p-books.com
Scientific American Supplement, No. 795, March 28, 1891
Author: Various
Previous Part     1  2  3     Next Part
Home - Random Browse

The number of cables laid down throughout the world is 1,045, of which 798 belong to governments and 247 to private companies. The total length of those cables is 120,070 nautical miles, of which 107,546 are owned by private telegraph companies, nearly all British; the remainder, or 12,524 miles, are owned by governments.



The largest telegraphic organization in the world is that of the Eastern Telegraphic Company, with seventy cables, of a total length of 21,859 nautical miles. The second largest is the Eastern Extension, Australasia and China Telegraph Company, with twenty-two cables, of a total length of 12,958 nautical miles. The Eastern Company work all the cables on the way to Bombay, and the Eastern Extension Company from Madras eastward. The cables landing in Japan, however, are owned by a Danish company, the Great Northern. The English station of the Eastern Company is at Porthcurno, Cornwall, and through it pass most of the messages for Spain, Portugal, Egypt, India, China, Japan, and Australia.

The third largest cable company is the Anglo-American Telegraph Company, with thirteen cables, of a total length of 10,196 miles.

The British government has one hundred and three cables around our shores, of a total length of 1,489 miles. If we include India and the colonies, the British empire owns altogether two hundred and sixteen cables of a total length of 3,811 miles.

The longest government cable in British waters is that from Sinclair Bay, Wick, to Sandwick Bay, Shetland, of the length of 122 miles, and laid in 1885. The shortest being four cables across the Gloucester and Sharpness Canal, at the latter place, and each less than 300 ft. in length.

Of government cables the greatest number is owned by Norway, with two hundred and thirty-six, averaging, however, less than a mile each in length.

The greatest mileage is owned by the government of France with 3,269 miles, of the total length of fifty-one cables.

The next being British India with 1,714 miles, and eighty-nine cables; and Germany third with 1,570 miles and forty-three cables.

Britain being fourth with ninety miles less. The oldest cable still in use is the one that was first laid, that namely from Dover to Calais. It dates from 1851.

The two next oldest cables in use being those respectively from Ramsgate to Ostend, and St. Petersburg to Cronstadt, and both laid down in 1853.

Several unsuccessful attempts were made to connect England and Ireland by means of a cable between Holyhead and Howth; but communication between the two countries was finally effected in 1853, when a cable was successfully laid between Portpatrick and Donaghadee (31).

As showing one of the dangers to which cables laid in comparatively shallow waters are exposed, we may relate the curious accident that befell the Portpatrick cable in 1873. During a severe storm in that year the Port Glasgow ship Marseilles capsized in the vicinity of Portpatrick, the anchor fell out and caught on to the telegraph cable, which, however, gave way. The ship was afterward captured and towed into Rothesay Bay, in an inverted position, by a Greenock tug, when part of the cable was found entangled about the anchor.

The smallest private companies are the Indo-European Telegraph Company, with two cables in the Crimea, of a total length of fourteen and a half miles; and the River Plate Telegraph Company, with one cable from Montevideo to Buenos Ayres, thirty-two miles long.

The smallest government telegraph organization is that of New Caledonia, with its one solitary cable one mile long.

We will now proceed to give a few particulars regarding the companies having cables from Europe to America.

The most important company is the Anglo-American Telegraph Company, whose history is inseparably connected with that of the trials and struggles of the pioneers of cable laying.

Its history begins in 1851 when Tebets, an American, and Gisborne, an English engineer, formed the Electric Telegraph Company of Newfoundland, and laid down twelve miles of cable between Cape Breton and Nova Scotia. This company was shortly afterward dissolved, and its property transferred to the Telegraphic Company of New York, Newfoundland and London, founded by Cyrus W. Field, and who in 1854 obtained an extension of the monopoly from the government to lay cables.

A cable, eighty-five miles long, was laid between Cape Breton and Newfoundland (22).

Field then came to England and floated an English company, which amalgamated with the American one under the title of the Atlantic Telegraph Company.

The story of the laying of the Atlantic cables of 1857 and 1865, their success and failures, has often been told, so we need not go into any details. It may be noted, however, that communication was first established between Valentia and Newfoundland on August 5. 1858, but the cable ceased to transmit signals on September 1, following.

During that period, ninety-seven messages had been sent from Valentia, and two hundred and sixty-nine from Newfoundland. At the present time, the ten Atlantic cables now convey about ten thousand messages daily between the two continents. The losses attending the laying of the 1865 cable resulted in the financial ruin of the Atlantic company and its amalgamation with the Anglo-American. In 1866 the Great Eastern successfully laid the first cable for the new company, and with the assistance of other vessels succeeded in picking up the broken end of the 1865 cable and completing its connection with Newfoundland.



The three cables of this company presently in use and connecting Valentia in Ireland with Heart's Content in Newfoundland, were laid in 1873, 1874, and 1880; and (1) are respectively 1886, 1846, and 1890 nautical miles in length. This company also owns the longest cable in the world, that namely from Brest in France to St. Pierre Miquelon, one of a small group of islands off the south coast of Newfoundland and which, strange to say, still belongs to France (6).

The length of this cable is 2,685 nautical miles, or 3,092 statute miles. It was laid in 1869. There are seven cables of a total length of 1773 miles, connecting Heart's Content, Placentia Bay and St. Pierre, with North Sydney, Nova Scotia, and Duxbury, near Boston, belonging to the American company. Communication is maintained with Germany and the rest of the Continent by means of a cable from Valentia to Emden 846 miles long (7); and a cable from Brest to Salcombe, Devon, connects the St. Pierre and Brest cable with the London office of the company (10).[1]

[Footnote 1: Cables not fully described in the text, Map B. Eight cables at the Anglo-American Company: 7, Heart's Content to Placentia, two cables; 8, Placentia to St. Pierre; 9, St. Pierre to North Sydney; 10, Placentia to North Sydney, two cables; 11, St. Pierre to Duxbury; 18, Charlotte's Town to Nova Scotia; 19, Government Cable, North Sydney to Bird Rock, Madeline Isles, and Anticosti; 21, Halifax and Bermuda Cable Company's proposed cable to Bermuda.]

The station of the Direct United States Cable Company is situated at Ballinskelligs Bay, Ireland (2). Its cable was laid in 1874-5, and is 2,565 miles in length. The terminal point on the other side of the Atlantic is at Halifax, Nova Scotia, from whence the cable is continued to Rye Beach, New Hampshire, a distance of 536 miles, and thence by a land line of 500 miles to New York (17).

The Commercial Cable Company's station in Ireland is at Waterville, a short distance from Ballinskelligs (3). It owns two cables laid in 1885; the northern cable being 2,350, and the southern 2,388 miles long. They terminate in America at Canso, Nova Scotia. From Canso a cable is laid to Rockfort, about thirty miles south of Boston, Mass., a distance of 518 miles (16), and another is laid to New York, 840 miles in length (15). This company has direct communication with the Continent by means of a cable from Waterville to Havre of 510 miles (9), and with England by a cable to Weston-super-Mare, near Bristol, of 328 miles (8).

The Western Union Telegraph Company (the lessees of the lines of the American Telegraph and Cable Company) has two cables from Sennen Cove, Land's End, to Canso, Nova Scotia (4). The cable of 1881 is 2,531 and that of 1882 is 2,576 miles in length. Two cables were laid November, 1889, between Canso and New York (14).

The Compagnie Francaise du Telegraphe de Paris a New York has a cable from Brest to St. Pierre Miquelon of 2,242 miles in length (5), from thence a cable is laid to Louisbourg, Cape Breton (12), and another to Cape Cod (13). It has also a cable from Brest to Porcella Cove, Cornwall (11).

Those ten cables owned by the six companies named, of the total milage of 22,959, not counting connections, represent the entire direct communication between the continents of Europe and North America.

A new company, not included in the preceding statistics, proposes to lay a cable from Westport, Ireland, to some point in the Straits of Belle Isle on the Labrador coast (Map A32, Map B20).

The station of the Eastern Telegraph Company is at Porthcurno Cove, Penzance, from whence it has two cables to Lisbon, one laid in 1880, 850 miles long, the other laid in 1887, 892 miles long (12), and one cable to Vigo, Spain, laid in 1873, 622 miles long (13). From Lisbon the cable is continued to Gibraltar and the East, whither we need not follow it, our intention being to confine ourselves entirely to a brief account of those cables communicating directly with Europe and America. As already stated, this company has altogether seventy cables, of a total length of nearly 22,000 miles.

The Direct Spanish Telegraph Company has a cable, laid in 1884, from Kennach Cove, Cornwall, to Bilbao, Spain, 486 miles in length (14).

Coming now to shorter cables connecting Britain with the Continent, we have those of the Great Northern Telegraph Company, namely, Peterhead to Ekersund, Norway, 267 miles (15). Newbiggin, near Newcastle, to Arendal, Norway, 424 miles, and thence to Marstrand, Sweden, 98 miles.

Two cables from the same place in England to Denmark (Hirstals and Sondervig) of 420 and 337 miles respectively (17 and 18).

The great Northern Company has altogether twenty-two cables, of a total length of 6,110 miles. The line from Newcastle, is worked direct to Nylstud, in Russia—a distance of 890 miles—by means of a "relay" or "repeater," at Gothenburg. The relay is the apparatus at which the Newcastle current terminates, but in ending there it itself starts a fresh current on to Russia.

The other continental connections belong to the government, and are as follows: two cables to Germany, Lowestoft to Norderney, 232 miles, and to Emden, 226 miles (19 and 20).

Two cables to Holland: Lowestoft to Zandvoort, laid in 1858 (21), and from Benacre, Kessingland, to Zandvoort (22).

Two cables to Belgium: Ramsgate to Ostend (23), and Dover to Furness (24).

Four cables to France: Dover to Calais, laid in 1851 (25), and to Boulogne (26), laid in 1859; Beachy Head to Dieppe (27), and to Havre (28).

There is a cable from the Dorset coast to Alderney and Guernsey, and from the Devon coast to Guernsey, Jersey, and Coutances, France (29 and 30).

A word now as to the instruments used for the transmission of messages. Those for cables are of two kinds, the mirror galvanometer and the siphon recorder, both the product of Sir Wm. Thomson's great inventive genius.

When the Calais-Dover and other short cables were first worked, it was found that the ordinary needle instrument in use on land lines was not sufficiently sensitive to be affected trustworthily by the ordinary current it was possible to send through a cable. Either the current must be increased in strength or the instruments used must be more sensitive. The latter alternative was chosen, and the mirror galvanometer was the result.

The principle on which this instrument works may be briefly described thus: the transmitted current of electricity causes the deflection of a small magnet, to which is attached a mirror about three-eighths of an inch in diameter, a beam of light is reflected from a properly arranged lamp, by the mirror, on to a paper scale. The dots and dashes of the Morse code are indicated by the motions of the spot of light to the right and left respectively of the center of the scale.

The mirror galvanometer is now almost entirely superseded by the siphon recorder. This is a somewhat complicated apparatus, with the details of which we need not trouble our readers. Suffice it for us to explain that a suspended coil is made to communicate its motions, by means of fine silk fibers, to a very fine glass siphon, one end of which dips into an insulated metallic vessel containing ink, while the other extremity rests, when no current is passing, just over the center of a paper ribbon. When the instrument is in use the ink is driven out of the siphon in small drops by means of an electrical arrangement, and the ribbon underneath is at the same time caused to pass underneath its point by means of clockwork.

If a current be now sent through the line, the siphon will move above or below the central line, thus giving a permanent record of the message, which the mirror instrument does not. The waves written by the siphon above the central line corresponding to the dots of the Morse code, and the waves underneath corresponding to the dashes.

The cost of the transmission of a cablegram varies from one shilling per word, the rate to New York and east of the Mississippi, to ten shillings and seven pence per word, the rate to New Zealand. In order to minimize that cost as much as possible, the use of codes, whereby one word is made to do duty for a lengthy phrase, is much resorted to. Of course those code messages form a series of words having no apparent relation to each other, but occasionally queer sentences result from the chance grouping of the code words. Thus a certain tea firm was once astonished to receive from its agent abroad the startling code message—"Unboiled babies detested"!

Suppose we now follow the adventures of a few cablegrams in their travels over the world.

A message to India from London by the cable route requires to be transmitted eight times at the following places: Porthcurno (Cornwall), Lisbon, Gibraltar, Malta, Alexandria, Suez, Aden, Bombay.

A message to Australia has thirteen stoppages; the route taken beyond Bombay being via Madras, Penang, Singapore, Banjoewangie and Port Darwin (North Australia); or from Banjoewangie to Roebuck Bay (Western Australia).

To India by the Indo-European land lines, messages go through Emden, Warsaw, Odessa, Kertch, Tiflis, Teheran, Bushire (Persian Gulf), Jask and Kurrachee, but only stop twice between London and Teheran—namely, at Emden and Odessa.

Messages from London to New York are transmitted only twice—at the Irish or Cornwall stations, and at the stations in Canada. Owing to the great competition for the American traffic, the service between London, Liverpool, and Glasgow and New York is said to be much superior to that between any two towns in Britain. The cables are extensively used by stock brokers, and it is a common occurrence for one to send a message and receive a reply within five minutes.

During breakages in cables messages have sometimes to take very circuitous routes. For instance, during the two days, three years ago, that a tremendous storm committed such havoc among the telegraph wires around London, cutting off all communication with the lines connected with the Channel cables at Dover, Lowestoft, etc., it was of common occurrence for London merchants to communicate with Paris through New York. The cablegram leaving London going north to Holyhead and Ireland, across the Atlantic to New York and back via St. Pierre to Brest and thence on to Paris, a total distance of about seven thousand miles.

Three years ago, when the great blizzard cut off all communication between New York and Boston, messages were accepted in New York, sent to this country, and thence back to Boston.

Some time ago the cables between Madeira and St. Vincent were out of order, cutting off communication by the direct route to Brazil, and a message to reach Rio Janeiro had to pass through Ireland, Canada, United States, to Galveston, thence to Vera Cruz, Guatemala, Nicaragua, Panama, Ecuador, Peru, Chili; from Valparaiso across the Andes, through the Argentine Republic to Buenos Ayres, and thence by East Coast cables to Rio Janeiro, the message having traversed a distance of about twelve thousand miles and having passed through twenty-four cables and some very long land lines, instead of passing, had it been possible to have sent it by the direct route, over one short land line and six cables, in all under six thousand miles.

Perhaps some of our readers may remember having read in the newspapers of the result of last year's Derby having been sent from Epsom to New York in fifteen seconds, and may be interested to know how it was done. A wire was laid from near the winning post on the race course to the cable company's office in London, and an operator was at the instrument ready to signal the two or three letters previously arranged upon for each horse immediately the winner had passed the post. When the race began, the cable company suspended work on all the lines from London to New York and kept operators at the Irish and Nova Scotian stations ready to transmit the letters representing the winning horse immediately, and without having the message written out in the usual way. When the race was finished, the operator at Epsom at once sent the letters representing the winner, and before he had finished the third letter, the operator in London had started the first one to Ireland. The clerk in Ireland immediately on bearing the first signal from London passed it on to Nova Scotia, from whence it was again passed on to New York. The result being that the name of the winner was actually known in New York before the horses had pulled up after passing the judge. It seems almost incredible that such information could be transmitted such a great distance in fifteen seconds, but when we get behind the scenes and see exactly how it is accomplished, and see how the labor and time of signaling can be economized, we can easily realize the fact.

The humors of telegraphic mistakes have often been described; we will conclude by giving only one example. A St. Louis merchant had gone to New York on business, and while there received a telegram from the family doctor, which ran: "Your wife has had a child, if we can keep her from having another to-night, all will be well." As the little stranger had not been expected, further inquiry was made and elicited the fact that his wife had simply had a "chill"! This important difference having been caused simply by the omission of a single dot.

-.-. .... .. .-.. .-.. c h i l l = chill -.-. .... .. .-.. -.. c h i l d = child

Hardwicke's Science-Gossip.

* * * * *



ELECTRICITY IN TRANSITU—FROM PLENUM TO VACUUM.[1]

[Footnote 1: Presidential address before the Institute of Electrical Engineers, London; continued from SUPPLEMENT, No. 792, page 12656.]

By Prof. WILLIAM CROOKES, F.R.S.

If an idle pole, C, C, Fig. 12 (P=0.0001 millimeter or 0.13 M), protected all but the point by a thick coating of glass, is brought into the center of the molecular stream in front of the negative pole, A, and the whole of the inside and outside of the tube walls are coated with metal, D, D, and "earthed" so as to carry away the positive electricity as rapidly as possible, then it is seen that the molecules leaving the negative pole and striking upon the idle pole, C, on their journey along the tube carry a negative charge and communicate negative electricity to the idle pole.



This tube is of interest, since it is the one in which I was first able to perceive how, in my earlier results, I always obtained a positive charge from an idle pole placed in the direct stream from the negative pole. Having got so far, it was easy to devise a form of apparatus that completely verified the theory, and at the same time threw considerably more light upon the subject. Fig. 13, a, b, c, is such a tube, and in this model I have endeavored to show the electrical state of it at a high vacuum by marking a number of + and - signs. The exhaustion has been carried to 0.0001 millimeter, or 0.13 M, and you see that in the neighborhood of the positive pole, and extending almost to the negative, the tube is strongly electrified with positive electricity, the negative atoms shooting out from the negative pole in a rapidly diminishing cone. If an idle pole is placed in the position shown at Fig. 13, a, the impacts of positive and negative molecules are about equal, and no decided current will pass from it, through the galvanometer, to earth. This is the neutral point. But if we imagine the idle pole to be as at Fig. 13, b, then the positively electrified molecules greatly preponderate over the negative molecules, and positive electricity is shown. If the idle pole is now shifted, as shown at Fig. 13, c, the negative molecules preponderate, and the pole will give negative electricity.



As the exhaustion proceeds, the positive charge in the tube increases and the neutral point approaches closer to the negative pole, and at a point just short of non-conduction so greatly does the positive electrification preponderate that it is almost impossible to get negative electricity from the idle pole, unless it actually touches the negative pole. This tube is before you, and I will now proceed to show the change in direction of current by moving the idle pole.

I have not succeeded in getting the "Edison" current incandescent lamps to change in direction at even the highest degree of exhaustion which my pump will produce. The subject requires further investigation, and like other residual phenomena these discrepancies promise a rich harvest of future discoveries to the experimental philosopher, just as the waste products of the chemist have often proved the source of new and valuable bodies.

PROPERTIES OF RADIANT MATTER.

One of the most characteristic attributes of radiant matter—whence its name—is that it moves in approximately straight lines and in a direction almost normal to the surface of the electrode. If we keep the induction current passing continuously through a vacuum tube in the same direction, we can imagine two ways in which the action proceeds: either the supply of gaseous molecules at the surface of the negative pole must run short and the phenomena come to an end, or the molecules must find some means of getting back. I will show you an experiment which reveals the molecules in the very act of returning. Here is a tube (Fig. 14) exhausted to a pressure of 0.001 millimeter or 1.3 M. In the middle of the tube is a thin glass diaphragm, C, pierced with two holes, D and E. At one part of the tube a concave pole, A', is focused on the upper hole, D, in the diaphragm. Behind the upper hole and in front of the lower one are movable vanes, F and G, capable of rotation by the slightest current of gas through the holes.



On passing the current with the concave pole negative, the small veins rotate in such a manner as to prove that at this high exhaustion a stream of molecules issues from the lower hole in the diaphragm, while at the same time a stream of freshly charged molecules is forced by the negative pole through the upper hole. The experiment speaks for itself, showing as forcibly as an experiment can show that so far the theory is right.

This view of the ultra-gaseous state of matter is advanced merely as a working hypothesis, which, in the present state of our knowledge, may be regarded as a necessary help to be retained only so long as it proves useful. In experimental research early hypotheses have necessarily to be modified, or adjusted, or perhaps entirely abandoned, in deference to more accurate observations. Dumas said, truly, that hypotheses were like crutches, which we throw away when we are able to walk without them.

RADIANT MATTER AND "RADIANT ELECTRODE MATTER."

In recording my investigations on the subject of radiant matter and the state of gaseous residues in high vacua under electrical strain, I must refer to certain attacks on the views I have propounded. The most important of these questionings are contained in a volume of "Physical Memoirs," selected and translated from foreign sources under the direction of the Physical Society (vol. i., part 2). This volume contains two memoirs, one by Hittorff on the "Conduction of Electricity in Gases," and the other by Puluj on "Radiant Electrode Matter and the So-called Fourth State." Dr. Puluj's paper concerns me most, as the author has set himself vigorously to the task of opposing my conclusions. Apart from my desire to keep controversial matter out of an address of this sort, time would not permit me to discuss the points raised by my critic; I will, therefore, only observe in passing that Dr. Puluj has no authority for linking my theory of a fourth state of matter with the highly transcendental doctrine of four dimensional space.

Reference has already been made to the mistaken supposition that I have pronounced the thickness of the dark space in a highly exhausted tube through which an induction spark is passed to be identical with the natural mean free path of the molecules of gas at that exhaustion. I could quote numerous passages from my writings to show that what I meant and said was the mean free path as amplified and modified by the electrification.[2] In this view I am supported by Prof. Schuster,[3] who, in a passage quoted below, distinctly admits that the mean free path of an electrified molecule may differ from that of one in its ordinary state.

[Footnote 2: "The thickness of the dark space surrounding the negative pole is the measure of the mean length of the path of the gaseous molecules between successive collisions. The electrified molecules are projected from the negative pole with enormous velocity, varying, however, with the degree of exhaustion and intensity of the induction current."—Phil. Trans., part i., 1879, par. 530.

"The extra velocity with which the molecules rebound from the excited negative pole keeps back the more slowly moving molecules which are advancing toward the pole. The conflict occurs at the boundary of the dark space, where the luminous margin bears witness to the energy of the discharge."—Phil. Trans., part i., 1879, par. 507.

"Here, then, we see the induction spark actually illuminating the lines of molecular pressure caused by the excitement of the negative pole."—R.I. Lecture, Friday, April 4, 1879.

"The electrically excited negative pole supplies the force majeure, which entirely, or partially, changes into a rectilinear action the irregular vibration in all directions."—Proc. Roy. Soc., 1880. page 472.

"It is also probable that the absolute velocity of the molecules is increased so as to make the mean velocity with which they leave the negative pole greater than that of ordinary gaseous molecules."—Phil. Trans., part ii., 1881, par. 719.]

[Footnote 3: "It has been suggested that the extent of the dark space represents the mean free path of the molecules.... It has been pointed out by others that the extent of the dark space is really considerably greater than the mean free path of the molecules, calculated according to the ordinary way. My measurements make it nearly twenty times as great. This, however, is not in itself a fatal objection; for, as we have seen, the mean free path of an ion may be different from that of a molecule moving among others."—Schuster, Proc. Roy. Soc., xlvii., pp. 556-7.]

The great difference between Puluj and me lies in his statement that[4] "the matter which fills the dark space consists of mechanical detached particles of the electrodes which are charged with statically negative electricity, and move progressively in a straight direction."

[Footnote 4: "Physical Memoirs," part ii., vol. i., p. 244. The paragraph is italicized in the original.]

To these mechanically detached particles of the electrodes, "of different sizes, often large lumps,"[5] Puluj attributes all the phenomena of heat, force and phosphorescence that I from time to time have described in my several papers.

[Footnote 5: Loc. cit., p. 242.]

Puluj objects energetically to my definition "Radiant Matter," and then proposes in its stead the misleading term "Radiant Electrode Matter." I say "misleading," for while both his and my definitions equally admit the existence of "Radiant Matter," he drags in the hypothesis that the radiant matter is actually the disintegrated material of the poles.

Puluj declares that the phenomena I have described in high vacua are produced by his irregularly shaped lumps of radiant electrode matter. My contention is that they are produced by radiant matter of the residual molecules of gas.

Were it not that in this case we can turn to experimental evidence, I would not mention the subject to you. On such an occasion as this controversial matter must have no place; therefore I content myself at present by showing a few novel experiments which demonstratively prove my case.

Let me first deal with the radiant electrode hypothesis. Some metals, it is well known, such as silver, gold or platinum, when used for the negative electrode in a vacuum tube, volatilize more or less rapidly, coating any object in their neighborhood with a very even film. On this depends the well known method of electrically preparing small mirrors, etc. Aluminum, however, seems exempt from this volatility. Hence, and for other reasons, it is generally used for electrodes.

If, then, the phenomena in a high vacuum are due to the "electrode matter," the more volatile the metal used, the greater should be the effect.[6]

[Footnote 6: In a valuable paper read before the Royal Society, November 20, 1890, by Professors Liveing and Dewar, on finely divided metallic dust thrown off the surface of various electrodes, in vacuum tubes, they find not only that dust, however fine, suspended in a gas will not act like gaseous matter in becoming luminous with its characteristic spectrum in an electric discharge, but that it is driven with extraordinary rapidity out of the course of the discharge.]

Here is a tube (Fig. 15, P=0.00068 millimeter, or 0.9 M), with two negative electrodes, AA', so placed as to protect two luminous spots on the phosphorescent glass of the tube. One electrode, A', is of pure silver, a volatile metal; the other, A, is of aluminum, practically non-volatile. A quantity of "electrode matter" will be shot off from the silver pole, and practically none from the aluminum pole; but you see that in each case the phosphorescence, CC', is identical. Had the radiant electrode matter been the active agent, the more intense phosphorescence would proceed from the more volatile pole.

A drawing of another experimental piece of apparatus is shown in Fig. 16. A pear-shaped bulb of German glass has near the small end an inner concave negative pole, A, of pure silver, so mounted that its inverted image is thrown upon the opposite end of the tube. In front of this pole is a screen of mica, C, having a small hole in the center, so that only a narrow pencil of rays from the silver pole can pass through, forming a bright spot, D, at the far end of the bulb. The exhaustion is about the same as in the previous tube, and the current has been allowed to pass continuously for many hours so as to drive off a certain portion of the silver electrode; and upon examination it is found that the silver has all been deposited in the immediate neighborhood of the pole; while the spot, D, at the far end of the tube, that has been continuously glowing with phosphorescent light, is practically free from silver.



The experiment is too lengthy for me to repeat it here, so I shall not attempt it; but I have on the table the results for examination.

The identity of action of silver and aluminum in the first case, and the non-projection of silver in this second instance, are in themselves sufficient to condemn Dr. Puluj's hypotheses, since they prove that phosphorescence is independent of the material of the negative electrode. In front of me is a set of tubes that to my mind puts the matter wholly beyond doubt. The tubes contain no inside electrodes with the residual gaseous molecules; and with them I will proceed to give some of the most striking radiant-matter experiments without any inner metallic poles at all.



In all these tubes the electrodes, which are of silver, are on the outside, the current acting through the body of the glass. The first tube contains gas only slightly rarefied and at the stratification stage. It is simply a closed glass cylinder, with a coat of silver deposited outside at each end, and exhausted to a pressure of 2 millimeters. The outline of the tube is shown in Fig. 17. I pass a current, and, as you see, the stratifications, though faint, are perfectly formed.



The next tube, seen in outline in Fig. 18, shows the dark space. Like the first it is a closed cylinder of glass, with a central indentation forming a kind of hanging pocket and almost dividing the tube into two compartments. This pocket, silvered on the air side, forms a hollow glass diaphragm that can be connected electrically from the outside, forming the negative pole, A; the two ends of the tube, also outwardly silvered, form the positive poles, B B. I pass the current, and you will see the dark space distinctly visible. The pressure here is 0.076 millimeter, or 100 M. The next stage, dealing with more rarefied matter, is that of phosphorescence. Here is an egg-shaped bulb, shown in Fig 19, containing some pure yttria and a few rough rubies. The positive electrode, B, is on the bottom of the tube under the phosphorescent material; the negative, A, is on the upper part of the tube. See how well the rubies and yttria phosphorescence shows under molecular bombardment, at an internal pressure of 0.00068 millimeter, or 0.9 M.



A shadow of an object inside a bulb can also be projected on to the opposite wall of the bulb by means of an outside pole. A mica cross is supported in the middle of the bulb (Fig. 20), and on connecting a small silvered patch, A, on one side of the bulb with the negative pole of the induction coil, and putting the positive pole to another patch of silver, B, at the top, the opposite side of the bulb glows with a phosphorescent light, on which the black shadow of the cross seems sharply cut out. Here the internal pressure is 0.00068 millimeter, or 0.9 M.



Passing to the next phenomenon, I proceed to show the production of mechanical energy in a tube without internal poles. It is shown in Fig. 21 (P = 0.001 millimeter, or 1.3 M). It contains a light wheel of aluminum, carrying vanes of transparent mica, the poles, A B, being in such a position outside that the molecular focus falls upon the vanes on one side only. The bulb is placed in the lantern and the image is projected on the screen; if I now pass the current, you see the wheels rotate rapidly, reversing in direction as I reverse the current.

Here is an apparatus (Fig. 22) which shows that the residual gaseous molecules when brought to a focus produce heat. It consists of a glass tube with a bulb blown at one end and a small bundle of carbon wool, C, fixed in the center, and exhausted to a pressure of 0.000076 millimeter, or 0.1 M. The negative electrode, A, is formed by coating part of the outside of the bulb with silver, and it is in such a position that the focus of rays falls upon the carbon wool. The positive electrode, B, is an outer coating at the other end of the tube. I pass the current, and those who are close may see the bright sparks of carbon raised to incandescence by the impact of the molecular stream.

You thus have seen that all the old "radiant matter" effects can be produced in tubes containing no metallic electrodes to volatilize. It may be suggested that the sides of the tube in contact with the outside poles become electrodes in this case, and that particles of the glass itself may be torn off and projected across, and so produce the effects. This is a strong argument, which fortunately can be tested by experiment. In the case of this tube (Fig. 23, P = 0.00068 millimeter, or 0.9 M), the bulb is made of lead glass phosphorescing blue under molecular bombardment. Inside the bulb, completely covering the part that would form the negative pole, A, I have placed a substantial coat of yttria, so as to interpose a layer of this earth between the glass and the inside of the tube. The negative and positive poles are silver disks on the outside of the bulb, A being the negative and B the positive poles. If, therefore, particles are torn off and projected across the tube to cause phosphorescence, these particles will not be particles of glass, but of yttria; and the spot of phosphorescent light, C, on the opposite side of the bulb will not be the dull blue of lead glass, but the golden yellow of yttria. You see there is no such indication; the glass phosphoresces with its usual blue glow, and there is no evidence that a single particle of yttria is striking it.



Witnessing these effects I think you will agree I am justified in adhering to my original theory, that the phenomena are caused by the radiant matter of the residual gaseous molecules, and certainly not by the torn-off particles of the negative electrode.

PHOSPHORESCENCE IN HIGH VACUA.

I have already pointed out that the molecular motions rendered visible in a vacuum tube are not the motions of molecules under ordinary conditions, but are compounded of these ordinary or kinetic motions and the extra motion due to the electrical impetus.

Experiments show that in such tubes a few molecules may traverse more than a hundred times the mean free path, with a correspondingly increased velocity, until they are arrested by collisions. Indeed, the molecular free path may vary in one and the same tube, and at one and the same degree of exhaustion.

Very many bodies, such as ruby, diamond, emerald, alumina, yttria, samaria, and a large class of earthy oxides and sulphides, phosphoresce in vacuum tubes when placed in the path of the stream of electrified molecules proceeding from the negative pole. The composition of the gaseous residue present does not affect phosphorescence; thus, the earth yttria phosphoresces well in the residual vacua of atmospherical air, of oxygen, nitrogen, carbonic anhydride, hydrogen, iodine, sulphur and mercury.

With yttria in a vacuum tube, the point of maximum phosphorescence, as I have already pointed out, lies on the margin of the dark space. The diagram (Fig. 24) shows approximately the degree of phosphorescence in different parts of a tube at an internal pressure of 0.25 millimeter, or 330 M. On the top you see the positive and negative poles, A and B, the latter having the outline of the dark space shown by a dotted line, C. The curve, D E F, shows the relative intensities of the phosphorescence at different distances from the negative pole, and the position inside the dark space at which phosphorescence does not occur. The height of the curve represents the degree of phosphorescence. The most decisive effects of phosphorescence are reached by making the tube so large that the walls are outside the dark space, while the material submitted to experiment is placed just at the edge of the dark space.

Hitherto I have spoken only of the phosphorescence of substances placed under the negative pole. But from numerous experiments I find that bodies will phosphoresce in actual contact with the negative pole.



This is only a temporary phenomenon, and ceases entirely when the exhaustion is pushed to a very high point. The experiment is one scarcely possible to exhibit to an audience, so I must content myself with describing it. A U-tube, shown in Fig. 25, has a flat aluminum pole, in the form of a disk, at each end, both coated with a paint of phosphorescent yttria. As the rarefaction approaches about 0.5 millimeter the surface of the negative pole, A, becomes faintly phosphorescent. On continuing the exhaustion this luminosity rapidly diminishes, not only in intensity but in extent, contracting more and more from the edge of the disk, until ultimately it is visible only as a bright spot in the center. This fact does not prop a recent theory, that as the exhaustion gets higher the discharge leaves the center of the pole and takes place only between the edge and the walls of the tube.



If the exhaustion is further pushed, then, at the point where the surface of the negative pole ceases to be luminous, the material on the positive pole, B, commences to phosphoresce, increasing in intensity until the tube refuses to conduct, its greatest brilliancy being just short of this degree of exhaustion. The probable explanation is that the vagrant molecules I introduce in the next experiment, happening to come within the sphere of influence of the positive pole, rush violently to it, and excite phosphorescence in the yttria, while losing their negative charge.

* * * * *

[Continued from SUPPLEMENT, No. 794, page 12690.]



GASEOUS ILLUMINANTS.[1]

[Footnote 1: Lectures recently delivered before the Society of Arts, London. From the Journal of the Society.]

By Prof. VIVIAN B. LEWES.

V.

Having now brought before you the various methods by which ordinary coal gas can be enriched, so as to give an increased luminosity to the flame, I wish now to discuss the methods by which the gas can be burnt, in order to yield the greatest amount of light, and also the compounds which are produced during combustion.

In the first lecture, while discussing the theory of luminous flames, I pointed out that, in an atmospheric burner, it was not the oxygen of the air introduced combining with and burning up the hydrocarbons, and so preventing the separation of incandescent carbon, which gave the non-luminous flame, but the diluting action of the nitrogen, which acted by increasing the temperature at which the hydrocarbons are broken up, and carbon liberated, a fact which was proved by observation that heating the mixture of gas and air again restored the luminosity of the flame. This experiment clearly shows that temperature is a most important factor in the illuminating value of a flame, and this is still further shown by a study of the action of the diluents present in coal gas, the non-combustible ones being far more deleterious than the combustible, as they not only dilute, but withdraw heat.

Anything which will increase the temperature of the flame will also increase the illuminating power, provided, of course, that the increase in temperature is not obtained at the expense of the too rapid combustion of the hydrocarbons.

As has been shown in the experiments relating to the action of diluents on flame, already quoted, oxygen, when added to coal gas, increases its illuminating value to a marked and increasing degree, until a certain percentage has been added, after which the illuminating power is rapidly decreased, until the point is reached when the mixture becomes explosive. This is due to the fact that the added oxygen increases the temperature of the flame by doing the work of the air, but without the cooling and diluting action of the nitrogen; when, however, a certain proportion is added, it begins to burn up the heavy hydrocarbons, and although the temperature goes on increasing, the light-giving power is rapidly diminished by the diminution of the amount of free carbon in the flame.

It has been proposed to carburet and enrich poor coal gas by admixture with it of an oxy-oil gas made under Tatham's patents, in which crude oils are cracked at a comparatively low temperature, and are there mixed with from 12 to 24 per cent. of oxygen gas. Oil gas made at low temperatures, per se, is of little use as an illuminant, as it burns with a smoky flame, and does not travel well, but when mixed with a certain amount of oxygen, it gives a very brilliant white light, and no smoke, while as far as experiments have at present gone, its traveling powers are much improved.

At first sight it seems a dangerous experiment to mix a heavy hydrocarbon gas with oxygen, but it must be remembered that although hydrogen and carbon monoxide only need to be mixed with half their own volume of oxygen to give a most explosive mixture, yet as the number of carbon and hydrogen atoms in the combustible gas increase, so does the amount of oxygen needed to give explosion. Thus coal gas needs rather more than its own volume, and ethylene three times its volume, to give the maximum explosive results, while these mixtures begin to be explosive when 10 per cent. of oxygen is mixed with hydrogen or water gas, 30 per cent. with coal gas, and over 50 per cent. of oil gas of the character used. It is claimed that if this gas was used as an enricher of coal gas, 5 per cent. of it would increase the luminosity of 16-candle gas by about 40 per cent.

Oxygen has been obtained for some time past from the air on a commercial scale by the Brin process, and at the present time there seems every prospect of our being able to obtain oxygen at a rate of about 3s. 6d. per 1,000 cubic feet. Another process by which this important result can also be obtained was first introduced by Tessie du Mothay, and has now just been revived. It consists of passing alternate currents of steam and air over sodic manganate heated to dull redness in an iron tube; the process has never been commercially successful, for the reason that the contents of the tube fused, and flowing over the surface of the iron rapidly destroyed the tubes or retorts, and also as soon as fusion took place, the mass became so dense that it had little or no action on the air passing over it. Now, however, this difficulty has been partly overcome by so preparing the manganate as to prevent fusion, and to keep it in a spongy state, which gives very high results, and the substance being practically everlasting, the cost of production is extremely low.

It is proposed to feed this by a separate system of pipes to small gas jets, and by converting them into practically oxyhydrogen blow pipes, to raise solid masses of refractory material to incandescence, and also by supplying oxygen in the same way to oil lamps of particular construction, to obtain a very great increase in illuminating power.

Whether these methods of employing cheap oxygen would be successful or not, I do not wish to discuss at the present time, but there is no doubt but that cheap oxygen would be an enormous boon to the gas manager, as by mixing 0.8 per cent. of oxygen with his coal gas before purification, he could not only utilize the method so successfully introduced by Mr. Valon at Ramsgate, but could also increase the illuminating value of his gas.

In speaking of the structure of flame, I pointed out that close to the burner from which the gas giving the flame is issuing, a space exists in which no combustion is going on—in other words, a flame is never in contact with the rim of the burner. This is best seen when the gas is turned low—with a batswing burner, for instance—turned so low that only a small non-luminous flame is left, the space between burner and flame will appear as great as the flame itself, while, if the gas is mixed with an inert diluent like carbon dioxide, the space can be very much increased.

Several theories have been brought forward to explain this phenomenon, but the true one is that the burner abstracts so much heat from the flame at that point that it is unable to burn there, and this can be proved by the fact that where a cold object touches the flame, a dividing space, similar to that noticed between flame and burner, will always be observed, and the colder the object and the more diluted the gas the greater is the observed space. If a cold metal wire or rod is held in a non-luminous flame, it causes an extinction of the gas for some considerable space around itself; but as the temperature of the rod rises, this space becomes smaller and smaller until the rod is heated to redness, and then the flame comes in contact with the rod.

In the same way, if the burner from which the gas is issuing be heated to redness, the space between burner and flame disappears. It has already been shown that cooling the flame by an inert diluent reduces the illuminating value, and finally renders it more luminous; and we are now in a position to discuss the points which should be aimed at in the construction of a good gas burner.

In the first place, a sensible diminution in light takes place when a metal burner is employed, and the larger the surface and thickness of the metal the worse will be its action on the illuminating power of the flame; but this cooling action is only influencing the bottom of the flame, so that with a small flame the total effect is very great, and with a very large flame almost nil.

The first point, therefore, to attend to is that the burner shall be made of a good non-conductor. In the next place, the flow of the gas must be regulated to the burner, as, if you have a pressure higher than that for which the burner is constructed, you at once obtain a roaring flame and a loss of illuminating power, as the too rapid rush of gas from the burner causes a mingling of gas and air and a consequent cooling of the flame. The tap also which regulates the flame is better at a distance from the burner than close to it, as any constriction near the burner causes eddies, which give an unsteady flame.

These general principles govern all burners, and we will now take the ordinary forms in detail. In the ordinary flat flame burner, given a good non-conducting material, and a well regulated gas supply, little more can be done, while burning it in the ordinary way, to increase its luminosity; and it is the large surface of flame exposed to the cooling action of the air which causes this form of burner to give the lowest service of any per cubic foot of gas consumed. Much is done, moreover, by faulty fittings and shades, to reduce the already poor light given out, because the light-yielding power of the flame largely depends upon its having a well rounded base and broad, luminous zone; and when a globe with a narrow opening is used with such a flame—as is done in 99 out of 100 cases—the updraught drags the flame out of shape, and seriously impairs its light-giving powers, a trouble which can be got over by having the globe with an opening at the bottom not less than 4 inches in diameter, and having small shoulders fixed to the burner, which draw out the flame and protect the base from the disturbing influence of draughts.

The Argand burner differs from the flat flame burners in that a circular flame is employed. The air supply is regulated by a cylindrical glass, and this form of burner gives a better service than the flat flame burner, as not only can the supply of gas and air be better adjusted, but the air being slightly warmed by the hot glass adds to the temperature of the flame, which is also increased by radiation from the opposite side of the flame itself.

The chief loss of light in such a burner depends upon the fact that, being circular, the light from the inner surface has to pass through the wall of flame, and careful photometric experiments show that the solid particles present in the flame so reduce its transparency that a loss amounting to about 25 per cent. of light takes place during its transmission.

The height of the flame also must be carefully adjusted to the size of the flame, as too long a chimney, by increasing the air supply unduly, cools, and so lowers the illuminating power of the flame. Experiments with carbureted water gas gave the following results, with a consumption of 5 cubic feet per hour:

- Size of Chimney. Height of Flame. Candle Power. + + - 6 X 1-7/8 2-1/2 21 7 X 1-7/8 2-1/4 21.3 8 X 1-7/8 2-1/8 20.8 9 X 1-7/8 1-7/8 18.2 + + -+

For many years no advance was made upon these forms of burner, but when, ten years ago, it was recognized that anything which cools the flame reduces its value, while anything which increases its temperature raises its illuminating power, then a change took place in the forms of burner in use, and the regenerative burners, introduced by such men as Siemens, Grimston, and Bower, commenced what was really a revolution in gas lighting.

By utilizing the heat contained in the escaping products of combustion to raise the temperature of the gas and air which are to enter into combination in the flame, an enormous increase in the temperature of the solid particles of carbon in the flame is obtained, and a far greater and whiter light is the result.

The Bower lamp, in which (at any rate in the later forms) the flame burns between a downward and an upward current of air, was one of the first produced, and so well has it been kept up to date that it still holds its own; while as types of the "inverted cone" regenerative burner, we may also take the Cromarty and Wenham lights, which have been followed by a host of imitators, and so closely are the original types adhered to that one begins seriously to wonder what the use of the Patent Office really is.

The Schulke, and the last form of Siemens regenerative burner, however, stand apart from all the others by dealing with flat and not conical flames, and in both regeneration is carried on to a high degree. The only drawback to the regenerative burner is that it is by far the best form of gas stove as well as burner, and that the amount of heat thrown out by the radiant solid matter in the flame is, under some circumstances, an annoyance. But, on the other hand, we must not forget that this is the form best adapted for overhead burners, and that nearly every form of regenerative lamp can be adapted as a ventilating agent, and that with the withdrawal of the products of combustion from the air of the room, the great and only serious objection to gas as an illuminant disappears.

When coal gas is burned, the hydrogen is supposed to be entirely converted into water vapor, and the carbon to finally escape into the air as carbon dioxide; and if this were so, every cubic foot of gas consumed would produce approximately 0.52 cubic foot of carbon dioxide and 1.34 cubic feet of water vapor, while the illuminating power yielded by the cubic foot of gas will, of course, vary with the kind of burner used.

Roughly speaking, the ordinary types of burner give the following results:

Illuminating Products of Combustion Power in per Name of Burner. Candles per Candle Power. c.f. of gas Consumed. Carbon Water Dioxide. Vapor. - - - Batswing. 2.9 0.18 c.f. 0.46 c.f. Argand. 3.3 0.16 c.f. 0.40 c.f. Regenerative. 10.0 0.05 c.f. 0.13 c.f. - -

So that the regenerative forms of burner, by giving the greatest illuminating power per cubic foot of gas consumed, yield a smaller amount of vitiation to the air per candle of light emitted.

An ordinary room, say 16' X 12' X 10', would not be considered properly illuminated unless the light were at least equal to 32 candle power; and in the table below the amount of the oxygen used up and the products of combustion formed by each class of illuminant and burner in attaining this result are given, the number of adults who would exhale the same amount during respiration being also stated.

From these data it appears, according to rules by which the degree of vitiation of the air in any confined space is measured by the amount of oxygen used up and carbon dioxide formed, that candles are the worst offenders against health and comfort. Oil lamps come next, and gas least. This, however, is an assumption which practical experience does not bear out. Discomfort and oppression in a room lighted by candles or oil are less felt than in one lighted by any of the older forms of gas burner; and the partial explanation of this is to be found in the fact that, when a room is illuminated with candles or oil, people are contented with a feebler and more local light than when using gas. In a room of the size described, the inmates would be more likely to use two candles placed near their books, or on a table, than thirty-two scattered about the room.

Moreover, the amount of water vapor given off during the combustion of gas is greater than in the case of the other illuminants. Water vapor having a great power of absorbing radiant heat from the burning gas becomes heated, and diffusing itself about the room, causes great feeling of oppression; the air also being highly charged with moisture, is unable to take up so rapidly the water vapor which is always evaporating from the surface of our skin, whereby the functions of the body receive a slight check, resulting in a feeling of malaise.

Added to these, however, is a far more serious factor which has, up to the present, been overlooked, and that is that an ordinary gas flame, in burning, yields distinct quantities of carbon monoxide and acetylene, the prolonged breathing of which in the smallest traces produces headache and general physical discomfort, while its effect upon plant life is equally marked.

AMOUNT OF OXYGEN REMOVED FROM THE AIR, AND CARBON DIOXIDE AND WATER VAPOR GENERATED TO GIVE AN ILLUMINATION EQUAL TO 32 CANDLE POWER.

(The amount of light required in a room 16' X 12' x 10'.)

Quantity of Products of Combustion Materials Oxygen Carbon Illuminant Used Removed Water Vapor Dioxide Adults - - Sperm Candles 3,840 grains 19.27 c.f. 13.12 c.f. 13.12 c.f. 21.8 Paraffin Oil 1,984 " 12.48 c.f. 7.04 c.f. 8.96 c.f. 14.9 Gas (London) Burners: Batswing 11 c.f. 13.06 c.f. 14.72 c.f. 5.76 c.f. 9.6 Argand 9.7 c.f. 11.52 c.f. 12.80 c.f. 5.12 c.f. 8.5 Regenerative 3.2 c.f. 3.68 c.f. 4.16 c.f. 1.60 c.f. 2.6

Ever since the structure of flame has been noted and discussed, it has been accepted as a fact beyond dispute that the outer almost invisible zone which is interposed between the air and the luminous zone of the flame is the area of complete combustion, and that here the unburnt remnants of the flame gases, meeting the air, freely take up oxygen and are converted into the comparatively harmless products of combustion, carbon dioxide and water vapor, which only need partial removal by any haphazard process of ventilation to keep the air of the room fit to support animal life. I have, however, long doubted this fact, and at length, by a delicate process of analysis have been able to confirm my suspicions. The outer zone of a luminous flame is not the zone of complete combustion; it is a zone in which luminosity is destroyed in exactly the same way that it is destroyed in the Bunsen burner; that is the air penetrating the flame so dilutes and cools down the outer layer of incandescent gas that it is rendered non-luminous, while some of the gas sinks below the point at which it is capable of burning, with the result that considerable quantities of the products of incomplete combustion carbon monoxide and acetylene escape into the air, and render it actively injurious.

I have proved this by taking a small platinum pipe, with a circular loop on the end, the interior of the loop being pierced with minute holes, and by making a circular flame burn within the loop so that the non-luminous zone of the flame just touched the inside of the loop, and then by aspiration so gentle as not to distort the shape of the flame, withdrawing the gases escaping from the outer zone. On analyzing these by a delicate process, which will be described elsewhere, I arrived at the following results:

GASES ESCAPING FROM THE OUTER ZONE OF FLAME.

Luminous. Bunsen.

Nitrogen. 76.612 80.242 Water vapor. 14.702 13.345 Carbon dioxide. 2.201 4.966 Carbon monoxide. 1.189 0.006 Oxygen. 2.300 1.430 Marsh gas. 0.072 0.003 Hydrogen. 2.888 0.008 Acetylene. 0.036 Nil. ———- ———- 100.000 100.000

The gases leaving the luminous flame show that the diluting action of the nitrogen is so great that considerable quantities even of the highly inflammable and rapidly burning hydrogen escape combustion, while the products of incomplete combustion are present in sufficient quantity to account perfectly for the deleterious effects of gas burners in ill-ventilated rooms. The analyses also bring out very clearly the fact that, although the dilution of coal gas by air in atmospheric burners is sufficient to prevent the decomposition of the heavy hydrocarbons with liberation of carbon, and so destroy luminosity, yet the presence of the extra supply of oxygen does make the combustion far more perfect, so that the products of incomplete combustion are hardly to be found in the escaping gases.

These experiments are of the gravest import, as they show more clearly than has ever been done before the absolute necessity for special and perfect ventilation where coal gas is employed for the illumination of our dwelling rooms.

When coal gas was first employed during the early part of this century as an illuminating agent, the low pitch of the old fashioned rooms, and the excess of impurities in the gas, rendered it imperative that the products of combustion of the sulphur-laden gas should be conducted from the apartment, and for this purpose arrangements of tubes with funnel shaped openings were suspended over the burners. The noxious gases were thus conveyed either to the flue or open air; but this type of ventilator was unsightly in the extreme, and some few attempts were made to replace it by a more elegant arrangement, as in the ventilating lamp invented by Faraday, and in the adaptation of the same principle by Mr. I.O.N. Rutter, who strove for many years to direct attention to the necessity of removing the products of combustion from the room. But with the increase of the gas industry, the methods for purifying the coal gas became gradually more and more perfect, while the rooms in the modern houses were made more lofty; and the products of combustion being mixed with a larger volume of air, and not containing so many deleterious constituents, became, if not much less noxious, at all events less perceptible to the nose. As soon as this point was reached, the ventilating tubes were discarded, and from that day to this the air of our dwelling rooms has been contaminated by illuminants, with hardly an effort to alleviate the effect produced upon health. I say "hardly an effort," for the Messrs. Boyle tried, by their concentric tube ventilators, to meet the difficulty, while Mr. De la Garde and Mr. Hammond have each constructed lamps more or less on the principle of the Rutter lamp; but either from their being somewhat unsightly, or from their diminishing the amount of light given out, none of them have met with any degree of success. In places of public entertainment, where large quantities of coal gas are consumed for illuminating purposes, the absolute necessity for special ventilation gave rise to the "sun burner," with its ventilating shaft. This, however, gives but a very poor illuminating power per cubic foot of gas consumed, due partly to the cooling of the flame by the current of air produced, and partly to its distance from the objects to be illuminated.

The great difficulty which in the whole history of ventilation has opposed itself to the adoption of proper arrangements for removing the products of combustion has been the necessity of bringing the tube to carry off the gases low down into the room, and of incasing the burner in such a way that none of the products should escape; but with the present revolution in gas burners this necessity is entirely done away with, and the regenerative burner offers the means not only of removing all the products of combustion but also of effecting thorough ventilation of the room itself, as experiments made some few years ago showed me that a ventilating regenerative burner, burning 20 cubic feet of gas per hour and properly fitted, will not only remove all its own products of combustion, but also over 5,000 cubic feet per hour of the vitiated air from the upper part of the room. I am quite aware that many regenerative lamp makers raise various objections to fitting ventilating lamps, these being chiefly due to the fact that it requires considerable trouble to fit them properly; but I think I have said enough to show the absolute necessity of some such system, and when there is a general demand for ventilating lamps, engineering skill will soon find means to overcome any slight difficulties which exist.

Having disposed in a few words of a subject which, if fully treated, would occupy a long course of lectures by itself, I will pass on to the consideration of gas as at present used as a fuel.

There is no doubt that gas is the most convenient and in many ways one of the best forms of fuel for heating and cooking purposes, and the efforts which all large gas companies are now making to popularize and increase the use of gas for such purposes will undoubtedly bear fruit in the future. But before the day can come for gas to be used in this way on a large scale, there is one fact which the gas manager and gas stove manufacturer must clearly realize and submit to, and that is that no gas stove or gas water heater, of any construction, should be sent out or fitted without just as great care being taken to provide for the carrying away of the products of combustion as if an ordinary fuel range was being fitted. Do not for one moment allow yourself to be persuaded that, because a gas stove or geyser does not send out a mass of black smoke, the products of combustion can be neglected and with safety allowed to mingle with the atmosphere we are to breathe.

Scarcely a winter passes but one or more deaths are recorded from the products of combustion given off from various forms of water heaters used in bath rooms; scarcely a cookery class is given, with gas stoves, that one or more ladies do not have to leave suffering from an intense headache, and often in an almost fainting condition. And the same cause which brings about these extreme cases, on a smaller scale causes such physical discomfort to many delicately organized persons that a large class exist who absolutely and resolutely decline to have gas as an illuminant or fuel in any of their living rooms; and if the use of gas, more especially as fuel, is to be extended, and if gas is to hold its own in the future against such rivals as the electric light, then those interested in gas and gas stoves must face the problem, and by improving the methods of burning and using gas do away with the present serious drawbacks which exist to its use.

The feeling has gradually been gaining ground in the public mind that, when atmospheric burners and other devices for burning coal gas are employed for heating purposes, certain deleterious products of incomplete combustion find their way into the air, and that this takes place to a considerable extent is shown by the facts brought forward in a paper read by Mr. William Thomson before the last meeting of the British Association.

Mr. Thomson attempted to separate and determine the quantity of carbon monoxide and hydrocarbons present in the flue gases from various forms of gas stoves and burners, but, like every other observer who has attempted to solve this most difficult problem, he found it so beset with difficulties that he had to abandon it, and contented himself with determining the total amounts of carbon and hydrogen escaping in an unburned condition, experiments which showed that the combustion of gas in stoves for heating purposes is much more incomplete than one had been in the habit of supposing, but his experiments give no clew as to whether the incompletely burned matter consisted of such deleterious gases as carbon monoxide and acetylene, or comparatively harmless gases, such as marsh gas and hydrogen. After considerable work upon the subject, I have succeeded in doing this by a very delicate process of analysis, and I now wish to lay some of my results before you.

If a cold substance, metal or non-metal, be placed in a flame, whether it be luminous or non-luminous, it will be observed that there is a clear space, in which no combustion is taking place, formed round the cool surface, and that as the body gets heated so this space gets less and less until, when the substance is at the same temperature as the flame itself, there is contact between the two. Moreover, when a luminous flame is employed in this experiment the space still exists between the cool body and the flame, but you also notice that the luminosity is decreased over a still larger area although the flame exists.

This meaning that, in immediate contact with the cold body, the temperature is so reduced that the flame cannot exist, and so is extinguished over a small area; while over a still larger space the temperature is so reduced that it is not hot enough to bring about decomposition of the heavy hydrocarbons with liberation of carbon to the same extent as in hotter portions of the flame. Now, inasmuch as when water is heated or boiled in an open vessel, the temperature cannot rise above 100 deg.C., and as the temperature of an ordinary flame is over 1,000 deg.C., it is evident that the burning gas can never be in contact with the bottom of the vessel, or, in other words, the gas is put out before combustion is completed, and the unburned gas and products of incomplete combustion find their way into the air and render it perfectly unfit for respiration.

The portion of the flame which is supposed to be the hottest is about half an inch above the tip of the inner zone of the flame, and it is at this point that most vessels containing water to be heated are made to impinge on the flame; and it is this portion of the flame, also, which is utilized for raising various solids to a temperature at which they radiate heat.

In order to gain an insight into the amount of contamination which the air undergoes when a geyser or cooking stove is at work, I have determined the composition of the products of combustion, and the unburned gases escaping when a vessel containing water at the ordinary temperatures is heated up to the boiling point by a gas flame, the vessel being placed, in the first case, half an inch above the inner cone of the flame, and in the second, at the extreme outer tip of the flame.

GASES ESCAPING DURING CHECKED COMBUSTION.

Bunsen flame. Luminous flame. - - - Inner. Outer. Inner. Outer. - - - Nitrogen 75.75 79.17 77.52 69.41 Water vapor 13.47 14.29 11.80 19.24 Carbon dioxide 2.99 5.13 4.93 8.38 Carbon monoxide 3.69 Nil. 2.45 2.58 Marsh gas 0.51 0.31 0.95 0.39 Acetylene 0.04 Nil. 0.27 Nil. Hydrogen 3.55 0.47 2.08 Nil. - - - 100.00 100.00 100.00 100.00

These figures are of the greatest interest, as they show conclusively that the extreme top of the Bunsen flame is the only portion of the flame which can be used for heating a solid substance without liberating deleterious gases; and this corroborates the previous experiment on the gases in the outer zone of a flame, which showed that the outer zone of a Bunsen flame is the only place where complete combustion is approached.

Moreover, this sets at rest a question which has been over and over again under discussion, and that is whether it is better to use a luminous or a non-luminous flame for heating purposes. Using a luminous flame, it is impossible to prevent a deposit of carbon, which is kept by the flame at a red heat on its outer surface, and the carbon dioxide formed by the complete combustion of the carbon already burned up in flame is reduced by this back to carbon monoxide, so that even in the extreme tip of a luminous flame it is impossible to heat a cool body without giving rise to carbon monoxide, although acetylene being absent, gas stoves, in which small flat flame burners are used, have not that subtile and penetrating odor which marks the ordinary atmospheric burner stove, with the combustion checked just at the right spot for the formation of the greatest volume of noxious products.

It is the contact of the body to be heated with the flame before combustion is complete which gives rise to the greatest mischief; any cooling of the flame extinguishes a portion of the flame, and the gases present in the flame at the moment of extinction creep along the cooled surface and escape combustion.

Dr. Blochmann has shown the composition of the gases in various parts of the Bunsen flame to be as follows:

Height above tube. In tube. 1 inch. 2 inch. 3 inch. Complete combustion - Air with 100 vols. gas 253.9 284.7 284.5 484.3 608.8 Hydrogen 48.6 36.4 17.7 16.1 Nil. Marsh gas 39.0 40.1 28.0 5.7 Nil. Carbon monoxide 2.9 2.2 19.9 12.7 Nil. Olefiant gas 4.0 3.4 2.2 Nil. Nil. Buteylene 3.0 2.5 1.6 Nil. Nil. Oxygen 52.7 52.0 21.7 Nil. Nil. Nitrogen 199.1 223.8 225.9 382.4 482.3 Carbon dioxide 0.8 3.5 13.0 41.7 62.4 Water vapor 3.1 11.8 45.8 116.1 141.2 -

Which results show that it would be impossible to check the flame anywhere short of the extreme tip (where complete combustion is approximately taking place), without liberating deleterious products. I think I have said enough to show that no gas stove, geyser or gas cooking stove should be used without ample and thorough means of ventilation being provided, and no trace of the products of combustion should be allowed to escape into the air; until this is done, the use of improper forms of stoves will continue to inflict serious injury on the health of the people using them, and this will gradually result in the abandonment of gas as a fuel, instead of, as should be the case, its coming into general use. The English householder is far too prone to accept what is offered to him, without using his own common sense, and will buy the article which tickles his eye the most and his pocket the least, on the bare assurance of the shopkeeper, who is only anxious to sell; but when he finds that health and comfort are in jeopardy, and has discarded the gas stove, it will take years of labor to convince him that it was the misuse of gas which caused the trouble. Already signs are not wanting that the employers of gas stoves are beginning to fight shy of them, and I earnestly hope that the gas managers of the kingdom will bring pressure to bear upon the stove manufacturers to give proper attention to this all important question.

So strongly do I feel the importance of this question to the gas world and the public, that I freely offer to analyze the products of combustion given off by any gas stove or water heater sent to me at Greenwich during the next six months, on one condition, and that is that the results, good, bad, or indifferent, will be published in a paper before this Society, which has always been in the front when matters of great sanitary importance to the public had to be taken up. And if after that the public like to buy forms of apparatus which have not been certified, it is their own fault; but I do think that the maker of any stove or geyser which causes a death should be put upon his trial for manslaughter.

In conclusion, let us consider for a moment what is likely to be the future of gas during the next half century. The labor troubles, bad as they are and have been, will not cease for many a weary year. The victims of imperfect education (more dangerous than none at all, as, while destroying natural instinct, it leaves nothing in its place) will still listen and be led by the baneful influence of irresponsible demagogues, who care for naught so long as they can read their own inflammatory utterances in the local press, and gain a temporary notoriety at the expense of the poor fools whose cause they profess to serve. The natural tendency of this will be that every labor-saving contrivance that can will be pressed into the gas manager's service; and that, although coal (of a poorer class than at present used) will still be employed as a source of gas, the present retort setting will quickly give way to inclined retorts on the Coze principle; while, instead of the present wasteful method of quenching the red hot coke, it will be shot direct into the generator of the water gas plant, and the water gas carbureted with the benzene hydrocarbons derived from the smoke of the blast furnace and coke oven, or from the creosote oil of the tar distiller, by the process foreshadowed in the concluding sentences of my last lecture. It will then be mixed with the gas from the retorts, and will supply a far higher illuminant than we at present possess. In parts of the United Kingdom, such as South Wales, where gas coal is dear, and anthracite and bastard coals are cheap, water gas highly carbureted will entirely supplant coal gas, with a saving of fifty per cent. on the prices now existing in those districts. While these changes have been going on, and while improved methods of manufacture have been tending to the cheapening of gas, it will have been steadily growing in public favor as a fuel; and if in years to come the generation of electricity should have been so cheapened as to allow it to successfully compete with gas as an illuminant, the gas works will still be found as busy as of yore, the holder of gas shares as contented as to-day; for with a desire for a purer atmosphere and a white mist instead of a yellow fog, gas will have largely supplanted coal as a fuel, and gas stoves, properly ventilated and free from the reproaches I have hurled at them to-night, will burn a gas far higher in its heating power, far better in its power of bearing illuminating hydrocarbons, and free from poisonous constituents.

When the demand for it arises, hydrogen gas can be made as cheaply as water gas itself, and when time is ripe for a fuel gas for use in the house, it is hydrogen and not water gas which will form its basis. With carbureted water gas and 20 per cent. of carbon monoxide we are still below the limit of danger, but a pure water gas with over 40 per cent. of the same insidious element of danger will never be tolerated in our households. Already a patent has been taken by Messrs. Crookes and Ricarde-Seaver for purifying water gas from carbon monoxide, and converting it mainly into hydrogen by passing it at a high temperature through a mixture of lime and soda lime, a process which is chemically perfect, as the most expensive portion of the material used could be recovered; but in the present state of the labor market it is not practical, as for the making of every 100,000 cubic feet of gas, fifteen tons of material would have to be handled, the cost of labor alone being sufficient to prevent its being adopted; moreover, hydrogen can be made far cheaper directly.

From the earliest days of gas making, the manufacture of hydrogen by the passage of steam over red-hot iron has been over and over again mooted, and attempted on a large scale, but several factors have combined to render it futile.

In the first place, for every 478.5 cubic feet of hydrogen made under perfect theoretical conditions never likely to be obtained in practice, 56 lb. of iron were converted into the magnetic oxide, and as there was no ready sale for this article, this alone would prevent its being used as a cheap source of hydrogen; the next point was that when steam was passed over the red-hot iron, the temperature was so rapidly lowered that the generation of gas could only go on for a very short period, while, finally, the swelling of the mass in the retort and fusion of some of the magnetic oxide into the side renders the removal of the spent material almost an impossibility. These difficulties can, however, be got over. Take a fire clay retort, six feet long and a foot in diameter, and cap it with a casting bearing two outlet tubes closed by screw valves, while a similar tube leads from the bottom of the retort. Inclose this retort by a furnace chamber of iron lined with fire brick, leaving a space of two feet six inches round the retort, and connect the top of the furnace chamber with one opening at the top of the upright retort, while air blasts lead into the bottom of the furnace chamber, below rocking fire bars, which start at bottom of the retort, and slope upward, to leave room for ash holes closed by gas tight covers. The retort is filled with iron or steel borings, alone if pure hydrogen is required, or cast into balls with pitch if a little carbon monoxide is not a drawback, as in foundry work. The furnace chamber is now filled with coke, fed in through manholes, or hoppers, in the top, and the fuel being ignited, the blast is turned on, and the mixture of nitrogen and carbon monoxide passes over the iron, heating it to a red heat, while the fuel in contact with the retort does the same thing.

When the fuel and retort full of iron are at a cherry-red heat, the air blast is cut off, and the pipe connecting the furnace and retort, together with the pipe in connection with the bottom of the retort, are closed, and steam, superheated by passing through a pipe led round the retort or interior wall of the furnace, is injected at the bottom of the red-hot mass of iron, which decomposes it, forming magnetic oxide of iron and hydrogen, which escapes by the second tube at the top of the retort, and is led away either to a carbureting chamber if required for illumination, or direct to the gasholder if wanted as a fuel. The mass of incandescent fuel in the furnace chamber, surrounding the retort, keeping up the temperature of retort and iron sufficiently long to enable the decomposition to be completed.

The hydrogen and steam valves are now closed and the air blast turned on. The hot carbon monoxide passing over the hot magnetic oxide quickly reduces it down to metallic iron, which, being in a spongy condition, acts more freely on the steam during later makes than it did at first, and being infusible at the temperature employed, may be used for a practically unlimited period.

What more simple method than this could be desired? Here we have the formation of the most valuable of all fuel gases at the cost of the coke and steam used, a gas also which has double the carrying power for hydrocarbon vapors possessed by coal gas, while its combustion gives rise to nothing but water vapor.

In this course of lectures I have left much unsaid and undone which I should have liked to have had time to accomplish, and if I have been obliged to leave out of consideration many important points, it is the time at my disposal and not my will which is to blame. And now, in conclusion, I wish to express my thanks to my assistants, Messrs. J.A. Foster and J.B. Warden, who have heartily co-operated with me in much of the work embodied in these lectures.

* * * * *



STEREOSCOPIC PROJECTIONS.

The celebrated philosopher Bacon, the founder of the experimental method, claimed that we see better with one eye than with two, because the attention is more concentrated and becomes profounder. "On looking in a mirror," says he, "we may observe that, if we shut one eye, the pupil of the other dilates." To this question: "But why, then, have we two eyes?" he responds: "In order that one may remain if the other gets injured." Despite the reasoning of the learned philosopher, we may be permitted to believe that the reason that we have two eyes is for seeing better and especially for perceiving the effects of perspective and the relief of objects. We have no intention of setting forth here the theory of binocular vision; one simple experiment will permit any one to see that the real place of an object is poorly estimated with one eye. Seated before a desk, pen in hand, suddenly close one eye, and, at the same time, stretch out the arm in order to dip the pen in the inkstand; you will fail nine times out of ten. It is not in one day that the effects of binocular vision have been established, for the ancients made many observations on the subject. It was in 1593 that the celebrated Italian physicist Porta was the first to give an accurate figure of two images seen by each eye separately, but he desired no apparatus that permitted of reconstituting the relief on looking at them. Those savants who, after him, occupied themselves with the question, treated it no further than from a theoretical point of view. It was not till 1838 that the English physicist Wheatstone constructed the first stereoscopic apparatus permitting of seeing the relief on examining simultaneously with each of the eyes two different images of an object, one having the perspective that the right eye perceives, and the other that the left eye perceives.

This apparatus is described in almost all treatises on physics. We may merely recall the fact that it operated by reflection, that is to say, the two images were seen through the intermedium of two mirrors making an angle of 45 degrees. The instrument was very cumbersome and not very practical. Another English physicist, David Brewster, in 1844 devised the stereoscope that we all know; but, what is a curious thing, he could not succeed in having it constructed in England, where it was not at first appreciated. It was not till 1850 that he brought it to Paris, where it was constructed by Mr. Soleil and his son-in-law Duboscq. Abbot Moigno and the two celebrated opticians succeeded, not without some difficulty, in having it examined by the official savants; but, at the great exposition of 1851, it was remarked by the Queen of England, and from this moment Messrs. Soleil & Duboscq succeeded with difficulty only in satisfying the numerous orders that came from all parts. As photography permitted of easily making identical images, but with different perspective, it contributed greatly to the dissemination of the apparatus.

The stereoscope, such as we know it, presents the inconvenience of being incapable of being used by but one person at once. Several inventors have endeavored to render the stereoscopic images visible to several spectators at the same time. In 1858, Mr. Claudet conceived the idea of projecting the two stereoscopic images upon ground glass in superposing them. The relief was seen, it appears, but we cannot very well explain why; the idea, however, had no outcome, because the image, being quite small, could be observed by but three or four persons at once. It was Mr. D'Almeida, a French physicist, who toward the same epoch solved the problem in a most admirable manner, and we cannot explain why his process (that required no special apparatus) fell into the desuetude from which Mr. Molteni has just rescued it and obtained much success.



This is in what it consists: The impression of the relief appears when each eye sees that one of the two images which presents the perspective that it would perceive if it saw the real object. If we take two transparent stereoscopic images and place each of them in a projection lantern, in such a way that they can be superposed upon the screen, we shall obtain thereby a single image. It will always be a little light and soft, as the superposition cannot be effected accurately, the perspective not being the same for each of them. It is a question now to make each eye see the one of the two images proper to it. To this effect, Mr. D'Almeida conceived the very ingenious idea of placing green glass in the lantern in front of the image having the perspective of the right eye, and a red glass in front of the other image. As green and red are complementary colors, the result was not changed upon the screen; there was a little less light, that was all. But if, at this moment, the spectator places a green glass before his right eye and a red one before his left, he will find himself in the condition desired for realizing the effect sought.

Each eye will then see only the image responding to the coloration chosen, and, as it is precisely the one which has the perspective proper to it, the relief appears immediately. The effect is striking. We perceive a diffused image upon the screen with the naked eye, but as soon as we use one special eye-glass the relief appears with as much distinctness as in the best stereoscope. One must not, for example, reverse his eye-glass, for if (things being arranged as we have said) he looks through a red glass before his right eye, and through a green one before his left, it is the image carrying the perspective designed for the right eye that will be seen by the left eye, and reciprocally. There is then produced, especially with certain images, a very curious effect of reversed perspective, the background coming to the front.

Now that photography is within every one's reach, and that many amateurs are making stereopticon views and own projection lanterns, we are persuaded that the experiment will be much more successful than it formerly was. An assemblage of persons all provided with colored eye-glasses is quite curious to contemplate. Our engraving represents a stereopticon seance, and the draughtsman has well rendered the effect of the two luminous and differently colored fascicles superposed upon the screen.

In a preceding note upon the same subject, Mr. Hospitalier remarked that upon combining these effects of perspective with those of the praxinoscope, which give the sensation of motion, we would obtain entirely new effects. It would be perhaps complicated as to the installation, and especially as to the making of the images, but, in certain special cases (for giving the effect of a machine in motion, for example), it might render genuine services.—La Nature.

* * * * *



THE EFFECT ON FOWLS OF NITROGENOUS AND CARBONACEOUS RATIONS.[1]

[Footnote 1: This article is condensed by permission from a thesis prepared for the degree of Bachelor of Science in Agriculture, by James Edward Rice, a graduate of the class of 1890. The work was planned and wholly carried out in the most careful manner by Mr. Rice under the immediate supervision of the Director. The results have been thought worthy of publication in the Cornell Station Bulletin.]

On July 2, 1889, ten Plymouth Rock hens, one year old, and as nearly as possible of uniform size, were selected from a flock of thirty-five. At the same time ten chickens, hatched from the same hens mated with a Plymouth Rock cock, were similarly chosen. The chickens were about six weeks old, healthy and vigorous and of nearly the same size. Up to the time of purchase both hens and chickens had full run of the farm. The hens foraged for themselves and were given no food; the chickens had been fed corn meal dough, sour milk and table scraps.

A preliminary feeding trial was continued for twenty-five days, during which time both hens and chickens were confined, all together, in a fairly well lighted and ventilated room, and fed a great variety of food, in order that all should go into the feeding trial as nearly as possible in the same condition. During this preliminary feeding both hens and chickens increased in live weight. The ten hens from a total of 44 lb. 12 oz. to 47 lb. 1.5 oz., or 3.75 oz. each, and laid 93 eggs. The chickens from a total of 9 lb. 15 oz. to 18 lb., or 12.9 oz. each.

Previous Part     1  2  3     Next Part
Home - Random Browse