p-books.com
Scientific American Supplement, No. 415, December 15, 1883
Author: Various
Previous Part     1  2  3     Next Part
Home - Random Browse

As a measure of precaution, the hydrogen saturated with alcoholic vapors may be forced to traverse a small, cooled room. The liquefied alcohol returns to the pile. At a mean temperature of 15 deg., the quantity of alcohol carried along mechanically is insignificant. In order to secure a uniformity of action in all parts of the spirits, during the period devoted to the operation, the liquid is made to circulate from top to bottom by means of a pump, O. The tube, N, indicates the level of the liquid in the vessel. The zinc having been arranged, the first operation consists in forming the couple. This is done by introducing into the pile, by means of the pump, O, a solution of sulphate of copper so as to completely fill it.

The adherence of the copper to the zinc is essential to a proper working of the couple, and may be obtained by observing the following conditions:

1. Impure spirits of 40 deg. Gay-Lussac, and not water, should be used as a menstruum for the salt of copper.

2. The sulphatization should be operated by five successive solutions of 1/2 per cent., representing 20 kilogrammes of sulphate of copper per 100 square meters of zinc exposed, or a total of 360 kilogrammes of sulphate for a pile of 150 hectoliters capacity.

3. A temperature of 25 deg. should not be exceeded during the sulphatization.

The use of spirits is justified by the fact that the presence of the alcohol notably retards the precipitation of copper. As each charging with copper takes twenty-four hours, it requires five days to form the pile. At the end of this time the deposit should be of a chocolate-brown and sufficiently adherent; but the adherence becomes much greater after a fortnight's operation.

Temperature has a marked influence upon the rapidity and continuity of the reaction. Below +5 deg. the couple no longer works, and above +35 deg. the reaction becomes vigorous and destroys the adherence of the copper to such a degree that it becomes necessary to sulphatize the pile anew. The battery is kept up by adding every eight days a few thousandths of hydrochloric acid to a vatful of the spirits under treatment, say 5 kilos. of acid to 150 hectoliters of spirits. The object of adding this acid is to dissolve the hydrate of oxide of zinc formed during the electrolysis and deposited in a whitish stratum upon the surface of the copper. The pile required no attention, and it is capable of operating from 18 months to two years without being renewed or cleaned.



Passing them over, the zinc-copper couple does not suffice to deodorize the impure spirits, so they must be sent directly to a rectifier. But, in certain cases, it is necessary to follow up the treatment by the pile with another one by electrolysis. The voltameters in which this second operation is performed have likewise been modified. They consist now (Fig. 2) of cylindrical glass vessels, AH, 125 mm. in diameter by 600 in height, with polished edges. These are hermetically closed by an ebonite cover through which pass the tubes, B' C' and B C, that allow the liquid, EE-E'E', to circulate.

The current of spirits is regulated at the entrance by the cock, R, which, through its division plate, gives the exact discharge per hour. In addition, in order to secure great regularity in the flow, there is placed between the voltameters and the reservoir that supplies them a second and constant level reservoir regulated by an automatic cock.

In practice, Mr. Naudin employs 12 voltameters that discharge 12 hectoliters per hour, for a distillery that handles 300 hectoliters of impure spirits every 24 hours. The electric current is furnished to the voltameters by a Siemens machine (Fig. 3) having inductors in derivation, the intensity being regulated by the aid of resistance wires interposed in the circuit of the inductors.

The current is made to pass into the series of voltameters by means of a commutator, and its intensity is shown by a Deprez galvanometer. The voltameters, as shown in the diagram, are mounted in derivation in groups of two in tension. The spirits traverse them in two parallel currents. The Siemens machine is of the type SD2, and revolves at the rate of 1,200 times per minute, absorbing a motive power of four horses.



The disacidification, before entering the rectifier, is effected by the metallic zinc. Let us now examine what economic advantages this process presents over the old method of rectifying by pure and simple distillation. The following are the data given by Mr. Naudin:

In ordinary processes (1) a given quantity of impure alcohol must undergo five rectifications in order that the products composing the mixture (pure alcohol, oils, etc.) may be separated and sold according to their respective quality; (2) the mean yield in the first distillation does not exceed 60 cent.; (3) the loss experienced in distillation amounts, for each rectification, to 4 per cent.; (4) the quantity of essential oils (mixture of the homologues of ethylic alcohol) collected at the end of the first distillation equals, on an average, 3.5 per cent.; (5) the cost of a rectification may be estimated at, on an average, 4 francs per hectoliter.

All things being equal, the yield in the first operation by the electric method is 80 per cent., and the treatment costs, on an average, 0.40 franc per hectoliter. The economy that is realized is therefore considerable. For an establishment in which 150 hectoliters of 100 deg. alcohol are treated per day this saving becomes evident, amounting, as it does, to 373 francs.

We may add that the electric process permits of rectifying spirits which, up to the present, could not be rectified by the ordinary processes. Mr. Naudin's experiments have shown, for example, that artichoke spirits, which could not be utilized by the old processes, give through hydrogenation an alcohol equal to that derived from Indian corn.—La Nature.

* * * * *



PLASTIC CARBON FOR BATTERIES.

Max Nitsche-Niesky recommends the following in Neueste Erfindung.: Good coke is ground and mixed with coal-tar to a stiff dough and pressed into moulds made of iron and brass. After drying for a few days in a closed place, it is heated in a furnace where it is protected from the direct flames and burned, feebly at first, then strongly, the fire being gradually raised to white heat which is maintained for 6 or 8 hours. The fire is then permitted to slowly go down, and when perfectly cold the carbon is taken out of the furnace.

* * * * *



RECENT STUDIES ON THE CONSTITUTION OF THE ALKALOIDS.

By SAMUEL P. SADTLER, Ph.D.

[Footnote: Introductory lecture, Course of 1883-84, Philadelphia College of Pharmacy.]

The sciences of to-day present, as might be expected, a very different aspect from the same branches of knowledge as they appeared fifty or sixty years ago. It is not merely that the mass of observations in most of these lines of study has enormously increased during this interval. Were that all, the change could hardly be considered as an unmixed benefit, because of the increased difficulty of assimilation of this additional matter. Many would be the contradictions in the observations and hopeless would be the task of bringing order out of such a chaos. The advance in the several branches of knowledge has been largely one resulting from improved methods of study, rather than one following simply from diligence in the application of the old ways.

Let us turn to chemistry for our illustration of this. The chemistry of the last century and the early decades of this was largely a descriptive science, such as the natural history branches, zoology, and botany are still in great part. Reasonably exact mineral analyses were made, it is true, but the laws of chemical combination and the fundamental conceptions of atoms and molecules had not been as yet generally established. Now, this want of comprehensive views of chemical reactions, their why and wherefore, was bad enough as it affected the study of inorganic and metallic compounds, but what must have been the conditions for studying the complex compounds of carbon, so widely spread in the vegetable and animal kingdoms. Their number is so enormous that, in the absence of any established relationships, not much more than a mere enumeration was possible for the student of this branch of chemistry. It is only within the last twenty years that chemists have attained to any comprehensive views at all in the domain of organic chemistry. It has been found possible to gradually range most carbon compounds under two categories, either as marsh-gas or as benzol derivatives, as fatty compounds or as aromatic compounds. To do this, methods of analysis very different from those used in mineral chemistry had to be applied. The mere finding out of percentage composition tells us little or nothing about an organic compound. What the elements are that compose the compound is not to be found out. That can be told beforehand with almost absolute certainty. What is wanted is to know how the atoms of carbon, hydrogen, oxygen, and nitrogen are linked together, for, strange to say, these differences of groupings, which may be found to exist between these three or four elements, endow the compounds with radically different properties and serve us as a basis of classification.

The development of this part of chemistry, therefore, required very different methods of research. Instead of at once destroying a compound in order to learn of what elements it was composed, we submit it to a course of treatment with reagents, which take it apart very gradually, or modify it in the production of some related substance. In this way, we are enabled to establish its relations with well defined classes and to put it in its proper place. Of equal importance with the analytical method of study, however, is the synthetical. This method of research, as applied to organic compounds, embodies in it the highest triumphs of modern chemistry. It has been most fruitful of results, both theoretical and practical. Within recent years, hundreds of the products of vegetable and animal life have been built up from simpler compounds. Thousands of valuable dye-colors and other compounds used in the arts attest its practical value. It may, therefore, seem anomalous when I say that one of the most important of all the classes of organic compounds has not shared in this advance. The alkaloids, that most important class from a medical and pharmaceutical point of view, have until quite recently been defined in the books simply as "vegetable bases, containing nitrogen." Whether they were marsh-gas or benzol derivatives was not made out; how the four elements, carbon, hydrogen, oxygen, and nitrogen, were grouped together in them was absolutely a thing unknown. Chemists all admitted two things—first, that their constitution was very complex, and, second, that the synthesis of any of the more important medicinal alkaloids would be an eminently desirable thing to effect from every point of view. Within the last five years, however, quite considerable progress has been made in arriving at a clearer understanding of these most important compounds, and I shall offer to your attention this evening a brief statement of what has been done and what seems likely to be accomplished in the near future.

It was early recognized that the alkaloids were complex amines or ammonia derivatives. The more or less strongly marked basic character of these bodies, the presence of nitrogen as an essential element, and, above all, the analogy shown to ammonia in the way these bases united with acids to form salts, not by replacement of the hydrogen of the acid, but by direct addition of acid and base, pointed unmistakably to this constitution. But with this granted, the simplest alkaloid formulas, those of conine, C_{8}H_{17}N, and nicotine, C_{10}H_{14}N_{2}, still showed that the amine molecule contained quite complex groups of carbon and hydrogen atoms, and the great majority of the alkaloids—the non-volatile ones—contained groups in which the three elements, carbon, hydrogen, and oxygen, all entered. Hence the difficulty in acquiring a knowledge of the molecular structure of those alkaloids at all comparable with that attained in the case of other organic compounds. Of course synthesis could not be applied until analysis had revealed something of the molecular grouping of these compounds, so the action of different classes of reagents was tried upon the alkaloids. Before summarizing the results of this study of the decomposition and alteration products of the alkaloids, a brief reference to a related class of organic compounds will be of assistance to those unfamiliar with recent researches in this field.

It is well known that in coal-tar is found a series of ammonia-like bases, aniline or amido-benzol, toluidine or amido-toluol, and xylidine or amido-xylol, which are utilized practically in the manufacture of the so-called aniline dye-colors. It is perhaps not so well known that there are other series of bases found there too. The first of these is the pyridine series, including _pyridine_, C_{5}H_{5}N, _picoline_ (methyl-pyridine), C_{5}H_{4}N(CH_{3}), _lutidine_ (dimethyl-pyridine), C_{5}H_{5}N(CH_{3})_{2}, and _collidine_ (trimethyl-pyridine), C_{5}H_{2}N(CH_{3})_{3}. This series is also found in relatively larger proportion in what is known as Dippel's oil, the product of the dry distillation of bones.

The second series is the quinoline series, including quinoline, C{9}H{7}N, lepidine (methyl-quinoline), C{10}H{9}N, and cryptidine (dimethyl-quinoline), C{11}H{11}N. The two compounds which give name to these series, pyridine, C{5}H{5}N, and quinoline, C{9}H{7}N, respectively, bear to each other a relation analogous to that existing between benzol, C{6}H{6}, and naphthalene, C{10}H{8}; and the theory generally accepted by those chemists who have been occupying themselves with these bases and their derivatives is that pyridine is simply benzol, in which an atom of nitrogen replaces the triad group, CH, and quinoline, the naphthalene molecule with a similar change. Indeed, Ladenberg has recently succeeded in obtaining benzol as an alteration product from pyridine, in certain reactions. Moreover, from methyl-pyridine, C{5}H{4}N(CH{3}), would be derived an acid know as pyridine-carboxylic acid, C{5}H{4}N(COOH), just as benzoic acid, C{6}H{5}COOH, is derived from methyl-benzol, C{6}H{5}CH{3}, and from dimethyl-pyridine, C{5}H{3}N(CH{3}){2}, an acid known as pyridine-dicarboxylic acid, C{5}H{3}N(COOH){2}, just as phthalic acid, C{6}H{4}(COOH){2}, is derived from dimethyl-benzol, C{6}H{4}(CH{3}){2}. The same thing applies to quinoline as compared to naphthalene.

We may now look at the question of the decomposing effect of reagents upon the alkaloids. The means which have proved most efficacious in decomposing these bases are the action of oxidizing and reducing agents, of bromine, of organic iodides, of concentrated acids and alkalies, and of heat.

Taking up the volatile alkaloids, we find with regard to conine, first, that the action of methyl iodide shows it to be a secondary amine, that is, it restrains only one replaceable hydrogen atom of the original ammonia molecule. Its formula is therefore C{8}H{16}NH. From conine can be prepared methyl-conine, which also occurs in nature, and dimethyl-conine. From this latter has been gotten a hydrocarbon, C{8}H{14}, conylene, homologous with acetylene, C{2}H{2}. Conine, on oxidation, yields chiefly butyric acid, but among the products of oxidation has been found the pyridine carboxylic acid before referred to. The formula of conine, C{8}H{17}N, shows it to be homologous with piperidine, C{5}H{11}N, a derivative of piperine, the alkaloid of pepper, to be spoken of later; and, just as piperidine is derived from pyridine by the action of reducing agents, so conine is probably derived from a propyl-pyridine. The artificial alkaloid paraconine, isomeric with the natural conine, will be referred to later.

_Nicotine_, C_{10}H_{14}N_{2}, the next simplest in formula of the alkaloids, is a tertiary base, that is, contains no replaceable hydrogen atoms in its molecule. It shows very close relations to pyridine. When nicotine vapor is passed through a red-hot tube, it yields essentially collidine, and, with this, some pyridine, picoline, lutidine, and gases such as hydrogen, marsh-gas, and ethylene. Heated with bromine water to 120 deg.C. it decomposes into bromoform, carbon dioxide, nitrogen, and pyridine. When its alcoholic solution is treated with ferricyanide of potassium it is oxidized to dipyridine, C_{10}H_{10}N_{2}. Potassium permanganate, chromic or nitric acid oxidises it to nicotinic acid, C_{6}H_{5}NO_{2}, which is simply pyridine-carboxylic acid, C_{5}H_{4}N(COOH), and which, distilled over quick-lime, yields pyridine, C_{5}H_{5}N.

Turning now to the non-volatile and oxygenized bases, we take up first the opium alkaloids. Morphine, C{17}H{19}NO{3}, is a tertiary amine, and appears to contain a hydroxyl group like phenols, to which class of bodies it has some analogies, as is shown in its reaction with ferric chloride. Its meythl ester, which can be formed from it, is codeine, one of the accompanying alkaloids of opium. Besides the methyl derivative, however, others are possible, and several have been recently prepared, giving rise to a class of artificial alkaloids known as codeines. Morphine, rapidly distilled over zinc dust, yields phenanthren, trimethyl-amine, pyrrol, pyridine, quinoline, and other bases. The action of strong hydrocholoric acid upon morphine changes it into apomorphine, C{17}H{17}NO{2}, by the withdrawal of a molecule of water. Ferricyanide of potassium and caustic soda solution change morphine into oxidimorphine, C{34}H{36}N{2}O{6}. When heated with strong potassium hydrate, it yields methylamine.

_Narcotine_, another of the opium alkaloids, when heated with manganese dioxide and sulphuric acid, is oxidized and splits apart into opianic acid, C_{10}H_{10}O_{5}, and cotarnine, C_{12}H_{13}NO_{3}. This latter, by careful oxidation, yields apophyllenic acid, C_{8}H_{7}NO_{4}, and this, on heating with hydrochloric acid to 240 deg. C., yields pyridine-dicarboxylic acid, C_{5}H_{9}N(COOH)_{2}. The base cotarnine also results from the prolonged heating of narcotine with water alone. In this case, instead of opianic acid, its reduction product meconine, C_{10}H_{10}O_{4}, is produced.

_Meconic acid_, C_{7}H_{4}O_{7}, which is found in opium in combination with the different bases, has also been investigated. By acting upon meconic acid with ammonia, comenamic acid is formed, and this latter, when heated with zinc dust, yields pyridine.

If we go now to the cinchona alkaloids, we meet with exceedingly interesting results. _Quinine_, C_{20}H_{24}N_{2}O_{2}, when carefully oxidized with chromic acid or potassium permanganate, yields a series of products. First is formed quitenine, C_{19}H_{22}N_{2}O_{4}, a weak base, then quininic acid, C_{11}H_{9}NO_{3}, then the so-called oxycinchomeronic acid, C_{8}H_{5}N0_{6}, and finally cinchomeronic acid, C_{7}H_{6}NO_{4}. Now the two acids last mentioned are simple substitution products of pyridine, oxycinchomeronic acid being a pyridine-dicarboxylic acid, C_{5}H_{2}N(COOH)_{3}, and cinchomeronic acid, a pyridine-dicarboxylic acid, C_{5}H_{3}N(COOH)_{2}. When distilled with potassium hydrate, quinine yields quinoline and its homologues. The alkaloid has been shown to be a tertiary base.

Quinidine yields with chromic acid the same decomposition products as quinine.

_Cinchonine_, C_{19}H_{22}N_{2}O, the second most important alkaloid of these barks, when oxidized with potassium permanganate, yields cinchonic acid, which is a quinoline-carboxylic acid, C_{9}H_{6}N(COOH), cinchomeronic acid, which has just been stated to be a pyridine dicarboxylic acid, and a pyridine tricarboxylic acid. When cinchonine is treated with potassium hydrate, it is decomposed into quinoline and a solid body, which on further treatment yields a liquid base, C_{7}H_{9}N, which is probably lutidine. It has been found, moreover, that both tetrahydroquinoline and dihydroquinoline, hydrogen addition products of quinoline, are present. When cinchonine is distilled with solid potassium hydrate, it yields pyrrol and bases of both the pyridine and quinoline series.

Cinchonidine, when heated with potassium hydrate, yields quinoline also, and with nitric acid the same products as cinchonine.

Strychnine has been found to be a tertiary amine. When distilled with potassium hydrate, quinoline is formed.

Brucine is a tertiary diamine, that is, formed by substitution in a double ammonia molecule. When distilled with potassium hydrate it yields quinoline, lutidine, and two isomeric collidines.

The alkaloid _atropine_ has been quite thoroughly studied with results of great interest. When heated with baryta-water or hydrochloric acid, it takes up a molecule of water and is split into tropine, C_{8}H_{15}NO, and tropic acid, C_{9}H_{10}O_{3}. This latter is phenyl-oxypropionic acid. Tropine, when heated to 180 deg.C. with concentrated hydrochloric acid, splits off a molecule of water, and yields tropidine, C_{8}H_{13}N, a liquid base, with an odor resembling conine. When this tropidine is heated with an excess of bromine, it yields dibrompyridine.

_Piperine_, the alkaloid of pepper, has also been well studied. When boiled with alcoholic potash solution, it takes up a molecule of water and splits apart into piperic acid, C_{12}H_{10}O_{4}, and piperidine, C_{5}H_{11}N. This latter base has been shown to be a hydrogen addition product of pyridine, C_{5}H_{5}N. When heated with concentrated sulphuric acid, it is oxidized to pyridine. Piperidine hydrochlorate, also, when heated with excess of bromine to 180 deg. C., yields dibrompyridine.

Sinapine, the alkaloid which exists as sulphocyanate in white mustard seed, yields, under the same reaction as that applied to atropine and piperine, quite different results. When boiled with baryta water, sinapine decomposes into sinapic acid, C{11}H{12}O{5}, and choline, C{5}H{15}NO{2}, the latter a well-known constituent of the bile, and produced also in the decomposition of the lecithin of the brain and yolk of egg.

_Cocaine_, the alkaloid of coca leaves, is decomposed by heating with hydrochloric acid into methyl alcohol, benzoic acid, and a crystalline base, ecgonine, C_{9}H_{15}NO_{3}.

Caffeine and theobromine have also quite different relations. Caffeine, it will be remembered, is the methyl ester of theobromine, and can be prepared from it. When caffeine is carefully oxidized with chlorine, it yields dimethyl-alloxan and methyl-urea. Both theobromine and caffeine are decomposed by heating to 240 deg. C. in sealed tubes with hydrochloric acid, identical products being obtained. These products are carbon dioxide, formic acid, ammonia, methyl-amine, and sarcosine, the last three being of course in combination with the excess of hydrochloric acid. The artificial preparation of theobromine and caffeine from xanthine, and guanine also show clearly their relations.

If, having completed our survey of what has been done in the way of decomposing the alkaloids by the different classes of reagents, we review the field, it will be seen that with all the alkaloids mentioned, except the last four, a more or less immediate connection with the pyridine and quinoline bases has been indicated. The conviction accordingly forces itself upon us that, if we want to attack the problem of building up any of these important alkaloids artificially, we must turn to these bases as our starting point.

As already stated, both series occur in coal-tar and the pyridine series also more abundantly in bone-oil. Pyridine, picoline, lutidine, and collidine, the first four members of the pyridine series, have, moreover, all been formed synthetically, although the processes are not such as would yield the products as cheaply as they can be gotten from Dippel's oil. Quinoline, the first member of the higher series, had been made synthetically by several chemists, but by expensive and involved methods, when Skraup, in 1881, effected its synthesis from nitrobenzol and glycerin, or still better, a mixture of nitrobenzol and aniline with glycerin. This process allows of its being made on a commercial scale if desirable. Shortly after, by an application of the same principle, Dobner and Miller effected the synthesis of lepidine, the second member of the quinoline series.

At the same time that this general agreement to consider these bases as the starting point in the endeavor to effect the synthesis of the natural alkaloids had been arrived at by chemists, it was thought well to look into the question whether these bases and their immediate derivatives had any therapeutic value of their own.

Piperidine, the decomposition product of piperine, which we have shown may be considered to be hexahydropyridine, was examined by Dr. Kronecker, of Berlin, at the request of Prof. Hofmann, and was found to have an action upon animals in many respects resembling that of conine. Prof. Filehne, of Erlangen, who has studied a large number of these pyridine and quinoline derivatives, found, moreover, that the hydrochlorate of ethyl-piperidine had a physiological action quite analogous to that of conine.

The physiological action of quinoline itself has been studied quite extensively by Donath and others, and it was found that several of its salts were quite valuable febrifuges, acting very like quinine, and capable in cases of being used as a substitute for it. In general, the hydrogen addition products were found to be more active than the simple base, an observation entirely in accord with the theory formed by Wischnegradsky, and by Konigs, as the result of the study of the decomposition products of the alkaloids, viz., the alkaloids are in general hydrogen addition products of pyridine and quinoline, or of the two bases combined. Thus Prof. Filehne found that hydrochlorate of tetrahydroquinoline was much more energetic in its action than quinoline, but could not be used on account of a too powerful local effect. The hydrochlorate of dimethyl-tetrahydroquinoline, which was distinguished by its strong bitter taste, much resembling that of quinine, had an effect like that of curare poison. The most decided febrifuge action, however was found by Prof. Filehne to reside in the hydrochlorate of oxyhydro-methyl-quinoline, introduced to public notice by Prof. O. Fischer under the name of "Kairin," and in the acid sulphate of tetrahydro-methylquinoline, introduced under the name of "Kairolin." These compounds had a very surprising febrifuge action, without any unpleasant after effects or local disturbances.

The most active workers in the field of synthetic formation of the alkaloids have been Wischnegradsky, of St. Petersburg—who, unfortunately for science, died at an untimely age in 1880—Koenigs and Fischer, of Munich, and Ladenburg, of Kiel. The study of the decomposition products of the cinchona alkaloids especially points quite distinctly to the probable existence in quinine of a hydrogen addition product of pyridine, in combination with a methyl-quinoline group. The many experiments that are now being made to test this and other questions that suggest themselves, will not long leave us in the dark. Whether a practical commercial synthesis of quinine will follow is another matter, but it is within the bounds of possibility, or perhaps even of probability.

It must not be supposed that no syntheses of alkaloids have been effected as yet. By heating butyl-aldehyde with alcoholic ammonia is formed paraconine, an alkaloid isomeric with the natural conine, but differing in physiological action. By the action of sodium upon pyridine is produced a compound C{10}H{8}N{2}, known as dipyridyl, and this, under the influence of nascent hydrogen, takes up six atoms and becomes isonicotine C{10}H{14}N{2}, a physiologically active alkaloid, isomeric with the true nicotine. The formation of a series of alkaloids under the name of codeines, by the substitution of other organic radicals instead of methyl in the codeine reaction, has already been alluded to. Atropine can be formed by uniting tropine and tropic acid, the two decomposition products already noted. The latter of these products is already shown to be capable of synthetical formation, and the other will no doubt be formed in the same way. The artificial atropine is identical with the natural alkaloid. Ladenburg has also formed a series of artificial alkaloids, called tropeines, by uniting the base tropine with different organic acids, as in the case of the compound of mandelic acid and tropine, known as homatropine, an alkaloid of action similar to atropine, but possessing some decided advantages in its use. Piperine has also been made by the uniting of piperidine and piperic acid, and, as piperidine has already been formed from pyridine, we have here a true synthesis also. Both theobromine and caffeine, its methyl derivative, have been made from xanthine, which itself can be formed from guanine, a constituent of guano.

We may conclude from this reference to what has been done in the last few years, that the reproach mentioned in first speaking of the alkaloids as a class, that almost nothing was known of their constitution, will not long remain, and that as their molecular structure is laid bare in these studies now being made, keen-sighted chemists will effect their artificial formation. When these most valuable compounds can be made by exact methods, in a state of entire purity, and at a cost much below that paid for the present extraction of them from relatively rare plants, organic chemistry will have placed all of us under obligations as great as those owing any branch of science, no matter how practical we call it.—Amer. Jour. of Pharmacy.

* * * * *



ON THE TREATMENT OF CONGESTIVE HEADACHE.

By J. LEONARD CORNING, M.D., New York.

If we examine the literature of our theme, we are astounded by the apparently hopeless confusion in which the whole is involved. Everywhere attempts at ill-founded generalization are encountered. We are compelled to admit, after perusing long debates in regard to the relative merits of various therapeutic measures, that those who were foremost to disparage the treatment pursued by others were totally ignorant of the fact that those same symptomatic manifestations which they were considering might be owing to entirely different causes from similar conditions described by others. Hence a commensurate modification in therapy might not only be admissible, but eminently desirable. It is more especially of recent years that a laudable attempt to differentiate the various etiological factors involved in different forms of headache has been made. In 1832 Dr. James Mease, of Philadelphia published a monograph on "The Cause, Cure, and Prevention of the Sick Headache," which is substantially a treatise on the dietetics of this particular form of headache. The work, however, is conspicuously lacking in those philosophical qualities which are so necessary to a true understanding of the questions involved. Dr. E.H. Sieveking published in 1854[1] a most interesting paper on "Chronic and Periodical Headache." The views therein expressed are remarkable for their succinct and thoroughly scientific elucidation of the two great physiological principles involved in the consideration of by far the greater majority of instances of cephalalgia. I refer namely to the importance ascribed by this eminent physician to the fluctuations of the blood-stream within the cranial vault. In speaking of this subject Dr. Sieveking says: "Nothing is of more importance in reference to the pathology and therapeutics of the head than clear and well-defined notions on the physiological subject of the circulation within the cranium; for, among the various sources of medical skepticism, no one is more puzzling or more destructive of logical practice than a contradiction between the doctrine of physiology and the daily practice of medicine."

[Footnote 1: On Chronic and Periodical Headache, by E.H. Sieveking, M.D., Medical Times and Gazette London, August 12, 1854.]

What Dr. Sieveking said in 1854 holds equally good to-day; and, indeed, the position then taken has received substantial indorsement through the positive results of more recent experimental physiology. Conspicuous in this connection are the inductive researches of Durham, Fleming, and Hammond, touching the modifications in the cerebral circulation during sleep and wakefulness. By these experiments it has been conclusively proved that the amount of blood in the brain is decreased during sleep and increased during wakefulness. More, recently I have had occasion to confirm the experiments of Fleming in this direction, and have published the results of those researches in various papers and articles.[1] "What Hippocrates said of spasm," says Dr. Sieveking, "that it results either from fullness or emptiness, or, to use more modern terms, from hyperaemia or anaemia, applies equally to headache; but, to embrace all the causes of this affection we must add a third element, which, though most commonly complicating one of the above circumstances, is not necessarily included in them, namely a change in the constitution of the blood." While I agree with Dr. Sieveking as regards the importance to be ascribed to the first two factors—cerebral hyperaemia and anaemia, in the production of the group of symptoms known as "headache,"—I fail to perceive why especial prominence should be given to the third condition mentioned by Dr. Sieveking. Indeed, I am quite unable to imagine how the periodical, and more especially the intermittent form, of headache is to be explained by what Dr. Sieveking describes rather ambiguously as a "change in the constitution of the blood." It is quite evident, admitting that such a change is capable of producing an amount of cerebral irritation sufficient to develop well-marked cephalalgia, that the latter must of necessity be within certain limits continuous. This is not the case, as the causative factor is constant and not fluctuating. I am, therefore, not prepared to accept this third causative factor without question. Nevertheless I am perfectly willing to admit that other factors besides cerebral hyperaemia and anaemia may produce the functional variety of headache. There would seem to be ample ground for ascribing great causative importance to excessive irritation of the brain plasma itself. Hence those forms of headache which while, being unaccompanied by any especial circulatory derangements, succeed, oftentimes, with relentless regularity upon any considerable degree of mental work. It is not my purpose to discuss the treatment of the multifarious forms of cephalalgia on this occasion, did time permit. As regards the so-called "neuralgic" variety I content myself by referring to the admirable work on "Neuralgia and Kindred Diseases of the Nervous System," by Dr. John Chapman of London, in which will be found many interesting facts bearing on the question. Accepting the propositions, then, that the more adjacent causes of headache are (1) cerebral hyperaemia, (2) cerebral anaemia, and (3) irritation of the cerebral plasma itself, let us now consider how these morbid factors are most scientifically and speedily met at the bedside; and how, more particularly, those distressing conditions of engorgement, which are so baneful an item in the causation of a certain form of cephalalgia, are best overcome.

[Footnote 1: Vide Carotid Compression and Brain Rest, by J.L. Corning, M.D. New York: Anson D.F. Randolph & Co.]

Two years ago I began a series of experiments on epileptics and maniacs, which involved the application of protracted pressure to the common carotid artery on both sides. In the course of these experiments the thought suggested itself that suppression of the carotids might prove a salutary means of reducing that form of cerebral congestion which is so prolific a source of headache and vertigo. Accordingly I made a protracted series of experiments with carotid compression upon those suffering from congestive headache, and I can only say that I have been so far pleased with the uniformly good results obtained, that I have felt it a duty to call the attention of the profession to a procedure which, for obvious reasons, possesses all the advantages of local depletion by leeching or cupping, without the manifest disadvantages of either of these methods. The instruments which I have devised as substitutes for the primitive procedure of digital compression of the carotids have already been described in former communications. It is only necessary to say that the implements in question are of two kinds; one, the "carotid fork," is an adjustable instrument, which being held in the hand of the operator permits him to exert any degree of pressure upon both carotids for any desired length of time. The other instrument, which I have designated as the "carotid truss," for lack of a better name, is a circular spring provided with adjustable pads at each extremity. The spring is placed about the neck of the patient, and by suitable appliances the pads at the extremities can be placed directly above the trunks of the two common carotid arteries. By turning the screws to which the pads are attached the desired amount of pressure can be applied to the arteries, and the apparatus can be worn for any length of time by the patient.

With these instruments I have frequently succeeded in arresting the most obstinate form of congestive headache in an incredibly short time (on one occasion in about five minutes). Where, however, the headache is of manifestly nervous origin and uncomplicated by any especial circulatory derangements, I have never been able to achieve notable results with this method. Indeed, pressure upon the carotids is an excellent method of differentiating the congestive form of headache from the nervous varieties of head pains.

Of galvanism this much may be said, that it is one of the most valuable methods which we possess for treating the form of headache under consideration, for not only does it cause contraction of the smaller arteries, but it also exerts a soothing influence upon the plasma of the brain itself.

A powerful therapeutic agent, and one which has been more or less extensively employed in the treatment of various forms of head and spinal symptoms, is cold.

A very excellent method of applying both cold and galvanism to the head, at the same time, is afforded by a species of refrigerating electrode, designed by myself for this purpose. The apparatus in question consists of a concave sponge electrode, the concavity of which corresponds to the convexity of the external aspect of the cranium. Above the electrode is a chamber of metal or India-rubber, designed to contain ice. The whole is secured to the head of the patient by a single chin-strap, and connection established with an ordinary galvanic battery by means of an appropriate clamp and insulated cord. The indifferent pole is applied over the sternum or other convenient point. Care should be taken not to employ too strong currents, as otherwise vertigo and other unpleasant symptoms may be produced. An application of from five to ten minutes is usually sufficient to arrest the head-pain. As an additional security it is well to recommend the patient to take a hot foot-bath, and to remain as quiet as possible for twelve hours succeeding the treatment. In hyperaemic headache cupping and blood-letting have been recommended; but as a rule both procedures are not only unnecessary but positively inadmissible, as exclusion of the superfluous amount of blood by compression upon the carotids, followed by a corresponding dilatation of the peripheral circulation by means of the foot-bath, will almost always be sufficient to cause a permanent cessation of the symptoms. Among the internal remedies which may be employed with good effect in certain cases are aconite, bromide of potassium, and Indian hemp. The inhalation of from five to ten drops of chloroform is an excellent expedient in some instances. Chlorodyne, which is nothing more than a mixture of sedatives, often works well, and indeed frequently excels other remedies. The regulation of the heart's action is also of very great importance in these cases, and the physician should have no hesitancy in resorting to such remedies as digitalis and belladonna for the purpose of reducing the tension in the domain of the cerebral circulation. As a matter of course the digestive functions should be carefully looked to; the bowels should be kept open; and in all cases where there are indications of a congestive origin, alcohol in all forms should be absolutely forbidden.—Med. Record.

* * * * *



THE USE OF THE MULLEIN PLANT IN THE TREATMENT OF PULMONARY CONSUMPTION.

[Footnote: From a paper published in the British Medical Journal.]

By F.J.B. QUINLAN, M.D., M.R.I.A., F.K.Q.C P., Physician to St. Vincent's Hospital, Dublin.

From time immemorial, the Verbascum thapsus, or great mullein, has been a trusted popular remedy, in Ireland, for the treatment of the above formidable malady. It is a wild plant—most persons would call it a weed—found in many parts of the United Kingdom; and, according to Sowerby's British Botany, vol. vi., page 110, is "rather sparingly distributed over England and the south of Scotland." In most parts of Ireland, however, in addition to growing wild it is carefully cultivated in gardens, and occasionally on a rather extensive scale; and this is done wholly and solely in obedience to a steady popular call for the herb by phthisical sufferers. Constantly, in Irish newspapers, there are advertisements offering it for sale; and there are, in this city, pharmaceutical establishments of the first rank in which it can be bought. Still it does not appear in the Pharmacopoeia; nor, as far as I know, has its use received the official sanction of the medical profession. Some friends with whom I talked over the matter at the Pharmaceutical Conference at Southampton last August, suggested that it would be desirable to make a therapeutical research into the powers of this drug, and ascertain by actual experiment its efficacy or otherwise. Having partially accomplished this, I am anxious to very briefly set forth what has been done, in order that others may be induced to co-operate in the work.

"There are five mulleins, all belonging to the parent order of the Scrophulariaceae; but the old Irish remedy is the great mullein, or Verbascum thapsus, a faithful delineation of which will be found in Plate 1, 437, vol. vi., of Sowerby. It is a hardy biennial, with a thick stalk, from eighteen inches to four feet high, and with very peculiar large woolly and mucilaginous leaves, and a long flower spike with ugly yellow and nearly sessile flowers. The leaves are best gathered in late summer or autumn, shortly before the plant flowers. In former times it appears to have been rather highly thought of, particularly as a remedy for diarrhoea; and Dioscorides, Culpepper, and Gerarde favorably allude to it.

"Having been furnished with a good supply of fresh mullein from a garden near this city, where it is extensively grown, I commenced operations. As it proved useful, subsequent supplies were procured from our drug-contractor.

"The old Irish method of administering the mullein is to place an ounce of dried leaves, or a corresponding quantity of the fresh ones, in a pint of milk; to boil for ten minutes, and then to strain. This strained fluid is given warm to the patient, with or without a little sugar. It is administered twice a day; and the taste of the mixture is bland, mucilaginous, comforting to the praecordia, and not disagreeable. I resolved to try this method, and also the watery infusion; and, moreover, the natural expressed juice fortified with glycerin. This latter preparation was carefully made for me, from fresh mullein leaves, by Dr. John Evans, chemist to the Queen and the Prince of Wales.

"Some phthisical sufferers, of whom there are here, alas! too many, were now admitted from time to time into St. Vincent's Hospital. They were admitted in all stages, from an early one to the most advanced. On each admission the case was carefully examined; the history, symptoms, and physical signs were exactly noted; and the patient was weighed on a stage balance with great accuracy. The patient was put as much as possible on the mullein treatment only. For obvious reasons, no cod-liver oil, koumiss, or other weight producer was given; the patients got the diet suitable to such sufferers; and, if the special symptoms became troublesome, received appropriate treatment. As much as possible, however, they were left to the mullein—a proceeding which was entirely satisfactory to themselves. In addition to the admission weighing, they were carefully weighed every week, and care was taken that this should be done as nearly as possible on the same day and hour, with the same clothes, and, in fact, as much as could be under the same conditions. In securing this the patients anxiously co-operated; and it was frequently amusing, but sometimes painful, to watch the satisfaction or chagrin with which the weekly result was received. I must here tender my acknowledgments to our zealous, attentive, and accurate house surgeon, Mr. Denis P. Kenna, by whom this important, but tedious, duty was discharged."

Dr. Quinlan then refers to several cases, in which the mullein plant has been tried as a remedy for consumption, and remarks that these cases, although too few to justify any general conclusion, appear to establish some useful facts. The mullein plant boiled in milk is liked by the patients; in watery infusion it is disagreeable, and the succus is still more so. The hot milk decoction causes a comfortable (what our Gallic neighbors call pectorale) sensation, and when once patients take it they experience a physiological want, and when the supply was once or twice interrupted, complained much in consequence. That it eases phthisical cough there can be no doubt; in fact, some of the patients scarcely took their cough mixtures at all—an unmixed boon to phthisical sufferers with delicate stomachs. Its power of checking phthisical looseness of the bowels was very marked, and experiment proved that this was not merely due to the well known astringent properties of boiled milk. It also gave great relief to the dyspnoea. For phthisical night sweats it is utterly useless; but these can be completely checked by the hypodermic use of from one-eighteenth to one-fiftieth of a grain of the atropia sulphate; the smaller dose, if it will answer, being preferable, as the larger causes dryness of the pharynx, and interferes with ocular accommodation. In advanced cases, it does not prevent loss of weight, nor am I aware of anything that will, except koumiss. Dr. Carrick, in his interesting work on the koumiss treatment of Southern Russia (page 213), says: "I have seen a consumption invalid gain largely in weight, while the disease was making rapid progress in her lungs, and the evening temperature rarely fell below 101 deg. Fahr. Until then I considered that an increase of weight in phthisis pulmonalis was a proof of the arrest of the malady." If koumiss possesses this power, mullein does not; but unfortunately, as real koumiss can be made from the milk of the mare only, and as it does not bear traveling, the consumptive invalid must go at least to Samara or Southern Russia. In pretubercular and early cases of pulmonary consumption, mullein appears to have a distinct weight-increasing power; and I have observed this in several private cases also. Having no weighings of these latter, however, makes this statement merely an expression of opinion. In early cases, mullein milk appears to act very much in the same manner as cod-liver oil; and when we consider that it is at once cheap and palatable it is certainly worth a trial. I will continue the research by careful weighings of early cases; and will further endeavor to ascertain whether the addition of mullein to the cultivating solution prevents the propagation of the phthisical bacillus.

* * * * *



ACTION OF MINERAL WATERS AND OF HOT WATER UPON THE BILE.

Lewaschew and Klikowitch, from experiments upon dogs, conclude that the use of ordinary alkaline mineral waters was to increase the quantity of bile and to make it more fluid and watery. This increased flow is beneficial in clearing out any bile stagnating in the gall-bladder. A subsequent increase in the quantity of bile indicates a greater flow of bile into the gall-bladder, and this also is of service in emptying out any stagnant bile, and restoring the normal condition when this is disturbed. Artificial solutions of alkaline salts were found to have a similar action to the natural mineral waters, and, as with them, the action varies according to the concentration of the solution. Bicarbonate of sodium has a quicker, more powerful, and more lasting effect on the composition of the bile than the sulphate of sodium, and weak solutions than strong ones. Vichy was more efficacious than Carlsbad water. Hot water was found to have an effect on the bile much like that of the mineral waters.

* * * * *



VIVISECTION.

Although Magendie is rightly considered the true initiator of experimentation upon living beings, the practice of vivisection is as old as science itself.

Galien, the physician of Marcus Aurelius (in the second century of the Christian era), dissected living animals, and yet he is regarded as having merited his name (Galenus, "gentle") from the mildness of his character. Five centuries before him, under the Ptolemies, Egyptian experimenters had operated upon condemned persons. So, then, vivisection is not, as usually thought, a diabolical invention of modern science.



In all ages the necessity has been recognized of operating upon animals that are nearest allied to man, such as the monkey, the hog, and the dog, and who share with the king of creation the privilege of eating a little of everything. Claude Bernard, however, had another way of looking at things. It is true that he especially made researches into the general laws of physiology, the secret of the vital functions, and the operation of the various organic systems that constitute living matter, but his immediate object was not to furnish weapons for the art of curing. He left to physicians and surgeons the care of drawing conclusions from his great work in biology, and of acting experimentally upon animals allied to man in order to found a rational system of therapeutics. So he preferred to operate upon beings placed low in the animal scale—the frog especially, an animal that has rendered him greater service than even man himself could have done. Cold-blooded animals offer, moreover, the advantage of being less impressionable than others, and the experiments to which they are submitted present more accurate conclusions, since it is not necessary to take so much account of the victim's restlessness. And then it is necessary in many cases to choose subjects that possess endurance. The unfortunate frog, so aptly named "the Job of physiology," becomes resigned to living under most dreadful conditions, and when, through sheer exhaustion, he has succumbed, his twitching limbs may still he used as an object of experimentation for twenty-four hours. Thanks are due to nature for giving so extraordinary a vitality to the tissues of a modest batrachian! We owe to it the famous experiment of Galvani that led Volta to the discovery of the pile and what followed it, the astonishing conquests of electricity and those more marvelous ones still that are now in their dawn. Science is much indebted to the frog, and may the homage that we pay him help to alleviate the sufferings that have been imposed upon this brave animal!



The simple fact that we have just enunciated pleads loudly enough for the cause of vivisection to make it useless to defend it. No one, however, has risen to ask for an absolute proscription of it, but it is only desired that the abuse of an abominable practice shall be curbed. Does the abuse exist? That is the question, and it may be answered in the affirmative. Yes, we do sometimes impose useless sufferings upon animals. It is a culpable folly, a beastly cruelty, to constantly repeat barbarous experiments with the object of exhibiting a well known physical fact, a hundred times verified and always the same, when it would only be necessary to enunciate it. But this is not the place to expatiate upon the subject. After proclaiming the utility of vivisection, we give it as our opinion that the practice of it should be confined within narrow limits. It is not too much to ask that it be confined to the privacy of laboratories, with the exclusion of visitors, and to require from students a diploma guaranteeing their knowledge and giving a programme of researches to be made. It is useless to seek in the living what a study of the corpse reveals in all its details.



And now, after these preliminary remarks, we present herewith a series of cuts representing the various apparatus used in the practice of vivisection, which are taken from a recent work by Claude Bernard. Fig. 1 shows the mode of muzzling a dog with a strong cord placed behind an iron bit. Fig. 2 shows a method of tying a dog. Fig. 3 is a vessel in which hares or cats are placed in order to anaesthetize them. Fig. 4 shows the mode of fixing an animal on its side, and Fig. 5 the mode of fixing him on his back. Fig. 6 shows a dog fixed upon the vivisecting table, and Fig. 7 a hare secured to the same. Fig. 8 exhibits the general arrangement of a vivisecting table, properly so called. Fig. 9 shows (1) an anaesthetizing muzzle applied to a dog, and (2) the extremity of the apparatus in section. Fig. 10 shows how the muzzle is applied for anaesthetizing, and gives the details of construction of the chloroform box. Fig. 11 exhibits the arrangement of the apparatus used for holding the animal's jaws open upon the vivisecting table.—L'Illustration.

* * * * *



INSANITY FROM ALCOHOL.

[Footnote: Read at the late meeting of the National Association for the Protection of the Insane and translated for the American Psychological Journal by Carl Sieler, M.D., of Philadelphia.]

By A. BAER, M.D., of Berlin, Germany.

The benevolent efforts of your society diverge in two different directions, which have totally different aims and purposes, and which require different means in order to attain lasting success. Since the number of insane has increased alarmingly within the last few years, in all civilized countries, so that the responsibility of the proper charge of them occupies continually not only the community, but also the State; and since the public as well as the private asylums are filled almost before they are finished, it becomes necessary to rid the institutions, as soon as possible, of those patients which have been cured, as well as of those which are improved. Patients of this kind are, as early as possible, returned to the unrestrained enjoyment of liberty with the expectation that the new scenes and surroundings may have a beneficial influence, besides having the advantage of relieving the overcrowded institutions. Unfortunately, however, it has been frequently found that the hut suddenly restored mental and emotional equilibrium is not of sufficient stability to withstand the storm of conflicting interests. Frequently it happens that the but recently discharged patient returns to the institution, after a short lapse of time, because the "rudder" (steuer) of his intelligence was soon shattered in the turmoil of life. How can, for instance, the indigent and poor patient, after his discharge from the institution in which he has found a shelter and the proper care, stand up in the struggle for existence and the support of his family? Is it not to be expected that a large proportion of those who have been discharged as improved, or even cured, cannot withstand the ever-moving sea of the outside life and bear up under the turmoil which constantly stirs mind and soul?

Starting with the recognition of this fact, societies of benevolent people have been formed in all countries in which true civilization and humanity are at work, to diminish or abolish social evils, whose object is to assist the restored patient who has been discharged from the institution, at a time when he is most in need of help and assistance. Switzerland has taken the lead of all countries by her brilliant example, and there these societies found the greatest encouragement. It should be looked upon as a good sign of the spirit of modern times, that the seed of true humanity, with astonishing rapidity, found its way, far and wide, for the benefit of suffering mankind. Everywhere, in all European countries, and also on the American continent, has this branch of a truly noble thought become acclimated, and many societies have been organized for the purpose of assisting cured insane patients, by aiding them in obtaining suitable occupations, or by direct donations of money, etc., with a view of preventing, if possible, a relapse of the disease. May this portion of the work of your society be an ever-flowing fountain of joy and satisfaction to your members!

Of much greater importance is the best portion of your work, namely, the prevention of insanity. It is nevertheless true, and cannot be doubted, that in all civilized countries insanity increases in a manner which is out of proportion to the increase of the population. Much thought has been given to the cause of this phenomenon, and physicians as well as moralists, national economists as well as philosophers and philanthropists, have endeavored to fathom the connection between this fact and the conditions of modern social life. According to all observations, it is certain that the cause of this phenomenon is not a single etiological condition, but that it is the sum of a number of influences which act upon the human race and produce their travages in the mental and moral life of our patients. The conditions which give rise to this increase of insanity may be looked for in the manner in which modern civilization influences mankind, in its development and culture, in the family and in the school-room, in its views of life and habits; also in the manner in which civilization forces a man to fight a heavier and harder battle for pleasure and possessions, power and knowledge, and causes him to go even beyond his powers of endurance.

More than even civilization itself, are at fault those pernicious abnormities, rare monstrosities, which are transmitted from generation to generation, or are also often newly developed and appear to belong to our civilization. If we want to prevent the increase of insanity, we must endeavor to do away with these monstrosities and eccentricities from our social life which remove mankind more and more, in a pernicious manner, from its natural development and from the normal conditions of moral and physical life; we must endeavor to kill these poisonous offshoots of pseudo civilization, which are the enemies of the normal existence of man. It is necessary to liberate the individual, as well as the entire society of modern times, from the potentiated egotism which spurs man on in overhaste, and in all departments of mental and physical life, to a feverish activity, and then leads to an early senile decay of both body and mind; from that terrible materialism which causes the modern individual in every class of society to find satisfaction in over excited taste and ingenious luxury. It is necessary to strengthen more than has been done heretofore the young, by means of their education, in their physical development, and at the same time to diminish, in proper proportion, the amount of mental over-exertion; and finally it is necessary to fight against, to do away with, those habits of modern society-life which have a pernicious influence upon the physical as well as the mental and moral organization of man. And of these latter, there is none so lasting in its effects, none so harmful to the physical as well as moral life, as the abuse of intoxicating liquors.

Intemperance is an inexhaustible source of the development and increase of insanity. It demands our undivided attention, not only on account of its existing relation, but particularly because intemperance, among all the factors which aid in the increase of insanity, can best be diminished, and its influence weakened, through the will of the single individual, as well as of society as a whole. The relation between intemperance and insanity is so definite and clear, that it is not necessary to adduce proofs of this fact. I will not refer to the writings of the older authors, such as Rush, in America; Hutchison, Macnish, Carpenter, and others, in England; Huss and Dahl, in Sweden; Ramaer, in Holland; Esquirol, Pinel Brierre de Boismont, Morel, and others, in France; Flemming, Jameson, Roller, Griesinger, and others, in Germany. I could name a much larger number of the greatest modern authorities on insanity, who are all unanimous in their opinion that the increase of intemperance (alcoholism) produces a corresponding increase of insanity. Of especial interest is this fact in those countries in which the consumption of concentrated alcohol, and particularly in the form of whiskies distilled from potatoes and corn, has only in later years become general. Thus Lunier has shown the number of alcoholic insane increased by ten per cent. in those departments in which more whisky and less wine is consumed.

In Italy a similar result has been reached by investigation; and in that country (according to Kanti, Sormani, Vesay, Rareri, Castiglione, Ferri, and others) the frequency of insanity caused by the abuse of alcohol stands in an unmistakable relation to the consumption of alcohol in certain provinces of Italy.

In a discussion at one of the meetings (1876) of the London Medico-Psychological Society, the general opinion of the members was, that intemperance is the most fruitful source of the increase of insanity, even when no other etiological element could be found, and alcohol had to be looked upon as the sole cause of the mental disease. Maudsley laid especial stress upon the observation, that intemperance, without hereditary predisposition, was one of the most powerful agencies in the production of aberration of the mind. Even Beckwith, who could not coincide with others as to the great importance of intemperance as an etiological element, says distinctly, that intemperance was, by far, the most potent of all removable causes of mental disease.

In comparing the number of drinking saloons in the different provinces of the kingdom of Prussia with the number of insane, both in public institutions and in private families, as gleaned from the census report of 1871, I was enabled to show conclusively, that everywhere, where the number of drinking places, i.e., the consumption of alcohol, was greatest, the number of insane was also largest. Without doubt, to my mind it is in alcohol that we must look for and will find the most potent cause of the development and spread of mental diseases.

As is well known, alcohol acts as a disturbing element upon the nerve centers, even if it has only once been imbibed in excessive quantity. In consequence of the acute disturbance of circulation and nutrition an acute intoxication takes place, which may range from a slight excitation to a complete loss of consciousness. After habitual abuse of alcohol, the functional disturbances of the brain and spinal cord became constant and disappear the less, as in the central organs degenerative processes are more and more developed, processes which lead to congestions and hemorrhagic effusions in the meninges and in the brain itself, to softening or hardening, and finally to disappearance of the brain substance. These degenerations of the nervous system give rise to a progressive decay of all intellectual and also, more especially, of the ethical functions, a decay which presents the phenomena of feeble mindedness, complicated with a large number of sensational and motor disturbances, and gradually ends in complete idiocy.

The number of those mental disturbances which are caused by alcohol intoxication is a very considerable one. We do not err if we assert that from 20 to 25 per cent. of all mental diseases stand in a direct or indirect relation to the evil consequences of intemperance in the use of intoxicating liquors. This is the opinion of a large number of authorities on mental diseases in all countries. Habitual intemperance leads to severe (psychical?) lesions (of the nervous system) which may show themselves in the different forms of insanity, but express themselves chiefly as mental weakness, not only in persons whose nervous system was weakened through inherited or acquired defects, but also in those whose mental organization was intact. In many other cases we see less complete forms of insanity and more indistinct psychological disturbances and neuroses, and among the latter epilepsy demands particular attention.

An investigation among the patients in the insane department of the Berlin Charite Hospital, in charge of Prof. Westfahl, which was lately carried on by Dr. T. Galle (Uber die Beziehunger des Alcoholismus zur Epilepsie. Inaug. Dissert. 1881, Berlin), showed that among 607 patients who had entered the ward as epileptics or epileptic insane, 150 = 24.7 per cent. had been addicted to drink; 133 before, and 17 after the disease had shown itself; further, that of 1572 patients with delirium tremens, alcoholism, alcoholic dementia, and ebrietas, 243, or 15.4 per cent., were epileptic; and that in 221 intemperance was present before the outbreak of epilepsy; finally, that among 2679 patients which entered the department in six and a half years, 393, or 18 per cent., were inebriates and epileptics. Among 128 epileptics which I had occasion to note in the receiving institute, Plotseurie, 21 per cent. were drunkards and 20 per cent. were the offspring of intemperate parents.

If the list of injuries which intemperance, as we have seen, does directly to the mental life of man is a very considerable one, the baneful effect which is produced indirectly, by the intemperance of parents, upon the mental constitution of their progeny is surely just as great and disastrous. The children of intemperate parents frequently become drunkards themselves; they have inherited a degeneration of the vitiated constitution, and carry the stamp of this degeneration within themselves. The offspring of drunkards are not only weakly and sickly, and die early, especially of diseases of the brain, but, as Dahl, Morel, Howe, Beach, and others have shown, they are frequently born idiotic, or show early signs of insanity. Under the influence of alcohol, the individual constitution of the drinker becomes lowered and depraved, and, according to the law of inheritance, is transmitted through the progeny to the race.

Prof. Bollinger, the latest writer on inheritance of disease (Stuttgart, 1882—Cotta—Uber Dererbung von Krankheiten), names alcoholism among the transient abnormal conditions which, during conception, exert their influence, so that children of intemperate parents acquire pathological, and especially neuro-pathological, dispositions. Intemperance, says this author, in its acute, as well as in its chronic form, causes frequently pathological changes in the nervous system, and thus may the pathological differences in children of the same parents be partially explained. On account of the inheritance of a depraved and pathological constitution, the children of intemperate parents frequently suffer from an abnormal psychical organization. As in the progeny of insane, epileptics, suicides, and criminals, so also among the children of drunkards, do we see cases of congenital idiocy and imbecility, of neurasthenia and inebriety, of psychical and somatic degeneracy, also of depraved morality, of vagrancy and crime.

Mr. President and Gentlemen: In the light of the enumerated facts, nobody will dispute that intemperance is a fruitful as well as inexhaustible source for the increase and development of insanity; and that every effort toward diminution of the frequency of insanity, toward the prevention of mental diseases, must be directed against this widespread evil, intemperance.

May your noble society succeed in confining this torrent of evil in a narrower growing bed, and to deliver mankind from a curse which cannot be too much contended with.

* * * * *



PLANTAIN AS A STYPTIC.

[Footnote: Read at the meeting of the Amer. Pharm. Assoc.]

By J.W. COLCORD.

Several articles during the past few months, copied from English pharmaceutical journals, calling attention to the styptic properties of plantain leaves—Plantago major—having attracted my attention, I determined to try a few experiments when opportunity offered. Having a shiftless neighbor whose yard produced a bountiful crop of the article, I was easily able to secure an abundant supply for my experiments. Believing that better results would be obtained from fresh plants than from dried, I expressed the juice from them by means of an "Enterprise" mill, obtaining about 16 fluid ounces of juice from 3 pounds of leaves. The juice was of a light green color, very turbid, evidently caused by a large amount of chlorophyl. Setting aside 4 ounces of the filtered liquid for further experimenting, I packed the residue from the press into a conical glass percolator and exhausted with dilute alcohol, evaporating the percolate in a water-bath to two ounces, mixing with the 12 ounces of expressed juice and adding 2 ounces of alcohol. This preparation, which I call a fluid extract, represents virtually equal parts by weight of the dried plants. It is of a dark brown color with a marked odor of the recent plant, and so far, after standing three months undisturbed on my shelves, shows no sign of precipitation.

My next experiment was a mixture of equal quantities of the expressed juice with glycerin. At the present time, after standing three months, the mixture is clear and bright, with no sign of precipitation. This, I think, promises to be the most efficient preparation, and will prove valuable as an injection in the treatment of leucorrhoea, hemorrhages, and similar disorders.

Experiment number three was made with equal parts of the juice and alcohol, and number four with three parts of the juice with one part of alcohol.

In a short time a precipitate was observed in both samples in about equal proportions, and was removed about one month after making by filtering through paper, and neither has shown signs of precipitation since, and continue bright, clear, light-brown liquids.

Of their therapeutic value as styptics, I have not had sufficient trial to form an opinion, although, as far as I can judge, they have proved satisfactory. While writing this article, a cook from a neighboring restaurant, with a finger sliced off in a potato slicer, exposing the bone, came in for treatment. Having bandaged I applied the glycerate, which soon stopped the profuse bleeding, giving her a small bottle of it to apply subsequently. I asked her to report to me in two or three days, and, on reporting, I found a healthy granulation presenting. Its styptic properties are undoubtedly due to tannic acid, as all the tests I have been able to make prove this to be the case. The readiness with which it can be obtained in the summer renders it a valuable adjunct, undoubtedly, to the materia medica of the country practitioner or housewife for stopping hemorrhages in simple wounds.

The bruised leaves applied directly usually prove sufficient for the purpose; as to whether it will prove sufficiently valuable to add to our list of pharmaceutical preparations will require longer and more extended experiment.—New Remedies.

* * * * *



DANGER FROM FLIES.

Dr. Grassi is said (British Medical Journal) to have made an important, and by no means pleasant, discovery in regard to flies. It was always recognized that these insects might carry the germs of infection on their wings or feet, but it was not known that they are capable of taking in at the mouth such objects as the ova of various worms, and of discharging them again unchanged in their faeces. This point has now been established, and several striking experiments illustrate it. Dr. Grassi exposed in his laboratory a plate containing a great number of the eggs of a human parasite, the Tricocephalus dispar. Some sheets of white paper were placed in the kitchen, which stands about ten meters from the laboratory. After some hours, the usual little spots produced by the faeces of flies were found on the paper. These spots, when examined by the microscope, were found to contain some of the eggs of the tricocephalus. Some of the flies themselves were then caught, and their intestines presented large numbers of the ova. Similar experiments with the ova of the Oxyuris vermicularis and of the Toenia solium afforded corresponding results. Shortly after the flies had some mouldy cream, the Oidium lactis was found in their faeces. Dr. Grassi mentions an innocuous and yet conclusive experiment that every one can try. Sprinkle a little lycopodium on sweetened water, and afterward examine the faeces and intestines of the flies; numerous spores will be found. As flies are by no means particular in choosing either a place to feed or a place to defecate, often selecting meat or food for the purpose, a somewhat alarming vision of possible consequences is raised.

* * * * *



THE ZOOLOGICAL SOCIETY'S GARDENS.

The erection of the new house for the accommodation of the serpents, alligators, and other reptiles, which is shown in our illustration, must be commended as a valuable improvement of the Zoological Society's establishment in Regent's Park. This building, which has a rather stately aspect and is of imposing dimensions, constructed of brick and terracotta, with a roof of glass and iron, stands close to the south gate of the Gardens, entered from the Broad Walk of the Park. The visitor, on entering by that gate, should turn immediately to the left hand, along the narrow path beside the aviary of the Chinese golden pheasants, and will presently come to the Reptile House, which is too much concealed from view by some of the sheds for the deer. The spacious interior, represented in our view, is one of the most agreeable places in the whole precinct of these gardens, being well aired and lighted, very nicely paved, and tastefully decorated in pale color, with some fine tropical plants in tubs on the floor, or in the windows, and in baskets hanging from the roof. Three oval basins, with substantial margins of concrete, so formed as to prevent the reptiles crawling over them, while one basin is further protected by an iron grating, contain water in which the alligators, the infant crocodiles, and a number of tortoises, but none of the larger species, make themselves quite at home. One side of the house, with its windows looking into a pleasant airy vestibule, is occupied by many small glass cases for the smaller lizards, with boxes and pots of flowers set between them upon tables, which present a very attractive exhibition. The other three sides of the hall, which is nearly square, are entirely devoted to the large wall cages, with fronts of stout plate glass, in single sheets, rising about 14 feet to the roof, in which the serpents are confined—the huge pythons, anaconda, and boa constrictor, the poisonous cobras and rattlesnakes, and others well known to the visitors at these gardens. Each cage or compartment has a sliding door of iron behind, to which the keeper has access in a passage running along the back of the wall, and there are doors also from one compartment to another. The floor is of smooth slate, and the largest snake has ample space to uncoil itself, or to climb up the trunks and branches of trees placed there for its exercise and amusement.



THE BABIROUSSA.

We present, on the same page, a few sketches of the babiroussas, a male and two females, with a young one, recently presented to the society by Dr. F.H. Bauer. These animals, which are from Celebes, in the Malay Archipelago, have been placed temporarily in different stalls of the ostrich house, on the north side of the gardens. The babiroussa is a species of wild hog, peculiar to the islands of Eastern Asia, and remarkable, in the male animal, for the extraordinary growth and direction of the canine teeth. The upper pair of canine teeth, growing out through the upper jaw, curve backward and upward on the forehead, having somewhat the aspect of horns; while the lower canine teeth form a pair of crooked tusks in the under jaw. These teeth may be useful for defensive fighting, as a guard to the head, but could not serve for attack. The skull of a babiroussa, with the teeth fully developed, is in the possession of Mr. Bartlett, the able superintendent of the Zoological Society's collection.—Illustrated London News.



* * * * *

Continued from SUPPLEMENT, No. 363, page 5797.



ON THE MINERALOGICAL LOCALITIES IN AND AROUND NEW YORK CITY.

PART IV.

By NELSON H. DARTON.

Montville, Morris County, New Jersey.—This locality is an old one, and well known to mineralogists. It is outside of the limits prescribed in introducing this series of paper, but by only a few miles, and being such an interesting locality, I have included it in the granular limestone, which occurs in a small isolated ridge in the gneiss within a space of ten acres, about two miles north of the railroad station of Montville, on the Boonton Branch of the Delaware, Lackawanna, and Western Railroad, and is reached by a road running north from about a mile east of the railroad station. This road branches into two at the limestone kilns, about a mile from the railroad track, and the left hand branch is taken, which leads more directly to the quarry, which is on the right hand, about a mile further on, and quite conspicuous by the loose rock lying in front of the quarry. It is on the property of a Mr. John J. Gordon, and produces a very fine limestone for use in the furnaces and forges in the vicinity, as well as lime for agricultural purposes, it being the only limestone in the vicinity for fifteen miles. Between it and its walk of gneiss occur veins of the minerals so characteristic of the locality, and for which it has become famous—serpentine, asbestos, phlozopite, gurhofite pyrites, biotite, aragonite, dolomite, tremolite, and possibly others in lesser quantity.

Serpentine.—All the varieties of this species, and of every color from nearly white to black, is profusely distributed through the limestone in the lower or main quarry in veins and pockets. It is generally soft, translucent, and to be found in masses from a pea to a cubic foot in size. Much of it is of a pure oil green color, rich and translucent, making a very fine and attractive looking mineral specimen. No difficulty need be experienced in producing all the varieties of this mineral, as much has been removed and may be found in the vicinity of the quarry, as it is always carefully separated from the limestone as being useless, and thrown aside, or in some instances, when of peculiar beauty, sold as specimens. The variety of serpentine known as marmolite, which is made up of numberless plates of the mineral packed together similar to mica, but of the green color of the serpentine picolite, or fibrous serpentine, also frequently occurs of a light grass green color, and is a very interesting variety.

In selecting specimens of serpentine, care should be taken to procure that which is the most translucent, and that holding miniature veins of asbestos. These are not so plentiful as those of the pure serpentine alone, but occur in the southern end of the main quarry. The width of these veins of asbestos is seldom over an inch, but those of even much less are highly prized as specimens. These veins of asbestos are, in places, several inches in length, but are generally much broken in removing them, as their fibrous structure, at right angles to their length, makes them very fragile, and pure specimens of asbestos can seldom be found. However, they make much finer specimens when with the serpentine. Frequently these specimens may be obtained with a layer of gurhofite above them, and separated by the serpentine; this assortment is very interesting, revealing to us the manner in which they were formed, which was by a process termed segregation.

This gurhofite, called bone by the quarrymen, occurs in white, dense looking masses, intermingled with the serpentine, especially in the upper end of the quarry, where veins six and eight inches in thickness are abundant, and from which specimens may be readily obtained showing the fibrous structure of the gurhofite and the association with the serpentine, to which it is found attached; it is quite different from the limestone in appearance, and need not be mistaken for it.

Phlozopite.—In a vein near the lower end of the quarry, near the asbestos locality, occurs large plates of this mineral, which is a variety of mica, and has all of the characteristics of a pure silvery white color, and from one by three inches in area to less. It is easily separable in folia, and cannot be confounded with any of the other minerals. A huge mass of the veinstone holding abundance of this mineral is exposed, whence it may be plentifully obtained in excellent crystals.

Pyrites.—White and yellow iron pyrites are abundant in the gneissic rock adjoining the limestone, and frequently very fine, perfect crystals may be found handsomely dressed upon the rock. There is no particular portion of the quarries in which they abound.

Biotite.—This is a variety of mica in small crystals, of a dark brown color, and quite plentiful in the gneiss inclosing the veins of limestone. Up in the older quarries it is more abundant; on the north wall of the vein it is often in very fine specimens, and there even in large number, in a locality, generally a pocket in the gneiss.

Tremolite is quite abundant on a large mass of limestone in the extreme upper quarry, which is a short distance east of the main one, over a small hill. The tremolite occurs in white crystals, about a quarter inch in width and from a half to three inches in length. The crystals are opaque, but very smooth and glistening, lining cavities in this mass of limestone. It is a variety of hornblende, composed of silica, lime, and magnesia, with a little alumina. It probably occurs in places in the vicinity of this block, and in finer specimens, as these are frequently, when near the surface, much weathered and worn. This is a characteristic granular limestone mineral, and a very interesting one. We will again meet it when examining the New York city localities.

Aragonite occurs in very small masses, of a light yellow color and fibrous structure, between layers of serpentine. When they are separated by a small interspace, as it frequently is, the fibers are very large, coarse, and brittle, and thus do not resemble asbestos, although in some instances they might be mistaken for picolite, but, distinguished from it by effervescing on contact with a drop of acid, as it is a carbonate of lime, and also containing a trace of iron. I have never seen any fine specimens of it from this locality, but deeper down in the rock it may occur in greater profusion.

Dolomite occurs to a limited extent as such; most of it, being in the form of gurhofite crystals, may be occasionally found with aragonite of a light pearly gray color and rhombohedral crystals. As before noticed, Staten Island is the best locality for this species.

Calcite.—In places the limestone is perfectly crystallized, and of a pure white or other color, when it forms an attractive mineral, and often worth removing. The limestone of the main quarry, carefully averaged, was found to have the following chemical composition.

Lime. 11.09 Magnesia. 37.94 Carbonic acid. 30.61 Silica. 10.22 Water and loss. 4.90 Iron and alumina. 5.24 ——— 100.00

In places it is spotted with the serpentine, and judging from its rough state resembles "verde antique," and at that of a beautiful color; samples of this should be obtained.

Feldspar.—This mineral occurs very plentfully in the space between the limestones and gneiss. It is generally of a flesh red color and often in very perfect crystals, in some instances an inch and a half in length; as its hardness is 6, it can be readily distinguished from calcite, which it much resembles, but which has only a hardness of 3, and dissolves with effervescence in acids.

A visit to this locality is a delightful manner in which to spend a holiday or other time of leisure; and as it affords so many interesting and valuable minerals, it forms a very profitable trip as well. In reaching it many interesting localities are passed, and if one has an early start these may all be visited. I will describe a few of these, which are alike possessors of beautiful scenery and instructing geological features and not far from the main line of travel.

Starting from the Erie depot, on the Greenwood Lake road, the first stop may be at Arlington, about seven miles west of Jersey City. Here a visit to the Schuyler copper mine may be profitably taken; and as I have written a full account of this locality in a previous portion of these articles,[1] I will not reiterate it here, but refer to that paper. The mine, I might add, is only a mile north of the railroad station, and on Schuyler Avenue, a short distance north from its junction with the Jersey City and Paterson turnpike. Coming back to Arlington depot, and walking on the track for about a quarter of a mile west through the deep cut, the manner in which the sandstones and shales which constitute so large a portion of New Jersey are laid and arranged can be seen to great advantage, this being one of the finest exposures in the formation. At a point about equidistant from either end is a fault in the layers of shales and sandstone; this fault is noticeable as a slight irregularity in the otherwise continuous sides of the cut, and is a point at which the layers of rock on the east have fallen vertically, the western side remaining in its original position. This fault has a thrust of only three feet, but is an instructive example of faults which occur on a tremendous scale in some of the other formations. It will be noticed that between the two edges of the separated layers there is a deposit of a talcky substance, which has been derived from infiltrating waters. Fissure veins are generally in positions of this kind, formed and filled in a similar manner, but with the various metallic ores. Passing further west a short distance we reach the Passaic River, and walk along its banks for a mile north to the Belleville bridge; at this point is the intake of the Jersey City water works, with their huge Worthington pumps and other accessories, which may be conveniently visited. The Passaic River is then crossed, and the train on the Newark and Paterson road may be taken for three miles to Avondale, from whence it is two miles east to the Belleville sandstone quarries, or the bank of the Passaic may be followed and the quarries reached in an hour from Belleville. Here again are met the sandstones and shales, besides another and larger fault, and many interesting features of the sandstone and its quarrying may be examined. The railroad station having been regained, Paterson is the next point of interest. The first thing noticeable in approaching the city are the quarries in the side of the hills to the south, and these may be visited the first; they are but a short distance southeast of the station. Here the sandstone will be found in contact with the trap above and the layers of basalt, trap, tufa, sandstone, shales and conglomerates are exposed. Regaining the nearest railroad track (the Boonton branch of the D., L. & W.R.R.), this is followed for some distance west, when the various strata can be examined in the cut of the railroad and a fault of nearly sixty feet in the trap; this is noticed as a depression in the face of the cliff, and it may be seen by the superposition of the layers of trap and basalt. Where the fault occurs a short distance further west, there is another smaller fault. A visit to the Great Falls of the Passaic is a very pleasurable diversion at this point, and these are about a half mile north of this locality. Here the arrangement of the trap and sandstones can be again profitably studied, and the mineralogical localities which I have described in a former one of these articles[2] examined, not omitting the one at West Paterson, wherein so much phrenite may be found. Taking the train from West Paterson to Little Falls, a walk of a few miles south brings us to the Little Falls, and here is another interesting locality wherein the contact of the sandstone and trap may be examined and the numerous additional phenomena studied. A quarry near the Falls is the best point in which to find these exposures, and from the viaduct crossing the river an excellent view of the surrounding country may be obtained. Regaining the train, Montville is soon reached and visited, and after this, if time sufficient Boonville, two miles west, may be taken in, or it may be necessary to go there to catch a return train, as but few stop at Montville. At Boonton there are many interesting features—iron works furnaces, localities in which fossil remains are found, footprints, conglomeritic beds, and many other things, of which I will endeavor to give a detailed account in some other of this series of articles.

[Footnote 1: See SCIENTIFIC AMERICAN SUPPLEMENT, No. 363.]

[Footnote 2: See SCIENTIFIC AMERICAN SUPPLEMENT, No. 363.]

* * * * *



DISCOVERY OF ANCIENT CHURCH IN JERUSALEM.

An account of the newly discovered church, north of the Damascus Gate, Jerusalem, appears in the Quarterly Statement of the Palestine Exploration Fund. The author is Dr. Selah Merrill. The ruin has proved to be one of great extent, and of special interest. The way in which it was brought to light is worth recording. In an uneven field, which rose considerably above the land about it, parts of which appearing, indeed, like little hillocks, the owner of the soil tried to maintain a vegetable garden, but the ground was so dry that neither grain nor vegetables would flourish, and even irrigation did little or no good; besides, here and there large holes appeared in the ground which could not be accounted for. At last the owner determined to dig and see what there was below the surface of his field, and to his surprise he very soon came upon fine walls and a pavement. The excavations being followed up have laid bare a church with some of the surrounding buildings. The amount of debris which had accumulated above the floor of these buildings was 10 to 20 feet in depth. To remove this mass of earth has required much time and labor, and the work is not yet completed. The piece of ground in question has about 60 yards of frontage on the main road, and extends, so far as the excavations go, about the same distance back from the road, that is, to the east.

The church itself is situated on the south side of this plot, and is very near the street. The ground in front of the church is paved with fine slabs of stone. The steps by which the church was entered were 5 feet wide, but the doorway itself was somewhat wider. From the entrance to the altar step, or platform, the distance is 55 feet, and from that point to the back of the apse 15 feet 6 inches; the width of the apse is 16 feet 6 inches. The width of the church is 24 feet 6 inches. Nine feet in front of the altar step a wall has been thrown across the church in a manner similar to that in the church of the Nativity at Bethlehem. This wall, also those of the church, of which several courses remain, and the interior of the apse, show that the building was originally painted, and some of the figures and designs can still be traced. At the southeast corner of the church, leading from the apse, there is a narrow but well built passageway to the buildings in the rear. The character of these buildings is not very evident; certainly they did not stand on a line with the church, but at an angle of 25 deg. with that line. Between the church and what appears now to have been the main building in the rear, there was a passage not over 3 feet wide. The main building in the rear of the church is 47 feet 6 inches long, but to this must be added 20 feet more of a special room, which seems to have belonged to it, and which had a beautiful mosaic pavement. Thus the extreme length from the entrance of the church to the (present) east side of this mosaic floor is 140 feet.

On the west side of this mosaic floor, where it joins the wall of the main building, there is a threshold of a single stone, 9 feet 6 inches long, with a step 6 feet 9 inches in the clear. This is considerably wider, it will be seen, than the steps, and even the entrance of the church. Several patches of mosaic pavement have been found, but in one place two or three square yards have been preserved, enough to show that the work was extremely beautiful. The colored tracings resemble those in the church on the Mount of Olives, and on one side are the large Greek letters [Theta][epsilon][omicron][nu]. North of this mosaic floor, and of the main building which joins it, and running alongside of both, there is a watercourse or channel cut in the solid rock, which has been leveled to accommodate the buildings above. This can be traced in an east and west line for a distance of 37 feet; it is 2 feet 3 inches deep, 20 inches wide at the top and 12 at the bottom. From about the middle of the mosaic floor this channel turns a right angle and runs 20 feet or more to the north; it is possible that it led from the north, and at the point indicated turned a right angle and ran to the west. Piles of stones and debris prevent us at present from deciding as to the length of the channel or where it comes from. In the bank of debris, which rises on the east side of the mosaic floor to a height of 20 feet, there is, about 6 feet above the floor, a watercourse formed of cement, running north and south at right angles to the line of the church and the other buildings, which must have belonged to a much later period. In fact—and this is an interesting circumstance—the mosaic pavement appears to extend under and beyond this canal and the mass of debris which is yet to be removed.

In the northwest corner of the room, where the mosaic floor is found, very near the angle (already mentioned) of the rock-cut channel, there is a tomb about 6 feet below the surface or level of the floor. The tomb is 10 feet long and 9 feet wide, and is entered by a doorway 26 inches wide, which is well built, and in the sides of which are grooves for a door to slide up and down. On the wall of the tomb at the east end there is a raised Greek cross, 22 inches long and 13 inches wide. One cannot stand erect in its highest part, but it is to be considered that the loculi are two-thirds full of debris, composed chiefly of decayed bones and bits of glass. Those in charge of the excavations have not, up to the present time, allowed the tombs to be cleared out. The loculi are 2 feet in depth.

What Captain Conder speaks of as "vaults north of the church," turn out to be the tops of houses. They are four in number, each 75 feet long by 28 feet wide, and faced the street. They were divided (one or two of them at least) into apartments by means of arches. The lower courses of the walls, to the height of several feet, are of squared stones, while the upper portions and the roofs are of rubble work, which was covered with a heavy coating of plaster. The threshold of one has been exposed, which is 6 feet in the clear, and the sides of the doorway show excellent work.

Among the ruins there are two sections of marble columns, each 33 inches in diameter. Three large cisterns have been found, two of which were nearly full of water; the mouths of these, which were closed, were many feet below the surface of the ground before the excavations began, hence no one knows how old the water in them may be. Some of the slabs with which the church was paved were 6 feet long by 21/2 feet wide. In the church two pieces of cornice were found, each 8 feet in length. One is entire and quite plain, while the other is broken in the middle. It is upon this that the figures of Christ and his twelve apostles were painted. They can still be traced, although exposure has nearly obliterated the colors. Pottery and a considerable quantity of broken glass have been found and some small articles in marble of no great value. The top of a certain block of marble has been formed into a basin, and a hole drilled the entire length of the block for the water to run off.

Previous Part     1  2  3     Next Part
Home - Random Browse