p-books.com
Scientific American Supplement, No. 530, February 27, 1886
Author: Various
Previous Part     1  2  3     Next Part
Home - Random Browse

9,350 lb. Electric car. ————- = 1.78 154 x 34

15,950 lb. Rowan. ————— = 2.30 154 x 45

22,000 lb. Compressed air. ————— = 2.55 154 x 56

The detached engines gave, of course, less favorable results under this head.

Under head No. 15 the tractive power of all the motors was sufficient during the trials, but the line was practically level, therefore this question could only be resolved theoretically, so far as these trials were concerned, and the table before given affords all the necessary data for the theoretical calculation.

As regards the rapidity with which the motors could be brought into use from standing empty in the shed, the electric car could receive its accumulators more rapidly than could the boiler for heating the exhaust of the compressed-air car be brought into use.

As regards the steam motors, the following were the results from the time of lighting the fires:

The Rowan— In 34 minutes 3 atmospheres. " 36 " 4 "

At this pressure the vehicle could move—

In 40 minutes 8 atmospheres.

The Wilkinson— In 35 minutes 2 atmospheres. " 40 " 4 " " 44 " 6 " " 47 " 8 "

The Krauss machine required two hours to give 6 atmospheres, which was the lowest pressure at which it could be worked.

The results under No. 17, viz., the fewest interruptions to the daily service, class the motors in the following order: Krauss, electric, Rowan, Wilkinson, compressed air. The chief cause of injury to the compressed air motor arose from the carelessness of the drivers, who allowed the steam boiler to be burnt out. Unfortunately, these drivers were new to the work.

Under the letter C are classed considerations of economy in the consumption of materials used for generating the power necessary for working.

19. Minimum consumption of fuel (either coke or coal), in proportion to the number of kilometers run, and to the number of places, assuming for the seats a width of at least sixteen inches for each person seated.

It must be borne in mind that the conditions of the competition required that a second car should be periodically drawn by the motor, and that the calculations which follow include the total number of miles run, the total amount of fuel, etc., consumed, and the total number of passengers which could be conveyed by each motor, during the total time that the experiments were being carried on.

TABLE II.

Total Description of motor. number of Total No. of lb. train miles Consumption per run. of fuel. train mile.

lb. Electric. 2,358.9 14 786 6.16 Rowan. 2,616.9 14,498 5.42 Wilkinson. 2,473.3 22,000 8.82 Krauss. 2,457.8 22,726 9.10 Compressed air. 2,259.1 90,420 39.48

TABLE III.

No. of places No. of lb. of Description of motor. indicated on fuel consumed the cars, per Consumption per places mile run. of fuel. indicated per mile run. lb. Electric 80,203.5 14,786 0.18 Rowan 148,399.6 14,498 0.09 Wilkinson 119,085.1 22,000 0.18 Krauss 108,983.9 22,726 0.20 Compressed air 128,189.3 90,420 0.69

TABLE IV.

Description of motor. No. of seats per No, of lb. of mile run. Consumption fuel consumed of fuel. per seat per mile run. lb. Electric 61,591.2 14,786 0.23 Rowan 135,928.8 14,498 0.10 Wilkinson 93,965.6 22,000 0.23 Krauss 86,039.9 22,726 0.25 Compressed air 132,732.7 90,420 0.66

As regards the figures in these tables, it is to be observed that the consumption of fuel for the electric car is, to a certain extent, an estimate; because the engine which furnished the electricity to the motor also supplied electricity for electric lights, as well as for an experimental electric motor which was running on the lines of tramway, but was not brought into competition.

20. Minimum consumption of oil, of grease, tallow, etc. (the same conditions as in No. 19).

TABLE V.

Total Consumption Total consumption of oil, tallow, Description of number of of etc., motor. miles run. oil, tallow, per train mile etc. run.

lb. Electric 2,358.9 99.0 0.038 Rowan, steam 2,616.9 106.7 0.038 Krauss, steam 2,457.8 188.5 0.073 Wilkinson, steam 2,473.3 255.4 0.101 Compressed air 2,259.1 585.2 0.255

In addition to these considerations, it was thought useful to investigate the quantity of water consumed in the case of those engines which used steam. The experiments made on this point showed as the consumption of water:

Gallons per mile. Rowan 0.75 Compressed air 1.06 Wilkinson 5.89 Krauss 6.52

Thus, owing to the large proportion of water returned from the condenser to the tanks, the Rowan actually used less water than the compressed air engine.

CONCLUSION.

The general conclusion to which these experiments bring us is that, undoubtedly, if it could certainly be relied upon, the electric car would be the preferable form of tramway motor in towns, because it is simply a self-contained ordinary tram-car, and in a town the service requires a number of separate cars, occupying as small a space each as is compatible with accommodating the passengers, and which follow each other at rapid intervals.

But the practicability and the economy of a system of electric tram-cars has yet to be proved; for the experiments at Antwerp, while they show the perfection of the electric car as a means of conveyance, have not yet finally determined all the questions which arise in the consideration of the subject. For instance, with regard to economy, the engine employed to generate the electricity was not in thoroughly good order, and from its being used to do other work than charging the accumulators of the tram-car, the consumption of fuel had to be to some extent estimated. In the next place, the durability of the accumulators is still to be ascertained; upon this much of the economy would depend. And in addition to this question, there is also that of the durability of parts of the machinery if exposed to dust and mud.

After the electric car, there is no question but that at the Antwerp Exhibition the most taking of the tramway motors was the Rowan, which was very economical in fuel, quite free from the appearance of steam, and very convenient and manageable.

The economy of the Rowan motor arises in a large degree from the extent of its condensing power, by means of which a considerable supply of warm water is constantly supplied for use in the boiler, and consequently the quantity of water which has to be carried is lessened, and the fuel is economized.

Independently, however, of its convenience as a motor for tramways in towns, the Rowan machine has been adapted on the Continent to the conveyance of goods as well as passenger traffic on light branch railways, and fitted to pass over curves of 50 feet radius, and up gradients of 1:10.

In England, with our depressed trade and agriculture, there is a great want in many parts of the country of a cheap means of conveyance from the railway stations into the surrounding districts; such a means of conveyance might be afforded by light railways along or near the road-side, the cost of which would be comparatively small, provided that the expensive methods of construction, of signaling, and of working which have been required for main lines, and which are perfectly unnecessary for such light railways, were dispensed with.

It is certain that this question will acquire prominence as soon as a system of local government has been adopted, in which the wants of the several communities have full opportunity of asserting themselves, and in which each local authority shall have power to decide on those measures which are essential to the development of the resources of its own district, without interference from a centralized bureaucracy.

* * * * *



ON THE THEORY OF THE ELECTRO-MAGNETIC TELEPHONE TRANSMITTER.

By E. MERCADIER.

[Footnote: Note presented to the Academy of Sciences, Oct. 19, 1885.]

The first point to be studied in this theory is the role performed by the iron or steel diaphragm of the telephone, both as regards the nature of the movements that it effects through elasticity and the conversion of mechanical into magnetic energy as a result of its motions.

I. When we produce simple or complex vibratory motions in the air in front of the diaphragm, like those that result from articulate speech, either the fundamental and harmonic sounds of the diaphragm are not produced, or else they play but a secondary role.

(1.) In fact, diaphragms are never set in vibration, as is supposed, when we desire to determine the series of harmonics and nodal lines, since we do not leave them to themselves until they have been set in motion, and we do not allow a free play to the action of elastic forces; in a word, the vibrations that they are capable of effecting are constantly forced ones.

(2.) When a disk is set into a groove, and its edges are fixed, theory indicates that the first harmonics of the free disk should only rise a little. Let us take steel disks 4 inches in diameter and but 0.08 inch in thickness, and of which the fundamental sound in a free state is about ut{5}, and which the setting only further increases. It is impossible to see how this fundamental and the harmonics can be set in play when a continuous series of sounds or accords below ut{5}, are produced before the disk; and yet these sounds are produced perfectly (with feeble intensity, it is true, in an ordinary telephone) with their pitch and quality. They produce, then, in the transmitting diaphragm other motions than those of the fundamental sound and of its peculiar harmonics.

(3.) It is true that in practice the edges of the telephone diaphragm are in nowise fixed, but merely set into a groove, or rather clamped between wooden or metallic rings, whose mass is comparable to their own; and they are, therefore, as regards elasticity, in an ill ascertained state. Yet a diaphragm of the usual diameter (from 2 to 4 inches), and very thin (from 0.001 to 0.02 inch), clamped in this way by its edges, is capable of vibrating when a continuous series of sounds are produced near it, by means, for example, of a series of organ pipes. But the series of sounds that it clearly re-enforces, in exhibiting a kind of complex nodal lines, is plainly discontinuous; and how, therefore, would the existence of such series suffice to explain the production of a continuous scale of isolated or superposed sounds, the chief property of the telephone?

(4.) The interposition of a plate of any substance whatever between the diaphragm and the source of the vibratory motions in nowise alters the telephonic qualities of the diaphragm, and consequently the nature of the motions that it effects—a fact that would be very astonishing if the motions were those that corresponded to the peculiar sounds of the diaphragm. This fact is already known, and I have verified it with mica, glass, zinc, copper, cork, wood, paper, cotton, a feather, soft wax, sand, and water, even in taking thicknesses of from 5 to 8 inches of these substances.

(5.) We can put a diaphragm manifestly out of condition to effect its peculiar scale of harmonics by placing small, unequal, and irregularly distributed bodies upon its surface, by cutting it out in the form of a wheel, and by punching a sufficient number of holes in it to reduce it half in bulk. None of these modifications removes its telephonic qualities.

(6.) We can go still further, and employ diaphragms of scarcely any stiffness and elasticity without altering their essential telephonic properties, the reproduction of a continuous series of sounds, accords, and timbres. Such is the case with a sheet iron diaphragm. It is very difficult, then, to imagine a fundamental sound and its harmonics.

The conclusion from all this appears to me to be that the mechanism by virtue of which telephone diaphragms perform their motions is at least analogous to, if not identical with, that through which solid bodies of any form whatever (a wall, for example) transmit to all of their surfaces all the simple or complex successive or simultaneous vibratory motions, of periods varying in a continuous or discontinuous manner, that are produced in the air in contact with the other surface. In a word, we have here a phenomenon of resonance. In diaphragms of sufficient thickness this kind of motion would exist alone. In thin diaphragms the motions that correspond to their special sounds might become superposed upon the preceding, and this would be prejudicial rather than useful, since, in such a case, if there resulted a re-enforcement of the effects produced, it would be at the expense of the reproduction of the timbre, the harmonics of the diaphragm being capable of coinciding only through the merest accident with those of the sounds that were setting in play the fundamental sound of the diaphragm. This is what experiment clearly demonstrates.

II. Let us now pass to the magnetic role of the telephone diaphragm. Such role can be clearly enough defined by the following facts:

(1.) The presence of the magnetic field of the telephone in nowise changes the preceding conclusions.

(2.) Upon farther and farther diminishing the stiffness and elasticity of the diaphragm, I have succeeded in suppressing it entirely. In fact, it is only necessary to substitute for it, in any telephone whatever, a few grains of iron filings, thrown upon the pole of the magnet, covered with a bit of paper or cardboard, in order to render it possible to reproduce all sounds, and articulate speech with its characteristic quality, although, it is true, with very feeble intensity.

(3.) In order to increase the intensity of the effect produced, it suffices to substitute for the iron diaphragm a thin disk of any sort of slightly flexible substance, metallic or otherwise, cardboard, for example, and through the aperture of the usual cover of the instrument to scatter over it from 11/2 to 3 grains of iron filings. In this way we obtain an iron filings telephone. By properly increasing the intensity of the magnetic field, I have been able to form telephones of this kind that produced in an ordinary receiver as intense effects as those given by the usual transmitters with stiff disks, and which, too, were reversible. But for a field of given intensity, there is a weight of iron filings that produces a maximum of effect.

We thus see that the advantage of the iron diaphragm over filings is truly reduced to the presentation of a much larger number of magnetic molecules to the action of the field and to external actions, within the same volume. It increases the intensity of the telephonic effects, although for the production of the latter with all their variety, fineness, and perfection it is nowise indispensable. It suffices, after a manner, to materialize the lines of force with iron filings, and to act mechanically upon them, and consequently upon the field itself.

* * * * *



ON THE THEORY OF THE RECEIVER OF THE ELECTRO-MAGNETIC TELEPHONE.

By E. MERCADIER.

[Footnote: Note presented to the Academy of Sciences, November 16, 1885.]

On a former occasion I described some experiments that had led me to a theory of the telephone transmitter; a few words will suffice to expose that of the receiver.

Such theory gave rise during the first years succeeding the invention of the telephone to a considerable number of investigations, the principal results of which may be summed up in the two following points:

1. All the parts of a telephone receiver—core, helix, disk, handle, etc.—vibrate simultaneously (Boudet, Laborde, Breguet, Ader, Du Moncel, and others). But there is no doubt that by far the most energetic effects are those of the disk. It has been possible to put the vibrations of the core and helix beyond a doubt only by employing very energetic transmitter currents, or very simplified and special arrangements of the receiver (Ader, Du Moncel, and others).

2. In telephone receivers we may employ disks or diaphragms of any thickness up to six inches (Bell, Breguet, and others).

From the first point it had already resulted that the diaphragm was no more indispensable in the receiver than it was in the transmitter, as I have already shown (Comptes Rendus, t. ci., p. 944); and, from the second point, that there were other effects in a receiver than those that could result from the transverse vibrations corresponding to the fundamental sound and to the harmonics of the diaphragm.

So Du Moncel, basing a theory upon these two categories of facts, asserted that the effects of the telephone receiver were principally due to the molecular vibrations of the core of the electro-magnet (analogous to those that had been studied by Page, De la Rive, Wetheim, Reis, and others), super-excited and re-enforced by the iron diaphragm operating as an armature.

This theory has certainly truth for a basis; but it is incomplete, in that the molecular vibrations of the core are but a very feeble accessory phenomenon, and not a prominent one. At all events, I believe that we can, in a few words, and very simply, present the theory of the telephone receiver by going back to the facts that served me as a basis for the theory of the transmitter, and that result from studies made with telephones of ordinary forms.

In fact, it is enough to remark that the iron filings telephone transmitter described in a preceding article (1. c.) is reversible and capable of serving as a receiver—not a very intense one, it is true, but here it is a question of the nature of the phenomena, and not of their intensity. It at once results that in receivers, as in transmitters, the rigidity of the iron diaphragm is in nowise indispensable for telephonic effects, such as the production of continuous series of successive or simultaneous sounds and of articulate speech.

The diaphragm serves but to increase the intensity of these effects, as in the transmitter, by concentrating the lines of force of the field, and by presenting a greater surface to the air—the necessary vehicle of sound. When it is thick, the internal motions that it takes on in consequence of variations in the field, and which are transmitted to the surrounding air and the ear, are solely those of resonance. When it is very thin, the peculiar motions resulting from its geometric form and its structure may become superposed upon the preceding, because it may then happen that the corresponding sounds remain within the limits of the pitch wherein the human voice usually moves (from ut{2} to ut{5}); but then, also, as the harmonics of the voice in nowise coincide with the proper sounds of the diaphragm, the intensity of the effects is obtained at the expense of a good reproduction of the timbre. This is certainly one of the causes of the nasal timbre of most thin-diaphragmed telephones. By diminishing their thickness, we lose in quality what we gain in intensity.

But even in this latter respect there is a maximum for receivers, as I have already pointed out that there is for iron filings transmitters. For a magnetic field of given intensity, there is, all things equal, a diaphragm thickness that gives a maximum telephonic result. Such result, which is analogous to those that occur in other electro-magnetic phenomena, may explain the want of success of many tentatives made somewhat at haphazard, with a view to increasing the intensity of telephonic effects.

* * * * *



DECOMPOSITION AND FERMENTATION OF MILK.

Dr. F. Hueppe, who has paid great attention to this subject, describes five distinct organisms which he finds to be invariable accompaniments of lactic fermentation. One of these he isolated on nutrient gelatine in the form of white, shining, flat, minute beads. This organism has the power of transforming milk sugar and other saccharoses into lactic acid, with evolution of carbonic acid gas. It is rarely found in the saliva or mucilage of the teeth. In these are two micrococci, both of which cause the production of lactic acid, but which manifest differences in their development under cultivation. There are also two pigment forming bacteria, Micrococcus prodigiosus, which produces intensely red spots, and the yellow micrococcus of osteomyelitis. These five bacteria are so different and so constant in their properties that they must, in Dr. Hueppe's opinion, be regarded as distinct species. In addition to them there is in milk an organism resembling Mycoderma aceti, which transforms milk sugar into gluconic acid.

* * * * *



THE NEW "BURGTHEATER" IN VIENNA.

At last the new "Burgtheater" in Vienna is completed. We say "at last," for work was begun on this new theater more than ten years ago. One after another, monumental architectural works have been erected, which are no less grand and beautiful than this. They were finished long ago, and given over to their respective uses—the Parliament buildings, the "Rathhaus," the University; but Baron Hasenauer, who had charge of the construction of this building, as well as of many others, could not bring himself to the quicker tempo of Messrs Hansen, Schmid, and Ferstel. The citizens of Vienna were naturally impatient to see their beautiful "Ringstrasse" completed, and only the Hasenauer buildings were needed to make it perfect.



The building was built according to the plans of Semper and Hasenauer; for, as in the other great buildings erected by Hasenauer, the new palace and the museums, Semper's plans served as a foundation. All the modern improvements in the architecture of theaters have been embodied in the new theater, for the terrible catastrophe at the Ringtheater taught a lesson which has not been forgotten, and the greatest care has been taken to guard against fire.

The new "Burgtheater" stands directly opposite the imposing "Rathhaus" (senate-house), and is separated from the same by a charming park; to the right stands the University, and to the left the Houses of Parliament. In order to be worthy of such company, and not be overshadowed by these buildings, it was necessary that the theater should be very grand. The most important requirements have been perfectly fulfilled; beauty, elegance, appropriateness, and security against fire, nothing has been neglected.

The principal part of the building stands out strongly, and is flanked on either side by a pavilion-like wing. The audience room will accommodate about two thousand people.

The public and the actors alike rejoice in the new Burgtheater, for which they have waited so long.

* * * * *



THE NEW GERMAN BOOKDEALERS' EXCHANGE IN LEIPZIG.

It seems strange that book-printing and the book trade in general should have developed so slowly in the busy city of Leipzig, where a university was established as early as the beginning of the fifteenth century. The first honorable mention of the printing of Leipzig was made during the first decade of the sixteenth century, but it was not until the end of the seventeenth century that the printing and publishing of books received a notable impulse, which was given it by Messrs. J.F. Gleditsch and Thomas Fritsche and Profs. Carpzov and Mericke, who published many works of great typographical beauty.

From 1682 to 1700 ninety-one papers and periodicals appeared in Leipzig, of which the Acta eruditorum was the oldest, being the first German scientific paper. At this time there were seventeen printing establishments in Leipzig, and the seventy presses in use printed, on an average, 2,000 bales of paper yearly.

One of the leading bookdealers, Philipp Emanuel Reich, won the approbation of his fellow citizens by establishing the first Bookdealers' Association at the time of the Easter Fair in Leipzig, in 1764, and it was through his efforts that the Book Exchange or Fair was founded, which has placed Leipzig at the head of the book trade; but several years passed before this private undertaking become a public association. About 1834 a building was erected specially for a book exchange or bourse, but this building was soon outgrown, and it was decided to build a new one which should be adequate to the requirements of the institution.

A competition for designs for the new building was opened, and five designs were presented, from which the plan of Messrs. Kayser and Von. Grossheim, of Berlin, was selected. This design, which is shown in the accompanying cut, taken from the Illustrirte Zeitung, presents a picturesque grouping of the different parts of the building, the main building being on one street and the adjoining building on another street. The roof, which forms a beautiful sky-line, is ornamented with dormer-windows and little towers, there being a large tower on the main building.



To the left of the principal hall in the main building, which has three large ornamental windows, there is a little hall, the central office, and committee rooms, while the restaurant and the assembly rooms are on the right. In the smaller building, through which there is a central corridor, are the order rooms, assorting rooms, editorial sanctum of the Borsenblat (Bourse journal), and the post office, with telegraph offices.

A low building runs almost the entire length of the main building, to which it is joined at the right and left by side wings, thus inclosing an open court. In this low building the exhibition rooms are arranged, and in the middle is a vestibule through which these exhibition rooms, the wardrobes, and the great hall can be reached. Over the vestibule is a cupola.

The arrangements for lighting, heating, and ventilation are excellent. Steam heat is used, and the large hall is ventilated by the pulsation system.

The building, which is of red brick and sandstone, is worthy of holding a place among the numerous beautiful buildings which have been erected in Leipzig during the last few years. The cost of the building was limited to 700,000 M., or about $160,000.

* * * * *



A correspondent has transmitted to the editor of L'Union Pharmaceutique the prospectus of an oyster dealer who, besides dealing in the ordinary bivalves, advertises specialties in medicinal oysters, such as "huitres ferrugineuses" and "huitres au goudron." The "huitres ferrugineuses" are recommended to anaemic persons, and the "huitres au goudron" are said to replace with advantage all other means of administering tar, while of both it is alleged that analyses made by "distinguished savants" leave no doubt as to their valuable qualities.

* * * * *



ALIZARINE DYES.

Notwithstanding the unprecedented progress of the coal-tar dyestuff industry during the past few decades, the time-honored indigo, logwood, fustic, etc., have been only partly displaced by the coal-tar products in wool dyeing. The cause is that, though the dyer handled many aniline dyestuffs which dyed as fast against light as logwood or fustic, the dye proved unsatisfactory for fulling goods, because it bled in the treatment with soap and soda, and often more or less changed its tone. We intend to render a service to our readers by calling their special attention to some products of the coal-tar industry which are free from these defects of aniline dyestuffs, and for which it is claimed that they far surpass logwood, fustic, cudbear, etc., as to fastness against light, and excellently stand fulling. We allude to the alizarine dyestuffs, which have long since been introduced and are largely employed in cotton dyeing and printing.

Alizarine, which has been extensively discussed in various articles in our journal, is the coloring matter contained in the madder root. In 1869, two German chemists, Graebe and Liebermann, succeeded in artificially producing this dyestuff from anthracene, a component of coal-tar. The artificial dyestuff being perfectly pure and free from those contaminations which render the use of madder difficult, it soon was preferred to the latter, which it has at present nearly completely displaced.

The discovery of alizarine red was soon followed by those of alizarine orange, galleine, coeruleine, and, in 1878, of alizarine blue.

The slow adoption of these dyestuffs in the wool-dyeing industry is principally attributable to the deep-rooted distrust of wool dyers against any innovation. This resistance, however, is speedily disappearing, as every manufacturer and dyer trying the new dyestuffs invariably finds that they are in no respect inferior to his fastest dyes produced with indigo and madder, but are simpler to apply and more advantageous for wool.

The alizarine colors are dyed after an old method which is known to every wool dyer. The wool is first boiled for 11/2 hours with chromate of potash and tartar, then dyed upon a fresh bath by 21/2 to 3 hours' boiling. All alizarine colors (such as those of the Badische Anilin und Soda Fabrik, of Ludwigshafen and Stuttgart; Wm. Pickhardt & Kuttroff, New York, Boston, and Philadelphia, viz.):

Alizarine orange W, for brown orange, Alizarine red WR, for yellow touch ponceau or scarlet, Alizarine red WB, for blue touch yellow or scarlet, Alizarine blue WX and SW, for bright blue, Alizarine blue WR SRW, for dark reddish blue, Coeruleine W and SW, for green, and Galleine W, for dahlia,

are dyed after the same method, which offers the great advantage that all these colors can be dyed upon one bath, and that by their mixture numerous fast colors can be produced. On the ground of numerous careful experiments, the writer recommends the following method, which gives well developed and well fixed colors, viz.:

For 100 kil.—The scoured and washed wool is mordanted by boiling for 11/2 hours in a bath containing 3 kil. chromate of potash and 21/2 kil. tartar, and lightly rinsed; when it can immediately be dyed. For 1,000 lit. water, 1 lit. acetic acid of about 7 deg. Be. is added to the bath. If the water is very hard, double the quantity of acetic acid, which is indispensable, is added. Then the required quantity of dyestuff is added, well stirred, the wool entered, and the temperature raised to boiling, which is continued for 21/2 to 3 hours, that is, until a sample taken does no longer surrender any color to a hot solution of soap. Loose wool and worsted slubbing can be entered at 60 deg. C. (140 deg. F.). In dyeing yarn and piece-goods, however, it is advisable to enter the bath cold, work for about 1/4 hour in the cold, and then slowly to raise the temperature in about one hour to the boiling point. With this precaution, level and thoroughly dyed goods are always obtained. If the wool is entered in a hot bath, or if it is rapidly brought to a boil, the dyestuff is too rapidly fixed by the mordant and is liable to run up unevenly, and, with piece-goods, more superficially. For the same reason the goods must always be well wetted out before entering the bath.

We add some special recipes for the various colors, the mordant for all of them being of 3 per cent. chromate of potash and 21/2 per cent. tartar for 100 by weight of dry wool.

1. Orange, Brown Touch. 20 kil. wool, mordant with 600 grm. chromate of potash and 500 grm. tartar, dye with 3 kil. alizarine orange W.

2. Ponceau, Yellow Touch.

20 kil. wool, mordant as for No. 1, dye with 2 kil. alizarine red WR 20 per cent.

3. Ponceau, Blue Touch.

20 kil. wool, mordant like No. 1, dye with 2 kil. alizarine red WB 20 per cent.

4. Dahlia.

20 kil. wool, mordant like No. 1, dye with 5 kil. galleine W.

5. Green.

20 kil. wool, mordant like No. 1, dye with 6 kil. coeruleine W.

For Piece-goods.

20 kil cloth, mordant the same, dye with 1 kil. 200 grm. coeruleine SW.

6. Blue, Bright.

20 kil. wool, mordant the same, dye with 6 kil. alizarine blue WX.

For Piece-goods.

20 kil. cloth, mordant the same, dye with 1 kil. 200 grm. alizarine blue SW.

7. Blue, Dark and Red Touch.

20 kil. wool, mordant like No. 1, dye with 6 kil. alizarine blue WR.

For Piece-goods.

20 kil. cloth, mordant the same, dye with 1 kil. 200 grm. alizarine blue SRW.

Particular stress is to be laid upon the great fastness of the alizarine dyes against light and fulling. Besides, these dyestuffs contain nothing whatever injurious to the wool fiber. Sanders, which very much tenders the wool, as every dyer knows, can in all cases be replaced by alizarine red and alizarine orange, making an end to the spinners' frequent complaints about too much waste.

Alizarine blue in particular seems to be destined to replace indigo in the majority of its applications, having at least the same power of resisting light and acids, and relieving the dyer of the troublesome, protracted rinsings required for indigo dyed goods. Every piece-dyer knows that the medium and dark indigo blue goods still rub off, even after eight hours' rinsing; but alizarine blue pieces are perfectly dyed through and clean after one hour of rinsing. Another advantage of alizarine blue and the other alizarine dyestuffs is that they unite with all wood colors, as well as with indigo carmine and all aniline dyestuffs. A fine and cheap dark blue, for instance, is obtained by mordanting the wool as above stated and dyeing (20 kil.) in the second bath with 6 kil. alizarine WX and 2 kil. logwood chips; the wood is added to the bath together with the alizarine blue WX, and the best method is to put it into a bag which is hung in the bath.—D. Woll.-Gew.; Tex. Colorist.

* * * * *



Papier mache has come of late to be largely used in the manufacture of theatrical properties, and nearly all the magnificent vases, the handsome plaques, the graceful statues, and the superb gold and silver plate seen to-day on the stage are made of that material.

* * * * *



CEMENT PAVING.

The streets of "Old London" at the recent Inventions Exhibition at South Kensington were paved with a material in imitation of old, worn bowlder stones and red, herring-boned brickwork, all in one piece from one side of the street to the other. The composition is made by Wilkes' Metallic Flooring Company, out of a mixture consisting chiefly of iron slag and Portland cement, a compound possessing properties which won the only gold medal given for paving at that Exhibition. At the present time the colonnade in Pall Mall, near Her Majesty's Theater, is being laid with this paving, which is also being extensively used in London and the provinces for roads, tramways, and flooring; the composition is likewise sometimes cast into artistic forms for the ornamentation of buildings, or into slabs for roofing, facing, and other purposes. The subway from the Exhibition to the District Railway is laid with the same material.

The works of the Wilkes Metallic Flooring Company are in the goods yard of the Midland Railway Company at West Kensington. The Portland cement, before it is accepted at the works, is tested by means of an Aidie's machine. The general strain the set cement is required to bear is 750 lb. to the square inch. All samples which will not bear a strain of 500 lb. are rejected. The various iron slags are carefully selected, and rejected when too soft, and at the works a small percentage of black slag, rich in iron, is mixed in with them. The lumps of slag are first crushed in a Mason & Co.'s stone breaker, and then sifted through 1/8 in., 1/4 in., and 1/16 in. wire meshes into these three sizes for mixing. Next the granulated substance is thoroughly well washed with water to remove soluble matter and impalpable dust, and afterward placed where it is protected from the access of dust and dirt. The washing waters carry off some sulphides, as well as mechanical impurities. The Portland cement is not used just as it, comes from the works, but is exposed to the air in a drying room for about fourteen days, and turned over two or three times during that period. The slag is also turned over three times dry and three times wet, and mixed with the Portland cement by means of water containing 5 per cent. of "Reekie" cement to make the whole mass set quickly. The mixture is then turned over twice and put into moulds; each mould is first half filled, and the mixture then hammered down with iron beaters. The rest of the composition is then poured in, beaten down, and the whole mould violently jolted by machinery to shake down the mixture and to get rid of air holes. While it is still wet the casting is taken out of the mould, its edges are cleaned, and after the lapse of one day it is placed in a bath, of silicate of soda. Should the casting be allowed to get dry before it is placed in this bath, no good results would be obtained; it is left in the bath for seven days. When delicate stone carvings have to be copied, the moulds are of a compound of gelatine, from the flexible nature of which material designs much undercut can be reproduced. For the foregoing particulars we are indebted to Mr. William Millar, the working manager at West Kensington. Sometimes the composition is cast in large, heavy slabs, moulded on the top to resemble the surface of roads of granite blocks. A feature of the invention is the rapidity with which the composition sets. For instance, the manager states that a roadway was finished at the Inventions Exhibition at seven o'clock one night, and at six o'clock next morning four or five tons of paper in vans passed over it into the building, without doing any harm to the new road. In laying down roads, much of the preparation of the material is done on the spot, and the composition after being put down unsilicated in a large layer has the required design stamped upon its wet surface by means of wooden or gutta-percha moulds. As regards the durability of the composition, Mr. T. Grover, one of the directors, says that the company guarantees its paving work for ten years, and that the paving, the whole of the ornamental tracings, and some of the other work at Upton Church, Forest Gate, Essex, were executed by means of Wilkes' metallic cement three years ago, and will now bear examination as to its resistance to the action of weather. Some of this paving has been down in Oxford Street, London, for more than six years. Mr. A.R. Robinson, C.E., London agent of the company, states that the North Metropolitan Tramway Company has about 25,000 yards of it in use at the present time, and that the paving is largely used by the War Office for cavalry stables. The latter is a good test, for paving for stables must be non-slippery and have good power of resisting chemical action.

In the Wm. Millar and Christian Fair Nichols patent for "Improvements in the means of accelerating the setting and hardening of cements," they take advantage of the hydraulicity of certain of the salts of magnesia, by which the cements set hard and quickly while wet. For accelerating the setting of cements they use carbonate of soda, alum, and carbonate of ammonia; for indurating or increasing the hardening properties of cements they use chloride of calcium, oxide of magnesia, and chloride of magnesia or bittern water; for obtaining an intense hardness they use oxychloride of magnesia. The inventors do not bind themselves to any fixed proportions, but give the following as the best within their knowledge. For colored concretes for casts or other purposes they use Carbonate of soda, 8.41; carbonate of ammonia, 1.12; chloride of magnesia, 0.28; borax, 0.56; water, 89.63; total, 100.00. For gray concrete for any purpose they use: Alum, 8.46; caustic soda, 0.28; whitening or chalk, 0.56; borax, 0.56; water, 90.14; total, 100.00. For floors or slabs in situ they add to cement, well mixed and incorporated with any required proportion of agglomerate for a base, liquid composition of the following proportions: Oxide of magnesia, 0.29; chloride of magnesia, 0.29; carbonate of soda or alum, 4.74; water, 94.68; total, 100.00. Articles manufactured by the invention are afterward wetted with chloride of calcium and placed in a bath containing a solution of silicate of soda or chloride of calcium. The strength of the chloride of calcium is equal to about 20 deg. specific gravity.

C.A. Wilkes and William Millar's improved "metallic compound for flooring, paving, and other purposes," has for its object to provide a paving compound which is not slippery or liable to soften in hot weather, which sets rapidly, and is durable. To three parts of blast furnace slag are added one part of hydraulic cement and enough water to give the proper consistency. To each gallon of water used is added one part of bittern water—the dregs from the manufacture of sea salt—or one part of brine, or about 5 per cent. of carbonate of soda, and 21/2 per cent. of carbonate of ammonia. In the compound they sometimes use potash in the proportion of about 5 per cent. of the carbonate of ammonia and carbonate of soda, and when potash is used with bittern water or brine, the proportion of the latter is correspondingly reduced. The compound is of a blue gray color; but when a more striking color is desired, red or yellow oxide of iron may be added. When more speedy induration is necessary, they add about 1 oz. of copperas to every gallon of compound used. The claim is the admixture of bittern water, carbonate of soda, and carbonate of ammonia with the washed slag and cement.

Another improvement, by C.A. Wilkes, relates, in laying in situ any metallic or other materials for street roadways, to completing the convenience thereof by roughening or grooving the surfaces. The concrete is laid in a plastic condition upon a bed of hard core, broken stone, or preferably rough concrete. For footpaths the material may be laid in convenient sections, say 4 ft. to 8 ft. square and 2 in. to 4 in. thick; and in order to allow for the expansion of the material during the setting of the sections or subsequent variations in temperature, he packs the joints between the sections with a layer of felting cloth or other compressible material, thus forming expansion joints. Sometimes he slightly roughens the surface of the material, to give better foothold to pedestrians. Sometimes the grooving is made in imitation of ordinary granite paving sets. In tramway pavement there are grooves to give a grip to the horses' feet, and a slight camber between the rails. He states that a great advantage in laying a pavement by the method is that, when any repairs are necessary, a piece of the exact size can be manufactured at the works, and stamped to the same pattern as the adjoining pavement, then placed at once in position on the removal of the worn portion, thus saving the time necessary for the setting of the concrete on the spot.—The Engineer.

* * * * *



A NEW BLEACHING PROCESS.

In the spring of 1883 a Mr. J.B. Thompson, of New Cross, London, patented a new process of bleaching, the main feature of which consisted in the use of carbonic acid gas in a closed vessel to decompose the chloride of lime. The "chemicking" and "souring" operations he performed at one and the same time. The reactions which took place in his bleaching keir were stated by the inventor as follows:

Cl. 1. Ca ) + CO_{2} = CaCO_{3} + Cl_{2}. OCl./

2. OH_{2} + Cl_{2} = (ClH)_{2} + O.

3. CaCO_{3} + (ClH)_{2} = CaCl_{2} + CO_{2} + H_{2}O.

That is, in 1 chloride of lime and carbonic acid react upon each other, producing chalk and nascent chlorine; in 2 the nascent chlorine reacts upon the water of the solution and decomposes it, producing hydrochloric acid and nascent oxygen, which bleaches; in 3 the hydrochloric acid just formed reacts upon chalk formed in 1, and produces calcium chloride and one equivalent of water, and at the same time frees the carbonic acid to be used again in the process of decomposing the chloride of lime.

When the process was first brought to the notice of the Lancashire bleachers, it met with an amount of opposition. Some bleaching chemists declared the process was not patentable, as fully half a century ago carbonic acid was known to decompose chloride of lime. The patentee's answer was emphatic, that carbonic acid gas had never been applied in bleaching before. After some delay one of the largest English cotton bleachers, Messrs. Ainsworth, Son & Co., Halliwell, Bolton, threw open their works for a fair test of the Thompson process on a commercial scale.

The result of trial was so satisfactory that a company was formed to work the patent. Soon after this the well-known authorities on the oxidation of cellulose, Messrs. Cross & Bevan and Mr. Mather, the principal partner in the engineering firm of Mather & Platt, of Salford, Lancashire, joined the company. For the last twelve months these gentlemen have devoted considerable attention to improving the original contrivance of Thompson, and a few weeks since they handed over to Messrs. Ainsworth the machinery and instructions for what they considered the most complete and best process of bleaching that has ever been introduced.

Recently a "demonstration" of the "Mather-Thompson" process of bleaching took place at Halliwell, and to which were invited numerous chemists and practical bleachers. Having been favored with an invitation, I propose to lay before your readers a concise report of the proceedings.

It is usual in this country to give a short preliminary boil to the cloth before it is brought in contact with the alkali, the object being to well scour the cloth from the loose impurities present in the raw fiber and also the added sizing materials. In the new process the waste or spent alkaline liquors of the succeeding process are employed, with the result that the bleaching proper is much facilitated. The economy effected by this change is considerable, but in the next operation, that of saponification, the new process differs even more widely from those generally in use. In England, "market" or "white" bleaching requires a number of operations. There is first the alkaline treatment divided into the two stages or processes of lime stewing and bowking in soda-ash, which only imperfectly breaks down the motes. There is consequently a second round given to the goods, consisting of a bowk in soda-ash, followed by the second and usually final chemicking. There is, therefore, much handling of the cloth, with the consequent increase of time and therefore expense.

Now, in the saponification process, the Mather-Thompson Company claim to have achieved a complete triumph. They use a "steamer keir," the invention of Mr. Mather. This keir is so constructed that it will allow of two wire wagons being run in and the door securely fastened. At the top of the keir is fixed a mechanical appliance for steaming the cloth. The steamer keir process consists essentially in:

1. The application of the alkali in solution and in its most effective form, viz., as caustic alkali, to each portion of fiber in such quantity as to produce the complete result upon that portion.

2. The immediate and sustained action of heat in the most effective form of steam.

Before the cloth is run into the steamer keir on the wire wagons, it is saturated with about twice its weight of a dilute solution of caustic soda (2 deg. to 4 deg. Twaddell = 0.5 to 1% Na_{2}O) at a boiling-temperature, when in the steamer keir it is exposed to an atmosphere of steam at four pounds pressure for five hours. This part of the process is entirely new. The advantage of using caustic soda alone in the one operation, such as I describe, has been long recognized, but hitherto no one has been able to effect this improvement. It will be observed that the Mather-Thompson process does away entirely with the use of lime and soda-ash in at least two boilings and the accessory souring operation. In the space of the five hours necessary for the steamer keir process the goods are thoroughly bottomed and all the motes removed, no matter what be the texture or weight of the cloth. After the cloth is washed in hot water it is removed from the steamer keir, then follows a rinse in cold water, and the goods are ready for the bleaching process.

In passing to the bleaching and whitening process, it may be necessary to say that thus far the original Thompson process has been entirely altered. Now we come to that part of the bleaching operation where the essential feature in Thompson's patent is utilized. The patentee has apparently thoroughly grasped the fact that carbonic acid has great affinity for lime and that it liberates, in its gaseous condition, the hypochlorous acid, which bleaches. The most perfect contact is realized between the nascent hypochlorous acid resulting from its action and the fiber constituent in the exposure of the cloth treated with the bleaching solution to the action of the gas. The order of treatment is as follows:

(1) Saturation with weak chemic (1 deg. Tw.), squeeze, and passage to gas chamber. (2) Wash (running). (3) Soda scald. (4) Wash. (5) Repetition of 1, but with weaker chemic (1/2 deg. Tw.). (6) Wash. (7) Scouring.

The whole of the above operations are carried out on a continuous plan, the machinery being the invention of Mr. Mather. The cloth travels along at the rate of sixty or eighty yards a minute, and comes out a splendid white bleach. The company consider, however, that it is necessary in the case of some cloth to give a second treatment with chemic and gas, each of thirty seconds duration, with an intermediate scald in a boiling very dilute alkaline solution. Mr. Thompson originally claimed that the use of carbonic acid gas rendered the employment of a mineral acid for souring unnecessary. It is considered now to be advisable to employ it, and the souring is included, as will be observed, in the continuous operation.

The new process for treating cloth differs materially from that originally proposed by Mr. Thompson. His plan was to use an air-tight keir in conjunction with a gas-holder. It is obvious that the "continuous" process would not answer for yarns; Thompson's keir is, therefore, employed for these and all heavy piece-goods.

Thus far I have given a concise outline of the Mather-Thompson process of bleaching, which, it cannot be denied, differs materially from any system hitherto recommended to the trade. Beyond doubt the goods are as perfectly bleached by this process as by any now in use. The question arises, What pecuniary advantage does it offer? Mr. Manby, the manager of Messrs. Ainsworth, has informed me that he has bleached as much as ten miles of cloth by the new process, and is, therefore, entitled to be heard on the subject of cost. In regard to the consumption of chemicals, he estimates the saving to amount to (in money value) one-fourth; steam (coal), one-half; labor, one-half; water, four-fifths; time, two-thirds.

It might be well to contrast the process formerly employed by Messrs. Ainsworth with that they have recently adopted:

"MATHER-THOMPSON" SYSTEM.

Alkali. Bleach Acid Machine (chemic). Washes. / Saturate. (1) < Steam. / (2) Continuous (chemic) machine (or keir if (2) < for yarns, etc.). (2a) Machine or pit sour. (3) Wash up for finishing.

ORDINARY SYSTEM.

Alkali. Bleach. Acid Machine Washes.

(1) Lime stew. (1) Wash. (2) Sour. (2) " (3) Gray bowk (3) " (soda ash). (4)I Chemic. (4) " (5) Sour. (5) " (6) White bowk. (6) " (7)II Chemic. (7) " (8) Sour. (8) "

It will be understood that 2 and 2a are merged into a single process by using the "continuous" machine. Of course, it will be understood that the cloth has in each case to be cleansed from size and loose impurities. The "Mather-Thompson" Company claim that their system takes twelve hours in the case of "market" or "white" bleaching. They reckon eight hours for the steaming process and four for bleaching and washing. This has to be compared with the old system, which generally takes forty hours, made up as follows: 8 treatments with reagents and the necessary washings, the former taking four hours and the latter one hour each.

The "Mather-Thompson" system has created considerable commotion in English bleaching circles. It is generally considered that the bleachers throughout the whole country will be compelled to adopt it, so great is the saving in time and cost. In commencing a bleachery, the cost of plant by this system is, I understand, less than by the old processes.—Textile Colorist.

* * * * *



INSTRUMENTS FOR DRAWING CURVES.

By Prof. C.W. MacCord, Sc.D.

I. THE HYPERBOLA.

We are free to express the opinion at the outset, that for various reasons the draughtsman is likely to gain very little advantage by the use of mechanical devices for describing mathematical curves by continuous motion. Such instruments are as a rule not only complicated and expensive, but cumbersome and difficult of adjustment. It may be suggested, per contra, that these objections do not apply to the familiar combination of two pins and a string, for tracing the "gardener's ellipse." But we question the propriety of classing a string among strictly mechanical devices; it has its uses, to be sure, but in respect to perfect flexibility and inextensibility it cannot be relied on when rigid accuracy is required in drawing any of the conic sections.



Nevertheless, the construction of such apparatus affords a study which to some is fascinating, and even in the abstract is not devoid of utility. In each case a definite object is presented, and usually a choice of methods of attaining it; success requires a thorough knowledge of the properties of the curve in hand, while ingenuity is stimulated, and familiarity with expedients is cultivated, by the effort to select the most available of those properties, and to arrange parts whose motions shall be in accordance with them. Such exercise of the inventive faculties, then, is good training for the mechanician. And it must not be forgotten that a mechanical movement thus devised for one purpose very frequently is either itself applicable to a different one, or proves to be the germ from which are developed new movements which can be made so; the solution of one problem sometimes furnishing a hint or clew of great value in dealing with another.



We proceed, then, to describe a few instruments of this kind, which we believe to be new, in the hope that in the manner just pointed out they may render a greater service than that for which they are directly intended.

The first of these, shown in Fig. 1, is for the purpose of describing the hyperbola. The properties of the curve, upon which the action of the instrument depends, are illustrated in Fig. 2, where MM, NN, are the two branches of an hyperbola; C the center; AB the major axis; F and F' the foci. If now a tangent TT be drawn at any point as P of either branch, and a perpendicular let fall upon it from the nearer focus F be produced to cut at G a line drawn from P to the farther focus F', then this perpendicular will cut the tangent at a point I upon the circumference of a circle described about C upon AB as a diameter, and also the distance F'G will be equal to AB.

In Fig. 1, then, we have a crank CI, whose radius is equal to CB, half the major axis, turning about a fixed center C. Upon the crank-pin I is hung, so as to turn freely, a rigid cross composed of a long slotted piece TT, in which slides a block, and two cylindrical arms at right angles to it and in line with each other, the axis EE passing through I. The arm on the right slides through a socket pivoted at the focus F; the one on the left slides through a similar socket, which is pivoted at G to a third socket longer than the others, which again is pivoted at the focus F'; the distance F'G being equal to AB. Through this long socket slides a rod KP, the end P being formed into an eye, by which this rod is pivoted to the block which slides in the long slot, and thus controls the motion of the block; and the pivot at P is centrally drilled to carry the pencil. It is thus apparent that the center line of the slot TT must in all positions be tangent to the hyperbola PBR, which will be traced by the pencil, whose motions are so restricted as always to satisfy the conditions explained in connection with Fig. 2.

The apparatus as thus represented does not at first sight appear unduly complicated. But in order to render it adjustable, so that hyperbolas of varying eccentricities and on different scales may be drawn with it, several parts not here shown must be added. A frame must be provided, in which to arrange supports for the pivots at F and F', and these supports connected by a right and left handed screw, or equivalent means of altering the distance between the foci; the crank CI and the socket F'G must be of variable length, and these in each case would require to be carefully adjusted. So that, as we stated in the beginning, it is questionable whether a draughtsman of ordinary skill could draw the curve any more readily by the aid of such a piece of mechanism than he could without it; but it may claim a passing notice as a novel device, and the first one, we believe, for describing the hyperbola by a combination of rigid parts.

* * * * *



EXPERIMENTS WITH FIBERS.

By Dr. THOMAS TAYLOR.

As Microscopist of the United States Department of Agriculture, I am frequently called upon to make investigations as to the character of textile fibers and fabrics, not only for the public generally, but also for several departments of the Government.

Textile fibers are presented both in the raw and as articles of manufacture. In the latter case they may have been dyed, stained, or painted. It is obvious that under these conditions the fibers should be subjected to chemical reaction to bring them as nearly as possible to their normal condition.

Considering how well the structures of the common textile fibers of commerce—cotton, flax, ramie, hemp, jute, Manila hemp, silk, and wool—have been investigated and minutely described by able and exact microscopists, I will in this paper confine myself chiefly to such experiments as I have personally made with textile fibers, treating them with chemical agents while under the objective.

While I am aware that this method is not wholly new, I am satisfied that comparatively little work has been done in this direction, and that a wide field is still open for future research.

As microscopists, we have to fortify ourselves in every way that will sustain, by truthful work, the value of the microscope as a means of research, sometimes conducting our experiments under the most trying circumstances. Fibers may be so treated by experts as to make it difficult to determine how their changed appearance has been effected, and it may happen in this age of experiment and of fraud that important decisions in commercial transactions and in criminal cases may depend on our observations.

DETECTION OF A FRAUD.

A case in point will illustrate this. While Dr. Dyrenforth was chief of the chemical division of the U.S. Patent Office, a person applied for a patent on what he called "cottonized silk," inclosing specimens. He claimed that he had discovered a mode of covering cotton fiber with a solution of silk which could be woven into goods of various kinds; in order to satisfy the public of the reality of his invention, he placed on exhibition, in various localities, specimens of silk-like goods in the form of ribbons in the web and skeins of thread, representing them to be "cottonized silk."

Dr. Dyrenforth was not satisfied that the so-called discovery was an accomplished fact, and he forwarded a few fibers of the material to the division of which I have charge for investigation. I subjected them to my usual tests, and found them to consist of pure silk, and I so reported to Dr. Dyrenforth, who rejected the application for a patent. The microscope was thus usefully employed to protect capitalists from imposition.

METHODS EMPLOYED.

It may be well to state briefly the methods I employed in detecting the real character of the material. The fibers were first viewed under plain transmitted light, secondly, polarized light and selenite plate. Since silk and cotton are polarizing bodies, "cottonized silk," if such could be made as described, would give, in this case, the prismatic colors of both fibers, and the complementary colors would differ greatly because of the great disparity of their respective polarizing and refractive powers.

The fact will be observed that a cotton fiber presents the appearance of a twisted ribbon when viewed by the microscope, while silk, owing to its cylindrical form, cannot twist on itself. It should also be considered that the diameter of "cottonized silk," so called, would be greater than that of a fiber of silk, because the silk solution would have to be applied to an actual thread of cotton, and not to a single cotton fiber, by reason of the shortness of the original hairs of the latter. Were a single fiber of such a combination put under a suitable objective, and a drop of nitric acid brought in contact with the fiber, it would be seen that the acid would destroy the silk and leave the fibers of cotton untouched, the latter being insoluble in cold nitric acid. The action of muriatic acid is similar in this respect. Were a fiber of cotton present and a drop of pure sulphuric acid placed on it, followed quickly by a drop of a transparent solution of the tincture of iodine, a peculiar change in the fiber would take place, provided the right proportion of acid be used. Cotton fiber, and especially flax fiber, under such conditions, forms into disks or beads of a beautiful blue color.

Fig. 1 represents a cotton fiber, and 2, 3, 4, 5 those of flax, as they appear under the acid treatment. Every textile amylaceous fiber is convertible into these forms, more or less, by strong sulphuric acid. The fibers of cotton, flax, and ramie are examples of amylaceous cellulose, that is to say, these fibers are converted into starchy matter by treatment with the last-named acid. Therefore combinations of these fibers in any composition of non-amylaceous fiber (ligneous or woody fiber) will be dissolved, leaving the latter unharmed; the woody fibers remaining will prove suitable objects for examination under the microscope.

COTTON MIXED WITH LINEN.

Again, it might be important to know whether a certain pulp or composition contained flax in combination with cotton. The composition might be of such a well-digested character as to destroy all appearance of normal form, that is to say, the "twisted ribbon" character of cotton, as well as that of the cylindrical and jointed characteristic of flax, might be lost to ordinary view. In this case make a watery solution of the pulp, spread it out thinly on a glass slide 3 inches by one, draw off any superfluous water, then add one or two drops of a strong solution of chromic acid to the preparation, and place over it a glass cover; when viewed by the microscope, any portion of the flax joints present will appear of a dark brown color; a solution of iodine has a similar effect. The brown portions of the joints are nitrogenous in character; cotton fibers are devoid of nitrogen.



EXPERIMENTS WITH FLAX.

A chemist of the Department of Agriculture had once occasion to make experiments with flax fibers, his object being to make them chemically pure; and to this end he treated them with excess of bleaching agents, thus rendering them of a beautiful white, silky appearance, to the naked eye; but when I examined them under the microscope, I found the brown nitrogenous matter of the joints still present, and on using the chromic acid test, they became deeply stained. A chemical solution of flax therefore would prove for some purposes undesirable, owing to the presence of this ligneous matter. A chemical solution of cotton which is destitute of ligneous matter will give a chemically pure solution. Cotton is therefore better adapted than flax for collodion compounds.

WOOL TESTED WITH ACID.

It is known that when wool is treated with the sulphuric acid of commerce or in strong dilute sulphuric acid, the surface scales of the fiber are liberated at one end, and appear, under a low power, as hairs proceeding from the body of the fibers. Wool may remain thus saturated in the acid for several hours, without appearing to undergo any further change, as far as is revealed by the microscope. When treated in mass in a bath of sulphuric acid, strength 60 deg. B., for several minutes, and afterward quickly washed in a weak solution of soda, and finally in pure water and dried, it feels rough to the fingers, owing to the separation of the scales. I have preserved a small quantity of wool thus treated for the last twelve years, my object being to ascertain whether the chemical action to which it was exposed would impair its strength. As far as I can observe, without the aid of the proper tests, it seems to have retained its original tenacity. Wool thus treated seems to possess the property of resisting the ravages of the larvae of the moth. This specimen, although openly exposed for the period named, suffered no injury from them. Under the microscope, the lubrications appear to have resumed their natural position, and appear finer.

From these experiments it would seem not improbable that a new article of commerce might be produced from wool thus treated, considering that it seems to be moth-proof.

I find in practice that when sable brushes are washed in a weak solution of pure phenic alcohol and afterward in warm water, the moth worm will not eat them. In this way I preserve sable brushes. I mention this chemical fact because it shows that a change of this material is brought about by the phenol as to its edibility, and this may explain why wool treated with sulphuric acid is rendered moth-proof.

I find that when brain matter has been subjected to a solution of weak phenic alcohol, weak alkaline solutions afterward applied fail to separate its nerve-cells on the process of maceration. (This is probably owing to its albuminoids being coagulated by the action of the phenol.) When brain matter is subjected to a weak solution of soda alone, the nerve-cells are easily separated by maceration, and well adapted for microscopic use.

TESTS OF DYED BLACK SILK.

The fibers of dyed black silk may be viewed with interest under the microscope. If a few threads of its warp are placed on a glass slide, and one or two drops of concentrated nitric acid placed in contact with them, the black color changes first to green, then to blue; a life-like motion is observed in all the fibers; they appear marked crosswise like the rings of an earthworm; the surface of each fiber appears loaded with particles of dyestuff; finally the fibers wholly dissolve in the acid. If we now treat a few threads of the weft in the same manner, a similar change of color takes place. When the fibers assume the blue color, a dark line is observed in the center of each, running longitudinally the whole length; this dark line is doubtless the dividing line of the two original normal threads formed directly by the two spinnerets; the dark air line or shadow finally breaks up, and in the course of a few minutes the silk is wholly dissolved. Were ramie, cotton, flax, or hemp present, they would be observed, as all their fibers remain unchanged under this treatment. If wool be present, rapid decomposition will follow, giving off copious fumes of nitrous acid, allowing, however, sufficient time to observe the separation of the scales of the fibers and to demonstrate by observation under the microscope that the fibers are those of wool.

In making these experiments it is not necessary to use a glass disk over the treated fibers. If a disk or cover is pressed on them while undergoing this treatment, the life-like motion of the silk will not be so apparent.

* * * * *



IMPROVED PYROMETER.

Mr. John Frew, Langloan Iron Works, Coatbridge, has been successful in perfecting a most ingenious pyrometer, an instrument which is capable of continuously indicating every variation of temperature with a remarkable degree of correctness. This instrument, which we here illustrate, has already become known to a number of proprietors and managers of blast furnaces; and on the occasion of the members of the Iron and Steel Institute visiting Coatbridge, in connection with the meeting of that body which was held in Glasgow last autumn, many persons became interested in its construction and in the practical determination of blast temperatures by its readings. Furthermore, Sir William Thomson has expressed himself as being highly delighted with it on account of the manner in which its use illustrates various beautiful scientific principles.

The leading principle on which the construction of this pyrometer has been based is the well-known law of the expansion of gases. Referring to our engraving, it will be seen that at A is a pipe through which air from the cold blast main is admitted into another and larger pipe, B, which reaches nearly to the bottom of a water cistern, C. By means of the inlet and outlet pipes, D and E, the height of the water in the cistern is maintained at a uniform level. In this way there is provided a head of water which retains within the pipe, B, a constant pressure of air, equivalent to the head of water between the open end of that pipe and the overflow at E. Any excess of pressure is prevented by means of the open-ended pipe, which permits the air to escape by the central tube. This latter prevents the agitation caused by the upward rushing air from disturbing the level of the water in the cistern; and in order further to assist this, the central tube is filled loosely in its upper part with lead bullets or other suitable materials supported on a perforated plate. The water level in the cistern is indicated by means of a glass gauge, which is represented at G. To the upper end of the pipe, B, another pipe, H, is attached. This is required for conveying the cold air to the pyrometer proper, for the piece of apparatus above described is simply an arrangement for securing a flow or current of air at constant pressure.

At any point where it is desired to fix a pyrometer, a connection is made with the pipe last spoken of, by means of a small pipe such as is indicated at J, into which is fixed a platinum or other metallic nozzle of small bore, as shown at K. To this same pipe there is attached a solid-drawn copper spiral heater or worm, L, which is fixed into the place or the material the temperature of which it is desired to indicate. Into the outlet of this worm another similar but larger nozzle, M, is fixed. At N is shown a small pipe which is connected with the pipe, J, at any convenient point between the inlet nozzle, K, and the spiral heater, L. The other end of this pipe passes through the India rubber stopper of a small cistern or bottle, O, which, when in use, is about two-thirds filled with a colored liquid. It will be seen that the tube, N, only passes through the stopper, so that it may convey pressure to the surface of the liquid. At P is a glass tube which also passes through the stopper and then to the bottom of the colored liquid; and as its upper end is open, any variation of pressure in the spiral heater is directly transmitted to the indicating column of colored liquid.



The operation of the instrument is as follows: As the cold blast used in the apparatus would be useless for the working of the pyrometer if taken direct from the cold blast main, owing to its irregularity of pressure, the regulator that has been described is employed, and by its means an absolutely steady flow of cold blast air at an unvarying pressure is secured. The diameters of the inlet and outlet nozzles are so nicely adjusted that, so long as both are at the same temperature, the outlet nozzle, which is open to the atmosphere, will pass all the air that the inlet nozzle can deliver without disturbing the pressure in the cistern, O; but if heat be applied to the circulating air through the walls of the spiral heater, the air expands in volume, and is unable to pass through the outlet nozzle in its heated condition as rapidly as it is delivered cold by the inlet nozzle. The consequence is that an increase of pressure takes place in the apparatus between the two nozzles, and it is this pressure that indicates the amount of heat that the air has taken up from the hot blast pipe, in which the spiral heater is fixed. Then, again, as this pressure is directly transmitted to the indicating liquid in the cistern and the vertical tube immersed in it, a rise takes place in the column which is in exact proportion to the expansion of the current of blast passing through the spiral heater.

The method of graduating the indicator scales of the Frew pyrometer is worthy of special notice. When the apparatus is fitted up, and before it is permanently fixed in position, the spiral heater is placed in cold water of known temperature, and the point noted at which the colored liquid stands in the indicator tube. The water is then boiled, and the rise in the liquid in the tube is again noted. Suppose, in the first instance, the cold water temperature to be 62 deg. Fahr., and that, from this point up to 212 deg. Fahr., the liquid to have risen 21/4 in. in the tube; this is equal to 11/2 in. per 100 deg. Fahr., and from these data a scale is constructed, the correctness of which is easily verified by transferring the spiral heater into an air bath or oil of high boiling point, and then comparing the readings of the pyrometer scale with those of a mercurial thermometer placed alongside of the spiral heater. By this means it can be clearly demonstrated that, up to the highest point to which it is safe to use a mercurial thermometer, the readings of the pyrometer scale and that of the thermometer are identical.

While this pyrometer is particularly valuable for indicating the temperature of hot blast stoves of every description, there are doubtless many uses that will suggest themselves to persons engaged in various industrial arts and manufactures. The apparatus is neat and substantial in its parts, while it occupies very little space, is not at all liable to derangement, and is entirely automatic in its action. A number of the instruments have been in continuous use at the Langloan Iron Works, with the most satisfactory results, for about eight months. The temperatures they are graduated for vary according to the furnaces with which they are connected and the kind of work to which these are applied.—Engineering.

* * * * *



An exchange gives the following very simple way of avoiding the disagreeable smoke and gas which always pours into the room when a fire is lit in a stove, heater, or fireplace on a damp day: Put in the wood and coal as usual; but before lighting them, ignite a handful of paper or shavings placed on top of the coal. This produces a current of hot air in the chimney, which draws up the smoke and gas at once.

* * * * *



[FROM PHOTOGRAPHISCHE CORRESPONDENZ.]

ORTHOCHROMATIC PLATES.

By CH SCOLIK.

Since the emulsion process has taken root, no improvement has awakened such a lively, steadily increasing interest as photography of colored objects in their correct tone proportions; a process which makes it possible to reproduce the warmer color-tones, particularly yellow, orange-red, and yellow-green, in their correct light value as they appear to the eye.

In professional circles, as also among the public, the value of this invention cannot possibly be underestimated; an invention with which a new epoch in photography may begin, and by which the handsomest results, particularly in reproductions of oil paintings, can be attained. But in portraiture, as well as in landscape photography, recourse must also be had to orthochromatic plates to obtain effective pictures, particularly as plates can now be produced in which the relative sensitiveness closely resembles that of the ordinary emulsion plate. Although a good deal has been written about this subject, none of these sometimes excellent treatises contains a complete and generally comprehensive formula for the production of color-sensitive plates, and this circumstance causes me to publish my own experiences.

The following coloring matters are particularly recommended in the several publications as preferable:

Eosine yellow and eosine blue shade, iodine cyanin, erythrosine, methyl violet, aniline violet, iodine green, azalein, Hoffmann's violet, acid green, methyl green, rose bengal, pyrosine, chlorophyl, saffrosine, coralline, saffranine, etc.

Particularly important is the correct concentration. The most excellent color matters make the plates oftentimes quite useless by an incorrect proportion of concentration. If this should be too strong, the total sensitiveness will sink (decrease); but when too weak, the color sensitiveness is much reduced.

This fault, particularly, cannot be corrected during washing, but I have mentioned, at the end, how such overcolored emulsion can be made of use before wetting (flowing).

By the addition of some coloring matter to the emulsion, the light sensitiveness of the film toward some individual colored rays is increased, but the sensitiveness for the stronger refractive rays is, as a rule, generally reduced. The result is a loss of the total sensitiveness for white light. Color-sensitive plates are therefore less sensitive to light than ordinary plates of the same origin.

The action of the coloring matter depends also very essentially upon the emulsion. If the emulsion contains iodide of silver, it has a greater sensitiveness for light blue and blue-green light. At all events, the iodide combination must not amount to more than one or two per cent., a small quantity of iodine acting much better upon the total sensitiveness of the plates than can be obtained by pure bromide of silver emulsion.

Methyl violet, rose bengal, and azalein act perceptibly in 1/10000 per cent. upon yellow sensitiveness. Eosine and its varieties, eosine yellow shade, or eosine J, pyrosine J, erythrosine yellowish, may all be noted as very good sensitizers for green, yellow-green, and eventually for yellow. The bluish shades of eosine colors, on the contrary, have an absorption band further in the yellow. This is also the case with the blue shade eosine (eosine B) and the most bluish of all eosines, the bengal rosa. Of both eosines, yellow shade and blue shade, the latter gives a little more intensity.

Although the eosine permits a large limit in the quantity, it will reduce the sensitiveness greatly in larger quantity.

If eosine solution is mixed with bromide of silver emulsion, which is entirely free from nitrate of silver, no eosine silver can form; it acts, therefore, only as an optical sensitizer.

Of the several kinds of cyanin, chlorosulphate, nitrate, and iodide, the latter acts best, as stated by Eder.

Schumann has already said that one drop of cyanin solution, 1 to 2,500 to 61/2 c. c. emulsion, already acted as sensitizing in orange; five to ten drops cyanin. 1 to 1,500 to 15 c. c. emulsion, even gave red action.

There are two ways to color the gelatine film with a suitable coloring matter: by mixing the latter directly before filtering into the ready made emulsion, to produce at once colored plates; or to bathe dry emulsion plates for one to five minutes in a solution containing the sensitizing coloring matter. The plates have previously to be soaked for a few minutes, whereupon they are bathed in an aqueous alcoholic solution (with eosine yellow shade and eosine blue shade, in a solution of 1 to 3,000; but with cyanin in a diluted solution of 1 to 5,000). A mixture of 1/10 cyanin and 9/10 eosine yellow shade (of above concentration) acts as a very favorable sensitizer. Lohse recommended bathing of the gelatine plates in a solution of 0.03 eosine and 10 c. c. ammonia in 100 parts of water. He found that very diluted eosine solutions, 1 to 20,000, acted as a yellow sensitizer.

After washing, the plates have to be rinsed and dried—colored plates, as long as they remain moist, being less sensitive than dry ones, and very seldom the reverse.

This bathing of the ready made plates may give good results, but pure and faultless plates are very seldom obtained, wherefore the first mentioned manner (direct addition of color to the emulsion) is to be preferred.

After the experiments made by me, eosine mixtures acted equally in the yellow and blue shade; likewise mixtures of cyanin 1/10 and eosine yellow shade 9/10 were the most favorable. The process with eosine underwent first of all a thorough test, of which the following are the results.

The color, solution I made as follows:

I. 0.5 grm. eosine yellow shade in 750 c.c. alcohol (95 per cent.) is dissolved under good shaking.

II. 0.5 grm. eosine blue shade is also dissolved in 750 c.c. alcohol.

(The emulsion preparation I do not repeat, supposing that everybody is conversant with the same.)

To an emulsion after Monckhoven's method, I add, before filtering, above eosine solutions to 1,000 c.c. emulsion, 15 c.c. each of yellow shade and 15 c.c. of blue shade eosine; mix with a glass stirring-rod, filter, and begin the flowing of the plates. On the contrary, to an emulsion made after Henderson's method, double the quantity of coloring matter can be added before flowing, without reducing the sensitiveness perceptibly.

Cyanin and eosine mixtures I give in the following proportions;

III. 0.5 grm. cyanin (iodo-cyanin) dissolved in 1,000 c.c. alcohol under good shaking.

(All coloring matter solutions have to be filtered.)

To 1,000 c.c. Monckhoven emulsion I give:

25 c.c. eosine solution, yellow shade (I.).

5 c.c. cyanine solution (III.).

With Henderson emulsion I increase to double the quantity.

Further experiments taught me that even if 60 to 80 c.c., and more, of these coloring matter solutions were added, and the emulsion was left to coagulate and then laid in alcohol for several days, after which it was washed well, so that hardly any coloration could be observed, it showed, when making a copy of an oil painting, that the color sensitiveness of the emulsion was not reduced, and that it had rather increased in relative sensitiveness.

Anyhow, I put every colored emulsion for eight days in alcohol, having experienced that hereby, after washing, just a sufficient quantity of the coloring matter will remain as is necessary for the color sensitiveness.

For the correctness of what I have said here, the following experiment made by me will speak:

I mixed with an emulsion a quantity of coloring matter five times increased, flowed a plate with same, which I then exposed, but obtained no picture whatever.

The same emulsion I placed for fourteen days in alcohol, washed it well, and flowed a plate again, which latter had not only the full color sensitiveness, but almost equaled an ordinary emulsion plate in total sensitiveness.

From this can be concluded that—as above said—by placing the emulsion in alcohol, all superfluous coloring matter is removed from the same, and that only the quantity necessary for the color sensitiveness remains therein.

Further, it may be mentioned that it might be of advantage to add to all emulsions eosine besides iodide of silver, because this will give to the emulsion clearness and brilliancy besides color sensitiveness, and produce fine lights.

Finally, I express the hope that these communications may be useful to the practical photographer, and it is my intention to report also about other coloring matters at some future time.—H.D., in Anthony's Bulletin.

* * * * *



A NEW PHOTOGRAPHIC APPARATUS.

This apparatus consists of a box containing a camera, A, and a frame, C, containing the desired number of plates, each held in a small frame of black Bristol board. The camera contains a mirror, M, which pivots upon an axis and is maneuvered by the extreme bottom, B. This mirror stops at an angle of 45 deg., and sends the image coming from the objective to the horizontal plate, D, at the upper part of the camera. The image thus reflected is righted upon this plate.



As the objective is of short focus, every object situated beyond a distance of three yards from the apparatus is in focus. In exceptional cases, where the operator might be nearer the object to be photographed, the focusing would be done by means of the rack of the objective. The latter can also slide up and down, so that the apparatus need not be inclined when buildings or high trees are being photographed. The door, E, performs the role of a shade. When the apparatus has been fixed upon its tripod and properly directed, all the operator has to do is to close the door, P, and raise the mirror, M, by turning the button, B, and then expose the plate. The sensitized plates are introduced into the apparatus through the door, I, and are always brought automatically to the focus of the objective through the pressure of the springs, R. The shutter of the frame, B, opens through a hook, H, with in the pocket, N. After exposure, each plate is lifted by means of the extractor, K, into the pocket, whence it is taken by hand and introduced through a slit, S, behind the springs, R, and the other plates that the frame contains. All these operations are performed in the interior of the pocket, N, through the impermeable, triple fabric of which no light can enter.

An automatic marker shows the number of plates exposed. When the operations are finished, the objective is put back in the interior of the camera, the doors, P and E, are closed, and the pocket is rolled up. The apparatus is thus hermetically closed, and, containing all the accessories, forms one of the most practical of systems for the itinerant photographer.—La Nature.

* * * * *



METEORITES.

In our SUPPLEMENT No. 529 we gave an abstract of Prof. Dewars recent series of lectures on the above subject at the Royal Institution. We now present an abstract of the last and concluding lecture.

THE DHURMSALA. METEORITE.

After the conclusion of his last lecture, Prof. Dewar distributed among the younger listeners small pieces of a portion of the Dhurmsala meteorite, which had been broken up for presentation to them by Mr. J.R. Gregory, whose collection of rare minerals was recently to some extent described in these pages. The lecturer stated that Sir F. Abel had given him a large piece of a large meteorite, because he thought that the speaker's piece ought to be bigger than theirs.

Professor Dewar also presented the listeners with a printed detailed account of the fall of the Dhurmsala meteorite, including the report of the occurrence sent to the Punjaub Government, and dated July 28, 1860. The following are the main facts:

"On the afternoon of Saturday, the 14th of July, 1860, between the hours of 2 and 2:30 P.M., the station of Dhurmsala was startled by a terrific bursting noise, which was supposed at first to proceed from a succession of loud blastings or from the explosion of a mine in the upper part of the station; others, imagining it to be an earthquake or very large landslip, rushed from their houses in the firm belief that they must fall upon them. It soon became apparent that this was not the case. The first report, which was far louder in its discharge than any volley of artillery, was quickly followed by another and another, to the number of fourteen or sixteen. Most of the latter reports grew gradually less and less loud. These were probably but the reverberations of the former, not among the hills, but among the clouds, just as is the case with thunder. It was difficult to say which were the reports and which the echoes. There could certainly not have been fewer than four or five actual reports. During the time that the sound lasted the ground trembled and shook convulsively. From the different accounts of three eyewitnesses there appears to have been observed a flame of fire, described as about 2 ft. in depth and 9 ft. in length, darting in an oblique direction above the station after the first explosion had taken place. The stones as they fell buried themselves from 1 ft. to 11/2 ft. in the ground, sending up a cloud of dust in all directions. Most providentially, no loss of life or property has occurred. Some coolies, passing by where one fell, ran to the spot to pick up the pieces; before they had held them in their hands half a minute they had to drop them, owing to the intensity of the cold, which benumbed their fingers. This, considering the fact that they were apparently but a moment before in a state of ignition, is very remarkable. Each stone that fell bore unmistakable marks of partial fusion."

Several meteors were seen at Dhurmsala on the evening of the same day.

Dr. C.T. Jackson analyzed a portion of one meteorite weighing 41/2 oz.; the piece was 21/2 in. long, 11/4 in. wide, and 1 in. in average thickness. In the course of his report he stated: "Its specific gravity is 3.456 at 68 deg. Fahr., barom. 29.9. Its structure is imperfectly granular, but not crystallized, and there are small black specks of the size of a pin's head, and smaller, of malleable meteoric iron, which are readily removed from the crushed stone by the magnet. The color of the mass is ash gray. A portion of the surface is black and is scarified by fusion. Its hardness is not superior to that of olivine or massive chrysolite. Chemical analysis shows that its composition is that of a ferruginous olivine. One gramme of the stone, crushed in an agate mortar, and acted on by a magnet, yielded 0.43 gramme of meteoric iron, which was malleable. After the removal of this a qualitative analysis was made of the residual powder. Another gramme was also taken, without picking out the metallic iron, and was tested for chlorine and for phosphoric acid. The results of the qualitative analysis were that the stone contains silica, magnesia, a little alumina, oxide of iron and nickel, a little tin, an alloy of iron and nickel, phosphoric acid, and a trace of chlorine. These ingredients being determined, the plan for a quantitative analysis was laid out, and was duly executed by the usual and approved methods The following are the results of this analysis, per centum:

Silica, with traces of tin 40.000 Magnesia 26.600 Peroxide of iron 27.700 Metallic iron 3.500 Metallic nickel 0.800 Alumina 0.400 Chlorine 0.049 Phosphoric acid not weighed — _ 99.049"

Messrs. Dewar and Ansdell analyzed the gases in the meteorite, of which it contained three times its volume; the gases were in the following proportions to each other:

Carbonic acid 61.29 Carbonic oxide 7.52 Hydrogen 30.96 Nitrogen 0.23 _ 100.00

* * * * *



TELESCOPIC SEARCH FOR THE TRANS-NEPTUNIAN PLANET.

[Footnote: By David P. Todd, M.A., from the Proceedings of the American Academy of Arts and Science.]

In the twentieth volume of the American Journal of Science, at page 225, I gave a preliminary account of my search, theoretic and practical, for the trans-Neptunian planet. I say the trans-Neptunian planet, because I regard the evidence of its existence as well-founded, and further because, since the time when I was engaged upon this search, nothing has in the least weakened my entire conviction as to its existence in about that part of the sky assigned; while, as is well known, the independent researches in cometary perturbations by Prof. Forbes conducted him to a result identical with my own—a coincidence not to be lightly set aside as pure accident.

That five years have elapsed since this coincidence was remarked, and the planet is still unfound, is not sufficient assurance to me that its existence is merely fanciful. In so far as I am informed, this spot of the sky has received very little scrutiny with telescopes competent to such a search; and most observers finding nothing would, I suspect, prefer not to announce their ineffective search.

The time has now come when this search can be profitably undertaken by any observer having the rare combination of time, enthusiasm, and the necessary appliances. Strongly marked developments in astronomical photography have been effected since this optical search was conducted; and the capacity of the modern dry-plate for the registry of the light of very faint stars makes the application of this method the shortest and surest way of detecting any such object. Nor is this purely an opinion of my own. But the required apparatus would be costly; and the instrument, together with the services of an astronomer and a photographer, would, for the time being, be necessarily devoted exclusively to the work. While, however, the photographic search might have to be ended with a negative result, in so far as the trans-Neptunian planet is concerned, there would still remain the series of photographic maps of the region explored, and these would be of incalculable service in the astronomy of the future.

In the latter part of the paper alluded to above, I stated the speculative basis upon which I restricted the stellar region to be examined; also the fact that between November of 1877 and March of 1878 I was engaged in a telescopic scrutiny of this region, employing the twenty-six inch refractor of the Naval Observatory. For the purposes contemplated I had no hesitation in adopting the method of search whereby I expected to detect the planet by the contrast of its disk and light with the appearance of an average star of about the thirteenth magnitude. A power of 600 diameters was often employed, but the field of view of this eye-piece was so restricted that a power of 400 diameters had to be used most of the time. I say, too, that, "after the first few nights, I was surprised at the readiness with which my eye detected any variation from the average appearance of a star of a given faint magnitude; as a consequence whereof my observing book contains a large stock of memoranda of suspected objects. My general plan with these was to observe with a sufficient degree of accuracy the position of all suspected objects. On the succeeding night of observation they were re-observed; and, at an interval of several weeks thereafter, the observation was again verified." Subjoined to the original observations are printed these verifications in heavy-faced type.

Previous Part     1  2  3     Next Part
Home - Random Browse