p-books.com
Scientific American Supplement, No. 362, December 9, 1882
Author: Various
Previous Part     1  2  3     Next Part
Home - Random Browse

The object to be attained is a fine grain throughout the surface of the gelatine, and unless this grain is satisfactory the finished printing block never will be. If the gelatine film be too thick, then the grain will be coarse; or, again, if the temperature in drying be too high, there will be no grain at all. The drying is complete in two or three hours, and should not take longer.

The Negative to be Printed from.—The sensitive film being upon the surface of a thick glass plate, it is necessary that the clich or negative employed should be upon patent plate, or not upon glass at all, so as to insure perfect contact. Best of all, is to employ a stripped negative, in which case absolute contact is insured in printing. It is only in these circumstances that the most perfect impression can be secured. If the negative is otherwise satisfactory, and only requires stripping, it must be upon a leveling stand, and fluid gelatine of a tolerable consistence is poured over it. When dry, a pen-knife is run around the margin, and the film leaves the glass without any trouble.

Herr Obernetter says that many of the negatives he receives have to be reproduced before they can be transformed into Lichtdruck plates, and he employs either the wet collodion process or the graphite method, according to circumstances. If the copy is desired to be softer than the original, collodion is employed; if vigor be desired, graphite is used, and here is his formula:

Dextrine. 62 grains. Ordinary white sugar. 77 " Bichromate of ammonia. 30.8 " Water. 3.21 ounces. Glycerine. 2 to 8 drops.

The film is dried at a temperature of 130 to 140 F. in about ten minutes, and while still warm is printed under a negative in diffused light for a period of five to fifteen minutes. In a well-timed print the image is slightly visible; the plate is again warmed a little above atmospheric temperature in a darkened room, and then fine levigated graphite is applied with a fine dusting brush, a sheet of white paper being held underneath to judge of the effect. Breathing upon the film renders it more capable of attracting the powder. When the desired vigor has been attained, the superfluous powder is dusted off, and the plate coated with normal collodion. Afterward the film is cut through at the margins of the plate by means of a sharp knife, and put into water. In a little while—from two to five minutes—the collodion, with the image, will be detached from the glass; the film is at once turned over in the water, and brought out upon the glass plate. Under a soft jet of water any air-bubbles that may exist between the collodion and the glass are removed, and then a solution of gum arabic (two grammes of gum dissolved in one hundred grammes of water) is poured over, and the film is allowed to dry spontaneously.

Exposure of the Printing Block under the Negative.—The exposure is very rapid. Any one conversant with photolithographic work will understand this. At any rate, every photographer knows that bichromated gelatine is much more rapid than the chloride of silver he generally has to do with.

There is no other way of measuring the exposure than by the photometer or personal experience, and the latter is by far the best.

After leaving the printing frame, the plate is immersed in cold water. Here it remains at discretion for half an hour, or an hour; the purpose, of course, being to wash out the soluble bichromate. It is when the print comes out of this bath that judgment is passed upon it. An experienced eye tells at once what it is fit for. If it is yellow, the yellowness must be of the slightest; indeed, Herr Furkl (the manager of Herr Lwy's Lichtdruck department) will not admit that a good plate is yellow at all. A yellow tint means that it will take up too much ink when the roller is passed over it. The plates of Herr Obernetter, however, are rather more yellow than Herr Lwy's—certainly only a tinge, but still yellow; and Herr Obernetter's work proves, at any rate, that the yellowish tinge is by no means inseparable from good results.

The washed and dried plate should appear like a design of ground and polished glass. The ground glass appearance is given by the grain. If there are pure high-lights (almost transparent) and opalescent shadows, the plate is a good one.

Printing from the Block.—We have now a printing-block ready for the press. If it is to be printed by machinery—that is to say, upon a Schnell press—the surface is etched; if it has to be more carefully handled in a hand press, etching is rarely resorted to; it is moistened only with glycerine and water. To etch a plate for a Schnell press, it is placed upon a leveling stand, and the following solution is poured upon it:

Glycerine............................. 150 parts. Ammonia................................ 50 " Nitrate of potash (saltpeter).......... 5 " Water.................................. 25 "

Another equally good formula, recommended by Allgeyer, who managed Herr Albert's Lichtdruck printing for some years, is:

Glycerine............................. 500 parts. Water................................. 500 " Chloride of sodium (common salt)...... 15 "

In lieu of common salt, 15 parts of hyposulphite of soda, or other hygroscopic salt, such as chloride of calcium, may be employed.

The etching fluid is permitted to remain upon the image for half an hour. During this time, by gently moving the finger to and fro over the surface, the swelling or relief of the image can be distinctly felt. The plate is not washed, but the etching fluid simply poured off, so that the film remains impregnated with the glycerine and water; at the most, a piece of bibulous paper is used to absorb any superfluous quantity of the etching fluid. After etching, the plate is taken straight to the printing press. The inking up and printing are done very much as in lithography. If it requires a practiced hand to produce a good lithographic print, it stands to reason that in dealing with a gelatine printing block, instead of a stone, skill and practice are more necessary still. Therefore at this point the photographer should hand over the work to the lithographer, or rather the Lichtdruck printer. It is only by coaxing judiciously, with roller and sponge, that a good printing block can be obtained, and no amount of teaching theoretically can beget a good printer. To appreciate how skillful a printer must be, it is only necessary to see the imperfect proofs that first result, and to watch how these are gradually improved by dint of rolling, rubbing, etching, cleaning, etc. In all Lichldruck establishments, two kinds of rollers are used, viz., of leather and glue. In some establishments, too, they employ two kinds of ink; but Herr Lwy manages to secure delicacy and vigor at the same time by using one ink, but rolling up with two kinds of roller.

Collotype printing is not merely done by hand presses, but is also done by machinery. At Herr Albert's a gas engine of six-horse power is employed to drive the machines, and each machine requires the attention of a skilled mechanic and a girl. The press is very like the lithographic quick press. Upon a big steel bed lies the little collotype block. The glass printing block, with its brownish film of gelatine, moves horizontally to and fro, and, as it does so, passes under half a dozen rollers, which not only supply ink, but disperse it. Some of the rollers are of leather and others of glue, and, whenever the printing block retires from underneath them, an ink slab takes the place of the block, and imparts more ink to the rollers; sometimes as many as eight rollers are used, for the difficulty of machine printing is to apply the ink as delicately and equally as possible. It is necessary at intervals to damp the block, and when the printer in charge finds this to be the case, he stops the press, and applies a little glycerine and water with a cloth or sponge; then a leather roller is passed over to remove superfluous moisture, and the press is again started.

Herr Obernetter relies upon the Star or Stern press—a small lithographic press—one man sufficing to manage it, who turns a wheel with large spokes, reminding one of the steering wheel of a ship. The Lichtdruck plate, gelatine film upward, is laid upon a sheet of plate glass by way of a bed, the plate having first been treated with a solution of glycerine and water; it is then inked up as previously described, except that Herr Obernetter uses two kinds of ink—a thick one and a thin—applied by two rollers of glue. In the first place, a moist sponge is rubbed over the surface; then a soft roller covered with wash-leather, and of the appearance of crpe, is passed over two or three times to remove surplus moisture; then a roller charged with thick ink is put on, and then another with thin is applied. It takes fully five minutes to sponge and roll up a plate, the rolling being done gently and firmly. A sheet of paper is now laid upon the plate, the tympan is lowered, and the scraper adjusted with due pressure; a revolution of the wheel completes the printing, the well-known scraping action of the lithographic press being used in the operation.



Some Lichtdruck prints are printed upon thick plate-paper, and are ready for binding without further ado, these being for book illustrations. Other pictures, that are to pass muster among silver photographs, are, on the other hand, printed upon fine thin paper, and then sized by dipping in a thin solution of gelatine; after drying, they are further dipped in a solution of shellac and spirit.—Photo. News.

* * * * *



DOMESTIC ELECTRICITY.

Among the most valuable, and, up to the present time, the least generally appreciated services that electricity can render for domestic purposes is that of its application in lighters. At the present epoch of indifferent matches, to have, instantaneously, a light by pulling a cord, pressing on a button, or turning a cock, is a thing worthy of being taken into serious consideration; and our own personal experience permits us to assert that, regarded from this point of view, electricity is capable of daily rendering inappreciable services.

According to the nature of the application that is to be made of them, the places in which they are to be put, and the combustible that they are to inflame, etc., electric lighters vary greatly in form and arrangement.

We shall limit ourselves here to pointing out the simplest and most practical of the numerous models of such apparatus that have been constructed up to the present time. All those that we shall describe are based on the incandescence of a platinum wire. A few have been constructed based on the induction spark, but they are more complicated and expensive, and have not entered into practical use. Before commencing to describe these apparatus, we shall make a remark in regard to the piles for working them, and that is that we prefer for this purpose Leclanch elements with agglomerated plates and a large surface of zinc. In order to bring about combustion in any given substance, it is necessary to bring near it an incandescent body raised to a certain temperature, which varies with the nature of the said substance, and which is quite low for illuminating gas, higher for petroleum, and a white heat for a wax taper or a candle. We have said that we make use exclusively of a platinum wire raised momentarily to incandescence by the passage of an electric current. The temperature of such wire will depend especially upon the intensity of the current traversing it; and, if this is too great, the platinum (chosen because of its inoxidizability and its elevated melting point) will rapidly melt; while, if the intensity is too little, the temperature reached by the wire will itself be too low, and no inflammation will be brought about. Practice soon indicates a means of obviating these two inconveniences, and teaches how each apparatus may be placed under such conditions that the wire will hardly ever melt, and that the lighting will always be effected. For the same intensity of current that traverses the wire, the temperature of the latter might be made to vary by diminishing or increasing its diameter. A very fine wire will attain a red heat through a very weak current, but it would be very brittle, and subject to break at the least accident. For this reason it becomes necessary to employ wires a little stronger, and varying generally from one to two-tenths of a millimeter in diameter. The current then requires to be a little intenser. The requisite intensity is easily obtained with elements of large surface, which have a much feebler internal resistance than porous-cup elements; and since, for a given number of elements, the intensity of the current decreases in measure as the internal resistance of the elements increases, it becomes of interest to diminish such internal resistance as much as possible. The platinum wires are usually rolled spirally, with the object in view of concentrating the heat into a small space, in order to raise the temperature of the wire as much as possible. There is thus need of a less intense current to produce the inflammation than with a wire simply stretched out. In fact, the same wire traversed by a current of constant intensity scarcely reaches a red heat when it is straight, while it attains a white heat when it is wound spirally, because, in the latter case, the cooling surface is less.



We shall now proceed to the examination of a few practical forms of electric lighters.

In Fig. 1 will be seen quite a convenient spirit or naphtha lighter, which has been devised more especially for the use of smokers. By pushing the lamp toward the wall, the wick is brought into proximity with the spiral, and the lamp, acting on a button behind it, closes the current. Pressure on the lamp being removed, the latter moves back slightly, through the pressure of a small spring which thrusts on the button. Owing to this latter simple arrangement, the spiral never comes in contact with the flame, and may thus last for a long time. Mr. Loiseau, the proprietor of this apparatus, employs a very fine platinum wire, flattened into the form of a ribbon, and it takes only the current from a single element to effect the inflammation of the wick. The system is so arranged that any one can easily replace in a moment the spiral that has accidentally got out of order; and, in order that this may be done, the maker has placed the spiral on a small, distinct piece that he styles the "conflagrator." The latter consists of two small, thin tubes of brass, held parallel and firmly by means of a brass cross-piece. A small bit of paper wound round each tube in front of the cross-brace insures insulation. The outer extremity of the two tubes supports the platinum spiral, which is fixed to them very simply by the aid of two small brass needles of conical form, which pinch the wire in the tube and hold it in place. There is nothing easier to do than replace the wire. All that is necessary is to remove the two little rods with a pair of pincers; to make a spiral of suitable length by rolling the wire round a pin; and to fix it into the tubes, as we have just explained. With two or three extra "conflagrators" on hand, there need never any trouble occur.

In Fig. 2 we show a new and simple form of Mr. Ranque's lighter, in which an electro-magnet concealed in the base brings the spiral and the wick into juxtaposition. The extinguisher, which is balanced by a counterpoise, oscillates about a horizontal axis, and its support carries two small pins, against which act successively two notches in a piece of oval form, fixed on the side of the movable rods.

In the position shown in the cut, on the first emission of a current the upper notch acts so as to depress the extinguisher, but the travel of the rods that carry the spiral is so limited that the latter does not strike against the extinguisher. On the next emission, the lower notch acts so as to raise the extinguisher, while the spiral approaches the wick and lights it. It is well to actuate these extinguishing-lighters, which may be located at a distance, not by a contact button, but by some pulling arrangement, which is always much more easy to find in the dark without much groping about. There might be used for such a purpose the very motion of the front door, when opened, for lighting the hall; but that would offer the inconvenience of operating likewise in the daytime, and of thus needlessly using up the pile and the naphtha. In all these spirit or naphtha lighters it is important that the spiral shall not touch the wick, but that it shall be placed a little above and on the side, in the mixture of air and combustible vapor.

Several apparatus have likewise been devised for lighting gas by electricity, and a few of these we shall describe.

The simplest form of these is Mr. Barbier's lighter for the use of smokers, for lighting candles, sealing letters, etc. It consists of a small gas-burner affixed to a round box, seven to eight centimeters in diameter, and connected to the gas-pipe by a rubber tube. By maneuvering the handle, the cock is opened and an electric contact set up of sufficient duration to raise to a red heat the spiral, and to light the gas. It is well in this case, for the sake of economizing in wire, to utilize the lead gas-pipe as a return wire, especially if the pile is located at some little distance from the lighter. In the arrangement generally in use the key is provided with a special spring, which tends to cause it to turn in such a way as to assume a vertical position, and with a tooth, which, on engaging with a piece moving on a joint, holds it in a horizontal position as soon as it has been brought thereto. In order to extinguish the burner, it is only necessary to depress the lever, and thus allow the key to assume again the vertical position, that is to say, the position that closes the aperture through which the gas flows out. In a new arrangement, the notch, spring, and the lever are done away with, the cock alone taking the two positions open or closed.

Another very ingenious system is that of Mr. Loiseau, consisting of an ordinary gas-burner (fish-tail, bat's-wing, etc.), carrying at its side a "conflagrator," analogous to that of the spirit-lighter (Fig. 1), but arranged vertically. One of the rods of the "conflagrator" is connected with the positive of the pile, and the other with the little horizontal brass rod which is placed at the bottom of the burner. On turning the cock so as to open it, a small flow of gas occurs opposite the platinum spiral, while at the same time a rigid projecting piece affixed to the cock bears against a small, vertical metallic piece, and brings it in contact with the brass rod. The circuit is thus closed for an instant, the spiral is raised to a red heat, and lights the gas, and the flame rises and finally lights the burner. It goes without saying that on continuing the motion the contact is broken, so as not uselessly to waste the pile and so as to stop the escape of gas.

For gas furnaces, Mr. Loiseau is constructing a handle-lighter which is connected with the side of the furnace by flexible cords. The contact button is on the sleeve itself, and the spiral is protected against shocks by a metallic covering which is cleft at the extremity and the points bent over at a right angle. All the lighters here described work well, and are rendering valuable services. They may be considered as the natural and indispensable auxiliaries of electric call bells, and their use has most certainly been rendered practical through the Leclanche pile.

* * * * *



THEILER'S TELEPHONE RECEIVER.

This telephone receiver differs from its predecessors in dispensing with an armature, the lateral vibration of the electro-magnet itself being utilized. In previous systems in which an electro-magnet is used, the sonorous vibrations are due either to the motion of an iron diaphragm or armature placed close to the poles of the electro-magnet, or to the expansion and contraction of the magnet itself. In Theiler's telephone the electro-magnet may be of the usual U-shape, and may consist either of soft iron or of hardened steel permanently magnetized, wound with a suitable number of turns of insulated wire. This electro magnet is fixed in such a manner that the vibration of either one or of both its limbs is communicated to a diaphragm or diaphragms The patentees also employ two or more electro-magnets in the same circuit, and utilize the vibration of both magnets in the manner described. By attaching a light disk or disks to the vibrating limbs, the diaphragm may be dispensed with. Fig. 1 represents one of the telephone receivers provided with two diaphragms or sounding boards, connected to the two limbs or cores of the U-shaped electro-magnet by short tongues. These tongues are firmly inserted in the diaphragms and fixed to the magnet, as shown. The poles of the electro-magnet are brought very close together by being shaped as shown, and the middle part of the magnet is firmly screwed to the case of the instrument. The ends of the helix surrounding the magnet cores may be attached as usual to two terminals, or soldered to a flexible conductor communicating with the other parts of the telephone apparatus. When a vibratory current is sent through the helix of the electro-magnet, the extremities are rapidly attracted and repelled, and this vibratory motion of the magnet cores being communicated to the diaphragms or sounding boards, the latter are set in vibration of varying amplitude produced by a current of varying strength, as in all other telephones. Instead of making the electro-magnet of one continuous piece of iron, as represented in Fig. 1, the patentees find it more practicable to make it of the form shown in Fig. 2, where the electro-magnet represented consists of two limbs or cores, a sole piece, and pole extensions, the whole being screwed together, and practically constituting one continuous piece of iron carrying the two coils. In Fig. 2 only one of the limbs or cores of the electro-magnet is attached to the diaphragm, the other limb being held fixed by a screw. Sometimes the patentees hinge one of the magnet cores, or both, in the sole piece, in which case the diaphragms or sounding boards can be made much thicker than when the cores are rigidly fixed to the sole piece, because the magnetic attraction of the poles has then only to overcome the resistance of the diaphragm. Instead of using a diaphragm, they sometimes fix a stem to one of the cores of the electro-magnet, and mount thereon a light disk of vulcanite, wood, ivory, gutta-percha, or any other substance which it is capable of vibrating. When using this telephone receiver, the disk is pressed to the ear in such a manner that its surface covers the aperture of the ear. When these telephone receivers are used on a line of some considerable length, the patentees prefer to magnetize the electro-magnet by a constant current from a local battery, and to effect the variation of this constant magnetization inductively and not directly. The electro-magnet is, then, not inserted in the line at all, but in the primary circuit of an induction coil, and connected with a local battery. The line is connected to the secondry circuit of the induction coil. This device possesses the advantage that the electro-magnet can be powerfully magnetized with very little battery power, no matter how long the line may be, and that steel magnets are entirely dispensed with. It is not necessary to have a separate battery for this purpose, as the microphone battery may also be used for the telephone receiver. The shape of the vibrating electro-magnets is immaterial, as they may be made of a variety of forms.—Eng. Mechanic.



* * * * *



ON AN ELECTRIC POWER HAMMER.

By MARCEL DEPREZ.

[Footnote: La Lumire Electrique.]

In a lecture delivered by me on the 15th of last June in the amphitheater of the Conservatoire des Arts et Metiers, on the application of electricity to the production, transmission, and division of power, I operated for the first time an electric power hammer that I shall here describe. Its essential part is a sectional solenoid that I have likewise made an application of in an electric motor which I presented in July, 1830, to the Societ de Physique. Let us suppose we superpose, one on the other, a hundred flat bobbins of a centimeter in thickness in such a way as to form a single solenoid one meter in height, and that the incoming and outgoing wires of each of them be connected with the contiguous bobbins exactly in the same way as they are in the consecutive sections or a dynamo-electric machine ring. Finally, let us complete the resemblance by causing each junction of the wire of one of the bobbins with the wire of its neighbor to end in a metallic plate set into an insulating piece containing as many plates as there are bobbins, plus one. Over this species of collector, which maybe rectilinear or wound around a cylinder, let us pass two brushes fixed to an insulating piece that may be moved by hand. Now, if we place these two brushes at a distance such that the number of the plates of the collector included between them be, for example, equal to ten, and we give them any degree of displacement whatever, after rendering them interdependent, the current entering through one of these brushes and making its exit through the other will always traverse 10 bobbins. Everything will occur, then, as if we caused the ten-bobbin solenoid to move instead of the brushes. This granted, and the brushes being in any position whatever, let us send a current into the apparatus, and place therein a soft iron cylinder. By virtue of a well known law, such cylinder will remain suspended in the interior of the solenoid, and its longitudinal center will place itself at so much the greater distance from that of the solenoid the more the current increases in intensity. It would even fall entirely if the current had not an intensity above a minimum value dependent upon many elements concerning which we have not now to occupy ourselves. We will suppose the current intense enough to keep the distance of the two centers much below that which would bring about a fall of the cylinder. When such a condition is fulfilled, it is found that if we try to remove the iron cylinder from the equilibrium that it is in, we must apply a pressure that increases with the amount of separation, just exactly as if it were suspended from a spring. It results from this fact that if we displace the brushes a distance equal to the thickness of one plate of the collector, the active solenoid will undergo the same displacement, and its longitudinal center will move away from that of the iron cylinder, and that the attraction exerted upon the latter will increase. It will not be able to assume its first value, and equilibrium cannot be re-established unless the cylinder undergoes a displacement identical with that of the solenoid. Now, as this latter depends upon the motion communicated to the system of brushes, we see that, definitively, the cylinder will faithfully reproduce the motion communicated to the brushes by the hand of the operator. This apparatus, then, constitutes a genuine electric servo-motor in which the current is never interrupted nor modified in quantity or direction, no more indeed than the magnetization developed in the soft iron cylinder. Everything takes place as if the iron cylinder were suspended in a solenoid ten centimeters in length that was caused to rise and fall; with the difference that the weight of the cylinder exerts no action on the hand of the operator.



These explanations being understood, there remain but few things to be said to cause the operation of the hammer to be thoroughly comprehended. The elementary sections constituting the electric cylinder, A B, of the hammer are 80 in number, and form a total length of one meter. Their ingoing and outcoming wires end in a collector of circular form shown at F G. The brushes are replaced by two strips, C E and C D, fixed to the double winch, H C I, which is movable around the fixed center, C. They can make any angle whatever with each other, so that by trial there maybe given the active solenoid the most suitable length. When such angle has been determined, the angle, E C D, is rendered invariable by means of a set screw, and the apparatus is maneuvered by imparting to the double winch, H C I, an alternating circular motion.

The iron cylinder weighs 23 kilogrammes; but, when the current has an intensity of 43 amperes and traverses 15 sections, the stress developed may reach 70 kilogrammes; that is to say, three times the weight of the hammer. So this latter obeys with absolute docility the motions of the operator's hands, as those who were present at the lecture were enabled to see.

I will incidentally add that this power hammer was placed on a circuit derived from one that served likewise to supply three Hefner-Alteneck machines (Siemens D{5} model) and a Gramme machine (Breguet model P.L.). Each of these machines was making 1,500 revolutions per minute and developing 25 kilogrammeters per second, measured by means of a Carpentier brake. All these apparatus were operating with absolute independence, and had for generator the double excitation machine that figured at the Exhibition of Electricity.

In an experiment made since then, I have succeeded in developing in each of these four machines 50 kilogrammeters per second, whatever was the number of those that were running; and I found it possible to add the hammer on a derived circuit without notably affecting the operation of the receivers.

It results from this that with my system of double excitation machine I have been enabled to easily run with absolute independence six machines, each giving a two-third horse-power. The economic performance, e/E, moreover, slightly exceeded 0.50.

* * * * *



SOLIGNAC'S NEW ELECTRIC LAMP.

When it becomes a question of practical lighting, it is very certain that the best electric lamp will be the one that is most simple and requires the fewest mechanical parts. It is to such simplicity that is due all the success of the Jablochkoff candle and the Reynier-Werdermann lamp. Yet, in the former of these lamps, it is to be regretted that the somewhat great and variable resistance opposed to the current in its passage through two carbons that keep diminishing in length, in measure as they burn, proves a cause of loss of light and of variation in it. And it is also to be regretted that the duration of combustion of the carbons is not longer; and, finally, it is allowable to believe that the power employed in volatilizing the insulator placed between the carbons is prejudicial to the economical use of this system. In order to obviate this latter inconvenience, an endeavor has been made in the Wilde candle to do away with the insulator, but the results obtained have scarcely been encouraging. An endeavor has also been made to render the duration of the carbons greater by employing quite long ones, and causing these to move forward successively through the intermedium of a species of rollers, or of counterpoises, as in the lamps of Mersanne and Werdermann; but then the system becomes more complicated. Finally, in order to keep the resistance of the carbons at a minimum and constant, their contact with the rheophores of the circuit has been established at a short distance from the arc, and this is one of the principal advantages possessed by the Reynier-Werdermann system. At a certain epoch it was thought that the problem might be simply solved by arranging in front of each other two carbons actuated by a spiral spring, as in car lamps, and kept at a proper distance apart for forming the electric arc by two funnel-shaped pieces of calcined magnesia, into which they entered like a wedge in measure as their conical point were away through combustion. This was the system of Mr. De Baillehache, and the trials that were made therewith were very satisfactory. But, unfortunately, the magnesia was not able to resist very long the temperature to which it was submitted. The problem found a better solution in the sun-lamp but has been solved in another manner, and just as simply, by Mr. Solignac, and the results obtained by him have been very satisfactory as regarded from the standpoint of steadiness of the luminous point.

In this system, a general view of which is given in Fig. 1, and the arrangement in Figs. 2 and 3, the carbons, F F, which are horizontal and about fifty centimeters in length, are thrust toward each other by two barrels, K, K, which wind up two chains, E, E, passing around the pulleys, D, D, fitted to the extremities of the carbons. These latter are provided beneath with small glass rods, G, G, whose extremities toward the arc abut at a short distance from the latter against a nickel stop, L (Fig. 3), which supports them, moreover, at M, by means of a tappet whose position is regulated by a screw. The current is transmitted to the carbons by two friction rollers, I, I, which serve at the same time as a guide for them, and which give the electric flux a passage of only one or two centimeters over the front of the carbon to form the arc. Finally, the whole is held by a support, A, and two pieces, CB, CB, which at the same time lead the current to the friction rollers through projections, J. The two systems are made to approach or recede from each other, in order to form the arc, by means of a regulating screw, H.

At present, the lighting of these lamps is effected by means of this screw, H, but Mr. Solignac is now constructing a model in which the lighting will be performed automatically by means of a solenoid that will react upon a carbon lighter, as in several already well known systems.



If the preceding description has been well-understood, it will be seen that the carbons are arrested in their movement toward each other only by the glass rods, G, abutting against L; but, as the stops, L, are not far from the arc, and as the heat to which they are exposed is so much the greater in proportion as the incandescent part of the carbons is nearer them, it results that for a certain elongation of the arc the temperature becomes sufficient to soften the glass of the rods, G, G, so that they bend as shown at O (Fig. 3), and allow the carbons to move onward until the heat has sufficiently diminished to prevent any further softening of the glass. In measure as the wearing away progresses, the preceding effects are reproduced; and, as these are produced in an imperceptible and continuous manner, there is perceived no jumping nor inconstancy in the light of the arc. Under such conditions, then, the regulation of the arc is effected under the very influence of the effect produced; and not under that of an action of a different nature (electro-magnetism), as happens in other regulators. It is certain that this idea is new and original, and the results that we have witnessed from it have been very satisfactory. There is but one regulation to perform, and that at the beginning, but this once done the apparatus operates with certainty, and for a long time. With a Meritens machine of the first model it has been found possible to light five lamps of this kind placed in the same circuit.



According to the inventor, this lamp will give a light of 100 carcels per one horse-power, and with a three horse-power six lamps may be lighted; but we have made no experiments to ascertain the correctness of these figures.

As for the cost of the glass rods, that amounts to one franc per two hundred meters length. They can, then, be considered only as an insignificant expense in the cost of the carbons. We consequently believe that it will be possible to employ this system advantageously in practice.—Th. du Moncel.



* * * * *



MONDOS'S ELECTRIC LAMP.

Since the month of May last, the concert at the Champs Elyses has been lighted by sixteen voltaic arc lamps on a new and very simple system, which gives excellent results in the installation under consideration. The sixteen lamps are on the divisible system, and their regulation is based upon the principle of derivation. They are supplied by a Siemens alternating current machine and arranged in four circuits, on each of which are mounted four lamps in series. The accompanying figures will allow the reader to readily understand the system, which is as simple as it is ingenious, and which has been combined by Mr. Mondos so as to obtain a continuous and independent regulation of each lamp.

In this system the lower carbon is stationary, the luminous point descending in measure as the carbons wear away through combustion. The upper carbon descends by its own weight, and imperceptibly, so as to keep the arc at its normal length.

The mechanism that controls the motions of the upper rod that supports the carbon-holder consists of two bobbins of fine wire, E (Fig. 2), mounted on a derived circuit on the terminals of the lamp; of a lever, L, articulated at O, and supporting a tube, TT', and the whole movable part balanced by a counterpoise, P. This lever, P, carries two soft iron cores, F, which enter the bobbins, E, and become magnetized under the influence of the current that passes through them. The upper part of the tube, T, carries a square upon which is articulated at O' a second lever, L', balanced by a second counterpoise, P', and carrying a flat armature, p, opposite the cores, F', that are fixed to the first horizontal lever, L. The carbon-holder rod, CC', slides freely in the tube, TT', and is wedged therein by a small piece, a m l, fixed to the lever, L'. For this reason the tube, TT', is provided with a notch opposite the piece a m l, and the two arms, a and m, of the latter are shaped like a V, as may be seen in part in the plan in Fig. 2. It is now easy to understand how the system operates; when the current is not traversing the circuit, the carbons are separated; but, at the moment the circuit is closed for lighting a series of lamps, it traverses the electro-magnet, which then becomes very powerful, and draws down the cores, F, along with the lever, L, the tube, TT', and the carbon-holder, CC', and brings the carbons in contact. The arc then forms, and the current divides between the arc and the bobbins, E. Its action upon the cores, F, becomes weak, and it can no longer balance the counterpoise, P, which falls back, and raises the system again. The arc thus becomes primed. The cores, F, however, preserve a certain amount of magnetization; the armature, p, is attracted, and the lever, L', assumes a position of equilibrium such that the piece, a m l, wedges the rod, CC', in the tube, TT', and holds it suspended. When, through wear of the carbons, the arc elongates, a greater portion of the current passes into the bobbins, E, the armature, p, is attracted with more force, and the lever, L', swings around the point, O'. The rotation of L' separates the piece, a m l, from the rod, CC', which, being thus set free, slides by its own weight and shortens the arc. The current then becomes weak in E, the armature, p, is not so strongly attracted, the lever, L', pivots slightly around O' under the action of the weight, P', and the brake or wedge enters the notch anew, and stops the descent of the carbon. In practice, the motions that we have just described are exceedingly slight; the carbon moves imperceptibly, and the length of the arc remains invariable.



It will be seen, then, that the lever, L, and the tube, TT', serve exclusively for lighting, and the lever, L', exclusively for regulating the distance of the carbons.

This lamp exhibits great elasticity, and can operate, without a change of any part of its mechanism, with currents of very different intensities. It suffices for obtaining a proper working of the apparatus in each case, to regulate the distance from the weight, P', to the point of suspension, O', and the distance from the armature, p, to the cores, F. At the Champs Elyses concerts the lamps are operating with alternating currents; but they are capable of operating with continuous ones also, although the slight tremor of the electro-magnetic system, due to the use of alternating currents and as a consequence of rapid changes of magnetization, seems in principle very favorable to systems in which the descent of the carbon is based upon friction instead of a clutch. At the Champs Elyses concerts the lamps burn crayons of 9 to 10 millimeters with a current of 9 to 10 amperes and an effective electro-motive power of 60 volts per lamp. The light is very steady, and the effect produced is most satisfactory. The dispensing with all clock-work movement and regulating springs makes this electric lamp of Mr. Mondos a simple and plain apparatus, capable of numerous applications in the industries, in wide, open spaces, in all cases where foci of medium intensity have to be employed, and where it is desired to arrange several lamps in the same circuit.—La Nature.



* * * * *

[AMERICAN POTTERY AND GLASSWARE REPORTER.]



ALUMINUM—ITS PROPERTIES, COST, AND USES.

Aluminum is a shining, white, sonorous metal, having a shade between silver and platinum. It is a very light metal, being lighter than glass and only about one-fourth as heavy as silver of the same bulk. It is very malleable and ductile, and is remarkable for its resistance to oxidation, being unaffected by moist or dry air, or by hot or cold water. Sulphureted hydrogen gas, which so readily tarnishes silver, forming a black film on the surface, has no action on this metal.

Next to silica, the oxide of aluminum (alumina) forms, in combination, the most abundant constituent of the crust of the earth (hydrated silicate of alumina, clay).

Common alum is sulphate of alumina combined with another sulphate, as potash, soda, etc. It is much used as a mordant in dyeing and calico printing, also in tanning.

Aluminum is of great value in mechanical dentistry, as, in addition to its lightness and strength, it is not affected by the presence of sulphur in the food—as by eggs, for instance.

Dr. Fowler, of Yarmouthport, Mass., obtained patents for its combination with vulcanite as applied to dentistry and other uses. It resists sulphur in the process of vulcanization in a manner which renders it an efficient and economical substitute for platinum or gold.

Aluminum is derived from the oxide alumina, which is the principal constituent of common clay. Lavoissier, a celebrated French chemist, first suggested the existence of the metallic bases of the earths and alkalies, which fact was demonstrated twenty years thereafter by Sir Humphry Davy, by eliminating potassium and sodium from their combinations; and afterward by the discovery of the metallic bases of baryta, strontium, and lime. The earth alumina resisting the action of the voltaic pile and the other agents then used to induce decomposition, twenty years more passed before the chloride was obtained by Oerstadt, by subjecting alumina to the action of potassium in a crucible heated over a spirit lamp. The discovery of aluminum was at last made by Wohler in 1827, who succeeded in 1846 in obtaining minute globules or beads of this metal by heating a mixture of chloride of alumina and sodium. Deville afterward conducted some experiments in obtaining this metal at the expense of Napoleon III., who subscribed 1,500, and was rewarded by the presentation of two bars of aluminum. The process of manufacture was afterward so simplified that in 1857 its price at Paris was about two dollars an ounce. It was at first manufactured from common clay, which contains about one-fourth its weight of aluminum, but in 1855 Rose announced to the scientific world that it could be obtained from a material called "cryolite," found in Greenland in large quantities, imported into Germany under the name of "mineral soda," and used as a washing soda and in the manufacture of soap. It consists of a double fluoride of aluminum, and only requires to be mixed with an excess of sodium and heated, when the mineral aluminum at once separates. Its cost of manufacture is given in this estimate for one pound of metal: 16 lb. of cryolite at 8 cents per pound, $1.28: 2 lb. metallic sodium at about 26 cents per pound, 70 cents; flux and cost of reduction, $2.02; total, $4.

Aluminum is used largely in the manufacture of cheap jewelry by making a hard, gold-colored alloy with copper, called aluminum bronze, consisting of 90 per cent. of copper and 10 per cent. of aluminum. Like iron, it does not amalgamate directly with mercury, nor is it readily alloyed with lead, but many alloys with other metals, as copper, iron, gold, etc., have been made with it and found to be valuable combinations. One part of it to 100 parts of gold gives a hard, malleable alloy of a greenish gold color, and an alloy of iron and aluminum does not oxidize when exposed to a moist atmosphere. It has also been used to form a metallic coating upon other metals, as copper, brass, and German silver, by the electro-galvanic process. Copper has also been deposited, by the same process, upon aluminum plates to facilitate their being rolled very thin; for unless the metal be pure, it requires to be annealed at each passage through the rolls, and it is found that its flexibility is greatly increased by rolling. To avoid the bluish white appearance, like zinc, Dr. Stevenson McAdam recommends immersing the article made from aluminum in a heated solution of potash, which will give a beautiful white frosted appearance, like that of frosted silver.

F.W. Gerhard obtained a patent in 1856, in England, for an improved means of obtaining aluminum metal, and the adaptation thereof to the manufacture of certain useful articles. Powdered fluoride of aluminum is placed alone or in combination with other fluorides in a closed furnace, heated to a red heat, and exposed to the action of hydrogen gas, which is used as a reagent in the place of sodium. A reverberating furnace is used by preference. The fluoride of aluminum is placed in shallow trays or dishes, each dish being surrounded by clean iron filings placed in suitable receptacles; dry hydrogen gas is forced in, and suitable entry and exit pipes and stop-cocks are provided. The hydrogen gas, combining with the fluoride, "forms hydrofluoric acid, which is taken up by the iron and is thereby converted into fluoride of iron." The resulting aluminum "remains in a metallic state in the bottom of the trays containing the fluoride," and may be used for a variety of manufacturing and ornamental purposes.

The most important alloy of aluminum is composed of aluminum 10, copper 90. It possesses a pale gold color, a hardness surpassing that of bronze, and is susceptible of taking a fine polish. This alloy has found a ready market, and, if less costly, would replace red and yellow brass. Its hardness and tenacity render it peculiarly adapted for journals and bearings. Its tensile strength is 100,000 lb., and when drawn into wire, 128,000 lb., and its elasticity is one-half that of wrought iron.

General Morin believes this alloy to be a perfect chemical combination, as it exhibits, unlike the gun metal, a most complete homogeneousness, its preparation being also attended by a great development of heat, not seen in the manufacture of most other alloys. The specific gravity of this alloy is 7.7. It is malleable and ductile, may be forged cold as well as hot, but is not susceptible of rolling; it may, however, be drawn into tubes. It is extremely tough and fibrous.

Aluminum bronze, when exposed to the air, tarnishes less quickly than either silver, brass, or common bronze, and less, of course, than iron or steel. The contact of fatty matters or the juice of fruits does not result in the production of any soluble metallic salt, an immunity which highly recommends it for various articles for table use.

The uses to which aluminum bronze is applicable are various. Spoons, forks, knives, candle-sticks, locks, knobs, door-handles, window fastenings, harness trimmings, and pistols are made from it; also objects of art, such as busts, statuettes, vases, and groups. In France, aluminum bronze is used for the eagles or military standards, for armor, for the works of watches, as also watch chains and ornaments. For certain parts, such as journals of engines, lathe-head boxes, pinions, and running gear, it has proved itself superior to all other metals.

Hulot, director of the Imperial postage stamp manufactory in Paris, uses it in the construction of a punching machine. It is well known that the best edges of tempered steel become very generally blunted by paper. This is even more the case when the paper is coated with a solution of gum arabic and then dried, as in the instance of postage stamp sheets. The sheets are punched by a machine the upper part of which moves vertically and is armed with 300 needles of tempered steel, sharpened in a right angle. At every blow of the machine they pass through the holes in the lower fixed piece, which correspond with the needles, and perforate five sheets at every blow. Hulot now substitutes this piece by aluminum bronze. Each machine makes daily 120,000 blows, or 180,000,000 perforations, and it has been found that a cushion of the aluminum alloy was unaffected after some months' use, while one of brass is useless after one day.

Various formul are given for the production of alloys of aluminum, but they are too numerous and intricate to enter into here.

* * * * *



DETERMINATION OF POTASSA IN MANURES.

By M.E. DREYFUS.

The method generally adopted for the determination of potassa in manures, i. e., the direct incineration of the sample, may in certain cases occasion considerable errors in consequence of the volatilization of a portion of the potassium products.

To avoid this inconvenience, the author proposes a preliminary treatment of the manure with sulphuric acid at 1.845 sp. gr., to convert potassium nitrate and chloride into the fixed sulphate. The sulphuric acid attacks the manure energetically, and much facilitates the incineration, which may be effected at a dark red heat. The ignited portion (10 grms.) is exhausted with boiling distilled water acidulated with hydrochloric acid, and the filtrate, when cold, is made up to 500 c. c. Of this solution 50 c c., representing 1 grm. of the sample, are taken, and, after being heated until close upon ebullition, baryta-water is added until a strong alkaline reaction is obtained. The sulphuric and phosphoric acids, alumina, magnesia, etc, are thus precipitated. The filtrate is heated to a boil, and mixed with ammonia and ammonium carbonate, to precipitate the excess of baryta in solution. The last traces of lime are eliminated by means of a few drops of ammonium oxalate. The filtrate is evaporated down on the water-bath, and the ammoniacal salts are expelled by carefully raising the temperature to dull redness. After having taken up the residue in distilled water it is treated with platinum chloride, and the potassium chloro-platinate obtained is reduced with oxalic acid. The quantity of potassa present in the manure can be calculated from the weight of platinum obtained.—Bull. de la Soc. Chim. de Paris.

* * * * *



THE ORIGIN AND RELATIONS OF THE CARBON MINERALS.

[Footnote: Read before the New York Academy of Sciences, February 6, 1882.]

By J.S. NEWBERRY.

What are called the carbon minerals—peat, lignite, coal, graphite, asphalt, petroleum, etc.—are, properly speaking, not minerals at all, as they are organic substances, and have no definite chemical composition or crystalline forms. They are, in fact, chiefly the products or phases of a progressive and inevitable change in plant-tissue, which, like all organic matter, is an unstable compound and destined to decomposition.

In virtue of a mysterious and inscrutable force which resides in the microscopic embryo of the seed, a tree begins its growth. For a brief interval, this growth is maintained by the prepared food stored in the cotyledons, and this suffices to produce and to bring into functional activity—some root-fibrils below and leaves above, with which the independent and self-sustained life of the individual begins. Henceforward, perhaps for a thousand years, this life goes on, active in summer and dormant in winter, absorbing the sunlight as a motive power which it controls and guides. Its instruments are the discriminating cells at the extremities of the root-fibrils, which search for, select, and absorb the crude aliment adapted to the needs of the plant to which they belong, and the chlorophyl cells—the lungs and stomach of the tree—in the leaves. During all the years of the growth of the plant, these organs are mainly occupied in breaking the strongly riveted bonds that unite oxygen and carbon in carbonic acid; appropriating the carbon and driving off most of the oxygen. In the end, if the tree is, e. g., a Sequoia, some hundreds of tons of solid, organized tissue have been raised into a column hundreds of feet in height, in opposition to the force of gravitation and to the affinities of inorganic chemistry.

The time comes, however, sooner or later, when the power which has created and the life that has pervaded this wonderful structure abandon it. The affinities of inorganic chemistry immediately reassert themselves, in ordinary circumstances rapidly tearing down the ephemeral fabric.

The disintegration of organic tissue, when deserted by the force which has animated and preserved it, gives rise to the phenomena which form the theme of this paper.

Most animal-tissue decomposes with great rapidity, and plant tissue, when not protected, soon decays. This decay is essentially oxidation, since its final result is the restoration to the atmosphere of carbonic acid, which is broken up in plant-growth by the appropriation of its carbon. Hence it is a kind of combustion, although this term is more generally applied to very rapid oxidation, with the evolution of sensible light and heat. But, whether the process goes on rapidly or slowly, the same force is evolved that is absorbed in the growth of plant-tissue; and by accelerating and guiding its evolution, we are able to utilize this force in the production at will of heat, light, and their correlatives, chemical affinity, motive power, electricity, and magnetism. The decomposition of plants may, however, be more or less retarded, and it then takes the form of a destructive distillation, the constituents reacting upon each other, and forming temporary combinations, part of which are evolved, and part remain behind. Water is the great extinguisher of this as of the more rapid oxidation that we call combustion; and the decomposition of plant-tissue under water is extremely slow, from the partial exclusion of oxygen. Buried under thick and nearly impervious masses of clay, where the exclusion of oxygen is still more nearly complete, the decomposition is so far retarded that plant-tissue, which is destroyed by combustion almost instantaneously, and if exposed to "the elements"—moisture with a free access of oxygen—decays in a year or two, may be but partially consumed when millions of years have passed. The final result is, however, inevitable, and always the same, viz., the oxidation and escape of the organic mutter, and the concentration of the inorganic matter woven into its composition—in it, but not of it—forming what we call the ash of the plant.

Since the decomposition of organic matter commences the instant it is abandoned by the creative and conservative vital force, and proceeds uninterruptedly, whether slowly or rapidly, to the final result, it is evident that each moment in the progress of this decomposition presents us with a phase of structure and composition different from that which preceded and from that which follows it. Hence the succession of these phases forms a complete sliding scale, which is graphically shown in the following diagram, where the organic constituents of plant tissue—carbon, hydrogen, oxygen, and nitrogen—appear gradually diminishing to extinction, while the ash remains nearly constant, but relatively increasing, till it is the sole representative of the fabric.



We may cut this triangle of residual products where we please, and by careful analysis determine accurately the chemical composition of a section at this point, and we may please ourselves with the illusion, as many chemists have done, that the definite proportions found represent the formula of a specific compound; but an adjacent section above or below would show a different composition, and so in the entire triangle we should find an infinite series of formulae, or rather no constant formulae at all. We should also find that the slice, taken at any point while lying in the laboratory or undergoing chemical treatment, would change in composition, and become a different substance.

In the same way we can snatch a brand from the fire at any stage of its decomposition, or analyze a decaying tree trunk during any month of its existence, and thus manufacture as many chemical formulae as we like, and give them specific names; but it is evident that this is child's play, not science. The truth is, the slowly decomposing tissue of the plants of past ages has given us a series of phases which we have grouped under distinct names, and we have called one group peat, one lignite, another coal, another anthracite, and another graphite. We have spaced off the scale, and called all within certain lines by a common name; but this does not give us a common composition for all the material within these lines. Hence we see that any effort to define or describe coal, lignite, or anthracite accurately must be a failure, because neither has a fixed composition, neither is a distinct substance, but simply a conventional group of substances which form part of an infinite and indivisible series.

But this sliding scale of solid compounds, which we designate by the names given above, is not the only product of the natural and spontaneous distillation of plant tissue. Part of the original organic mass remains, though constantly wasting, to represent it; another part escapes, either completely oxidized as carbonic acid and water, or in a volatile or liquid form, still retaining its organic character, and destined to future oxidation, known as carbureted hydrogen, olefiant gas, petroleum, etc.

Hence, in the decomposition of vegetable tissue, two classes of resultant compounds are formed, one residual and the other evolved; and the genesis and relation of the carbon minerals may be accurately shown by the following diagram:

PLANT TISSUE Residual Products Evolved Products Peat. } } Lignite. } } { Carbonic Acid. Bitumious Coal. } { Carbonic Oxide. } { Carbureted Hydrogen, etc. Semi-bitumious " } { Water. } { {Maltha. Anthracite. } { { } { {Asphalt etc. Graphitie Anthracite. } { Petro- { } { leum {Asphaltic Coal. Graphite. } { } {Asphaltic Anthracite. Ash. } { { " Graphite.

[NOTE.—In this diagram, the vertical line connecting the names of the residual products (and of the derivatives of petroleum) indicates that each succeeding one is produced by further alteration from that which precedes it, and not independently. Also, the arrangement of the braces is designed to show that any or all of the evolved products are given off at each stage of alteration.]

The theory here proposed has not been evolved from my inner consciousness, but has grown from careful study, through many years, of facts in the field. A brief sketch of the evidence in favor of it is all that we have space for here.

RESIDUAL PRODUCTS.

Peat.—Dry plant-tissue consists of about 50 per cent, of carbon, 44 per cent, of oxygen, with a little nitrogen, and 6 per cent. of hydrogen. In a peat-bog, we find the upper part of the scale represented above very well shown: plants are growing on the surface with the normal composition of cellulose. The first stratum of peat consists of browned and partially decomposed plant-tissue, which is found to have lost perhaps 20 per cent. of the components of wood, and to have acquired an increasing percentage of carbon. As we descend in the peat, it becomes more homogeneous and darker until at the bottom of the marsh ten or twenty feet from the surface, we have a black, carbonaceous paste, which, when dried, resembles some varieties of coal, and approaches them in composition. It has lost half the substance of the original plant, and shows a marked increase in the relative proportion of carbon.

Lignite.—Each inch in vertical thickness of the peat-bog represents a phase in the progressive change from wood-tissue to lignite, using this term with its common signification to indicate, not necessarily carbonized ligneous tissue, but plant-tissue that belongs to a past though modern geological age—i.e., Tertiary, Cretaceous, Jurassic, or Triassic. These lignites or modern coals are only peat beds which have been buried for a longer or shorter time under clay, sand, or solidified rock, and have progressed farther or less far on the road to coal. As with peats, so with lignites, we find that at different geological levels they exhibit different stages of this distillation—the Tertiary lignites being usually distinguished without difficulty by the presence of a larger quantity of combined water and oxygen, and a less quantity of carbon, than the Cretaceous coals, and these in turn differ in the same respects from the Triassic.

All the coals of the Tertiary and Mesozoic ages are grouped under one name; but it is evident that they are as different from each other as the new and spongy from the old and well-rotted peat in the peat-bog.

Coal.—By mere convention, we call the peat which accumulated in the Carboniferous age by the name of bituminous coal; and an examination of the Carboniferous strata in different countries has shown that the peat-beds formed in the Carboniferous age, though varying somewhat, like others, with the kind of vegetation from which they were derived, have a common character by which they may be distinguished from the more modern coals; containing less water, less oxygen, and more carbon, and usually exhibiting the property of coking, which is rare in coals of later date. Though there is great diversity in the Carboniferous coals, and it would be absurd to express their composition by a single formula, it may be said that, over the whole world, these coals have characteristics, as a group, by which they can be recognized, the result of the slow decomposition of the tissue of plants which lived in the Carboniferous age, and which have, by a broad and general change, approximated to a certain phase in the spontaneous distillation of plant-tissue. An experienced geologist will not fail to refer to their proper horizon a group of coals of Carboniferous age any more than those of the Cretaceous or Tertiary.

Anthracite—In the ages anterior to the Carboniferous, the quantity of land vegetation was apparently not sufficient to form thick and extensive beds of peat; but the remains of plant-tissue are contained in all the older formations, though there only as anthracite or graphite—the last two groups of residual products. Of these we have examples in the beds of graphite in the Laurentian rocks of Canada, and of anthracite of the lower Silurian strata of Upper Church and Kilnaleck, Ireland.

From these facts it is apparent that the carbon series is graded geologically, that is, by the lapse of time during which plant-tissue has been subjected to this natural and spontaneous distillation. But we have better evidence than this of the derivation of one from another of the groups of residual products which have been enumerated. In many localities, the coals and lignites of different ages have been exposed to local influences—such as the outbursts of trap-rock, or the metamorphism of mountain chains—which have hastened the distillation, and out of known earlier groups have produced the last. For example, trap outbursts have converted Tertiary lignites in Alaska into good bituminous coals; on Queen Charlotte's Island, on Anthracite Creek, in southwestern Colorado, and at the Placer Mountains, near Santa Fe, New Mexico, Cretaceous lignites into anthracite; those from Queen Charlotte's Island and southwestern Colorado are as bright, hard, and valuable as any from Pennsylvania. At a little distance from the focus of volcanic action, the Cretaceous coals of southwestern Colorado have been made bituminous and coking, while at the Placer Mountains the same stratum may be seen in its anthracitic and lignitic stages.

A still better series, illustrating the derivation of one form of carbon solids from another, is furnished by the coals of Ohio, Pennsylvania, and Rhode Island. These are of the same age; in Ohio, presenting the normal composition and physical characters of bituminous coals, that is, of plant tissue generally and uniformly descending the scale in the lapse of time from the Carboniferous age to the present. In the mountains of Pennsylvania the same coal beds, somewhat affected by the metamorphism which all the rocks of the Alleghanies have shared, have reached the stage of semi-bituminous coals, where half the volatile constituents have been driven off; again, in the anthracite basins of eastern Pennsylvania, the distillation further effected has formed from these coals anthracite, containing only from three to ten per cent. of volatile matter; while in the focus of metamorphic action, at Newport, Rhode Island, the Carboniferous coals have been changed to graphitic anthracite, that is, are half anthracite and half graphite. Here, traveling from west to east, a progressive change is noted, similar to that which may be observed in making a vertical section of a peat bog, or in comparing the coals of Tertiary, Mesozoic, and Carboniferous age, only the latter is the continuation and natural sequence of the former series of changes.

In the Laurentian rocks of Canada are large accumulations of carbonaceous matter, all of which is graphite, and that which is universally conceded to be derived from plant-tissue. The oxidation of graphite is artificially difficult, and in nature's laboratory slow; but it is inevitable, as we see in the decomposition of its outcrops and the blanching of exposed surfaces of clouded marbles, where the coloring is graphite. Thus the end is reached, and by observations in the field, the origin and relationship of the different carbon solids derived from organic tissue are demonstrated.

It only remains to be said, in regard to them, that all the changes enumerated may be imitated artificially, and that the stages of decomposition which we have designated by the names graphite, anthracite, coal, lignite, are not necessary results of the decomposition of plant-tissue. A fallen tree may slowly consume away, and all its carbonaceous matter may be oxidized and dissipated without exhibiting the phases of lignite, coal, etc.; and lignite and coal, when exposed to air and moisture, are burned away to ashes in the same manner, simply because in these cases complete oxidation of the carbon takes place, particle by particle, and the mass is not affected as a whole in such a way as to assume the intermediate stages referred to. Chemical analysis, however, proves that the process is essentially the same, although the physical results are different.

EVOLVED PRODUCTS.

The gradual wasting of plant-tissue in the formation of peat, lignite, coal, etc., may be estimated as averaging for peat, 20 to 30 per cent.; lignite, 30 to 50 per cent.; coal, 50 to 70 per cent.; anthracite, 70 to 80; and graphite, 90 per cent. of the original mass. The evolved products ultimately represent the entire organic portion of the wood—the mineral matter, or ash, being the only residuum. These evolved products include both liquids and gases, and by subsequent changes, solids are produced from some of them. Carbonic acid, carbonic oxide, nitrogenous and hydrocarbon gases, water, and petroleum, are mentioned above as the substances which escape from wood-tissue during its decomposition. That all these are eliminated in the decay of vegetable and animal structures is now generally conceded by chemists and geologists, although there is a wide difference of opinion as to the nature of the process.

It has been claimed that the evolved products enumerated above are the results of the primary decomposition of organic matter, and never of further changes in the residual products; i.e., that in the breaking-up of organic tissue, variable quantities of coal, anthracite, petroleum, marsh gas, etc., are formed, but that these are never derived, the one from the other. This opinion is, however, certainly erroneous, and the formation of any or all the evolved products may take place throughout the entire progress of the decomposition. Marsh gas and carbonic acid are seen escaping from the surface of pools where recent vegetable matter is submerged, and they are also eliminated in the further decomposition of peat, lignite, coal, and carbonaceous shale. Fire damp and choke-damp, common names for the gases mentioned above, are produced in large quantities in the mines where Tertiary or Cretaceous lignites, or Carboniferous coals or anthracites are mined. It has been said that these gases are simply locked up in the interstices of the carbonaceous matter and are liberated in its excavation; but all who have worked coal mines know that such accumulations are not sufficient to supply the enormous and continuous flow which comes from all parts of the mass penetrated. We have ample proof, moreover, that coal, when exposed to the air, undergoes a kind of distillation, in which the evolution of carbonic acid and hydrocarbon gases is a necessary and prominent feature.

The gas makers know that if their coal is permitted to lie for months or years after being mined, it suffers serious deterioration, yielding a less and less quantity of illuminating gas with the lapse of time. So coking coals are rendered dry, non-caking, and valueless for this purpose by long exposure.

Carbureted hydrogen, olefiant gas, etc., are constant associates of the petroleum of springs or wells, and this escape of gas and oil has been going on in some localities, without apparent diminution, for two or three thousand years. We can only account for the persistence of this flow by supposing that it is maintained by the gradual distillation of the carbonaceous masses with which such evolutions of gas or of liquid hydro-carbons are always connected. If it were true that carbureted hydrogen and petroleum are produced only from the primary decomposition of organic tissue, it would be inevitable that at least the elastic gases would have escaped long since.

Oil wells which have been nominally exhausted—that is, from which the accumulations of centuries in rock reservoirs have been pumped—and therefore have been abandoned, have in all cases been found to be slowly replenished by a current and constant secretion, apparently the product of an unceasing distillation.

In the valley of the Cumberland, about Burkesville, one of the oil regions of the country, the gases escaping from the equivalent of the Utica shale accumulate under the plates of impervious limestone above until masses of rock and earth, hundreds of tons in weight, are sometimes thrown out with great violence. Unless these gases had been produced by comparatively recent distillation, such explosions could not occur.

In opening a coal mine on a hillside, the first traces of the coal seam are found in a dark stain in the superficial clay; then a substance like rotten wood is reached, from which all the volatile constituents have escaped. These appear, however, later, and continue to increase as the mine is deepened, until under water or a heavy covering of rock the coal attains its normal physical and chemical characters. Here it is evident that the coal has undergone a long-continued distillation, which must have resulted in the constant production of carbonic acid and carbureted hydrogen.

A line of perennial oil and gas springs marks the outcrop of every great stratum of carbonaceous matter in the country. Of these, the most considerable and remarkable are the bituminous shales of the Silurian (Utica shale), of the Devonian (Hamilton and Huron shales), the Carboniferous, etc. Here the carbonaceous constituent (10 to 20 per cent.) is disseminated through a great proportion of inorganic material, clay and sand, and seems, both from the nature of the materials which furnished it—cellular plants and minute animal organisms—and its dissemination, to be specially prone to spontaneous distillation. The Utica shale is the lowest of these great sheets of carbonaceous matter, and that supplies the hydro-carbon gases and liquids which issue from the earth at Collingwood, Canada, and in the valley of the Cumberland. The next carbonaceous sheet is formed by the great bituminous shale beds of the upper Devonian, which underlie and supply the oil wells in western Pennsylvania. In some places the shale is several hundred feet in thickness, and contains more carbonaceous matter than all the overlying coal strata. The outcrop of this formation, from central New York to Tennessee, is conspicuously marked by gas springs, the flow from which is apparently unfailing.

Petroleum is scarcely less constant in its connection with these carbonaceous rocks than carbureted hydrogen, and it only escapes notice from the little space it occupies. The two substances are so closely allied that they must have a common origin, and they are, in fact, generated simultaneously in thousands of localities.

During the oil excitement of some years since, when the whole country was hunted over for "oil sign," in many lagoons, from which bubbles of marsh-gas were constantly escaping, films of genuine petroleum were found on the surface; and as the underlying strata were barren of oil, this could only have been derived from the decaying vegetable tissue below. In the Bay of Marquette, two or three miles north of the town, where the shore is a peat bog underlain by Archan rocks, I have seen bubbles of carbureted hydrogen rising in great numbers attended by drops of petroleum which spread as iridescent films on the surface.

The remarks which have been made in regard to the heterogeneous nature of the solid hydrocarbons apply with scarcely less force to the gaseous and liquid products of vegetable decomposition. The gases which escape from marshes contain carbonic acid, a number of hydrocarbon gases (or the materials out of which they may be composed in the process of analysis), and finally a larger or smaller volume of nitrogenous gas. It is possible that the elimination of these gases takes the form of fractional distillation, and definite compounds may be formed directly from the wood-tissue or its derivatives, and mingle as they escape. This is, however, not certain, for the gases, as we find them, are always mixtures and never pure. In the liquid evolved products, the petroleums, this is emphatically true, for we combine under this name fluids which vary greatly in both their physical and chemical characters; some are light and ethereal, others are thick and tarry; some are transparent, some opaque; some red, some brown, others green; some have an offensive and others an agreeable odor; some contain asphalt in large quantity, others paraffine, etc. Thus they form a heterogeneous assemblage of liquid hydrocarbons, of which naphtha and maltha may be said to form the extremes, and which have little in common, except their undefinable name. The causes of these differences are but imperfectly understood, but we know that they are in part dependent on the nature of the organic material that has furnished the petroleums, and in part upon influences affecting them after their formation. For example, the oil which saturates the Niagara limestone at Chicago, and—which is undoubtedly indigenous in this rock, and probably of animal origin, is black and thick; that from Enniskillen, Canada, is also black, has a vile odor, probably in virtue of sulphur compounds, and, we have reason to believe, is derived from animal matter. The oils of northwestern Pennsylvania are mostly brown, sometimes green by reflected light, and have a pungent and characteristic odor. These are undoubtedly derived from the Hamilton shales, which contain ten or twenty per cent, of carbonaceous matter, apparently produced from the decomposition of sea-weeds, since these are in places exceedingly abundant, and nearly all other fossils are absent.

The oils of Italy, though varying much in appearance, have usually an ethereal odor that is rather agreeable; they are of Tertiary age. The oils of Japan, differing much among themselves, have as, a common character an odor quite different from the Pennsylvania oils. So the petroleums of the Caspian, of India, California, etc., occurring at different geological horizons, exhibit a diversity of physical and chemical characters which may be fairly supposed to depend upon the material from which they have been distilled. The oils in the same region, however, are found to exhibit a series of differences which are plainly the result of causes operating upon them after their production. Near the surface, they are thicker and darker; below, and near the carbonaceous mass from which they have been generated, they are of lighter gravity and color. We find, in limited quantity, oils which are nearly white and may be used in lamps without refining—which have been refined, in fact, in Nature's laboratory. Others, that are reddish yellow by transmitted light, sometimes green by reflected light, are called amber oils; these also occur in small quantity, and, as I am led to believe, have acquired their characteristics by filtration through masses of sandstone. Whatever the variety of petroleum may be, if exposed for a long time to the air it undergoes a spontaneous distillation, in which gases and vapors, existing or formed, escape, and solid residues are left. The nature of these solids varies with the petroleums from which they come, some producing asphaltum, others paraffine, others ozokerite, and so on through a long list of substances, which have received distinct names as mineral species, though rarely, if ever, possessing a definite and invariable composition. The change of petroleum to asphalt may be witnessed at a great number of localities. In Canada, the black asphaltic oil forms by its evaporation great sheets of hard or tarry asphalt, called gum beds, around the oil-springs. In the far West are numerous springs of petroleum, which are known to the hunters as "tar springs," because of the accumulations about them of the products of the evaporation and oxidation of petroleum to tar or asphalt. Certain less common oils yield ozokerite as a solid, and considerable accumulations of this are known in Galicia and Utah.

Natural paraffine is less abundant, and yet in places it occurs in considerable quantity. Asphalt is the common name for the solid residue from the evaporation and oxidation of petroleum; and large accumulations of this substance are known in many parts of the world, perhaps the most noted of all being that of the "Pitch Lake". of the Island of Trinidad; there, as everywhere else, the derivation of asphalt from petroleum is obvious, and traceable in all stages. The asphalts, then, have a common history in this, that they are produced by the evaporation and oxidation of petroleum. But it should also be said that they share the diversity of character of petroleums, and the term asphalt represents a group of substances of which the physical characters and chemical composition differ greatly in virtue of their derivation, and also differ from changes which they are constantly undergoing. Thus at the Pitch Lake in Trinidad, the central portion is a tarry petroleum, near the sides a plastic asphalt, and finally that which is of almost rock-like solidity. Hence we see that the solid residues from petroleum are unstable compounds like the coals and lignites, and in virtue of their organic nature are constantly undergoing a series of changes of which the final term is combustion or oxidation. From these facts we might fairly infer that asphalts formed in geological ages anterior to the present would exhibit characters resulting from still further distillation; that they would be harder and drier, i.e., containing less volatile ingredients and more fixed carbon. Such is, in fact, the case; and these older asphalts are represented by Grahamite, Albertite, etc., which I have designated as asphaltic coals. These are found in fissures and cavities in rocks of various ages, which have been more or less disturbed, and usually in regions where springs of petroleum now exist. The Albertite fills fissures in Carboniferous rocks in New Brunswick, on a line of disturbance and near oil-springs. Precisely the same may be said of the Grahamite of West Virginia. It fills a vertical fissure, which was cut through the sandstones and shales of the coal-measures; in the sandstones it remained open, in the shales it has been closed by the yielding of the rock. The Grahamite fills the open fissure in the sandstone, and was plainly introduced when in a liquid state. In the vicinity are oil springs, and it is on an axis of disturbance. From near Tampico, Mexico, I have received a hydrocarbon solid—essentially Grahamite, asphalt, and petroleum. These are described as occurring near together, and evidently represent phases of different dates in the same substance. I have collected asphaltic coals, very similar to Grahamite and Albertite in appearance and chemical composition, in Colorado and Utah, where they occur with the game associates as at Tampico. I have found at Canajoharie, New York, in cavities in the lead-veins which rut the Utica shale, a hydrocarbon solid which must have infiltrated into these cavities as petroleum, but which, since the remote period when the fissures were formed, has been distilled until it is now anthracite. Similar anthracitic asphalt or asphaltic anthracite is common in the Calciferous sand-rock in Herkimer County, New York, where it is associated with, and often contained in, the beautiful crystals of quartz for which the locality is famous. Here the same phase of distillation is reached as in the coke residuum of the petroleum stills.

Again, in some crystalline limestones, detached scales or crystals of graphite occur, which are undoubtedly the product of the complete distillation of liquid hydrocarbons with which the rock was once impregnated. The remarkable purity of such graphite is the natural result of its mode of formation, and such cases resemble the occurrence of graphite in cast iron and basalt. The black clouds and bands which stain many otherwise white marbles are generally due to specks of graphite, the residue of hydrocarbons which once saturated the rock. Some limestones are quite black from the carbonaceous matter they contain (Lycoming Valley, Pa., Glenn's Falls, N. Y., and Collingwood, Canada), and these are sold as black marbles, but if exposed to heat, such limestones are blanched by the expulsion of the contained carbon; usually a residue of anthracite or graphite is left, forming dark spots or streaks, as we find in the clouded and banded marbles.

Finally, the great work going on in Nature's laboratory may be closely imitated by art; the differences in the results being simply the consequence of differing conditions in the experiments. Vegetable tissue has been converted artificially into the equivalents of lignite, coal, anthracite, and graphite, with the emission of vapors, gases, and oils closely resembling those evolved in natural processes. So petroleum may be distilled to form asphalt, and this in turn converted into Albertite and coke (i.e., anthracite). Grahamite has been artificially produced from petroleum by Mr. W. P. Jenney.

In the preceding remarks, no effort has been made even to enumerate all the so-called carbon minerals which have been described. This was unnecessary in a discussion of the relations of the more important groups, and would have extended this article much beyond its prescribed length. Those who care to gain a fuller knowledge of the different members of the various groups are referred to the admirable chapter on the "Hydrocarbon Compounds" in Dana's Mineralogy.

It will, however, add to the value of this paper, if brief mention be made of a few carbon minerals of which the genesis and relations are not generally known, and in regard to which special interest is felt, such as the diamond, jet, the hydrocarbon jellies, "Dopplerite," etc.

The diamond is found in the dbris of metamorphic rocks in many countries, and is probably one of the evolved products of the distillation of organic matter they once contained. Under peculiar circumstances it has apparently been formed by precipitation from sulphide of carbon or some other volatile carbon compound by elective affinity. Laboratory experiments have proved the possibility of producing it by such a process, but the artificial crystals are microscopic, perhaps only because a long time is required to build up those of larger size.

Jet is a carbonaceous solid which in most cases is a true lignite, and generally retains more or less of the structure of wood. Masses are sometimes found that show no structure, and these are probably formed from bitumen which has separated from the wood of which it once formed part, and which it generally saturates or invests. In some cases, however, these masses of jet-like substance are plainly the residuum of excrementitious matter voided by fishes or reptiles. These latter are often found in the Triassic fish-beds of Connecticut and New Jersey, and in the Cretaceous marls of the latter State.

The discovery of a quantity of hydrocarbon jelly, recently, in a peat-bed at Scranton, Pa., has caused some wonder, but similar substances (Dopplerite, etc.) have been met with in the peat-beds of other countries; and while the history of the formation of this singular group of hydrocarbons is not yet well understood, and offers an interesting subject for future research, we have reason to believe that these jellies have been of common occurrence among the evolved products of the decomposition of vegetable tissue in all ages.

The fossil resins—often erroneously called gums—amber, kauri, copal, etc., though interestingly related to the hydro-carbons enumerated on the preceding pages, form no essential part of the series, and demand only the briefest notice here.

Amber is the resin which exuded from certain coniferous trees that, in Tertiary times, grew abundantly in northern Europe. The leaves and trunks of these trees have generally perished; but masses of their resin, more enduring, buried in the earth on the shores of the Baltic, have in the lapse of time changed physically and chemically, and have become fitted for the ornamental purposes for which they have been used by all civilized nations.

Kauri is the resin of Dammara australis, a living coniferous tree of New Zealand, and the "gum" is dug from the earth on the sites of forests which have now disappeared.

Copal is a commercial name given to the resins of several different trees, but the most esteemed, and indeed the only true copal, is the product of Trachylobium Mozambicense, a tree which grows along the Zanzibar coast, and has left its resin buried in the sands of old raised beaches which it has abandoned.

The diversity of character which the fossil resins exhibit shows the complexity of the vital processes in operation in the vegetable kingdom, and gives probability to the theory that some of the differences we find in the carbon minerals are due to differences in the plants from which they have been derived.

The variations in the physical and chemical characters of different coals from the same basin, and from different parts of the same stratum, have been sometimes credited to the same cause; but they are probably in greater degree due to the differences in the conditions under which these varieties have been formed.

Cannel coal, as I have shown elsewhere (Amer. Jour. Science, March, 1857), is completely macerated vegetable tissue which was deposited as carbonaceous mud at the bottom of lagoons in the coal-marshes.

Caking coals were probably peat, which accumulated under somewhat uniform conditions, was constantly saturated with moisture, and became a comparatively homogeneous and partially gelatinous carbonaceous mass; while the open-burning coals which show a distinctly laminated structure and consist of layers of pitch-coal, alternating with bands of mineral charcoal or cannel, seem to have been formed in alternating conditions, of more or less moisture, and the bituminous portions are inclosed in cells or are separated by partitions, so that the mass does not melt down, but more or less perfectly holds its form when exposed to heat.

The generalities of the origin and relations of the carbon minerals have now been briefly considered; but a review of the subject would be incomplete without some reference to the theories which have been advanced by others, that are in conflict with the views now presented. There have always been some who denied the organic nature of the mineral hydrocarbons, but it has been regarded as a sufficient answer to their theories, that chemists and geologists are generally agreed in saying that no instances are known of the occurrence in nature of hydrocarbons, solid, liquid, or gaseous, in which the evidence was not satisfactory that they had been derived from animal or vegetable tissue. A few exceptional cases, however, in which chemists and geologists of deserved distinction have claimed the possibility and even probability of the production of marsh gas, petroleum, etc., through inorganic agencies, require notice.

In a paper published in the Annales de Chimie et de Physique, Vol. IX., p.481, M. Berthelot attempts to show that the formation of petroleum and carbureted hydrogen from inorganic substances is possible, if it be true, as suggested by Daubre, that there are vast masses of the alkaline metals—potassium, sodium, etc.—deeply buried in the earth, and at a high temperature, to which carbonic acid should gain access; and he demonstrates that, these premises being granted, the formation of hydrocarbons would necessarily follow.

But it should be said that no satisfactory evidence has ever been offered of the existence of zones or masses of the unoxidized alkaline metals in the earth, and it is not claimed by Berthelot that there are any facts in the occurrence of petroleum and carbureted hydrogen in nature which seem to exemplify the chemical action which he simply claims is theoretically possible. Berthelot also says that, in most cases, there can be no doubt of the organic origin of the hydrocarbons.

Mendeleeff, in the Revue Scientifique, 1877, p. 409, discusses at considerable length the genesis of petroleum, and attempts to sustain the view that it is of inorganic origin. His arguments and illustrations are chiefly drawn from the oil wells of Pennsylvania and Canada, and for the petroleum of these two districts he claims an inorganic origin, because, as he says, there are no accumulations of organic matter below the horizons at which the oils and gases occur. He then goes into a lengthy discussion of the possible and probable source of petroleum, where, as in the instances cited, an organic origin "is not possible." It is a sufficient answer to M. Mendeleeff to say, that beneath the oil bearing strata of western Pennsylvania are sheets of bituminous shale, from one hundred to five hundred feet in thickness, which afford an adequate, and it may be proved the true source, of the petroleum, and that no petroleum has been found below these shales; also that the oil-fields of Canada are all underlain by the Collingwood shales, the equivalent of the Utica carbonaceous shales of New York, and that from the out-crops of these shales petroleum and hydrocarbon gases are constantly escaping. With a better knowledge of the geology of the districts he refers to, he would have seen that the facts in the cases he cites afford the strongest evidence of the organic origin of petroleum.

Among those who are agreed as to the organic origin of the hydrocarbons, there is yet some diversity of opinion in regard to the nature of the process by which they have been produced.

Prof. J. P. Lesley has at various times advocated the theory that petroleum is indigenous in the sand-rocks which hold it, and has been derived from plants buried in them. ("Proc. Amer. Philos. Soc.," Vol. X., pp. 33, 187, etc.)

My own observations do not sanction this view, as the limited number of plants buried in the sandstones which are now reservoirs of petroleum must always have borne a small proportion in volume to the mass of inorganic matter; and some of those which are saturated with petroleum are almost completely destitute of the impressions of plants.

In all cases where sandstones contain petroleum in quantity, I think it will be found that there are sheets of carbonaceous matter below, from which carbureted hydrogen and petroleum are constantly issuing. A more probable explanation of the occurrence of petrolem in the sandstones is that they have, from their porosity, become convenient receptacles for that which flowed from some organic stratum below.

Dr. T. Sterry Hunt has regarded limestones, and especially the Niagara and corniferous, as the principal sources of our petroleum; but, as I have elsewhere suggested, no considerable flow of petroleum has ever been obtained from the Niagara limestone, though at Chicago and Niagara Falls it contains a large quantity of bituminous matter; also, that the corniferous limestone which Dr. Hunt has regarded as the source of the oil of Canada and Pennsylvania is too thin, and too barren of petroleum, or the material out of which it is made, to justify the inference.

The corniferous limestone is never more than fifty or sixty feet thick, and does not contain even one per cent. of hydrocarbons; and in southern Kentucky, where oil is produced in large quantity, this limestone does not exist.

Previous Part     1  2  3     Next Part
Home - Random Browse