohio and Mississippi Valleys. Occurs throughout the eastern United States.

66. White Oak (Quercus durandii). Medium- to small-sized tree. Wood in its quality and uses similiar to the preceding. Texas, eastward to Alabama.

67. White Oak (Quercus garryana) (Western White Oak). Medium- to large-sized tree. Stronger, more durable, and wood more compact than Quercus alba. Washington to California.

68. White Oak (Quercus lobata). Medium- to large-sized tree. Largest oak on the Pacific Coast. Wood in its quality and uses similar to Quercus alba, only it is finer-grained. California.

69. Bur Oak (Quercus macrocarpa) (Mossy-Cup Oak, Over-Cup Oak). Large-sized tree. Heartwood "oak" brown, sapwood lighter color. Wood heavy, strong, close-grained, durable in contact with the soil. Used in ship- and boatbuilding, all sorts of construction, interior finish of houses, cabinet work, tight cooperage, carriage and wagon work, agricultural implements, railway ties, etc., etc. One of the most valuable and most widely distributed of American oaks, 60 to 80 feet in height, and, unlike most of the other oaks, adapts itself to varying climatic conditions. It is one of the most durable woods when in contact with the soil. Common, locally abundant. Ranges from Manitoba to Texas, and from the foot hills of the Rocky Mountains to the Atlantic Coast. It is the most abundant oak of Kansas and Nebraska, and forms the scattered forests known as "The oak openings" of Minnesota.

70. Willow Oak (Quercus phellos) (Peach oak). Small to medium-sized tree. Heartwood pale reddish brown, sapwood lighter color. Wood heavy, hard, strong, coarse-grained. Occasionally used in construction. New York to Texas, and northward to Kentucky.

71. Swamp White Oak (Quercus bicolor var. platanoides). Large-sized tree. Heartwood pale brown, sapwood the same color. Wood heavy, hard, strong, tough, coarse-grained, checks considerably in seasoning. Used in construction, interior finish of houses, carriage-and boatbuilding, agricultural implements, in cooperage, railway ties, fencing, etc., etc. Ranges from Quebec to Georgia and westward to Arkansas. Never abundant. Most abundant in the Lake States.

72. Over-Cup Oak (Quercus lyrata) (Swamp White Oak, Swamp Post Oak). Medium to large-sized tree, rather restricted, as it grows in the swampy districts of Carolina and Georgia. Is a larger tree than most of the other oaks, and produces an excellent timber, but grows in districts difficult of access, and is not much used. Lower Mississippi and eastward to Delaware.

73. Pin Oak (Quercus palustris) (Swamp Spanish Oak, Water Oak). Medium- to large-sized tree. Heartwood pale brown with dark-colored sap wood. Wood heavy, strong, and coarse-grained. Common along the borders of streams and swamps, attains its greatest size in the valley of the Ohio. Arkansas to Wisconsin, and eastward to the Alleghanies.

74. Water Oak (Quercus aquatica) (Duck Oak, Possum Oak). Medium- to large-sized tree, of extremely rapid growth. Eastern Gulf States, eastward to Delaware and northward to Missouri and Kentucky.

75. Chestnut Oak (Quercus prinus) (Yellow Oak, Rock Oak, Rock Chestnut Oak). Heartwood dark brown, sapwood lighter color. Wood heavy, hard, strong, tough, close-grained, durable in contact with the soil. Used for railway ties, fencing, fuel, and locally for construction. Ranges from Maine to Georgia and Alabama, westward through Ohio, and southward to Kentucky and Tennessee.

76. Yellow Oak (Quercus acuminata) (Chestnut Oak, Chinquapin Oak). Medium- to large-sized tree. Heartwood dark brown, sapwood pale brown. Wood heavy, hard, strong, close-grained, durable in contact with the soil. Used in the manufacture of wheel stock, in cooperage, for railway ties, fencing, etc., etc. Ranges from New York to Nebraska and eastern Kansas, southward in the Atlantic region to the District of Columbia, and west of the Alleghanies southward to the Gulf States.

77. Chinquapin Oak (Quercus prinoides) (Dwarf Chinquapin Oak, Scrub Chestnut Oak). Small-sized tree. Heartwood light brown, sapwood darker color. Does not enter the markets to any great extent. Ranges from Massachusetts to North Carolina, westward to Missouri, Nebraska, Kansas, and eastern Texas. Reaches its best form in Missouri and Kansas.

78. Basket Oak (Quercus michauxii) (Cow Oak). Large-sized tree. Locally abundant. Lower Mississippi and eastward to Delaware.

79. Scrub Oak (Quercus ilicifolia var. pumila) (Bear Oak). Small-sized tree. Heartwood light brown, sapwood darker color. Wood heavy, hard, strong, and coarse-grained. Found in New England and along the Alleghanies.

80. Post Oak (Quercus obtusiloda var. minor) (Iron Oak). Medium- to large-sized tree, gives timber of great strength. The color is of a brownish yellow hue, close-grained, and often superior to the white oak (Quercus alba) in strength and durability. It is used for posts and fencing, and locally for construction. Arkansas to Texas, eastward to New England and northward to Michigan.

81. Red Oak (Quercus rubra) (Black Oak). Medium- to large-sized tree. Heartwood light brown to red, sapwood lighter color. Wood coarse-grained, well-marked annual rings, medullary rays few but broad. Wood heavy, hard, strong, liable to check in seasoning. It is found over the same range as white oak, and is more plentiful. Wood is spongy in grain, moderately durable, but unfit for work requiring strength. Used for agricultural implements, furniture, bob sleds, vehicle parts, boxes, cooperage, woodenware, fixtures, interior finish, railway ties, etc., etc. Common in all parts of its range. Maine to Minnesota, and southward to the Gulf.

82. Black Oak (Quercus tinctoria var. velutina) (Yellow Oak). Medium- to large-sized tree. Heartwood bright brown tinged with red, sapwood lighter color. Wood heavy, hard, strong, coarse-grained, checks considerably in seasoning. Very common in the Southern States, but occurring North as far as Minnesota, and eastward to Maine.

83. Barren Oak (Quercus nigra var. marilandica) (Black Jack, Jack Oak). Small-sized tree. Heartwood dark brown, sapwood lighter color. Wood heavy, hard, strong, coarse-grained, not valuable. Used in the manufacture of charcoal and for fuel. New York to Kansas and Nebraska, and southward to Florida. Rare in the North, but abundant in the South.

84. Shingle Oak (Quercus imbricaria) (Laurel Oak). Small to medium-sized tree. Heartwood pale reddish brown, sapwood lighter color. Wood heavy, hard, strong, coarse-grained, checks considerably in drying. Used for shingles and locally for construction. Rare in the east, most abundant in the lower Ohio Valley. From New York to Illinois and southward. Reaches its greatest size in southern Illinois and Indiana.

85. Spanish Oak (Quercus digitata var. falcata) (Red Oak). Medium-sized tree. Heartwood light reddish brown, sapwood much lighter. Wood heavy, hard, strong, coarse-grained, and checks considerably in seasoning. Used locally for construction, and has high fuel value. Common in south Atlantic and Gulf region, but found from Texas to New York, and northward to Missouri and Kentucky.

86. Scarlet Oak (Quercus coccinea). Medium- to large-sized tree. Heartwood light reddish-brown, sapwood darker color. Wood heavy, hard, strong, and coarse-grained. Best developed in the lower basin of the Ohio, but found from Minnesota to Florida.

87. Live Oak (Quercus virens) (Maul Oak). Medium- to large-sized tree. Grows from Maryland to the Gulf of Mexico, and often attains a height of 60 feet and 4 feet in diameter. The wood is hard, strong, and durable, but of rather rapid growth, therefore not as good quality as Quercus alba. The live oak of Florida is now reserved by the United States Government for Naval purposes. Used for mauls and mallets, tool handles, etc., and locally for construction. Scattered along the coast from Maryland to Texas.

88. Live Oak (Quercus chrysolepis) (Maul Oak, Valparaiso Oak). Medium- to small-sized tree. California.

OSAGE ORANGE

89. Osage Orange (Maclura aurantiaca) (Bois d'Arc). A small-sized tree of fairly rapid growth. Wood very heavy, exceedingly hard, strong, not tough, of moderately coarse texture, and very durable and elastic. Sapwood yellow, heartwood brown on the end face, yellow on the longitudinal faces, soon turning grayish brown if exposed. It shrinks considerably in drying, but once dry it stands unusually well. Much used for wheel stock, and wagon framing; it is easily split, so is unfit for wheel hubs, but is very suitable for wheel spokes. It is considered one of the timbers likely to supply the place of black locust for insulator pins on telegraph poles. Seems too little appreciated; it is well suited for turned ware and especially for woodcarving. Used for spokes, insulator pins, posts, railway ties, wagon framing, turnery, and woodcarving. Scattered through the rich bottoms of Arkansas and Texas.

PAPAW

90. Papaw (Asimina triloba) (Custard Apple). Small-sized tree, often only a shrub, Heartwood pale, yellowish green, sapwood lighter color. Wood light, soft, coarse-grained, and spongy. Not used to any extent in manufacture. Occurs in eastern and central Pennsylvania, west as far as Michigan and Kansas, and south to Florida and Texas. Often forming dense thickets in the lowlands bordering the Mississippi River.

PERSIMMON

91. Persimmon (Diospyros Virginiana). Small to medium-sized tree. Wood very heavy, and hard, strong and tough; resembles hickory, but is of finer texture and elastic, but liable to split in working. The broad sapwood cream color, the heartwood brown, sometimes almost black. The persimmon is the Virginia date plum, a tree of 30 to 50 feet high, and 18 to 20 inches in diameter; it is noted chiefly for its fruit, but it produces a wood of considerable value. Used in turnery, for wood engraving, shuttles, bobbins, plane stock, shoe lasts, and largely as a substitute for box (Buxus sempervirens)—especially the black or Mexican variety,—also used for pocket rules and drawing scales, for flutes and other wind instruments. Common, and best developed in the lower Ohio Valley, but occurs from New York to Texas and Missouri.

POPLAR (See also Tulip Wood)

Wood light, very soft, not strong, of fine texture, and whitish, grayish to yellowish color, usually with a satiny luster. The wood shrinks moderately (some cross-grained forms warp excessively), but checks very little in seasoning; is easily worked, but is not durable. Used in cooperage, for building and furniture lumber, for crates and boxes (especially cracker boxes), for woodenware, and paper pulp.

92. Cottonwood (Populus monilifera, var. angulata) (Carolina Poplar). Large-sized tree, forms considerable forests along many of the Western streams, and furnishes most of the cottonwood of the market. Heartwood dark brown, sapwood nearly white. Wood light, soft, not strong, and close-grained (see Fig. 14). Mississippi Valley and West. New England to the Rocky Mountains.

93. Cottonwood (Populus fremontii var. wislizeni). Medium-to large-sized tree. Common. Wood in its quality and uses similiar to the preceding, but not so valuable. Texas to California.



94. Black Cottonwood (Populus trichocarpa var. heterophylla) (Swamp Cottonwood, Downy Poplar). The largest deciduous tree of Washington. Very common. Heartwood dull brown, sapwood lighter brown. Wood soft, close-grained. Is now manufactured into lumber in the West and South, and used in interior finish of buildings. Northern Rocky Mountains and Pacific region.

95. Poplar (Populus grandidentata) (Large-Toothed Aspen). Medium-sized tree. Heartwood light brown, sapwood nearly white. Wood soft and close-grained, neither strong nor durable. Chiefly used for wood pulp. Maine to Minnesota and southward along the Alleghanies.

96. White Poplar (Populus alba) (Abele-Tree). Small to medium-sized tree. Wood in its quality and uses similar to the preceding. Found principally along banks of streams, never forming forests. Widely distributed in the United States.

97. Lombardy Poplar (Populus nigra italica). Medium-to large-sized tree. This species is the first ornamental tree introduced into the United States, and originated in Afghanistan. Does not enter into the markets. Widely planted in the United States.

98. Balsam (Populus balsamifera) (Balm of Gilead, Tacmahac). Medium- to large-sized tree. Heartwood light brown, sapwood nearly white. Wood light, soft, not strong, close-grained. Used extensively in the manufacture of paper pulp. Common all along the northern boundary of the United States.

99. Aspen (Populus tremuloides) (Quaking Aspen). Small to medium-sized tree, often forming extensive forests, and covering burned areas. Heartwood light brown, sapwood nearly white. Wood light, soft, close-grained, neither strong nor durable. Chiefly used for woodenware, cooperage, and paper pulp. Maine to Washington and northward, and south in the western mountains to California and New Mexico.

RED GUM (See Gum)

SASSAFRAS

100. Sassafras (Sassafras sassafras). Medium-sized tree, largest in the lower Mississippi Valley. Wood light, soft, not strong, brittle, of coarse texture, durable in contact with the soil. The sapwood yellow, the heartwood orange brown. Used to some extent in slack cooperage, for skiff- and boatbuilding, fencing, posts, sills, etc. Occurs from New England to Texas and from Michigan to Florida.

SOUR GUM (See Gum)

SOURWOOD

101. Sourwood (Oxydendrum arboreum) (Sorrel-Tree). A slender tree, reaching the maximum height of 60 feet. Heartwood reddish brown, sapwood lighter color. Wood heavy, hard, strong, close-grained, and takes a fine polish. Ranges from Pennsylvania, along the Alleghanies, to Florida and Alabama, westward through Ohio to southern Indiana and southward through Arkansas and Louisiana to the Coast.

SWEET GUM (See Gum)

SYCAMORE

102. Sycamore (Platanus occidentalis) (Buttonwood, Button-Ball Tree, Plane Tree, Water Beech). A large-sized tree, of rapid growth. One of the largest deciduous trees of the United States, sometimes attaining a height of 100 feet. It produces a timber that is moderately heavy, quite hard, stiff, strong, and tough, usually cross-grained; of coarse texture, difficult to split and work, shrinks moderately, but warps and checks considerably in seasoning, but stands well, and is not considered durable for outside work, or in contact with the soil. It has broad medullary rays, and much of the timber has a beautiful figure. It is used in slack cooperage, and quite extensively for drawers, backs, and bottoms, etc., in furniture work. It is also used for cabinet work, for tobacco boxes, crates, desks, flooring, furniture, ox-yokes, butcher blocks, and also for finishing lumber, where it has too long been underrated. Common and largest in the Ohio and Mississippi Valleys, at home in nearly all parts of the eastern United States.

103. Sycamore (Platanus racemosa). The California species, resembling in its wood the Eastern form. Not used to any great extent.

TULIP TREE

104. Tulip Tree (Liriodendron tulipifera) (Yellow Poplar, Tulip Wood, White Wood, Canary Wood, Poplar, Blue Poplar, White Poplar, Hickory Poplar). A medium- to large-sized tree, does not form forests, but is quite common, especially in the Ohio basin. Wood usually light, but varies in weight, it is soft, tough, but not strong, of fine texture, and yellowish color. The wood shrinks considerably, but seasons without much injury, and works and stands extremely well. Heartwood light yellow or greenish brown, the sapwood is thin, nearly white, and decays rapidly. The heartwood is fairly durable when exposed to the weather or in contact with the soil. It bends readily when steamed, and takes stain and paint well. The mature forest-grown tree has a long, straight, cylindrical bole, clear of branches for at least two thirds of its length, surmounted by a short, open, irregular crown. When growing in the open, the tree maintains a straight stem, but the crown extends almost to the ground, and is of conical shape. Yellow poplar, or tulip wood, ordinarily grows to a height of from 100 to 125 feet, with a diameter of from 3 to 6 feet, and a clear length of about 70 feet. Trees have been found 190 feet high and ten feet in diameter. Used in cooperage, for siding, for panelling and finishing lumber in houses, car- and shipbuilding, for sideboards, panels of wagons and carriages, for aeroplanes, for automobiles, also in the manufacture of furniture farm implements, machinery, for pump logs, and almost every kind of common woodenware, boxes shelving, drawers, etc., etc. Also in the manufacture of toys, culinary woodenware, and backing for veneer. It is in great demand throughout the vehicle and implement trade, and also makes a fair grade of wood pulp. In fact the tulip tree is one of the most useful of woods throughout the woodworking industry of this country. Occurs from New England to Missouri and southward to Florida.

TUPELO (See Gum)

WAAHOO

105. Waahoo (Evonymus atropurpureus). (Burning Bush, Spindle Tree). A small-sized tree. Wood white, tinged with orange; heavy, hard, tough, and close-grained, works well and stands well. Used principally for arrows and spindles. Widely distributed. Usually a shrub six to ten feet high, becoming a tree only in southern Arkansas and Oklahoma.

WALNUT

106. Black Walnut (Juglans nigra) (Walnut). A large, beautiful, and quickly-growing tree, about 60 feet and upwards in height. Wood heavy, hard, strong, of coarse texture, very durable in contact with the soil. The narrow sapwood whitish, the heartwood dark, rich, chocolate brown, sometimes almost black; aged trees of fine quality bring fancy prices. The wood shrinks moderately in seasoning, works well and stands well, and takes a fine polish. It is quite handsome, and has been for a long time the favorite wood for cabinet and furniture making. It is used for gun-stocks, fixtures, interior decoration, veneer, panelling, stair newells, and all classes of work demanding a high priced grade of wood. Black walnut is a large tree with stout trunk, of rapid growth, and was formerly quite abundant throughout the Alleghany region. Occurs from New England to Texas, and from Michigan to Florida. Not common.

WHITE WALNUT (See Butternut)

WHITE WOOD (See Tulip and also Basswood)

WHITE WILLOW

107. White Willow (Salix alba var. vitellina) (Willow, Yellow Willow, Blue Willow). The wood is very soft, light, flexible, and fairly strong, is fairly durable in contact with the soil, works well and stands well when seasoned. Medium-sized tree, characterized by a short, thick trunk, and a large, rather irregular crown composed of many branches. The size of the tree at maturity varies with the locality. In the region where it occurs naturally, a height of 70 to 80 feet, and a diameter of three to four feet are often attained. When planted in the Middle West, a height of from 50 to 60 feet, and a diameter of one and one-half to two feet are all that may be expected. When closely planted on moist soil, the tree forms a tall, slender stem, well cleared branches. Is widely naturalized in the United States. It is used in cooperage, for woodenware, for cricket and baseball bats, for basket work, etc. Charcoal made from the wood is used in the manufacture of gunpowder. It has been generally used for fence posts on the Northwestern plains, because of scarcity of better material. Well seasoned posts will last from four to seven years. Widely distributed throughout the United States.

108. Black Willow (Salix nigra). Small-sized tree. Heartwood light reddish brown, sapwood nearly white. Wood soft, light, not strong, close-grained, and very flexible. Used in basket making, etc. Ranges from New York to Rocky Mountains and southward to Mexico.

109. Shining Willow (Salix lucida). A small-sized tree. Wood in its quality and uses similiar to the preceding. Ranges from Newfoundland to Rocky Mountains and southward to Pennsylvania and Nebraska.

110. Perch Willow (Salix amygdaloides) (Almond-leaf Willow). Small to medium-sized tree. Heartwood light brown, sapwood lighter color. Wood light, soft, flexible, not strong, close-grained. Uses similiar to the preceding. Follows the water courses and ranges across the continent; less abundant in New England than elsewhere. Common in the West.

111. Long-Leaf Willow (Salix fluviatilis) (Sand Bar Willow). A small-sized tree. Ranges from the Arctic Circle to Northern Mexico.

112. Bebb Willow (Salix bebbiana var. rostrata). A small-sized tree. More abundant in British America than in the United States, where it ranges southward to Pennsylvania and westward to Minnesota.

113. Glaucous Willow (Salix discolor) (Pussy Willow). A small-sized tree. Common along the banks of streams, and ranges from Nova Scotia to Manitoba, and south to Delaware; west to Indiana and northwestern Missouri.

114. Crack Willow (Salix fragilis). A medium to large-sized tree. Wood is very soft, light, very flexible and fairly strong, is fairly durable in contact with the soil, works well and stands well. Used principally for basket making, hoops, etc., and to produce charcoal for gunpowder. Very common, and widely distributed in the United States.

115. Weeping Willow (Salix babylonica). Medium- to large-sized tree. Wood similiar to Salix nigra, but not so valuable. Mostly an ornamental tree. Originally came from China. Widely planted in the United States.

YELLOW WOOD

116. Yellow Wood (Cladrastis lutea) (Virgilia). A small to medium-sized tree. Wood yellow to pale brown, heavy, hard, close-grained and strong. Not used to much extent in manufacturing. Not common. Found principally on the limestone cliffs of Kentucky, Tennessee, and North Carolina.



SECTION IV

GRAIN, COLOR, ODOR, WEIGHT, AND FIGURE IN WOOD

DIFFERENT GRAINS OF WOOD

The terms "fine-grained," "coarse-grained," "straight-grained," and "cross-grained" are frequently applied in the trade. In common usage, wood is coarse-grained if its annual rings are wide; fine-grained if they are narrow. In the finer wood industries a fine-grained wood is capable of high polish, while a coarse-grained wood is not, so that in this latter case the distinction depends chiefly on hardness, and in the former on an accidental case of slow or rapid growth. Generally if the direction of the wood fibres is parallel to the axis of the stem or limb in which they occur, the wood is straight-grained; but in many cases the course of the fibres is spiral or twisted around the tree (as shown in Fig. 15), and sometimes commonly in the butts of gum and cypress, the fibres of several layers are oblique in one direction, and those of the next series of layers are oblique in the opposite direction. (As shown in Fig. 16 the wood is cross or twisted grain.) Wavy-grain in a tangential plane as seen on the radial section is illustrated in Fig. 17, which represents an extreme case observed in beech. This same form also occurs on the radial plane, causing the tangential section to appear wavy or in transverse folds.

When wavy grain is fine (i.e., the folds or ridges small but numerous) it gives rise to the "curly" structure frequently seen in maple. Ordinarily, neither wavy, spiral, nor alternate grain is visible on the cross-section; its existence often escapes the eye even on smooth, longitudinal faces in the sawed material, so that the only guide to their discovery lies in splitting the wood in two, in the two normal plains.





Generally the surface of the wood under the bark, and therefore also that of any layer in the interior, is not uniform and smooth, but is channelled and pitted by numerous depressions, which differ greatly in size and form. Usually, any one depression or elevation is restricted to one or few annual layers (i.e., seen only in one or few rings) and is then lost, being compensated (the surface at the particular spot evened up) by growth. In some woods, however, any depression or elevation once attained grows from year to year and reaches a maximum size, which is maintained for many years, sometimes throughout life. In maple, where this tendency to preserve any particular contour is very great, the depressions and elevations are usually small (commonly less than one-eighth inch) but very numerous.

On tangent boards of such wood, the sections, pits, and prominences appear as circlets, and give rise to the beautiful "bird's eye" or "landscape" structure. Similiar structures in the burls of black ash, maple, etc., are frequently due to the presence of dormant buds, which cause the surface of all the layers through which they pass to be covered by small conical elevations, whose cross-sections on the sawed board appear as irregular circlets or islets, each with a dark speck, the section of the pith or "trace" of the dormant bud in the center.



In the wood of many broad-leaved trees the wood fibres are much longer when full grown than when they are first formed in the cambium or growing zone. This causes the tips of each fibre to crowd in between the fibres above and below, and leads to an irregular interlacement of these fibres, which adds to the toughness, but reduces the cleavability of the wood. At the juncture of the limb and stem the fibres on the upper and lower sides of the limb behave differently. On the lower side they run from the stem into the limb, forming an uninterrupted strand or tissue and a perfect union. On the upper side the fibres bend aside, are not continuous into the limb, and hence the connection is not perfect (see Fig. 18). Owing to this arrangement of the fibres, the cleft made in splitting never runs into the knot if started on the side above the limb, but is apt to enter the knot if started below, a fact well understood in woodcraft. When limbs die, decay, and break off, the remaining stubs are surrounded, and may finally be covered by the growth of the trunk and thus give rise to the annoying "dead" or "loose" knots.



COLOR AND ODOR OF WOOD

Color, like structure, lends beauty to the wood, aids in its identification, and is of great value in the determination of its quality. If we consider only the heartwood, the black color of the persimmon, the dark brown of the walnut, the light brown of the white oaks, the reddish brown of the red oaks, the yellowish white of the tulip and poplars, the brownish red of the redwood and cedars, the yellow of the papaw and sumac, are all reliable marks of distinction and color. Together with luster and weight, they are only too often the only features depended upon in practice. Newly formed wood, like that of the outer few rings, has but little color. The sapwood generally is light, and the wood of trees which form no heartwood changes but little, except when stained by forerunners of disease.

The different tints of colors, whether the brown of oak, the orange brown of pine, the blackish tint of walnut, or the reddish cast of cedar, are due to pigments, while the deeper shade of the summer-wood bands in pine, cedar, oak, or walnut is due to the fact that the wood being denser, more of the colored wood substance occurs on a given space, i.e., there is more colored matter per square inch. Wood is translucent, a thin disk of pine permitting light to pass through quite freely. This translucency affects the luster and brightness of lumber.

When lumber is attacked by fungi, it becomes more opaque, loses its brightness, and in practice is designated "dead," in distinction to "live" or bright timber. Exposure to air darkens all wood; direct sunlight and occasional moistening hasten this change, and cause it to penetrate deeper. Prolonged immersion has the same effect, pine wood becoming a dark gray, while oak changes to a blackish brown.

Odor, like color, depends on chemical compounds, forming no part of the wood substance itself. Exposure to weather reduces and often changes the odor, but a piece of long-leaf pine, cedar, or camphor wood exhales apparently as much odor as ever when a new surface is exposed. Heartwood is more odoriferous than sapwood. Many kinds of wood are distinguished by strong and peculiar odors. This is especially the case with camphor, cedar, pine, oak, and mahogany, and the list would comprise every kind of wood in use were our sense of smell developed in keeping with its importance.

Decomposition is usually accompanied by pronounced odors. Decaying poplar emits a disagreeable odor, while red oak often becomes fragrant, its smell resembling that of heliotrope.

WEIGHT OF WOOD

A small cross-section of wood (as in Fig. 19) dropped into water sinks, showing that the substance of which wood fibre or wood is built up is heavier than water. By immersing the wood successively in heavier liquids, until we find a liquid in which it does not sink, and comparing the weight of the same with water, we find that wood substance is about 1.6 times as heavy as water, and that this is as true of poplar as of oak or pine.



Separating a single cell (as shown in Fig. 20, a), drying and then dropping it into water, it floats. The air-filled cell cavity or interior reduces its weight, and, like an empty corked bottle, it weighs less than the water. Soon, however, water soaks into the cell, when it fills up and sinks. Many such cells grown together, as in a block of wood, when all or most of them are filled with water, will float as long as the majority of them are empty or only partially filled. This is why a green, sappy pine pole soon sinks in "driving" (floating down stream). Its cells are largely filled before it is thrown in, and but little additional water suffices to make its weight greater than that of the water. In a good-sized white pine log, composed chiefly of empty cells (heartwood), the water requires a very long time to fill up the cells (five years would not suffice to fill them all), and therefore the log may float for many months. When the wall of the wood fibre is very thick (five eighths or more of the volume, as in Fig. 20, b), the fibre sinks whether empty or filled. This applies to most of the fibres of the dark summer-wood bands in pines, and to the compact fibres of oak or hickory, and many, especially tropical woods, have such thick-walled cells and so little empty or air space that they never float.



Here, then, are the two main factors of weight in wood; the amount of cell wall or wood substance constant for any given piece, and the amount of water contained in the wood, variable even in the standing tree, and only in part eliminated in drying.

The weight of the green wood of any species varies chiefly as a second factor, and is entirely misleading, if the relative weight of different kinds is sought. Thus some green sticks of the otherwise lighter cypress and gum sink more readily than fresh oak.

The weight of sapwood or the sappy, peripheral part of our common lumber woods is always great, whether cut in winter or summer. It rarely falls much below forty-five pounds, and commonly exceeds fifty-five pounds to the cubic foot, even in our lighter wooded species. It follows that the green wood of a sapling is heavier than that of an old tree, the fresh wood from a disk of the upper part of a tree is often heavier than that of the lower part, and the wood near the bark heavier than that nearer the pith; and also that the advantage of drying the wood before shipping is most important in sappy and light kinds.

When kiln-dried, the misleading moisture factor of weight is uniformly reduced, and a fair comparison possible. For the sake of convenience in comparison, the weight of wood is expressed either as the weight per cubic foot, or, what is still more convenient, as specific weight or density. If an old long-leaf pine is cut up (as shown in Fig. 21) the wood of disk No. 1 is heavier than that of disk No. 2, the latter heavier than that of disk No. 3, and the wood of the top disk is found to be only about three fourths as heavy as that of disk No. 1. Similiarly, if disk No. 2 is cut up, as in the figure, the specific weight of the different parts is:

a, about 0.52 b, about 0.64 c, about 0.67 d, e, f, about 0.65

showing that in this disk at least the wood formed during the many years' growth, represented in piece a, is much lighter than that of former years. It also shows that the best wood is the middle part, with its large proportion of dark summer bands.



Cutting up all disks in the same way, it will be found that the piece a of the first disk is heavier than the piece a of the fifth, and that piece c of the first disk excels the piece c of all the other disks. This shows that the wood grown during the same number of years is lighter in the upper parts of the stem; and if the disks are smoothed on the radial surfaces and set up one on top of the other in their regular order, for the sake of comparison, this decrease in weight will be seen to be accompanied by a decrease in the amount of summer-wood. The color effect of the upper disks is conspicuously lighter. If our old pine had been cut one hundred and fifty years ago, before the outer, lighter wood was laid on, it is evident that the weight of the wood of any one disk would have been found to increase from the center outward, and no subsequent decrease could have been observed.

In a thrifty young pine, then, the wood is heavier from the center outward, and lighter from below upward; only the wood laid on in old age falls in weight below the average. The number of brownish bands of summer-wood are a direct indication of these differences. If an old oak is cut up in the same manner, the butt cut is also found heaviest and the top lightest, but, unlike the disk of pine, the disk of oak has its firmest wood at the center, and each successive piece from the center outward is lighter than its neighbor.

Examining the pieces, this difference is not as readily explained by the appearance of each piece as in the case of pine wood. Nevertheless, one conspicuous point appears at once. The pores, so very distinct in oak, are very minute in the wood near the center, and thus the wood is far less porous.

Studying different trees, it is found that in the pines, wood with narrow rings is just as heavy as and often heavier than the wood with wider rings; but if the rings are unusually narrow in any part of the disk, the wood has a lighter color; that is, there is less summer-wood and therefore less weight.

In oak, ash, or elm trees of thrifty growth, the rings, fairly wide (not less than one-twelfth inch), always form the heaviest wood, while any piece with very narrow rings is light. On the other hand, the weight of a piece of hard maple or birch is quite independent of the width of its rings.

The bases of limbs (knots) are usually heavy, very heavy in conifers, and also the wood which surrounds them, but generally the wood of the limbs is lighter than that of the stem, and the wood of the roots is the lightest.

In general, it may be said that none of the native woods in common use in this country are when dry as heavy as water, i.e., sixty-two pounds to the cubic foot. Few exceed fifty pounds, while most of them fall below forty pounds, and much of the pine and other coniferous wood weigh less than thirty pounds per cubic foot. The weight of the wood is in itself an important quality. Weight assists in distinguishing maple from poplar. Lightness coupled with great strength and stiffness recommends wood for a thousand different uses. To a large extent weight predicates the strength of the wood, at least in the same species, so that a heavy piece of oak will exceed in strength a light piece of the same species, and in pine it appears probable that, weight for weight, the strength of the wood of various pines is nearly equal.

WEIGHT OF KILN-DRIED WOOD OF DIFFERENT SPECIES -+ Approximate + - Weight of -+ - Species Specific 1 1,000 Weight Cubic Feet Foot Lumber -+ + -+ - (a) Very Heavy Woods: Hickory, Oak, Persimmon, Osage Orange, Black Locust, Hackberry, Blue Beech, best of Elm and Ash 0.70-0.80 42-48 3,700 (b) Heavy Woods Ash, Elm, Cherry, Birch, Maple, Beech, Walnut, Sour Gum, Coffee Tree, Honey Locust, best of Southern Pine and Tamarack 0.60-0.70 36-42 3,200 (c) Woods of Medium Weight: Southern Pine, Pitch Pine, Tamarack, Douglas Spruce, Western Hemlock, Sweet Gum, Soft Maple, Sycamore, Sassafras, Mulberry, light grades of Birch and Cherry 0.50-0.60 30-36 2,700 (d) Light Woods: Norway and Bull Pine, Red Cedar, Cypress, Hemlock, the Heavier Spruces and Firs, Redwood, Basswood, Chestnut, Butternut, Tulip, Catalpa, Buckeye, heavier grades of Poplar 0.40-0.50 24-30 2,200 (e) Very Light Woods: White Pine, Spruce, Fir, White Cedar, Poplar 0.30-0.40 18-24 1,800 -+ + -+ -

"FIGURE" IN WOOD

Many theories have been propounded as to the cause of "figure" in timber; while it is true that all timber possesses "figure" in some degree, which is more noticeable if it be cut in certain ways, yet there are some woods in which it is more conspicuous than in others, and which for cabinet or furniture work are much appreciated, as it adds to the value of the work produced.

The characteristic "figure" of oak is due to the broad and deep medullary rays so conspicuous in this timber, and the same applies to honeysuckle. Figure due to the same cause is found in sycamore and beech, but is not so pronounced. The beautiful figure in "bird's eye maple" is supposed to be due to the boring action of insects in the early growth of the tree, causing pits or grooves, which in time become filled up by being overlain by fresh layers of wood growth; these peculiar and unique markings are found only in the older and inner portion of the tree.

Pitch pine has sometimes a very beautiful "figure," but it generally does not go deep into the timber; walnut has quite a variety of "figures," and so has the elm. It is in mahogany, however, that we find the greatest variety of "figure," and as this timber is only used for furniture and fancy work, a good "figure" greatly enhances its value, as firmly figured logs bring fancy prices.

Mahogany, unlike the oak, never draws its "figure" from its small and almost unnoticeable medullary rays, but from the twisted condition of its fibres; the natural growth of mahogany produces a straight wood; what is called "figured" is unnatural and exceptional, and thus adds to its value as an ornamental wood. These peculiarities are rarely found in the earlier portion of the tree that is near the center, being in this respect quite different from maple; they appear when the tree is more fully developed, and consist of bundles of woody fibres which, instead of being laid in straight lines, behave in an erratic manner and are deposited in a twisted form; sometimes it may be caused by the intersection of branches, or possibly by the crackling of the bark pressing on the wood, and thus moving it out of its natural straight course, causing a wavy line which in time becomes accentuated.

It will have been observed by most people that the outer portion of a tree is often indented by the bark, and the outer rings often follow a sinuous course which corresponds to this indention, but in most trees, after a few years, this is evened up and the annual rings assume their nearly circular form; it is supposed by some that in the case of mahogany this is not the case, and that the indentations are even accentuated.

The best figured logs of timber are secured from trees which grow in firm rocky soil; those growing on low-lying or swampy ground are seldom figured. To the practical woodworker the figure in mahogany causes some difficulty in planing the wood to a smooth surface; some portions plane smooth, others are the "wrong way of the grain."

Figure in wood is effected by the way light is thrown upon it, showing light if seen from one direction, and dark if viewed from another, as may easily be observed by holding a piece of figured mahogany under artificial light and looking at it from opposite directions. The characteristic markings on mahogany are "mottle," which is also found in sycamore, and is conspicuous on the backs of fiddles and violins, and is not in itself valuable; it runs the transverse way of the fibres and is probably the effect of the wind upon the tree in its early stages of growth. "Roe," which is said to be caused by the contortion of the woody fibres, and takes a wavy line parallel to them, is also found in the hollow of bent stems and in the root structure, and when combined with "mottle" is very valuable. "Dapple" is an exaggerated form of mottle. "Thunder shake," "wind shake," or "tornado shake" is a rupture of the fibres across the grain, which in mahogany does not always break them; the tree swaying in the wind only strains its fibres, and thus produces mottle in the wood.



SECTION V

ENEMIES OF WOOD

From the writer's personal investigations of this subject in different sections of the country, the damage to forest products of various kinds from this cause seems to be far more extensive than is generally recognized. Allowing a loss of five per cent on the total value of the forest products of the country, which the writer believes to be a conservative estimate, it would amount to something over $30,000,000 annually. This loss differs from that resulting from insect damage to natural forest resources, in that it represents more directly a loss of money invested in material and labor. In dealing with the insects mentioned, as with forest insects in general, the methods which yield the best results are those which relate directly to preventing attack, as well as those which are unattractive or unfavorable. The insects have two objects in their attack: one is to obtain food, the other is to prepare for the development of their broods. Different species of insects have special periods during the season of activity (March to November), when the adults are on the wing in search of suitable material in which to deposit their eggs. Some species, which fly in April, will be attracted to the trunks of recently felled pine trees or to piles of pine sawlogs from trees felled the previous winter. They are not attracted to any other kind of timber, because they can live only in the bark or wood of pine, and only in that which is in the proper condition to favor the hatching of their eggs and the normal development of their young. As they fly only in April, they cannot injure the logs of trees felled during the remainder of the year.

There are also oak insects, which attack nothing but oak; hickory, cypress, and spruce insects, etc., which have different habits and different periods of flight, and require special conditions of the bark and wood for depositing their eggs or for subsequent development of their broods. Some of these insects have but one generation in a year, others have two or more, while some require more than one year for the complete development and transformation. Some species deposit their eggs in the bark or wood of trees soon after they are felled or before any perceptible change from the normal living tissue has taken place; other species are attracted only to dead bark and dead wood of trees which have been felled or girdled for several months; others are attracted to dry and seasoned wood; while another class will attack nothing but very old, dry bark or wood of special kinds and under special conditions. Thus it will be seen how important it is for the practical man to have knowledge of such of the foregoing facts as apply to his immediate interest in the manufacture or utilization of a given forest product, in order that he may with the least trouble and expense adjust his business methods to meet the requirements for preventing losses.

The work of different kinds of insects, as represented by special injuries to forest products, is the first thing to attract attention, and the distinctive character of this work is easily observed, while the insect responsible for it is seldom seen, or it is so difficult to determine by the general observer from descriptions or illustrations that the species is rarely recognized. Fortunately, the character of the work is often sufficient in itself to identify the cause and suggest a remedy, and in this section primary consideration is given to this phase of the subject.

Ambrosia or Timber Beetles





The characteristic work of this class of wood-boring beetles is shown in Figs. 22 and 23. The injury consists of pinhole and stained-wood defects in the sapwood and heartwood of recently felled or girdled trees, sawlogs, pulpwood, stave and shingle bolts, green or unseasoned lumber, and staves and heads of barrels containing alcoholic liquids. The holes and galleries are made by the adult parent beetles, to serve as entrances and temporary houses or nurseries for the development of their broods of young, which feed on a fungus growing on the walls of the galleries.

The growth of this ambrosia-like fungus is induced and controlled by the parent beetles, and the young are dependent upon it for food. The wood must be in exactly the proper condition for the growth of the fungus in order to attract the beetles and induce them to excavate their galleries; it must have a certain degree of moisture and other favorable qualities, which usually prevail during the period involved in the change from living, or normal, to dead or dry wood; such a condition is found in recently felled trees, sawlogs, or like crude products.

There are two general types or classes of these galleries: one in which the broods develop together in the main burrows (see Fig. 22), the other in which the individuals develop in short, separate side chambers, extending at right angles from the primary galleries (see Fig. 23). The galleries of the latter type are usually accompanied by a distinct staining of the wood, while those of the former are not.

The beetles responsible for this work are cylindrical in form, apparently with a head (the prothorax) half as long as the remainder of the body (see Figs. 22, a, and 23, a).

North American species vary in size from less than one-tenth to slightly more than two-tenths of an inch, while some of the subtropical and tropical species attain a much larger size. The diameter of the holes made by each species corresponds closely to that of the body, and varies from about one-twentieth to one-sixteenth of an inch for the tropical species.

Round-headed Borers



The character of the work of this class of wood- and bark-boring grubs is shown in Fig. 24. The injuries consist of irregular flattened or nearly round wormhole defects in the wood, which sometimes result in the destruction of valuable parts of the wood or bark material. The sapwood and heartwood of recently felled trees, sawlogs, poles posts, mine props, pulpwood and cordwood, also lumber or square timber, with bark on the edges, and construction timber in new and old buildings, are injured by wormhole defects, while the valuable parts of stored oak and hemlock tanbark and certain kinds of wood are converted into worm-dust. These injuries are caused by the young or larvae of long-horned beetles. Those which infest the wood hatch from eggs deposited in the outer bark of logs and like material, and the minute grubs hatching therefrom bore into the inner bark, through which they extend their irregular burrows, for the purpose of obtaining food from the sap and other nutritive material found in the plant tissue. They continue to extend and enlarge their burrows as they increase in size, until they are nearly or quite full grown. They then enter the wood and continue their excavations deep into the sapwood or heartwood until they attain their normal size. They then excavate pupa cells in which to transform into adults, which emerge from the wood through exit holes in the surface. This class of borers is represented by a large number of species. The adults, however, are seldom seen by the general observer unless cut out of the wood before they have emerged.

Flat-headed Borers

The work of the flat-headed borers (Fig. 24) is only distinguished from that of the preceding by the broad, shallow burrows, and the much more oblong form of the exit holes. In general, the injuries are similiar, and effect the same class of products, but they are of much less importance. The adult forms are flattened, metallic-colored beetles, and represent many species, of various sizes.

Timber Worms



The character of the work done by this class is shown in Fig. 25. The injury consists of pinhole defects in the sapwood and heartwood of felled trees, sawlogs and like material which have been left in the woods or in piles in the open for several months during the warmer seasons. Stave and shingle bolts and closely piled oak lumber and square timbers also suffer from injury of this kind. These injuries are made by elongate, slender worms or larvae, which hatch from eggs deposited by the adult beetles in the outer bark, or, where there is no bark, just beneath the surface of the wood. At first the young larvae bore almost invisible holes for a long distance through the sapwood and heartwood, but as they increase in size the same holes are enlarged and extended until the larvae have attained their full growth. They then transform to adults, and emerge through the enlarged entrance burrows. The work of these timber worms is distinguished from that of the timber beetles by the greater variation in the size of holes in the same piece of wood, also by the fact that they are not branched from a single entrance or gallery, as are those made by the beetles.





Powder Post Borers

The character of the work of this class of insects is shown in Figs. 26, 27, and 28. The injury consists of closely placed burrows, packed with borings, or a completely destroyed or powdered condition of the wood of seasoned products, such as lumber, crude and finished handle and wagon stock, cooperage and wooden truss hoops, furniture, and inside finish woodwork, in old buildings, as well as in many other crude or finished and utilized woods. This is the work of both the adults and young stages of some species, or of the larval stage alone of others. In the former, the adult beetles deposit their eggs in burrows or galleries excavated for the purpose, as in Figs. 26 and 27, while in the latter (Fig. 28) the eggs are on or beneath the surface of the wood. The grubs complete the destruction by boring through the solid wood in all directions and packing their burrows with the powdered wood. When they are full grown they transform to the adult, and emerge from the injured material through holes in the surface. Some of the species continue to work in the same wood until many generations have developed and emerged or until every particle of wood tissue has been destroyed and the available nutritive substance extracted.



Conditions Favorable for Insect Injury—Crude Products—Round Timber with Bark on

Newly felled trees, sawlogs, stave and heading bolts, telegraph poles, posts, and the like material, cut in the fall and winter, and left on the ground or in close piles during a few weeks or months in the spring or summer, causing them to heat and sweat, are especially liable to injury by ambrosia beetles (Figs. 22 and 23), round and flat-headed borers (Fig. 24), and timber worms (Fig. 25), as are also trees felled in the warm season, and left for a time before working up into lumber.

The proper degree of moisture found in freshly cut living or dying wood, and the period when the insects are flying, are the conditions most favorable for attack. This period of danger varies with the time of the year the timber is felled and with the different kinds of trees. Those felled in late fall and winter will generally remain attractive to ambrosia beetles, and to the adults of round- and flat-headed borers during March, April, and May. Those felled in April to September may be attacked in a few days after they are felled, and the period of danger may not extend over more than a few weeks. Certain kinds of trees felled during certain months and seasons are never attacked, because the danger period prevails only when the insects are flying; on the other hand, if the same kinds of trees are felled at a different time, the conditions may be most attractive when the insects are active, and they will be thickly infested and ruined.

The presence of bark is absolutely necessary for infestation by most of the wood-boring grubs, since the eggs and young stages must occupy the outer and inner portions before they can enter the wood. Some ambrosia and timber worms will, however, attack barked logs, especially those in close piles, and others shaded and protected from rapid drying.

The sapwood of pine, spruce, fir, cedar, cypress, and the like softwoods is especially liable to injury by ambrosia beetles, while the heartwood is sometimes ruined by a class of round-headed borers, known as "sawyers." Yellow poplar, oak, chestnut, gum, hickory, and most other hardwoods are as a rule attacked by species of ambrosia beetles, sawyers, and timber worms, different from those infesting the pines, there being but very few species which attack both.

Mahogany and other rare and valuable woods imported from the tropics to this country in the form of round logs, with or without bark on, are commonly damaged more or less seriously by ambrosia beetles and timber worms.

It would appear from the writer's investigations of logs received at the mills in this country, that the principal damage is done during a limited period—from the time the trees are felled until they are placed in fresh or salt water for transportation to the shipping points. If, however, the logs are loaded on a vessel direct from the shore, or if not left in the water long enough to kill the insects, the latter will continue their destructive work during transportation to other countries and after they arrive, and until cold weather ensues or the logs are converted into lumber.

It was also found that a thorough soaking in sea-water, while it usually killed the insects at the time, did not prevent subsequent attacks by both foreign and native ambrosia beetles; also, that the removal of the bark from such logs previous to immersion did not render them entirely immune. Those with the bark off were attacked more than those with it on, owing to a greater amount of saline moisture retained by the bark.

How to Prevent Injury

From the foregoing it will be seen that some requisites for preventing these insect injuries to round timber are:

1. To provide for as little delay as possible between the felling of the tree and its manufacture into rough products. This is especially necessary with trees felled from April to September, in the region north of the Gulf States, and from March to November in the latter, while the late fall and winter cutting should all be worked up by March or April.

Previous Part     1  2  3  4  5  6     Next Part
Home - Random Browse