|
The oil is especially beneficial to balustrades and carvings, as they are generally got out of soft stone. It is also beneficial underneath balconies and porches, as the sun never has a chance to dry the stone in such situations before the frost flakes it.
This I send in part payment for the great deal I have learned from your paper.
T.H. Rilley
New York City.
* * * * *
Interesting Correspondence from China.
Messrs. Editors:—Your paper seems to increase in interest. I brought the back volumes from Madras to Pekin, and am glad to refer to them here where I must depend upon myself.
I have been building and repairing premises since I came here last year. I find the carpenters and masons are very much delighted with our tools, especially our saws, planes, borers, vise, and hammers. Our lathe is a wonder. They use only the ancient spindle turned backwards and forwards by a treadle or by the left hand while the right guides the chisel or turning-tool, which cuts only half the time. They use only the turning saw, which often fails them because it cannot be used in splitting wide boards in the middle, and in many other places. They are great sawyers, however. They stand heavy pine spars on end, if rather short, say 8 feet, the common length of many intended for making coffins, and cut them up into three-eighths or half-inch stuff with great patience. A longer one they will lean over and prop up, raising it towards the perpendicular as they advance. They must have some hard jobs. I have just measured a poplar plank in front of a coffin manufactory, which I found to be 5 ft. 3 in. at the butt, 3 ft. 10 in. at the top, 8 feet long, and about 8 inches thick. For a crosscut saw they rig one like our wood-saw. I am sure it would deeply interest you to make a visit to Pekin and see how this ancient, patient, and industrious people do their work. It is truly painful to see how much time they spend in making the simplest tool for want of at least a few labor-saving appliances. Doubtless you have their tools on show in New York. They are to me an interesting study, though I have been long familiar with the rude tools of the Hindoos. It is constantly suggested to me that we must have got many hints from the Chinese, or else indeed they have taken hints from the West; or again, which is perhaps the true solution, implements like words have a common origin. I should think from what I have observed in a short time, that the Chinese resemble the Europeans in their tools more than the Hindoos—a thing I did not at all anticipate. A clever man could write you an interesting chapter on the ways of the Pekinese, the Chinese Manchus, Mongols, and the rest mixed together, though the Chinese are confessedly the workers in wood, iron, and everything else. The Manchus are mostly hangers on of the government, living mainly upon a miserable monthly stipend.
The reading of your unequaled journal makes me interested in you as if you were personal friends, and so I have run away with these pointless remarks. I am sure you will excuse me, and not wonder that one wishes to breathe now and then.
I was an old subscriber in Madras, and hope to be till I can read no longer. My son, who perished at Andersonville, was a subscriber to the SCIENTIFIC AMERICAN till the day of his capture by Mosby.
Pekin, China.
P.R. Hunt.
* * * * *
Communication Between Deaf and Blind Mutes.
Messrs. Editors:—In a recent number of the SCIENTIFIC AMERICAN I notice an ingenious method of teaching deaf and dumb persons to converse in the dark, which is also applicable to blind mutes, and it brings to my recollection a method which was in use among the "telegraph boys" some years ago when I was one of them. Sometimes when we were visiting and asked to communicate to a "brother chip," anything that it was not advisable for the persons around us to know, a slight tap-tapping on the table or chair would draw the attention of the party we asked to talk to, and then by his watching the forefinger of the writer, if across the room, or if near enough, by placing the hand of the writer carelessly on the shoulder of the party we desired to communicate with, the communication was written out in the telegraph alphabet or by taking hold of his hand and writing upon the finger.
I think this method will be found much less complicated, if not quite as rapid, as the method with both hands, and much more convenient, as it is only necessary to have hold of one hand of the person communicated with, and is more rapid than writing with a pen.
For the benefit of those not acquainted with the telegraph alphabet, I give it:
A B C D E F G H I .- -... ... -.. . .-. —. .... ..
J K L M N O P Q -.-. -.- —- — -. . . ..... ..-.
R S T U V W X Y . .. ... - ..- ...- .— ..-. .. ..
Z ... .
The uninitiated will observe that O differs from I in the distance between the dots, made thus: I by two quick strokes of the forefinger; O by one quick stroke, slight pause, and another quick stroke; the dashes are made by holding the finger down for a short space: thus SCIENTIFIC AMERICAN would be written:
S C I E N T I F I C ... .. . .. . -. - .. .-. .. .. .
A M E R I C A N .- — . . .. .. .. . .- -.
In a very short time any one can learn to read by the sight or by the touch. Anything which can add to the pleasure or comfort of these unfortunates is of importance.
MAGNET
[Nothing can compensate for want of rapidity in a language designed for colloquy. Although our correspondent found the Morse telegraph alphabet a resource on occasion, he would scarcely be content to use it, and it only for life, even if emancipation from it involved months of labor. The motions required to spell SCIENTIFIC AMERICAN by the telegraph alphabet are thirty-nine, but as the short dashes occupy the time of two dots for each dash, and there are eight of these, eight more ought to be counted in a comparison of it with an alphabet composed wholly of dots, this would make forty-seven. To spell the same words in full by the mute alphabet referred to would require only twenty-three motions. A still greater disparity in rate would, we think, be found in an entire colloquial sentence. Thus the sentence "Hand me an apple" would require, by the mute alphabet, the time of fourteen dots, while with the telegraph alphabet it would require the time of thirty-nine.—Eds.]
* * * * *
Cheap Cotton Press Wanted.
Messrs. Munn & Co.:—Please give us any information of cheap cotton-presses, such as small neighborhoods, or single planters, in the South could own. In particular, a press that will put 40 pounds cotton into each cubic foot. We want cotton better handled, and to that end may want small bales, say 150 pounds each. But these must be put into three or four cubic feet, or they will cost too much for covering, ties, etc. Perhaps you can furnish us with a wood-cut of some, or several, presses worked by hand, or by horse-power, that will do good service, not cost too much, be simple in operation, not require too much power, and be effective as above. It may be for the interest of some of your clients or correspondents to give us the facts, as we shall put them into a report for circulation amongst the entire cotton interest of the country.
Yours very truly,
WALTER WELLS, Sec'y.
National Association of Cotton Manufacturers and Planters, No. 11, Pemberton Square, Boston, Mass.
* * * * *
A Singular Freak of a Magnet.
Messrs. Editors:—In my library hangs a powerful horseshoe magnet which has a keeper and a weight attached of about three ounces. This weight is sustained firmly by the attracting power of the magnet, and is not easily shaken off by any oscillating motion, yet through some (to me) unknown cause during each of the last ten nights the magnet has lost its power, and the keeper and weight lie in the morning on the bottom of the case where the magnet has hung for many years without a like occurrence, except once on the occasion of a severe shock of an earthquake which took place December 17, 1867.
There is no possible way for this magnet to be disturbed except by the electric current; then why should its power thus return without the aid of a battery or keeper? Will some one explain?
FLOYD HAMBLIN.
Madrid Springs, N.Y.
* * * * *
Speaking makes the ready man, writing the correct man, and reading the full man.
* * * * *
PRESERVATION OF IRON.
BY PROF. HENRY E. COLTON.
"What is wanted is something equally applicable to large or small pieces of iron, and which will answer to ward off the attacks not only of the common atmospheric oxygen, but also remain unaffected by acids or salt waters."
The above from a late number of the SCIENTIFIC AMERICAN states not only the writer's ideas but also one of the greatest wants of the age. Iron is daily being put to more and more varied uses. On land the great question is what will prevent rust; on water, what will prevent rust and fouling of bottoms of iron vessels. We will briefly summarize the many patents granted for this purpose.
Eight are for sheathing of various kinds put on in varied modes. The most practicable of these is a system prepared by Daft. Most iron vessels are now constructed by every other plate lapping the edges of the one between. He proposes, instead of having the plates all the same width, to have one wide and one very narrow plate. This would leave a trough between the two wide plates of the depth of the thickness of the plates. He proposes to force into this trough very tightly pieces of teak, and to the teak, thus embedded, he nails a sheathing of zinc. The zinc is kept clean by slowly wearing away of its surface from action by contact with the iron and salt water.
There are four patents, in which various, so-called, non-conducting coats are put on the iron, and copper pigment in some form put on over them. These have been specially condemned in England, as no matter how good the non-conducting substance—and many are so only in name—it will become rubbed off at some points, and there the bottom will be eaten both by salt water and action of copper.
Coal tar and asphaltum are the subjects of patents in various forms.
One patent claims rubber or gutta-percha dissolved in linseed oil as a vehicle in which to grind the pigment; another the same dissolved in naphtha or bisulphide of carbon as a pigment; another hard rubber, ground.
Enameling with different materials is proposed by some, while one proposes to glaze the bottoms so that barnacles and grass would find a slippery foothold.
Combinations of tallow, resin, and tar—mineral and pine—are patented mostly to use over other paints.
Coal tar, sulphur, lime, and tallow, are the subject of one patent; guano, red lead, and oil of another; while sulphur and silica are claimed by a third.
Paints containing mercury, arsenic, and even strychnine, are the subjects of several patents. A mixture of coal tar and mercurial ointment of one.
Galvanism is proposed to be used in various ways—strips of copper and zinc, or by galvanizing the plates before use. Black lead finds a place in many compositions.
One patent, by a complicated process, effects a union of metallic zinc and iron; this, granulated and ground fine, then mixed with red lead and oil, makes the paint. It is said to be the best of all the patented stuffs.
It is astonishing how many use oils derived from coal, peat, or resin, and tars of the same.
There are about fifty patents for this object and with all of them before their eyes, the British Society for the Advancement of Art still hold the $5,000 reward for a pigment or covering which will perfectly protect from rust and fouling. However they may puff their products for selling, no one has the temerity to claim that they deserve the reward.
We think it would be difficult to find so many expedients ever before adopted for the accomplishment of any one object. These are all English patents, England having necessarily been obliged to use iron for vessels from its cheapness as well as its consequent first introduction there. In the United States no patents worth mentioning have been granted.
The first requisites for a pigment or coating for iron are, that it should not contain any copper—the corrosive action of that metal on iron being intense. Then if for work exposed to air it should form such a coating as to be impervious to that gaseous fluid, and be so constituted chemically as not to be oxidizable by it; if under water—especially sea water—to be impermeable to moisture, so elastic as not to crack, so insoluble as not to chloridize; to form a perfect, apparently hard, coating: and yet wear just enough to keep off incrustation, barnacles, or growth of grass. In fact, this slow wearing away is the only preventive of fouling in iron vessels. Wooden bottoms may be poisoned by solutions of copper—and that metal has no superior for such uses, especially when it is combined in mixture with mineral or resinous tars and spirits—these compounds, however, are not only useless on iron bottoms, but also injurious. What then is the substance: 1st. One of the oxides of lead (red lead). 2d. The purest oxide of iron to be found. If properly made these articles can be carried to no higher state of oxidation, and respectively, as to order named, they have no superiors for body and durability. By preference, 1st, red lead, either out of or under water; 2d, Prince's oxide of iron only, out of water. The color of these paints—the first red, the latter brown, may be hidden by a coat of white or tinted color. If there were to be had in combination as a white paint, an oxide of lead and an oxide of zinc, it would be immensely superior to either, but that such has not been produced is rather the fault of carelessness than of possibility. Zinc protects iron with great effect, but it is too rapidly worn in the effort to be of lasting value. Hence the great desideratum, the yet to be, the coming pigment is a white oxide of lead or a combined white oxide of lead and white oxide of zinc, without sulphates or chlorides.
Those materials answer very well for work exposed to atmospheric air, and perhaps nothing will ever be found better; but a different need is that for salt water. No mere protector of the iron from rust can be found superior to pure red lead and linseed oil. We have seen a natural combination of zinc, lead, and iron, which, in our experience, ranks next; but the zinc is acted on by the chloride of sodium, and wears away too much of the material. Red lead, however, while covering the iron perfectly and effectually preventing rust, and also having but little disposition to chloridize, when it does, will foul both with grass and barnacles. Hence, the first desideratum being obtained, how shall we accomplish the other. The prevention of fouling may be accomplished in two ways: First, cover the vessel's bottom with two or even three coats of red lead, and give each time to dry hard. Then melt in an iron pot a mixture of two parts beeswax, two parts tallow, and one part pine resin; mix thoroughly, and apply hot one or two coats. This mixture may be tinted with vermilion or chrome green. It is not necessary to use any poisonous substance, as it is only by its softness and gradual wear that it is kept clean. Second, mix red lead and granular metallic zinc, ground fine, or such a mineral as we have mentioned—crystalline and granular in its character. Put on two or three coats, and allow each to set—they will never dry hard. The zinc will slowly wear off, keeping the whole surface clean, while there will be left enough coating of the lead to preserve the iron from rust. The oil I would urge for these pigments is linseed—as little boiled as possible, to be thinned with spirits of turpentine. There seems to have been a mania for mixtures of tar and resins, their spirits and oils; my experience fails to show me any advantage for them on an iron bottom. They have neither elasticity nor durability, while linseed oil has both in a pre-eminent degree, and is no more likely to foul than they, when in a combination that does not dry hard. Besides they are difficult to grind, inconvenient to transport, and offensive to use.
Perhaps we have not, in the opinion of some, answered the want expressed in the first paragraph. No pigment with the requisites of durability and cheapness will resist the attacks of strong acids on iron. The first we have mentioned will—all such as may float in our air from factories or chemical works. Chemically it is converted by nitric acid and chlorine into an insoluble substance—plumbic acid or the cyanide of lead. An experience of more than three years, with almost unlimited means at our command for experiment, demonstrates to us that we have indicated the means of filling the other requisites asked for. It may be that something new will be discovered, but we doubt it. Let any one tread the road we have trod, investigate and experiment where and as much as we have, and, if that place is, where we have not, and their experience will be the same as ours.
* * * * *
THE BANANAS AND PLANTAINS OF THE TROPICS.
[For the Scientific American.]
Poets have celebrated the banana plant for its beauty, its luxuriance, the majesty of its leaves, and the delicacy of its fruit; but never have they sufficiently praised the utility of this tropical product. Those who have never lived in southern countries are unable to fully appreciate its value. Some look even with indifference upon the gigantic clusters of this fruit, as they are unloaded from the steamers and sailing vessels; and yet they deserve special attention and admiration, for they are to the inhabitants of the torrid zone, what bread and potatoes are to those of the north temperate zone.
The banana tree is one of the most striking illustrations of tropical fertility and exuberance. A plant, which in a northern climate, would require many years to gain strength and size, is there the production of ten or twelve months. The native of the South plants a few grains, taken from an old tree, in a moist and sandy soil, along some river or lake; they develop with the greatest rapidity, and at the end of ten months the first crop may be gathered, though the cluster and bananas are yet small; but the following year one cluster alone will weigh some sixty or more pounds. Even in the South they are always cut down when green, as they lose much of their flavor when left to ripen or soften on the tree.
The trunk of the tree, if it may be so called, and which grows to a hight of some fifteen feet, is formed only by the fleshy part of the large leaves, some of which attain a length of eighteen feet, and are two and a half feet in width. While from an upper sprout you perceive the large yellow flowers, or already formed fruits, you see underneath a cluster, which is bending the tree by its weight.
The plantain tree is much the same as the banana, with the difference, however, that its fruit cannot be eaten raw, like the banana's, and that it is much larger in size. Almost every portion of the banana tree is useful. First of all, the nutritious fruit. The plantains when green and hard, are boiled in water or with meat like our potatoes, or they are cut in slices and fried in fat, when they are soft and ripe. There is a singularity about the boiled plaintain, worthy of being mentioned. Pork especially, and other meats are so exceedingly fat in the tropics that they would be most disgusting or even impossible to eat with either bread or potatoes, but the plaintain seems to neutralize or absorb all the greasy substance, and the fattest meat is thus eaten by natives and foreigners without the least inconvenience.
Ripe bananas are mashed into a paste, of which the natives bake a sort of bread, which is very nourishing, though somewhat heavy. This paste, which contains much starch, can be dried, and thus kept for a length of time, which is often of great service to mariners. The young sprouts are used and prepared like vegetables, and the fibrous parts of the stalks of the majestic leaves are used like manilla for ropes and coarse cloth.
The utility of the leaves is a theme rich enough to fill a volume; they are used to cover the huts, for table-cloths and napkins, or wrapping paper. The dough of bread, instead of being put in a pan, into the oven, is spread on a piece of plantain leaf; it will neither crisp nor adhere to the bread when taken out. The Indians of America carry all their products, such as maize, sugar, coffee, etc., in bags made of this leaf, which they know how to arrange so well, that they transport an "arroba," or twenty-five pounds any distance without a single grain escaping, and without any appliance other than a liana or creeper to tie it up with. As to the medicinal qualities of the leaves, they are numerous. Indeed, a book has been written upon them. I speak, however, from my own experience. The young, yet unrolled leaves are superior to any salve or ointment. If applied to an inflamed part of the body, the effect is soothing and cooling, or if applied to a wound or ulcer, they excite a proper healthy action, and afterwards completely heal the wound. Decoctions made of the leaves are used among the natives for various diseases.
Since the beginning of the world this plant has ranked among the first in the Flora of Asia. The Christians of the orient look upon it as the tree of Paradise which bore the forbidden fruit, and they think its leaves furnished the first covering to our original parents. According to other historians, the Adam's fig was the plant, which the messengers brought from the promised land to Moses, who had sent them out to reconnoitre. "It is under the shade of the musa sapientium, that," as recorded by Pliny, "the learned Indians seated themselves to meditate over the vicissitudes of life, and to talk over different philosophic subjects, and the fruit of this tree was their only food." The Oriental Christians, up to the present date, regard the banana almost with reverence; their active fancy beholds in its center, if a cut is made transverse, the image of the cross, and they consider it a crime to use a knife in cutting the fruit.
In the holy language of the Hindoo, the Sanscrit, the Adam's fig is called "modsha," whence doubtless, the word "musa" is derived. It is generally believed that the plant came from India to Egypt in the seventh century; it still forms a most important article of commerce in the markets of Cairo and Alexandria. In the year 1516, the banana was brought to the West Indian Islands by a monk, since which time it has rapidly spread over the tropics of America, and is found to the twenty-fifth degree north and south of the equator. It is equally indispensable and is appreciated by the immigrant and by the native as a beautifier of the landscape; affording shelter from the sun and rain, and giving bread to the children; for if every other crop should fail, the hungry native looks up to the banana tree, like a merchant to his well-filled storehouse.
* * * * *
PUTTING UP STOVES.
BY MARK TWAIN.
We do not remember the exact date of the invention of stoves, but it was some years ago. Since then mankind have been tormented once a year, by the difficulties that beset the task of putting them up, and getting the pipes fixed. With all our Yankee ingenuity no American has ever invented any method by which the labor of putting up stoves can be lessened. The job is as severe and vexatious as humanity can possibly endure, and gets more so every year.
Men always put their stoves up on a rainy day. Why, we know not; but we never heard of any exception to this rule. The first step to be taken is to put on a very old and ragged coat, under the impression that when he gets his mouth full of plaster it will keep the shirt bosom clean. Next, the operator gets his hand inside the place where the pipe ought to go, and blacks his fingers, and then he carefully makes a black mark down the side of his nose. It is impossible to make any headway, in doing this work, until this mark is made down the side of the nose. Having got his face properly marked, the victim is ready to begin the ceremony.
The head of the family—who is the big goose of the sacrifice—grasps one side of the bottom of the stove, and his wife and the hired girl take hold of the other side. In this way the load is started from the woodshed toward the parlor. Going through the door, the head of the family will carefully swing his side of the stove around and jam his thumb nail against the door post. This part of the ceremony is never omitted. Having got the family comfort in place, the next thing is to find the legs. Two of these are left inside the stove since the spring before. The other two must be hunted after, for twenty-five minutes. They are usually found under the coal. Then the head of the family holds up one side of the stove while his wife puts two of the legs in place, and next he holds up the other while the other two are fixed, and one of the first two falls out. By the time the stove is on its legs he gets reckless, and takes off his old coat, regardless of his linen.
Then he goes for the pipe and gets two cinders in his eye. It don't make any difference how well the pipe was put up last year it will always be found a little too short or a little too long. The head of the family jams his hat over his eyes and taking a pipe under each arm goes to the tin shop to have it fixed. When he gets back, he steps upon one of the best parlor chairs to see if the pipe fits, and his wife makes him get down for fear he will scratch the varnish off from the chairs with the nails in his boot heel. In getting down he will surely step on the cat, and may thank his stars that it is not the baby. Then he gets an old chair and climbs up to the chimney again, to find that in cutting the pipe off, the end has been left too big for the hole in the chimney. So he goes to the woodshed and splits one side of the end of the pipe with an old axe, and squeezes it in his hands to make it smaller.
Finally he gets the pipe in shape, and finds the stove does not stand true. Then himself and wife and the hired girl move the stove to the left, and the legs fall out again. Next it is to move to the right. More difficulty now with the legs. Move to the front a little. Elbow not even with the hole in the chimney, and the head of the family goes again to the woodshed after some little blocks. While putting the blocks under the legs, the pipe comes out of the chimney. That remedied, the elbow keeps tipping over, to the great alarm of the wife. Head of the family gets the dinner table out, puts the old chair on it, gets his wife to hold the chair, and balances himself on it to drive some nails into the ceiling. Drops the hammer on wife's head. At last he gets the nails driven, takes a wire swing to hold the pipe, hammers a little here, pulls a little there, takes a long breath, and announces the ceremony concluded.
Job never put up any stoves. It would have ruined his reputation if he had. The above programme, with unimportant variations, will be carried out in many respectable families during the next six weeks.
* * * * *
THE MAGIC LANTERN.
The invention of the magic lantern dates back to 1650, and is attributed to Professor Kircher, a German philosopher of rare talents and extensive reputation. The instrument is simple and familiar. It is a form of the microscope. The shadows cast by the object are, by means of lenses, focussed upon something capable of reflection, such as a wall or screen. No essential changes in the principles of construction have been made since the time of Kircher; but the modern improvements in lenses, lights, and pictures, have raised the character of the instrument from that of a mere toy to an apparatus of the highest utility. By its employment the most wonderful forms of creation, invisible, perhaps, to the eye, are not only revealed but reproduced in gigantic proportions, with all the marvelous truth of nature itself. The success of some of the most celebrated demonstrations of Faraday, Tyndall, Doremus, Morton, and others, was due to the skillful use of the magic lantern. As an educator, the employment of this instrument is rapidly extending. No school apparatus is complete without it; and now that transparencies are so readily multiplied by photography upon glass, and upon mica, or gelatin, by the printing press or the pen, it is destined to find a place in every household; for in it are combined the attractive qualities of beauty, amusement, and instruction.
The electric light affords, probably, the strongest and best illumination for the magic lantern; then comes the magnesium light; but their use is a little troublesome and rather expensive; next to these in illuminating power is the oxy-hydrogen or Drummond light. The preparation of the gases and the use of the calcium points involve considerable skill.
Need has long been felt for some form of the magic lantern, having a strong light, but more easily produced than any of those just mentioned; and this has at last been accomplished, after several years' study and experiment, by Prof. L.J. Marcy, 632 Arch St., Philadelphia, Pa.
The "Sciopticon," is the name of his new instrument, and from actual trial we find that it possesses many superior qualities. Its lenses are excellent, and in illuminating power its light ranks next to the oxy-hydrogen. The sciopticon light is produced from ordinary coal oil by an ingenious arrangement of double flames, intensifying the heat and resulting in a pencil of strong white light. Prof. Marcy's instrument is the perfection of convenience, simplicity, and safety. Any one may successfully work it and produce the most brilliant pictures upon the screen. It is peculiarly adapted for school purposes and home entertainment. Those who wish to do a good thing for young people should provide one of these instruments. Photographic transparencies of remarkable places, persons, and objects, may now be purchased at small cost; while there is no end to the variety of pictures which may be drawn by hand at home upon mica, glass or gelatin, and then reproduced upon the screen by the sciopticon.
* * * * *
The Largest Well in the World—Capacity 1,000,000 Gallons of Water per Day.
One of the grand necessities of the Prospect Park, Brooklyn, N.Y., that of providing for a continual supply of water for all the purposes of the Park developed itself, as the Commissioners progressed with their stupendous undertaking. Mr. Stranahan, the President of the Board, after carefully weighing the cost, the practicability, and importance of having an independent water supply for the Park, advised the Commissioners of the plan which had suggested itself, and the calculations which had been made by the engineers relative to the project, and the work was commenced, the first idea being to secure at least a partial supply of water by means of a well constructed in the Park. The subject was thus treated in the last annual report of Mr. C.C. Martin, the engineer in charge:
"This well has been located on the south side of Lookout Hill, near the lake, and work was commenced upon it late in the season. After a careful consideration of various methods for sinking the well, it was decided to build the wall and then to excavate the material from within, trusting to the weight of the wall to force it down. Sixteen feet of the wall were laid securely bolted together, before the excavation was commenced. A derrick with a boom fifty-five feet in length was set up near the wall, so that the sweep of the boom commanded the interior of it. Iron buckets containing fourteen cubic feet each were obtained, and a six-horse power hoisting engine purchased. With these appliances the excavation was commenced, and carried on with slight interruption until the work was suspended on account of the frost."
The well is now completed, and is one of the most important features of the Park. It is worthy to rank as a feat of engineering skill with, any of the great works of modern times. The Commissioners decided to put its powers to the test yesterday afternoon, but owing to the unpropitious weather of the forenoon the trial was postponed. Nevertheless, Commissioners Stranahan, Fiske, and Haynes, with Mr. Martin, engineer in charge, and Mr. John Y. Culyer, his assistant, were at the well. During the last summer some difficulties were encountered in the sinking of the wall, which were set down by superficial observers as the utter failure of the enterprise. Mr. Stranahan received but little encouragement from his fellow Commissioners, some of whom had never seen greater works of engineering than the construction of street sewers. He assumed the responsibility of seeing the work through, feeling that the whole thing depended entirely upon the ability of the engineers, in which he had abundant faith. All obstacles were surmounted; the work proceeded and the well is now finished, and so far as is known, is understood to be the largest one in the world.
The outer wall is fifty feet in diameter, two feet thick, and fifty-four feet high. The inner curb, or wall, is thirty-five feet in diameter and two feet thick, having a depth of ten feet. The masonry, as seen from the top of the structure, is a marvel of neatness and solidity. The water surface in the well is thirteen feet above high-tide level, and the depth of water in the well is fourteen feet. The pump foundations are entirely independent of the walls. This plan was adopted so as to obviate any possible difficulty which might arise from displacement. The pump is the Worthington patent, and, with a pressure of forty pounds, is capable of raising one million gallons of water every twenty-four hours a height of 176 feet, and is competent to a lift of 180 feet.
The boiler house is a neat, pressed-brick structure trimmed with Ohio stone, standing on the surface near the mouth of the well. The interior of the well is reached by a spiral stairway built in the wall, and commencing in the boiler house. In this way the engineer is able to reach the pump. It is a fact worthy of notice in connection with the construction of the wall, or rather the sinking of it, that the outer wall rests upon four feet of wooden cribwork, two feet thick, and having an iron shield. The inner wall is built upon a similar crib only two feet deep, also shielded with iron.
The Commissioners were led to the construction of this well in presence of the danger at any time of some accident taking place in connection with the Brooklyn Water Works which would render it necessary for the Water Board to cut off the Park supply so as to secure the citizens from suffering. This well has more than the necessary capacity to supply the Park abundantly with water, yielding most when most is needed. This is established by the discovery that the time of drought from which the well is, or may be, likely to suffer, occurs in the Fall. Besides these facts, it further appears that in order to furnish the supply of water to the Park the Water Board would have to go through the process of pumping their water twice to convey it to the required elevation, equal to 225 feet from its original level.
The work of the well will be to supply the pools at an elevation of 133 feet. From the pools the water is conducted to the lake. Besides this, there is an independent connection with the lake by which, as necessity may suggest, the water can be directed to the lake, a lift of only seventy feet. The lake, when completed, will occupy an area of fifty acres, which will be kept continually supplied with fresh water, the arrangements being such, or to be such, as will insure a permanent change of water, and prevent any of the evils that may arise from stagnancy. The well is fed from the earth, consisting of a circuit of two miles, with a fall of five feet to the mile. For this reason it does not appear easy to exhaust the supply, as when the water is pumped out to four or five feet from the surface of the well it is replaced at a rate equal to the demand. Every allowance has been made for evaporation from the lake and pools, and the supply is regarded as inexhaustible. Another important fact here suggests itself; that is, that sufficient rain falls during the season in the area of two miles around the well to make the supply perennial. The Prospect Park well is a credit to Brooklyn.—New York Times.
* * * * *
PAPER FOR BUILDING.
Our readers will find in another column an advertisement of this new building material which is now attracting much attention in the West, and of which we have received very favorable reports. It has been recently tested in Chicago with the result we are informed of fully establishing its utility. It is said that a house twenty-two feet long, sixteen wide, and fourteen high, can be covered on the outside for less than $9; and a house thirty-six feet by twenty-two, and twenty feet high, for $20. The building can be done at any season, and can be finished with great speed, and there are said to be numerous other advantages connected with the use of the paper. It differs from ordinary paper in consistency, compactness and solidity. In the manufacture it is subjected to a pressure of hundreds of tuns, which squeezes out the liquid matter, leaving a substance of the right thickness. It is said to be proof against damp and gnawing of vermin, and it being an excellent non-conductor of heat, must make a warm dwelling in winter and a cool one in summer. It is used in the place of plastering for inside walls.
* * * * *
The Prussian Government has military maps of every foot of its territory so complete that every hill, ravine, brooklet, field, and forest is delineated with perfect accuracy. It is a common boast of Prussian military men, that within the space of eight days 848,000 men can be concentrated to the defense of any single point within the kingdom, and every man of them will be a trained and well-equipped soldier.
* * * * *
Improved Muzzle-Pivoting Gun.
We are indebted for the following able description and criticism of this Prussian gun to our able contemporary, The Engineer.
Viewed as a piece of mechanism, nothing can well be more beautiful in mutual adaptation of parts to the fulfillment of given and rather recondite movements, and in point of execution, than this muzzle-pivoting arrangement of Herr Gruson's; but having said this we are compelled to add, as impartial engineering critics, that it is nothing more.
A very few words of description, aided by the very clear engraving annexed, will suffice to make the arrangement plain to every mechanical reader. The entire structure is metallic, chiefly of cast iron or of steel. Upon the platform of the casemate, or deck of the ship, or turret, is laid the heavy bed or traverse plate, cast hollow in iron, holding the vertical pivot at its forward end, on which the gun slide traverses in azimuth, and at its rear end the segment plate, bolted down and separately adjustable as to position upon the bedplate. The slide is also a ponderous hollow casting, the upper surfaces of which, on which the gun carriage runs forward or recoils, are curvilinear in a vertical plane, so that the inclination to the horizon is greatest at the rear end. At the rear end of the slide it traverses upon two heavy cast-iron turned conical rollers, which are geared together and actuated by the winch handle and spur gear, seen in our engraving; by these the slide is practically held fast in any position on the bedplate. The gun itself—in the model, a steel breech-loader, on the Prussian regulation system, very slightly modified—is sustained between two high and ponderous cheek plates of cast iron, which constitute the sides of the carriage, and which are connected together strongly at the lower edges by a heavy base or bottom plate, and at the top by two light cross distance bolts. The muzzle and breech extremities of the piece project well beyond those cheeks. Along the bottom of the trough of the carriage, directly under the gun, lies a nearly horizontal hydraulic press cylinder, the pump and handle actuating which are seen in the figures to the proper left of the gun, and the supply of water for which is contained in the hollow bottom of the carriage. On each side cheek of the carriage is formed, by curved planing, a circular segmental race, opening inward or toward each other, rectangular in cross section and into each of which is fitted a segmental block just filling it up, and occupying a portion of its length so as to slide easily up or downward through the whole range of the arc or segment.
The center point of the length of each of those blocks carries one side of the gun, which is connected also with the two heavy radius bars seen outside the cheeks, and pivoted close to the segment races on the outside, and with a system of link work between the gun itself and the crosshead of the ram of the hydraulic cylinder, which gives motion to the gun in elevation or depression, through a vertical arc, the imaginary center of which, and of the segments of the side cheeks, is situated in the horizontal diameter across the muzzle of the gun. This is in brief the muzzle-pivoting part of the arrangement, of which, were it worth while to go into its details, we should need some further diagrams to make it quite clear. Nor is it worth while to go into the description of various minor points of refinement about the gun mounting, such as the very exposed long tangent scale seen in the figure, by which the elevation or depression is read off, nor the still more exposed and rather ricketty arrangement by which the rear sight is arranged to rise and fall with the gun, and allowance for dispart avoided. The recoil of the gun is resisted through and by the segment blocks in the side cheeks, and by the heavy radius bars, etc., and thus transferred to the carriage itself. This moves upon four eccentro-concentric rollers, in all respects identical with those brought before the Ordnance Select Committee of Woolwich by Mr. Mallet, in 1858—then rejected, after some time adopted, and brought into use in our own service, where they are now universal, and from which they have been adopted into every artillery in the world, and, we understand, without the slightest recognition of the inventor's rights. On the axle of each of these rollers is keyed a circular eccentric cam plate, those at the same side being connected together by a linking bar so as to move in concert. Adjustable tripping plates attached to the sides of the slide, are so arranged that when the loaded gun has been run forward its carriage base rests hard down, with its full weight upon the top faces of the slide, and thus the recoil is made under the full resistance due to the friction of the entire load. Arrived at the highest point, it rests there until loaded. The cam plates being then given a slight motion of rotation by the help of socket levers—the rectangular projections to be received by which are seen on the top edges of the cam plates in the figure—the carriage, by its own commenced descent, gets again upon its rollers, and runs forward upon these at once into firing position. The two elevated horns which are seen standing up at the rear part of the slide above the roller frame are designed to receive the thump of the two short buffer-blocks—seen at the rear part of each carriage cheek—in the event of the recoil not being wholly expended in raising the weight of gun and carriage, etc., along the curved racers of the slide. These buffer-blocks bear against plugs of vulcanized india-rubber secured in the bottoms of the buffer cylinders.
We have thus, though very briefly, described the whole of this mounting. As a carefully thought out and elaborated piece of elegant mechanical complication Herr Gruson's muzzle-pivoting carriage attracted much attention at Paris, in 1867, and its merits were regarded as great by those whose thoughts went little further perhaps. We should have been glad had it been in our power to have joined in its praise. We are, however, obliged honestly to say that, however highly creditable to its designer as an ingenious and capable mechanism, it shows that he has never realized to himself as a practical artillerist the primary, most absolute, and indispensable conditions of construction for a serviceable muzzle-pivoting gun for either land or sea service.
As to the general merits, or general conditions, of muzzle-pivoting, however, once in doubt at first, these are admitted now by all; and the latter resolve themselves almost into this—that system of muzzle-pivoting must be best which, while preserving the essential point of leaving the muzzle of the gun free of any direct attachment, i.e., with an imaginary, not an actual, pivot of vertical arc motion, shall be the simplest possible in its parts, have the least details, the fewest parts capable of being struck by splinters or shot, and all its parts of such materials and character as to receive the smallest amount of injury if so struck. In every one of these aspects Herr Gruson's mounting is at fault. With parts and movements far more ingeniously adapted than those of the crude and unskillfully designed muzzle-pivoting carriages of Captain Heathorn, also exhibited at Paris, and much exhibited and exposed since, the Gruson mounting is even more complicated, expensive, and liable to injury of every sort to which a gun carriage can be conceived liable. We may even venture to affirm that ponderous as was the mass of cast iron, etc., in the Paris model carrying only a 12-pounder gun, were it all enlarged in such ratio as might appear to suit for a 10-inch 25-tun rifled gun of the British type, the almost proverbial relations, between weight, velocity of impulse, and brittleness of cast iron, would show themselves, in the whole machine going to pieces within a very few rounds.
* * * * *
Stock Feeding by Clock Work.
Mr. F. B. Robinson, of North Haven, Conn., has invented a very neat arrangement, whereby horses or stock can be fed at any time required with certainty and without personal attention at the time of feeding. His invention consists of a hopper with a drop bottom in which the provender is placed. A latch secures the drop bottom, the latch engaging with a spring catch. A simple arrangement of clock work on the principle of the alarm clock, may be set to release the spring at any hour or minute desired, when the drop falls and the provender falls through a chute into the feeding trough. This invention may be adapted to feeding any number of horses or cattle, only one clock being required. We regard the invention as one of much value. By its use much neglect of careless attendants may be obviated, and a farmer without help, might leave home for an evening's entertainment, or absent himself on business, without fear that his stock would suffer. Besides being so convenient the cost of the apparatus is a mere bagatelle.
* * * * *
Milk, and What Comes of It.
Orange County has long been a laud flowing with milk and—butter. Three or four of these most beautiful autumn days were spent by us, says a writer in Harper's Weekly, among the farmers which are supposed to butter our New York city bread, and qualify our tea and coffee. Recent mechanical improvements have taken away much of the traditional romance of the farm, but, on the whole, the loss is more than made up by the gain of perfect system and wonderful adaptation. Instead of four or five cows, known by such names as Brindle, Bess, and Sukey, milked by rosy-cheeked maidens, we have now droves of fifty or a hundred, milked by men, who know them only as "good" or "poor milkers."
In some fine farms a large and luxuriant pasture, with running brooks and border of woodlands, affords, with the herd feeding in it, a beautiful picture; and the substantial barns constructed to keep the cattle comfortably cool in summer and warm in winter, with ample drinking troughs and stalls for fastening up at night, are indicative of the good shelter at hand when winter storms drive the cows indoors. To the farmyards the cows are brought night and morning, in summer, to be milked. The strained milk is put into large cans holding forty quarts, such as the milkmen use in distributing it through the city. These cans are then put into tanks made in some cool running stream, where the water comes nearly to the top of the can. Frequent stirring is necessary until the animal heat is quite gone. The milk is then fit to be sent to the cars. This process can never safely be omitted for, paradoxical though it may seem, milk is "fresher" and sweeter when it reaches the consumer if it is delayed at the farm for at least twelve hours. Even in hot weather, it is more certain to keep sweet when twenty-four or thirty-six hours elapse between the milking and the using in the city.
There has been much discussion as to the best means of cooling milk for market, and patent pails have been tried in which the milk passes directly from the cow through small, coiled tubes surrounded by ice. But this rapid cooling does not work well, and practical experience indicates that the old simple process is the best. Every well-appointed farm must have, therefore, a cool and unfailing stream of water. There are two such streams in one of the farms we visited. One passes through the barn, furnishing drinking troughs for the cattle, and a tank for cooling milk in winter. The other, running through the pasture, supplies a trout-breeding pond, and furnishes a tank for summer use. In a little hut under the trees, the milk cans are kept in a stream, which even the severe drought of last summer did not dry, nor the heat raise to a temperature of 60.
We are assured most positively that none of the spring water finds its way over the mouth of the can into the milk. Its dilution, of which there is so much just complaint, must be done, if at all, in the city, for the wholesale buyer is said to have such means of testing the milk as effectually protects him against the farmer. May the man be busy at work who is to give each family such a protection. We have heard it said that one end of a small piece of common tape placed in a pan of milk will carry from it all the water into another vessel in which the other end of the tape should be placed; but we have never found this a safe test.
Strange to say, no butter is made on these large milk farms. The supply for the family is obtained from market, or, more rarely, from a neighbor who churns all his milk for the accommodation of those who send all theirs to the city. Our notions of the way to make butter were decidedly overturned on going to such a dairy. No setting of the milk in shallow pans for cream to rise; no skimming and putting away in jars until "churning day," when the thick cream was agitated by a strong arm until the butter came, then worked and salted. Instead, there is a daily pouring of the unskimmed soured milk into a common churn, perhaps somewhat larger than ordinary. The dasher is fastened to a shaft, which is moved by a crank. The crank is turned by means of a nearly horizontal wheel some eight or ten feet in diameter, which is kept in motion by a dog, sheep, or calf standing on it, something after the manner of the old tread-mill.
When taken from the churn, the butter is worked by hand as of old. The farmer with whom we have talked said he was about determined to send his milk to the creamery, since butter-making made it so hard for the women. Surely woman is less a drudge than she used to be. If, after being relieved from the labor of churning, the remaining working of the butter is considered too hard for the farmer's wife, the day of a woman's redemption must be near at hand.
Only one butter farm, have we been able to find, and not enough is made there to supply the immediate neighborhood. Where, then, does all the Orange county butter come from? Mostly from the West. Farmers buy from the vicinity of the Alleghenies, and even further west, large quantities, which they sell in the original packages or repack in pails. Since railroads have become so numerous, New York drinks up all the milk in Orange county, and must butter her bread elsewhere.
The largest institution for the disposition of milk is the Creamery, which is, in other words, a cheese factory. Here is brought the milk which the farmers themselves are unable properly to prepare for market, for want of cool springs or sufficient help. Received here, it is placed in deep but narrow tin pails holding twelve or fourteen quartz. These are floated in large tanks of water. From these pails the cream is carefully taken and sent to market. The skimmed milk is then placed in a large vat and heated, by means of steam pipes to about 80. Then the rennet is put in. From twenty to thirty minutes suffices for curdling, and the mass is then stirred to separate the curd from the whey. After which it is heated still more; and then the whey, passing off through a strainer, goes to feed hogs, while the curd remains in the vat, to be salted and worked before putting into the presses. In two or three hours the curds become hard enough for the canvas to be put upon them ready for the shelves. Very carefully they must then be watched, lest the fly lying in wait for them makes in them a snug house for her family. Greasing and turning must be a daily labor, and some weeks must pass before they are sufficiently cured for market.
For the benefit of city consumers, who are paying ten and twelve cents a quart for milk, from a tenth to a quarter of which is not infrequently pure Croton, we may add that the highest price the farmer ever gets for his milk is seven cents a quart; and he sometimes sells it for as low as two cents and a half. Our friends, the milkmen, have, therefore, it will be seen, a pretty good margin for freight and profit.
* * * * *
Improved Hay Elevator.
The method most generally used for elevating hay is evidently not the most economical application of the power of horses for the accomplishment of the purpose desired. The tackle involves a great deal of friction, and as the quantity which can be thus raised at once is, probably, on the average, not more than from 150 to 200 lbs, much more time is employed in re-adjusting the fork, than would be the case if a larger quantity were elevated.
The invention under consideration supplies a means whereby it is claimed hay may be unloaded with far greater facility than heretofore, with less labor to the team and with fewer hands than are at present employed.
A primary gear wheel is propelled horizontally by a lever worked by a horse. The primary gear impels a pinion keyed to the shaft of a windlass, upon which is wound the elevating rope, whenever the clutch, A, is made to operate through the cord and lever, B. This cord runs over a pulley on the under side the wood framework at C, and its further end may be held in the hand of the workman on the hay load, who, when he has properly adjusted the fork, pulls the cord which operates the clutch, and the "fork-full" of hay is at once elevated. The cylinder of the windlass, not being keyed to the shaft, only operates when the clutch is closed by the cord.
The horse, or horses which furnish power to the machine, may, therefore, keep on traveling in the same direction, and no time is lost in stopping and backing, as in the method in general use.
There is no doubt but that this is a cheap, durable, and desirable machine, and one that can be used to great advantage, not only for the elevation of hay, but for many other purposes. We think it would be found a decided improvement in discharging cargoes of coal from barges, and for handling coal in storage yards.
The inventor claims that twice as much hay can be raised in a given time by its use, as can be done by the old method; and it dispenses with one hand at the barn or stack.
A coupling at D, enables attachments to be made, which extend the usefulness of the machine very much. It may be used as a power for driving wood saws, cutting fuel, thrashing, and other work where a simple horse power is desirable.
Address for further information, Wm. Derr, Tiffin, Ohio.
* * * * *
COMPETITORS FOR PRIZES.—The interest that our friends have taken in obtaining additional names to send with their own subscriptions to the SCIENTIFIC AMERICAN for the coming year, is without a parallel. The clubs sent by competitors for the cash prizes are not so many or so large as we expected, but the number of applicants for the steel plate engraving exceeds our expectation.
* * * * *
The Emperor of France is said to be interested in the art of flying and to have given money to fledge some inventions.
* * * * *
IMPROVEMENT IN LAMP WICKS.
Our engravings show a novel substitute for the cotton lamp wick. The wick, two forms of which are shown in Figs. 1 and 2, are made of glass, and are filled preferably with pulverized gypsum, although any finely-ground stone, mineral, or metal may be employed. The bottom of the glass tube is closed by wire gauze, or other suitable strainer, through which the fluid flows; and is carried by the capillary attraction of the pounded material to the top of the wick.
Thus a permanent wick is obtained, which may be employed with any form of lamp, and will last for an indefinite time. It may also be used in connection with an open cup, which the inventor terms a poor man's lamp. A perforated card is laid upon the top of the cup or tumbler as a support to the wick.
It may be used either with or without a chimney, and it is claimed that with good kerosene oil it is perfectly safe, and consumes less of it, while it may be also used as a candle.
Patented through the Scientific American Patent Agency, September 14, 1869, by Edward D. Boyd, of Helena, Ark.
Address for rights, etc., the patentee, as above, or Jos. P. Branch, 277 Fulton street, Brooklyn, N.Y.
* * * * *
Great Transformation.
Seven years ago, says the Port Said correspondence of the London News, there was nothing to distinguish Ismailla or the smiling lake before you from the rest of the desert, and all was sand. It is the canal which has raised up the numerous handsome villas and fine gardens. Fresh water is all that is needed to turn the arid desert into a fruitful soil; and the supply of this is provided by the subsidary canal which the company has formed side by side with that broad salt one which now unites two worlds. Wonderful stories are told of the productiveness of the gardens, and a walk through any of those belonging to the leading officials stationed at Ismailla is to verify them all. Vines with large bunches of grapes pendent from their branches; orange trees with green fruit just showing a golden tint; ivy, roses, geraniums from England, and an endless variety of rich tropical plants are all flourishing. In the centre of the town is a square with trees and a building clothed with rich creepers in its midst. Everything here looks French. A handsome boulevard runs down to the point of embarkation, the streets and squares are on the true Parisian model, and there are cafes, billiard rooms, and cafe chantants which might easily belong to Nantes or Lyons. There are of course huge gaps where the houses and shops will be; the roads are, many of them, still of sand; camels draw carts, and generally pervade the place in long strings; but with all this you are kept in a state of wonder during your stay at Ismailla at the marvelous conversion which has taken, place under your eyes.
* * * * *
American agricultural implements are highly praised in newspaper reports of the Metropolitan Cattle Show, held recently in London.
* * * * *
Moore's Rural New Yorker
For Dec. 25 contains a splendid full page Engraving of the PRIZE FOWLS at the recent State Poultry Show—the Best Poultry Picture ever given in an American newspaper.—Also, a magnificent CHRISTMAS PICTURE, and other fine Illustrations. For sale by all Newsdealers; price 8 cents. See advertisement of RURAL in this paper.
* * * * *
BUSINESS AND PERSONAL.
The Charge for Insertion under this head is One Dollar a Line. If the Notices exceed Four Lines, One Dollar and a Half per line will be charged.
* * * * *
To ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston Commercial Bulletin's manufacturing news of the United States. Terms, $4.00 a year.
Ties, timber, and lumber seasoned by steam, without a building. Costs $2, worth $20 per M. Stops eramacausis. H.G. Bulkley, N.Y.
Wanted—Light Machinery or Articles to Manufacture. Work done in a neat, prompt manner. Address W.E. Bradner & Co., 13 Mulberry st., Newark, N.J.
Pyrites wanted—Containing Gold, Silver, or Copper. Address A.G. Hunter, Jackson, Mich.
Those wishing articles of metal or light machinery manufactured, will find it for their interest to address J.B. Heald, Milford, N.H.
One horizontal stationary steam engine, with variable cut-off, 60-H.P.; one plain do., 25-H.P.; one do., 20-H.P.; one Portable 12-H.P., on hand and for sale low. Albertson & Douglass Machine Co., New London, Conn.
For sale cheap—Good 2d-hand plate iron. 50 plates 3-8 thick, 42 inches wide, 120 inches long. Been used 3 months for a floor. Price 3 cents per lb. Address box 1352, Norwich, Conn.
The head draftsman of a locomotive works, just closed, desires another engagement. Familiar with stationary, marine, or locomotive machinery. Unexceptionable references. Watkins, 13 Dutch st., N.Y.
Wanted—Iron Planer about 4 ft., describe same and price, Geo. S. Grier, Milford, Del.
Wanted—Best Water Filter for Household purposes. Frank Alexander, Box 3769, New York.
A Brick Machine wanted. Address A. Hansen, Sumter, S.C.
For Sale for want of use—A 3-Horse portable steam engine and boiler, in perfect running order. Address B.S. Nichols & Co., Burlington, Vt.
Patent Rights bought and sold by R.T. Bradley & Co., 131 Fourth st., Cincinnati, Ohio.
Peck's patent drop press. For circulars, address the sole manufacturers, Milo Peck & Co, New Haven, Ct.
Every wheelwright and blacksmith should have one of Dinsmore's Tire Shrinkers. Send for circular to R.H. Allen & Co., Postoffice Box 376, New York.
For Small Engine Lathes, with foot-power, Hand Lathes, Bolt or Terret Cutters, Planers, etc., address W.E. Bradner & Co., Newark, N.J
Aneroid Barometers made to order, repaired, rated, for sale and exchange, by C. Grieshaber, 107 Clinton St., New York.
Foundery and Machine Business.—Experience with some capital, wants an engagement. South or West preferred. Address Box E.E., Catskill, N.Y.
Foreman in a Machine Shop—A person having ten years experience in that capacity is desirous of forming a new engagement. Address, with particulars, Postoffice Box 119, La Crosse, Wis.
Makers of Pipe Cutting and Tapping and Screwing Machines send circulars, without delay, to Forest City Pipe works, Cleveland, O.
For Best Spring-bed Bottoms address S.C. Jennings, Wautoma, Wis.
Parties having patents or patent goods to sell, send for The National, Buffalo, N.Y., $1 per year, 10c. single copy.
Back Nos., Vols., and Sets of Scientific American for sale. Address Theo. Tusch, No. 37 Park Row, New York.
Mineral Collections—50 selected specimens, including gold and silver ores, $15. Orders executed on receipt of the amount. L. & J Feuchtwanger, Chemists, 55 Cedar st., New York.
The Babcock & Wilcox Steam Engine received the First Premium for the Most Perfect Automatic Expansion Valve Gear, at the late Exhibition of the American Institute. Babcock, Wilcox & Co., 44 Cortlandt st., New York.
For best quality Gray Iron Small Castings, plain and fancy Apply to the Whitneyville Foundery, near New Haven, Conn.
Keuffel & Esser, 71 Nassau st., N.Y., the best place to get 1st-class Drawing Materials, Swiss Instruments, and Rubber Triangles and Curves.
Foot Lathes—E.P. Ryder's improved—220 Center st., N.Y.
Those wanting latest improved Hub and Spoke Machinery, address Kettenring, Strong & Lauster, Defiance, Ohio.
For tinmans' tools, presses, etc., apply to Mays & Bliss, Brooklyn, N.Y.
Mill-stone dressing diamond machine, simple, effective, durable. Also, Glazier's diamonds. John Dickinson, 64 Nassau st., New York.
Send 3-cent stamp for a circular on the uses of Soluble Glass, or Silicates of Soda and Potash. Manufactured by L. & J.W. Feuchtwanger, Chemists and Drug Importers, 55 Cedar st., New York.
Glynn's Anti-Incrustator for Steam Boiler—The only reliable preventative. No foaming, and does not attack metals of boiler. Liberal terms to Agents. C.D. Fredricks, 587 Broadway, New York.
Cold Rolled—Shafting, piston rods, pump rods, Collins pat. double compression couplings, manufactured by Jones & Laughlins, Pittsburgh, Pa.
For solid wrought-iron beams, etc., see advertisement. Address Union Iron Mille, Pittsburgh, Pa., for lithograph, etc.
Machinists, boiler makers, tinners, and workers of sheet metals read advertisement of the Parker Power Presses.
Diamond carbon, formed into wedge or other shapes for pointing and edging tools or cutters for drilling and working stone, etc. Send stamp for circular. John Dickinson, 64 Nassau st., New York.
The paper that meets the eye of manufacturers throughout the United States—Boston Bulletin, $4.00 a year. Advertisements 17c. a line.
Winans' boiler powder, 11 Wall st., N.Y., removes Incrustations without injury or foaming; 12 years in use. Beware of Imitations.
* * * * *
ANSWERS TO CORRESPONDENTS.
_Correspondents who expect to receive answers to their letters must, in all cases, sign their names. We have a right to know those who seek information from us; besides, as sometimes happens we may prefer to address correspondents by mail.
SPECIAL NOTE.—This column is designed for the general interest and instruction of our readers, not for gratuitous replies to questions of a purely business or personal nature. We will publish such inquiries, however, when paid for as advertisemets at $1.00 a line, under the head of "Business and Personal."
All reference to back numbers should be by volume and page._
* * * * *
C.H.G., of N.Y.—To make pure nitrate of silver, dissolve pure silver in pure nitric acid, evaporate the solution to dryness, or, if crystals are preferred, evaporate until the solution is sufficiently concentrated to form crystals. If you can not get pure silver, you may purify it by dissolving coin in nitric acid, filtering the solution and precipitating the silver in the form of a chloride by hydrochloric acid. Next wash the precipitate with hot water until the washings cease to redden litmus paper. Next mix the pure chloride of silver while yet moist with its own weight of pure crystallized carbonate of soda, place the mixture in a covered porcelain crucible and heat very gradually until the fusing point of silver is reached. The reduced silver will be pure and may be removed by breaking the crucible. Wash the button thoroughly with hot water to remove the flux. In dissolving the pure silver thus obtained in nitric acid, it is better to use an excess of acid; the excess will be driven off by heat in evaporation.
G.B., of Iowa.—Nominal horse power is merely a conventional expression for diameter of cylinder and length of stroke, and does not apply to the actual power of the engine. It is found by multiplying the cube root of the stroke in feet by the square of the diameter in inches and dividing the product by 47. This rule is based upon the postulate established by Watt, that the speed of a piston with two feet stroke is 160 feet per minute, and that for longer strokes the speed varies as the cube roots of the length of the stroke. It is needless to say this rule is not observed in modern practice, yet the expression, nominal horse power, is like many other relics of past time still retained. The above rule does not apply to high pressure engines. For such engines Bourne has given the following rule: Multiply the square of the diameter of the cylinder in inches by the cube root of the stroke in feet, and divide by 15.6. The real power of an engine is estimated from the mean effective pressure in the cylinder—not the boiler—and the speed of the piston. Your data are insufficient to determine the horse power of your boiler. The horse power of boilers is estimated from the extent of heating surface when the grate and all other things are correctly proportioned, but with them as with engines, only actual test will positively determine it. The pipe you mention ought to be enlarged as proposed.
W.H.R., of Mass.—Pressure acts independently of the mode of application. A tun laid upon the head of a wedge would produce the same effect as though it were applied through toggles. When, however, a weight is dropped its effect increases as the square of its velocity.
J.B., of N.Y.—We recommend you to get "Appleton's Dictionary of Mechanics." Also send for descriptive catalogue to Henry Carey Baird, Philadelphia, from which you will be able to judge for yourself what works are suited to your requirements.
T.D.H., of Mass.—Ammonia, in a weak solution, may be used to cleanse the scalp, but is not recommended for the purpose. Borax in solution is better. The supposed preservation of the color of the hair by its use is a mistake.
F.B.H., of Ill.—So far as we know, nothing better than the flax seed bag has been discovered for packing the lower end of tubes in artesian wells. We have never heard of any trouble arising from the method and think you will have none.
L.G. of Mass.—Express the decimal ratio of the diameter of a circle to the circumference to which you refer, as a mixed vulgar fraction, and you will have what you ask for, if we understand your query.
A.H.S., of Sandwich Islands.—We know of no substance that in our opinion, could be used advantageously to paint the interior of sheet-iron evaporating pans for concentrating cane juice.
L.B., of Wis.—We would be glad to assist you but the data you furnish are not sufficient. The accurate solution of such a problem involves the higher mathematics.
A.H.M.—All animal and mineral oils are destructive to rubber. Linseed oil will not dissolve it. Oils should not be allowed to get on rubber belting.
T.W.J., of Pa.—For your rollers try some emery mixed in a solution of gum shellac in good alcohol.
E.B., of Mass.—The patent can be corrected by reissue.
J.M.T., of Ind.—To find the proper area for a safety valve port, when the evaporating surface is properly proportioned to the engine power, multiply the square of the diameter of the piston in inches by the speed in feet of the piston per minute, and divide the product by 375 times the pressure on the boiler per square inch. Having decided upon the length of the lever, the distance of the valve stem from the fulcrum, and the point from which the weight will be suspended, the weight necessary will be found by multiplying the area of the valve port in inches into the pressure per square inch in the boiler in pounds, and this product into the distance of the center of the valve stem from the fulcrum in inches, and dividing the product thus obtained by the distance from the fulcrum to the point of suspension of the weight in inches. The quotient will give the weight in pounds.
A.K.S., of Ohio.—The inclination of the poles of a planet to the plane of its orbit, determines its zones and also its seasons. The inclination of the earth's axis is twenty-three and one half degrees. This places the tropics the same distance each side of the equator, and the polar circles the same distance from the poles. The torrid zone is therefore forty-seven degrees wide, and the temperate zones each forty-three degrees wide. As the planets vary in their inclination of their axis to the planes of their orbits, it follows that their zones and seasons differ from those of the earth.
W.H.C., of Texas.—The teeth of a circular wood saw to be driven by foot-power, should be not larger than those of the ordinary hand crosscut. The fly-wheel ought to have a rim weighing from eighty to one hundred pounds, and it should be, for a 12-inch saw, not less than a foot in diameter. It should be placed on the saw arbor. The belt should not run on the fly-wheel, but on a special pulley, and the treadle and crank motion should be so adjusted that the foot will move through an arc of from 10 to 12 inches.
A.H.B., of Pa.—We advise you to use a battery in coating the small gray castings, of which you write, with copper. It will be all the more satisfactory in the end. The best polishing material to put in with them in the tumbler we think would be leather cuttings and sweepings. They will not need returning to the tumbler after being coppered. We recommend you to get "Byrne's Practical Metalworkers Assistant," published by Henry Carey Baird, Philadelphia.
J.H.G., of Tenn.—Don't put oil in your boiler to prevent incrustation. It will not probably do any good, and it will cause much foaming, while besides that it is a waste of heat, it is injurious to engines.
S.S.R., of Tenn.—No ammoniacal engines are, so far as we are aware, running in this country.
C.E.C., of Ohio.—The varnish for patterns is common shellac varnish. It is sometimes made black by lampblack.
* * * * *
RECENT AMERICAN AND FOREIGN PATENTS.
Under this heading we shall publish weekly notes of some of the more prominent home and foreign patents.
* * * * *
MOP.—Philip Cook, Jr., Sioux City, Iowa.—This invention relates to a new and useful improvement in mops, whereby they are so arranged that they may be wrung or freed from water when in use by moving the slides connected with the handle and head of the mop.
VENTILATING HORSE COVER.—Charles P. Eager, Boston., Mass.—This invention relates to a new horse cover, which is so arranged that it will be entirely waterproof, and nevertheless permit a free escape of air from the body of the animal.
CAR COUPLING.—S.O. Campbell, Tipton, Mo.—This invention relates to a new car coupling, which is so arranged that it will be self-coupling and retain the coupling pin ready to lock as long as the link is not inserted.
GAS STOVE.—Wm. J. Hays, New York city.—This invention has for its object to construct a gas stove, with an extender radiating surface, and with proper air channels, so that with a comparatively small amount of heat, the air in an ordinary-sized room can be properly warmed.
SCRIBE HOOK FOR WEATHER BOARDING.—John Nester, Portland, Oregon.—This invention relates to a new scribe hook for weather-boards, which will be generally useful and adaptable to the purposes for which it is intended and to provide an adjustable spur and marker.
RAILROAD SMOKE CONVEYER.—Lemuel Powell, Milford, Conn.—The object of this invention is to prevent the smoke and ashes, issuing from the smoke stack of a locomotive, from entering the cars of the train and from thereby preventing the proper ventilation of the cars.
DRILL FOR BORING POLYGONAL HOLES.—J.C. Broadley, Franklin, N.J.—This invention relates to a new implement for boring polygonal, oval, star-shaped, or holes of other suitable form, in metal, wood, or other material. The invention consists chiefly in arranging the pattern, which regulates the shape of the hole to be bored, on the upper part of the drill shank, and in having the bit shanks, which are pivoted to the lower part of the drill shank, held by means of springs against the inner edges of the inverted cup-shaped pattern.
ROOFING.—H.G. Noble, Selma, Ala.—This invention relates to improvements in roofing, and consists in covering roofs with sheet metal, laid on the rafters and nailed down at the edges, so as to be considerably concaved between them, the joints on the rafters being covered by inverted caps or troughs. The concave form of the sheet is designed to prevent the sheet metal from cracking, to which it is subject by expansion and contraction when laid on flat.
WASHING MACHINE.—John J. Kimball Naperville, Ill.—This invention relates to improvements in washing machines, and consists in an improved arrangement of operating mechanism for revolving a vertically suspended shaft with a crank at the top, and carrying within the tub a corrugated or roughened rubber, for action on the clothes. The invention also comprises an improved arrangement of the rubber, whereby it is made capable of sliding up or down on the shaft, according to the amount of clothes to be acted on.
BOLT CUTTER.—O.E. Butler and S.P. Dunham Marshalltown, Iowa.—This invention relates to improvements in hand instruments for cutting bolts, and consists in the combination with the handles of an instrument, such as patented to the inventors, January 19, 1869, as an improved instrument for sharpening horseshoes, of a cutting pin of peculiar construction, whereby the said tool is adapted, when this cutter is applied in substitution of the cutter and jaw, is used for sharpening horseshoes, to cut off the ends of bolts with great facility.
SHAFT TUG LUGS FOR HARNESS.—T.J. Magruder, Marion, Ohio.—This invention relates to improvements in the construction and application of shaft tug lugs for harness, and consists in forming the said lugs with broad and long plates, properly curved to suit the curve of the pad, and connecting the latter to the under sides of the skirts and to the pads in a way to stiffen the skirt and to hold the stud securely from breaking loose, the said lugs being made solid with a screw nut at the end to confine the bearing straps, or hollow, with female screw threads near the base, and bolts screwing into the said female threads to secure the bearing straps and to admit of readily applying or removing the straps so that the harness may be adapted for use either as single or double harness.
HARNESS BUCKLE.—J.W. Burch, Fayette, Miss.—The object of this invention is to provide buckles for harness and other uses, with tongues constructed in the form of leather punches, whereby they may be used at any time required for punching holes.
HUMMING-WHEEL TOY.—A.F. Able, New Orleans, La.—This invention relates to improvements in humming wheel toys, having for its object to provide an improved holding apparatus for supporting and maintaining the proper tension on the cords, and designed to support the cords of two or more wheels at the same time.
COMBINED CLOTHES IRONING TABLE AND CLOTHES DRYER.—William P. Adams, Brooklyn, N.Y.—This invention relates to a new and useful improvement in an article for the laundry, and consists in an adjustable ironing table, and in combination therewith a clothes dryer.
SEED AND GRAIN STRIPPER.—J.F. King and H.A. Rice, Louisiana, Mo.—The object of this invention is to provide a seed and grain stripper, with light and strong fingers, capable of adjustment as to hight, and arranged in a way to vary the spaces between the teeth at the point of stripping the heads for straw of different sizes.
CLOTHES WRINGER.—M.M. Follett, Lake City, Minn.—This invention relates to a new apparatus for applying pressure to the rollers of a wringer with an object of obtaining equal and adjustable power without any danger to the rubber of the rollers or to the articles to be dried.
AUGER HANDLE.—James Swan, Seymour, Conn.—The object of this invention is to provide a cheap, simple, and durable handle for augurs for boring in wood, one which shall require no fitting except to make the augur enter the socket, and which shall be of such size and shape that the shanks of ordinary augurs shall enter without any fitting at all.
CANDLESTICK.—H. Zahn, San Francisco, Cal.—This invention relates to a new and useful improvement in candlesticks, and consists in the use of a thumb screw in combination with the candlestick tube, whereby the candle is kept steady, and in a perpendicular position in the stick, and firmly held without the use of springs or other attachment.
WASHING MACHINE.—J.S. Merchant, Hopedale, Ohio.—This invention relates to new and useful improvements in machines for washing clothes.
PACKING CASES FOR OIL CANS.—John McLeod Murphy, New York city.—This invention consists of an arrangement especially adapted for use with cans provided with an improved cut off nozzle, which is the subject of an application for a patent, made by the same inventor and bearing even date herewith, which said improvement comprises the application to the ordinary vertical nozzles of a lateral spout connected to the side, and arranged to open an escape passage for the contents when the said spout is turned with the right position, which position is that best adapted for pouring from the can into another vessel, and in which the said spout projects through a slot in the side of the packing case in closing it, the said case being provided with an opening and a door for closing the same adapted for it.
WASHING MACHINE.—Edward Heim, Pittsburgh, Pa.—This invention relates to a new machine for washing clothes, and consists in the introduction of several improvements whereby the machine is adapted to thoroughly clean coarse as well as fine articles without injury to the same, and in a comparatively short time.
PADLOCK—John S. Rankin, Ann Arbor, Mich.—The object of this invention is to provide a simple, cheap, and efficient construction and arrangement of the locking and operating parts of padlocks. The invention consists in an improved and simple compound tumbler bolt and relative arrangement thereof with the bow and bow spring.
GRAIN DRILL.—Jacob F. Gibson, Chestnut Level, Pa.—This invention relates to a seed tube pivoted in its drag bars, in such manner that it may yield to an immovable obstruction.
PROPELLING MACHINERY OF COTTON GINS.—Wm. L. May, Linwood, Ala.—This invention has for its object to effect such arrangement of machinery as will enable a cotton gin to be run at a materially reduced expense.
SNOW PLOW.—Thomas L. Shaw, Omaha, Nebraska.—This invention relates to a snow plow, for a locomotive engine, which takes up a load of snow, is then borne back out of the cut by the engine, and dumps its load when arrived at a clear space.
BEEHIVE.—W.T. Kirkpatrick, Tamarva, Ill.—This invention relates to improvements in beehives, and consists in the combination with beehives in a peculiar way, of a moth box, and moth passage thereto, calculated to entice the moths away from the bee passage and prevent them from entering thereat.
SEEDING MACHINE.—M.F. Lowth and T.J. Howe, Owatonna, Minn.—This invention relates to that class of seeders which employ a revolving cylinder, having pockets in its periphery, and placed at the bottom of the hopper which contains the seed, the function of the pockets being to receive seed, when right side up, and drop it when inverted.
UPRIGHT PIANO.—Geo. C. Manner, New York city.—This invention consists in placing the strings of an upright piano in an inclined position in the frame instead of a perpendicular one, as heretofore, for the purpose of enabling the hammer handle to be pivoted so near the strings that when the hammer head is driven up against them, it shall necessarily fall back again by its own weight.
CARPET CLEANER.—Alexander Stevenson, New York city.—This invention relates to new and useful improvements in carpet cleaning devices, having for its object to provide a simple and efficient apparatus consisting of a yielding bed, brushing rollers, moving rollers, and a beating apparatus, whereby the carpet, being bound upon a roller, or rollers, may be moved along, from time to time, over the said yielding bed and brushing rollers, and be beaten and brushed.
COTTON CULTIVATOR.—I.W. Burch, Fayette, Miss.—This invention comprises a pair of plows suspended from the frame of a truck so as to work on both sides of the row, for "barring off" or scraping the weeds and earth away from the row, also, a pair of rotary cutters having oblique blades for throwing away from the plants, and designed, also, to work on both sides of the rows, and closer to the plants than the plows, both sets of devices having vertical vibration.
WATER WHEEL—Geo. W. Cressman and Burt Pfleger, Barren Hill, Pa., and Nice Keely Roxborough, Pa.—This invention relates to improvements in turbine wheels designed to produce an arrangement of the gates within the bucket rim (the water being secured from below, and the wheel being made hollow, for the reception of the water, and to provide space for the said gate), in a manner calculated to relieve the wheel of pressure from the water, either in an upward or downward direction.
ATTACHING FLY AND MOSQUITO BARS TO WINDOWS, DOORS, ETC.—James Hebron, Buffalo, N.Y.—This invention relates to improvements in attaching fly and mosquito bars to window sashes or frames, doors, or other light frames to be used in combination with window frames or doors, and consists in attaching one edge of the cloth to a round or other shaped bar or rod of wood or metal, by binding thereon and sewing, passing the thread spirally around the bar or rod, and then securing the rod to the sill or frame, either on the surface thereof, or in a groove formed therein, then stretching the cloth across the window and securing it by clamping another rod down upon it by staples, either in a groove or not, and, in some cases, securing the ends in a similar way. It is also proposed to stretch the cloth over or under these rods.
ADJUSTABLE STOVEPIPE THIMBLE.—H.N. Bill, Willimantic, Conn.—This invention relates to improvements in thimbles for the passage of stovepipes through the walls into flues, and consists in providing a vertically-sliding thimble plate in a metallic frame, having a long opening, and adapted for insertion in an opening through the wall, so as to support the thin plate at or about the line of the face of the flue wall, so that the plate may be drawn up or down to vary the hight of the thimble for pipes of different vertical lengths. The invention, also, comprises an improved mode of attaching the thimbles to this plate by means of radial studs at the rim, separated from the main part of the rim and bent inward so as to pass through slots in the thimble plate around the hole, to engage behind the edge of the plate by turning the thimbles on their axes a short distance after being passed through the slots, while the main part of the rims of the said thimbles bear against the front face of the thimble plate and cover the slots when so turned.
COMBINED HAY RAKE AND TEDDER.—John C. Mills, Palmyra, N.Y.—This invention relates to a new and useful improvement in combining two important agricultural machines in one (or combining a tedder with a hay rake), and it consists in the construction of the tedder and the arrangement of the same in combination with the rake. Patented Dec. 7, 1869.
POST-HOLE AUGER.—Geo. Seeger and Chas H. Shaffer, Clark's Hill, Ind.—This invention relates to a post hole boring apparatus, mounted upon a wheelbarrow, and the invention consists in providing the barrow with legs that may be either turned up out of the way or adjusted at any required angle so as to keep the barrow level when on uneven ground.
SELF-DROPPER FOR REAPERS.—T.F. Lippencott, Conemaugh, Pa.—This invention has for its object to furnish an improved self-dropper for reapers, which shall be so constructed as to operate automatically, to fall and deposit the grain and to rise to receive another supply, making the gavels all of about the same size.
PLOWING MACHINE.—Albert Bondeli, Philadelphia, Mo.—This invention has for its object to furnish an improved machine for preparing the ground to receive seed, and which shall be so constructed and arranged as to prepare the ground more thoroughly and put it in better condition to receive seed, and which shall be so constructed and arranged as to prepare the ground more thoroughly and put it in better condition to receive the seed than when the ordinary plows are used.
EXPANDING TRIPLE SHOVEL PLOWS.—Edward Wiard, Louisville, Ky.—This invention has for its object to furnish an improved triple shovel plow, which shall be so constructed and arranged that the shovels may be conveniently expanded and contracted, or set at any desired pitch, and, at the same time, in such a way as to be securely held in any desired position.
SEWING MACHINE.—L.W. Lathrop, Nyack, N.Y.—This invention relates to improvements in sewing machines, and consists in certain improvements in mechanism for forming the loop, and for conveying the binding thread through the same, in a manner to prevent the contact of the binding thread spool, or its carrier, with the thread of the needle, and thereby to avoid wearing the same, and to produce more easily operating parts; also, a secure, permanent, and reliable arrangement of apparatus, and calculated also to be more certain to form the stitch.
POETABLE DERRICK.—J.R. Hammond, Sedalia, Mo.—This invention has for its object to furnish an improved derrick, simple in construction, effective in operation, and easily moved from place to place, designed especially for use in connection with the improved rake, thrasher, loader, and stacker, patented by the same inventor Nov. 30, 1869, but equally applicable for other uses.
WAGON SEAT FASTENER.—Charles Collins, Vernon Centre, N.Y.—This invention relates to improvements in means for holding detachable wagon or sleigh seats to the boxes, and consists in the application to the seat risers of hooks with spring stops, adapted for engaging staples in the boxes below the said hooks, and for being held in such engagement by the spring stops, until disengaged by the operator for removing the seats.
VELOCIPEDE.—William Volk, Buffalo, N.Y.—This invention relates to a new three-wheeled velocipede, which is so arranged that the driving wheels, although mounted on separate axles, will make equal numbers of revolutions, as long as the machine is to be kept in a straight direction, while they can be disconnected when the device is to be turned in a circle.
COFFIN HANDLES.—Clark Strong, Winsted, Conn.—This invention relates to new and useful improvements in coffin handles, and consists in the construction, arrangement, and combination of parts.
LOOM.—Lyman Stone, Nelson, N.H.—This invention relates to improvements in power looms, and has for its principal object to provide an arrangement and construction of the same, calculated to furnish looms of equal or greater efficiency than those now in use, but occupying very much less space, so as to economize materially in room, where large numbers are used on a floor, as is the case in factories; not only in respect of the space occupied by the loom itself, but also in respect of the space required for the passages or aisles between the rows of looms. The invention also comprises improved let-off and take-up mechanisms, also, an improvement in cloth beams; also, an improved picker motion, inducing a novel adjusting arrangement for the picker operating cams, also, an improved construction of treadle cams, whereby an equal capacity of throw is obtained with less size and friction, and with less power, and whereby they are guarded to prevent accidents to the attendant while cleaning when the loom is in operation.
PAPER FILE.—C.W. West, Shiloh, N.J.—This invention relates to a new paper file, which is a compound of two bars that can be tied together so that the paper will be securely clasped between them; the strings for tying them being arranged in a peculiar manner to draw them firmly together.
ROLLING BLOTTER.—C.A. Gale, Demopolis, Ala.—This invention has for its object to provide an improved rolling blotter, which shall be so constructed and arranged that the blotting pads maybe conveniently removed when required, and replaced with new ones.
DUMP WAGON.—Daniel Willson, Ishpeming, Mich.—This invention has for its object to furnish a simple, strong, and convenient dump wagon, which shall be so constructed and arranged that it maybe dumped when required, by backing the team.
SEWING MACHINE SOAP HOLDER.—Mary Dewey, New Albany, Ind.—This invention relates to a new device for soaping the cloth that is fed under the needle of a sewing machine, and consists in the attachment of a tubular soap holder to the presser foot of a sewing machine.
MONKEY WRENCH.—Samuel Zarley, Niantic, Ill.—This invention has for its object to furnish an improved monkey wrench, which shall be simple in construction, strong, durable, and easily and quickly adjusted to the nut to be unscrewed.
ANIMAL TRAP.—Adam Brown, Bridgeport, Oregon.—This invention relates to improvements in traps for rats, squirrels, and other animals, and consists in the application through an opening in the side of a box, of a detachable chute extending some distance into the box, forming a passage thereinto the walls of which are armed with spring points arranged in the usual way to permit ingress and prevent egress; the floor of the passage is elevated to form a chamber below for inclosing the bait, so that it cannot all be readily devoured. The invention also comprises in connection with the above, the application to the side walls of the box, which is open at the top, of projecting sheets of metal to prevent the animals from climbing out; also the application to the top of tilting shelves for discharging any animals that may climb up the outside of the box, and on to the same.
SHINGLE PACKER.—Robert Taylor, West Pensaukie, Wis.—This invention relates to improvements in apparatus for pressing and holding the bunches of shingles for binding them, and consists of the arrangement on a suitable bench, having end walls for gaging the piling of the shingles at the thick ends, of a pair of vertically sliding bars, a transverse passing bar, and a set of gear wheels, shaft, and hand lever, the said wheels gearing with the vertically sliding bars which are toothed for the purpose in such a way that the hand lever may be used to force the transverse bar, which is connected to the upper end of the sliding bar down upon the bundle of shingles across the center, pressing and holding the bundle till fastened.
REGISTERING APPARATUS FOR VEHICLES.—Thomas Ollis, Netherfield road, South Liverpool, England.—This invention consists in the application of apparatus similar to that used for stamping or indorsing purposes for registering or indicating the number of passengers that have traveled by an omnibus or other vehicle.
STEAM AND CALORIC ENGINES.—Alexander Hendry, Victoria, British Columbia.—This invention consists in an improved arrangement of jacketed cylinders, and jacketed furnace, constituting a water space, for generating steam by the radiating heat of the furnace, and arranged to envelope the cylinders with water to prevent injury by the gases and heat; also an improved arrangement of chambered pistons, for keeping the same filled with water to counteract the action of the heat upon the same, also, certain improvements in chambered valves, and valve operating devices, the said chambered valves and rods being supplied with water, also to prevent injury by the heat and the gases, and the invention also comprises an arrangement of the furnace calculated to separate and distribute the gases and effect the most perfect combustion.
COTTON BASKETS.—R.S. Myers, Washington, N.C.—This invention relates to improvements in baskets for carrying cotton, especially when ginned and consists in providing the cotton baskets of the ordinary form and construction with large holes through the center of the bottom, whereby in emptying the said baskets the operator may insert his hand and push the cotton out by one effort in a mass, whereas, by the present arrangement it must be pulled out from the mouth, which takes much more time, as in this way it only comes out in small quantities.
NOTE CASE.—Alphonzo Button, Dunkirk, N.Y.—This invention relates to improvements in note or paper cases or files for inclosing notes, papers, bills, etc., in a simple, cheap, and convenient portable package for the use of bankers and other business men. It consists of a cylindrical case of leather or other light suitable material having an opening from end to end covered by a flap, a central revolving spool, and a web of flexible substance connected to and wound on the spool so as to be drawn out through the opening and wound up again, on which web any suitable arrangement of narrow flaps folding over from the edges and connected by elastic bands, in a way to secure papers, notes, etc., in different and separate sections, may be arranged as now arranged in pocket books.
PUMP.—A.C. Judson, Grand Rapids, Ohio.—This invention consists in the arrangement of two dish shaped metal disks with a diaphragm of leather between them, and another leather diaphragm above, adapted for the better support of the water in lifting; it also consists of an arrangement for operating the pump rod without lateral vibration, so that it may be packed tightly in the tube to prevent foul matter and vermin from getting in.
PANELING, MOLDING, AND CARVING MACHINE.—A.S. Gear, New Haven, Conn.—This machine performs all of the work of the well known Variety Molding Machine, and in addition molds and carves any desired pattern of panel work, and simultaneously dovetails both mortise and tenon. The wood to be carved is fastened firmly to the bed of the machine by movable clamps adjustable to suit any required size of wood, and the cutters are fastened to a spindle moved by a universal joint in any direction upon the bed of the machine. The cutter is guided by hand, the guide resting against the pattern. The carving can be gaged to any required depth, and made to conform to any required pattern. A fan blows away chips as fast as they are produced, leaving the work constantly in view of the operator. The same tool which cuts the mortise also cuts the tenon, the two pieces of work to be dovetailed being clamped together to the end of the table. Every kind of finish hitherto made upon the edges of lumber, and which has heretofore been mitered and glued upon the face to create a finish, is planed, beaded, and molded upon the piece itself by this machine.
WASHING BOILERS.—John P. Sherwood, Fort Edward, N.Y.—This invention has for its object to improve the construction of that class of washing boilers in which the clothes are washed by the water as it boils being projected down upon the clothes to percolate through them, and thus remove the dirt. And it consists in the construction and combination of the various parts. |
|