p-books.com
Practical Taxidermy
by Montagu Browne
Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse

Wax is the last, and, as I have before pointed out, is, whether used melted or softened by warm water, of the highest service to the artist. Beeswax, when melted, will mix well with either plaster or whiting, or with both, and will make a useful modelling composition, its brittleness being determined by its containing more or less plaster. Wax will also mix with red ochre, and makes a modelling composition. Modelling wax is sold, however, ready prepared, and is useful to pack under the skin for delicate muscles or "flabby" folds of skin.

Paraffin wax melted, and modelled when half cold, is also sometimes of service; it has, however, so little affinity for "sticking" as to come away from almost anything smooth, on the slightest provocation.

White lead stiffened with whiting is sometimes useful in taking the place of putty, and is a trifle more durable.

Perhaps, at the end of this section, it may not be amiss to point out to the modeller that it is of the highest importance that all his tools should be freed from dirt and plaster at the conclusion of his day's work; scarcely anything rusts and spoils tools more quickly than damp plaster left on them.

TO IMITATE BLOOD.—Frequently blood is required to be shown, as in instances where some animal may be represented tearing its prey. Usually this is done by thickly painting on vermilion and red lead mixed with varnish, or brushing on red lead mixed with thick glue, as a base on which to subsequently lay the vermilion. I may point out, however, that blood differs in tint, and that the appearance of torn flesh, fresh blood, and coagulated blood is best got by painting the parts with wax, and tinting, with a little vermilion, some madder brown, or madder lake (a rather expensive colour), and light red, arranged and blended one with the other as in nature.

Should you be setting up a large group, such as a tiger tearing open a deer, or a vulture at a sheep, you may represent the liver and other organs in modelling clay or plaster, dried, waxed, and coloured, or by coloured wax alone if the part to be modelled is not large.

SNOW, FROST, AND ICE.—The appearances of snow and frost are imitated in a variety of ways. Pounded white sugar; alum powdered, or put on boiling, and suffered to crystallize; borax, two parts, alum, four parts, burnt in a shovel over the fire; and various other crystalline preparations. Nothing, however, is half so good as using best S.F. plaster of Paris mixed with powdered "glass frosting"—bought from the glass-blower's or artificial eyemaker's—to imitate snow, the powdered glass frosting being thrown upon the foliage and rocks—the latter being gummed or varnished with paper varnish—to imitate ice. Blocks of ice require special treatment with glass and thin paper strained over a framework and varnished to get a good and natural effect. Icicles are best modelled in glass.

WATER AND WAVES.—Water is best represented by "hammered glass" coloured, and streaked and varnished, to the tint required. Birds may be represented swimming by being cut in halves, their upper and under surfaces fixed to the corresponding sides of the glass, or the glass may be cut to receive the body, which is the most satisfactory, although the most difficult to manage without smashing the glass. [Footnote: There is a black-necked swan (Cygnus nigricollis), from Chili, treated in this manner, in the Leicester Museum.] Holes may be drilled in the glass to allow water plants to come through, or to allow long-legged birds, such as herons, to stand mid-leg in water.

Waves are moderately well imitated by thin paper creased, varnished and coloured, on which white wool "foam" is arranged.

MODELLING FRUIT, etc, IN PLASTER.—You may, perhaps, wish to model an apple, peach, or plum, to place in the hands of some mounted object, such as a monkey. To do this, you take a natural fruit, which oil, and push it half way (on its longest axis) into a bed of damped and hard-pressed sand banked up all round. At some little distance from the edges of the fruit stick two or three small pegs of wood (points downwards) about half-an-inch long, leaving a quarter-of-an-inch out of the sand. Over all this pour some plaster of Paris mixed with water to the thickness of a paste; when set, lift it up carefully—the plaster now appears with the fruit half set in it, and the two or three little pegs of wood sticking up, their other half firmly fixed in the plaster—oil their points, the face of the plaster, and also the fruit, and laying the half-cast fruit uppermost, pour over it some more plaster.

When set, trim the edges, the complete mould will then part in halves, and the fruit will shake out. Oil the mould inside, and when dry procure some wax—beeswax from the oilman's will do for this purpose—and after heating it carefully, for fear of fire, pour it while hot into the mould through a hole cut for that purpose. When about a quarter full, put your thumb or finger over the hole, and rotate the mould rapidly. Allow it to cool, and on opening the mould the artificial fruit will drop out, and may then be coloured by powder or varnish colours to the tints required.

My friend, Wright Wilson, F.L.S, etc, surgeon to the Birmingham Ear and Throat Hospital, has very kindly written me a short description of the plan he adopts, which, it will be seen, is a complete reversal of the foregoing:

"With regard to plaster casts of fruit, etc, a much neater and readier method of making the mould is to mix a sufficient quantity of beeswax with resin in a pipkin over a slow fire. It must be used whilst just lukewarm by either dipping the fruit—say, an apple—until sufficient adheres to form a good strong coating. When cold (dipping in cold water will readily make it so), the whole can be cut through with a sharp knife, the halves of the fruit come out easily, and a perfect mould in two halves is thus obtained. Fasten the halves of the mould together with string, and smear a little of the warm material over the joint to hold it together, and cast your model (into this, through a small hole made for the purpose) in the usual way with plaster of Paris made rather thin with water. When set, place in a little warm water, when the mould easily strips off, leaving a model of the most perfect kind and at a small expense, for the mould can be melted up and used over and over again."

Glue may sometimes be substituted for the wax.

The advantage of being able to fall back on this system is obvious, especially if the modelled fruit is to be placed in a position exposed to considerable heat. Of course, the plaster model must be coloured to nature, and, as I have before pointed out, this is not one of the easiest things to do. I would suggest dipping the model (when dry) in melted wax to give a surface for colouring, or modelling it in paper.

PRESERVING SPIDERS, etc.—Spiders, which from their rarity or the beauty of their markings it may be desirable to preserve, require the contents of the abdomen to be pressed out, or their bodies to be cut underneath. A first-rate article on preserving these crustaceans appeared in Science Gossip for January, 1868, in which the author points out what is just as well to bear in mind, which is "that the colouring matter or pigment is placed between the outer or abdominal covering and the pulpy contents within, upon a very delicate membrane, which adheres very loosely to both, but more firmly to the contents within; so that when the viscera or contents are rudely removed, and without much tearing, the whole mass will be found more or less coloured, while the outer skin will be left entirely transparent. To preserve, therefore, the beauty of spiders, this must be untouched."

He further says: "Make an incision along the ventral aspect of the abdomen, nearly its whole length, or as long as will enable the pulpy contents to be easily removed; then pinch up the pulpy mass with a small forceps, carefully avoiding any dragging; then, with sharp-pointed scissors, cut away the contents bit by bit until the whole is nearly removed, or until you can see the brilliant colour shining through what remains in the cavity—better leave a little too much than be too nice in clearing all away; then, with a blowpipe, distend the empty abdomen; it will very soon become firm, and retain its original form, but until it is so the blowing must be frequently repeated."

A correspondent to Science Gossip, page 21, 1868, says: "I found the best way to preserve spiders was to suspend them by a loop round their waist in a solution of glycerine 2/3, water 1/3. The solution may want changing once or twice at first, after that it will keep unchanged for years."

Fig. 36—Blow-pipe for inflating larvae

PRESERVING CATERPILLARS.—The larvae of moths and butterflies may be preserved by pressing out the contents of their bodies, and by working from the head to the tail in a gentle manner, and assisting the removal of the mass by a careful dragging with a crochet needle. When empty, a little corrosive sublimate solution may be injected with a metal or glass blow-pipe, and the empty skin then distended by blowing into it through a very fine blowpipe, made by drawing out in a clear flame a small glass tube until it is attenuated to a fine point. This being inserted in the orifice at the last segment of the caterpillar, is kept in place by being tied round with a piece of darning cotton, or, better still, by a contrivance shown in Fig. 36 (the invention of Mr. Auld, in Science Gossip for 1872). A A are pieces of watch spring tied on the thick part of the blowpipe, and holding the caterpillar by pressure on the last segments when the point B is inserted.

Mr. Auld, I see by his article, used a spirit lamp under a glass jar to form a drying chamber while blowing; but I have myself found a "box iron" a most convenient arrangement. The inner iron, being heated in the fire, is placed in the chamber or "box," which it thoroughly heats; then removed, and the larvae introduced and blown out in the hot air, but not so full as to unnaturally distend the segments.

A certain loss of colour inevitably takes place in preserved larvae, which in the larger ones may be restored by colouring inside them with powder colours mixed in turps. Coloured wax is sometimes injected, and makes the skin very firm, but it is a delicate operation, requiring great skill in application. When finished, they may be "mounted" on green silk-covered wire, or, more naturally, on nicely modelled leaves of their various food-plants, by gum attached to their claspers.

It is often necessary to plunge the more delicate larvae into a weak solution of carbolic acid, or alum and water, to harden them before preservation.

SKELETONS OF ANIMALS.—Many people being under the impression that it is only necessary to remove the flesh of any mammal or bird in order to get a perfect skeleton, it may be as well to point out that as the flesh rots, so do the ligaments which hold the bones, and consequently the skeleton falls to pieces. When, therefore, you have made your skeleton by the means recommended by various authors, such as exposing it in an ant-hill, a wasp's nest, or to the attacks of the "blow-flies" or "mealworm" (the larvae of a beetle), to "tadpoles," or —as is the usual way with the bone preservers—by maceration in water for a lengthened period (after removal of a great deal of the flesh, the skin, and entrails), you will, after the careful removal of the flesh still remaining, and subsequent drying of the bones in the sun and air, find that nearly every bone will have to be attached to its fellow by fine brass wire, and in the case of the bones of large animals, each bone will have to be neatly drilled and coupled with brass wire of greater strength.

Skeleton-making by maceration in cold water is, perhaps, one of the most sickening operations. I have been somewhat successful by trimming off all the flesh possible, wiring some parts together, tying others in cloths and boiling them gently for several hours in water changed from time to time, afterwards taking them out and picking off, with fingers and blunt tools, all the flesh remaining—whilst hot—then drilling and wiring all together with galvanised or copper fastenings in a proper manner, boiling again in plenty of water, and then allowing the bones to remain in cold water—constantly changed—for a week or so; finally laying out in the sun and air to bleach.

By this system I have lately "skeletonized" part of a horse, and the bones are free from grease and fairly white. Experience, however, in this as in everything else, will tell you what to do and how to piece one system into another to best advantage. Washing the bones with Hudson's "dry" soap, or soda and water, will often remove a great deal of the grease. Chloride of lime and water will assist the bleaching, but must be managed cautiously, or in careless hands it is likely to do more harm than good. The making of good and nicely bleached osteological preparations really depends on carefulness and neatness, supplemented by water, air, and sun; by the three latter aids, I have repeatedly improved in a wonderful manner "old bones" which were greasy and discoloured.

Should the sea be close at hand, the skeleton, shut in a box with holes, may be sunk, and exposed to the attacks of various "small deer," especially "bees" (Aega tridens), which swarm in some shallow waters to such an extent as to clear the flesh from a large animal in a few hours.

SKELETON LEAVES.—Very beautiful objects may be made by placing the leaves of trees and shrubs, or such as are of a strong or woody texture, in a pan, pouring boiling soft or rain water over them, then exposing them to the atmosphere for a time varying from one to three or four months. They are then gently lifted out and held on a board, or on a plate, under running water, and the pulpy part, or epidermis, removed by gentle brushing with a camel-hair pencil or fine needle, to split the skin away from the mid-rib.

When nothing but the ligneous skeleton or woody fibre remains, it may be placed in a weak solution of chloride of lime, and exposed to the sun under glass to dry and bleach. To prevent them sticking to the paper on which you may wish to dry them, use either blotting-paper or oiled paper, after well washing the leaves. If skeletonizing in summer time, trust to sun alone, as chloride of lime has a tendency to make the leaves go brittle. The seed vessels of various plants, such as the poppies, thorn apples (Daturae), and campions, as also the leaves of laurel, holly, ivy, lime, sycamore, poplar, and a host of others, may be treated in this manner. When finished, they may be mounted on wires whipped with white silk, and placed on black velvet under a shade.

Some writers have advised the boiling of the leaves in a solution of caustic soda, or steeping them in a strong mixture of chloride of lime and water, but I have hitherto considered these plans not so practical as the foregoing, though, perhaps, quicker; as, however, I find two writers, in Science Gossip for 1867, very positive on the subject, I will give the following extracts:

"A solution of caustic soda is made by dissolving 3 oz. of washing soda in two pints of boiling water, and adding 1.5 oz. of quicklime, previously slacked; boil for ten minutes, decant the clear solution, and bring it to the boil. During ebullition add the leaves; boil briskly for some time—say, an hour—occasionally adding hot water to supply the place of that lost by evaporation. Take out a leaf and put into a vessel of water, rub it between the fingers under the water. If the epidermis and parenchyma separate easily, the rest of the leaves may be removed from the solution, and treated in the same way; but if not, then the boiling must be continued for some time longer.

To bleach the skeletons, mix about a drachm of chloride of lime with a pint of water, adding sufficient acetic acid to liberate the chlorine. Steep the leaves in this till they are whitened (about ten minutes), taking care not to let them stay in too long, otherwise they are apt to become brittle. Put them into clean water, and float them out on pieces of paper. Lastly, remove them from the paper before they are quite dry, and place them in a book or botanical press."—Dr. G. Dickson, Science Gossip, January, 1867.

"I once saw another way of managing skeleton leaves that interested me greatly. The leaves were boiled for two minutes, and then transferred to a strong solution of permanganate of potash and gently heated. In an hour or two the laxer tissues were easily removed by means of a brush. Sulphurous acid was used for bleaching them, and this liquid was also employed with much facility for the removing of the stains on the fingers caused by the permanganate of potash."—George Newlyn, Science Gossip, November, 1867.

The last-named gentleman appears to bleach his leaves by fastening them across a hat-box by means of strings, inserting a pan or tin cup containing sulphur, setting it on fire, and shutting down the lid (of course, out of doors). The whole article is very interesting, but too long for insertion here.

CRUSTACEANS.—Lobsters, crawfish, and crabs must have the cephalo-thorax (the upper part) disjointed from the body or "tail" part, the limbs taken off at their attachment to the body, and the whole of the flesh removed by means of the "undercutting tool" (see Fig. 29), and crooked wires; afterwards wash the inside with carbolic wash (No. 15), and fill the limbs and body with dry plaster and wadding, neatly fixing on the legs where disjointed, and putting the remainder of the body together with any of the cements mentioned in Chapter IV.

POLISHING HORNS.—As a commencement it will be requisite to remove all the rough shell-like layers of horn which stand up as knots and gnarls, and mar the symmetry of the horns. In some horns, old ones especially, you will find their inner sides covered with several thicknesses of this waste or dead stuff. Do not be afraid, but boldly pare this down level with the surrounding horn, for which purpose nothing is so good as a spokeshave. Blood stains usually lie in the soft upper layers; shave these down carefully until they end, which will be underneath where the horn becomes white and of a more ivory-like texture. When nearing this it will be as well to give up the use of the spokeshave, and use some instrument in a scraping manner; the side of a chisel (not the cutting edge) or a knife is best for this purpose. The handle being held in the right hand and the point in the left, scrape the horn until you get to the white part, which will be somewhat harder than the remainder.

In colourless horns you must get down to this white part, or your polish will not be high; besides this, blood stains will show up, and the surface will look of a soapy, greasy nature, instead of the ivory-like texture it should assume. Be careful when working to the largest part, or base of the horn, not to run your tool through, as it is much thinner there than at the tips.

Whilst thinning rough places in certain horns you will find a half round and flat fine rasp of great assistance. When you have obtained a nice even surface all over, use glass paper of different degrees of fineness, and pumice-stone. Collect the dust which falls off, with a rag dipped in linseed oil and well rub the horn with this. Next get some "putty powder" (oxide of tin), which rub violently on all parts of the horn with a rag and linseed oil, finally finishing off with brown paper, a soft rag, and the palm of the hand, using plenty of "elbow grease."

Remember, horn polishing is all hard work, unless managed by "bobbing" on a lathe, so let no one attempt it who is not prepared to work very hard, as plenty of quick and violent friction is indispensable in the latter stages to give the high polish requisite. Horn may be softened, and ultimately dissolved in caustic soda.

POLISHING TORTOISE-SHELL, etc.—To polish tortoise-shell (which is in many cases turtle-shell) it is necessary to scrape the shell very carefully with a broad knife, taking care not to cut through to the under shell or "bone." When properly smoothed rub it over with pumice-stone and water, then with bath-brick and water, finally polishing off, when you have a nice fine surface, with putty-powder and oil, or rotten-stone and oil, with plenty of hard work and hand-polishing towards the last. A little tallow rubbed in with the hand, as the very last finishing touch, will be found of benefit. A paste made of sal volatile and rouge has been recommended to be applied to the shell after scraping, then suffered to remain until dry, and finally polished off.

Bad places in the shell, where it has peeled or been broken off, should be made up with coloured shellac, or hardened wax, put in with a warmed knife after polishing, and finished off separately. Tortoise-shell may be welded by heat.

Sea shells may be polished by being plunged for a little time in dilute nitric acid, then rubbed down with sand paper or fine emery and oil, finished with "Water-Ayr" or "Snake-stone," and finally polished with putty-powder and oil. A mussel-shell treated in this manner makes a most beautiful object, coming out purple, with streaks of lighter blue and pearl.

Stones, such as agates, which are found on the sea beach, or any stone which is required to be polished, is to be first ground down to a rough surface, then polished by successive rubbings of first, second, and third grit-stones of different degrees of fineness, lastly "Water-Ayr" or "Snake-stone," and finished with "putty powder" applied with oil. All of the stones or grits mentioned are to be procured at the marble mason's at a low rate. Serpentine treated in this manner makes a very beautiful object.

EGGS, COLLECTING AND PRESERVING.—Eggs of various birds may be sought for in their seasons in the localities best suited to the several species. But so much depends upon special training or aptitude in the collecting of birds' eggs, that a detailed description of localities where to seek and how to find, eggs, is hardly necessary, in the pages of this work, further than to remark that a pair of "climbing irons" are requisite for those individuals who do not possess the agility of a cat or of a schoolboy.

Climbing Irons (see Fig. 37), to fit the foot and leg, are best made of wrought iron with a welding of finely-tempered steel from C to DE, to form the claw used when climbing. To affix them to the leg, the foot is placed as in a stirrup from C to B, the claw ED pointing inward. A strap should now be passed through a slot or square hole punched in the metal between C and D (not shown in the figure), and laced under and across the foot to and through the loop shown between B and A at a, thus keeping the foot itself tightly fixed. Another strap passes through the loop at the top where marked A, and is strapped round the calf of the leg, keeping all below the knee rigid and secure. When climbing, the hands clasp the tree in the usual manner, and the side of the foot is struck smartly against the trunk, to cause the claw to penetrate. The climber now rests on this, and strikes the claw of the other iron in, on the other side, higher up, and so on alternately.

Fig. 37—Climbing iron

Eggs, when procured, must have their contents removed. To do this they must first be drilled with little steel instruments called egg-drills, which are made of various degrees of fineness according to the size of the egg to be operated upon. Drills are to be procured from the various dealers, but can be made from steel wire softened in the fire and filed to a sharp three-cornered point—afterwards tempered to hardness—for the smaller eggs, or filed up for the larger eggs to the pattern of a "countersink" used for wood; indeed, the smallest-sized "countersink" made—to be procured at any ironmonger's—will do very well for eggs the size of a hen's. Capital egg-drills are to be made from "pinion wire" used by watchmakers. Simply file to a point, and "relieve" with a small "three-square" file the channels of the wire, giving them a cutting edge up to their point. With such a drill as this—cost, about 2d.—I have blown, without any breakage, eggs varying in size, from swallows' to hens'. A drill costing 2s. 6d, which was the price I paid for my first—purchased from a surgical-instrument maker in London, since deceased—could not do the work better.

To use these drills, rotate the point by "twiddling" the drill between the finger and thumb, making only one hole, and that in the centre of the egg. When a nicely-rounded hole is cut, the egg must be emptied by means of an "egg-blower," or blowpipe; the point being introduced into the hole, the contents are blown out or sucked up into the bulb, which, when full, is emptied out at the other end. It sometimes happens that the egg is "hard set." The embryo must, in that case, be cut out with small curved scissors specially made. If hard set, putrid, or stale, an egg often bursts when touched. To obviate this, drill and blow it under water.

Young birds can often be extracted, with a little care, uninjured from their egg-shells, and yet—as happened to me lately in the instance of a hawk—the shell may make a presentable museum object, after such extraction.

In all cases eggs should be thoroughly rinsed out with a solution of six grains of corrosive sublimate to an ounce of rectified spirits of wine. This may be sucked up into the bulb of the "egg-blower," and thence ejected into the egg, which is to be rotated, and what solution is left may then be sucked back and thrown away, or returned to the bottle. Great care must be taken, however, that the mixture shall not pass the bulb and be drawn up into the mouth, as it is, of course, a deadly poison; the egg, being placed (hole downwards) on blotting paper, is to be left until dry.

Those who object to poison may rinse their eggs out with water to which has been added a few drops of strong essence of cloves. This is agreeable to use, and appears to cleanse away all impurities.

A little label may finally be gummed over the orifice, and the specimen is then ready for the cabinet; or, as labels will in time fall off, however well they may have been previously gummed, it is better to write a distinguishing number, and as much of the history of its collection as is possible on the egg itself, the full history, of course, being posted up in the note book. Labels may, however, be used with great advantage on the divisions of the cabinet drawer which separate one species of egg from the other.

Loose labels are not to be used on any account, as they often get reversed and create confusion, and a collection thus treated is brought into grave discredit. Eggs, when being sent any distance, should be separately wrapped in cotton wool, and packed in a strong box, any interstices being lightly filled with wool also. Sawdust or bran should never be used as a packing medium, as the eggs shake together and break each other in travelling.

For those who require coloured figures of eggs I must refer them to Hewitson's "Eggs of British Birds," or Atkinson's "British Birds' Eggs and Nests," a much cheaper, but very good little work; also to a new work by Mr. H. Seebohm (the celebrated traveller in Siberia, etc.), entitled, "A History of British Birds," with coloured illustrations of their eggs.

PREPARATION OF MICROSCOPIC OBJECTS.—The same remark applies to this as to aquaria (see Chapter XIII.). The treatment is so varied, the objects so numerous, that books upon books have been written on it. Every naturalist and curator, however, has to work sometimes with the microscope; but taking into consideration the vastness of the subject, I must refer them to text-books, such as Beale's "How to Work with the Microscope;" Lankester's "Half-hours with the Microscope;" Hon. Mrs. Ward's "The Microscope;" Davies "On the Preparation and Mounting of Microscopic Objects;" G. E. Davis' "Practical Microscopy;" Gosse's "Half-hours with the Microscope;" Wood's "Common Objects of the Microscope;" any of Quekett's works, and to late numbers of the Monthly Microscopical Journal, Nature, Science Gossip (the latter teeming with practical hints on all matters connected with natural history), and hosts of other works.

This chapter, dealing as it does with details and hints upon many subjects, may fittingly be closed with scraps forgotten in the body of this work, but which now occur to me as being useful knowledge.

STARCH AS PASTE: (see chapter IV).—Procure some common starch (that which is white looking is perhaps the best), mix it up with a little cold water, just sufficient to dissolve it, stirring it thoroughly to prevent lumps. Pour upon this sufficient boiling water to make it into a stiff paste. This will be found most useful for clean paper or photographic work, as it enables paper to be pasted on cardboard, etc. without creasing. The paper should be first wetted on the face side, the back pasted with the starch-paste, fixed on the cardboard, and the whole dried off by blotting paper. For common taxidermic work, paste containing resin (sold at leather merchants') is strong and cheap.

BEST GLUE, made in the ordinary manner, but rather thicker than usual, then poured into a bottle containing enough methylated spirit to thin it, is recommended as being a strong medium to stick paper on wood or cardboard, with the advantage claimed for it that it does not cause the thin wood or cardboard to "cast" or "buckle."

MARINE GLUE dissolved in diluted acetic acid makes a strong cement for certain things, such as mending shells. This, as also the preparation of Formula No. 33, should be kept in bottles, or small stoppered jars, and melted for use by surrounding with hot water.

LEATHER is (so says a bookbinder) to be pasted, after it is damped on the outside. Cloth is to be glued. This is useful to know if making up cloth-covered boxes with leather backs, to imitate books (see Chapter XV, on Entomology).

ANTI-INSECT NOSTRUMS (see chapter IV).—Russian tallow in saucers, oil of birch, flowers of sulphur, hellebore, pepper, tobacco, are said to be "bogies," the last especially, to the Dermestes beetles and their cousin, Anthrenus museorum. Try them, but don't rely too much upon them, is my advice; nor, indeed, upon anything—not excepting even corrosive sublimate. Trust only to exposure to light and constant supervision, zinc or wire drying cases, and to "casing up" as soon as possible.

If sending specimens long distances, it is well to pepper the shot parts, enclosing also in the parcel some pieces of charcoal wrapped in paper. Of course, if the specimens are not for the table, dilute glacial carbolic acid, poured on the wounds and down the throat, is the best thing to do, but it should always be noted in an accompanying letter, for fear of accidents. Smearing the hands and face with paraffin is said to keep forest flies and midges from biting.

PRESERVATION OF ANIMAL TISSUE (see chapter IV).

Chloride of zinc, 1 part.

Water, 20 parts.

This formula appears to be one of the non-alcoholic preservatives most suited for fishes in preparation jars. I have so lately tried it that I cannot at present state if it is the very best.

PICRIC ACID, formed by a certain chemical fusion of carbolic acid with nitric acid, is recommended (when diluted) for the preservation of soft-bodied animals, such as zoophytes, etc.

BICHROMATE OF POTASH (see chapter IV), though so useful for pickling fishes, mollusca, worms, and even "jelly fish" and sea-anemones, is, I have found, liable to be attacked by mildew; to prevent this add a few drops of phenic (carbolic acid). [Footnote: Phenol, Phenic Acid, Phenic Alcohol, Hydrate of Phenyl (C6H5HO)=Carbolic add.] This salt is also used in microscopy to assist in fixing glass covers on glass slides. The cement in question appears so admirably adapted to many purposes, that I think it worth quoting (see Science Gossip, 1879, p. 136):

Cox's gelatine, 2 oz.

Acetic acid, fluid, 1 drachm.

Gum ammoniac, 10 grains.

"Dissolve in a water bath, and filter through cotton while warm. This cement remains fluid when cold, and dries quickly. After the ring has become set, or stiff, the whole slide is immersed for a minute or so in a 10-grain solution of bichromate of potash, and is then allowed to dry, exposed to the light, which makes the bichromated gelatine perfectly insoluble, even in boiling water, and thoroughly prevents the escape of any glycerine."

PERMANGANATE OF POTASH (see chapter IV) is recommended at p. 49, Science Gossip, 1879, by a French scientist, for "preserving delicate organisms." "It is especially good in histological researches, as it acts like osmic acid, burning up the protoplasm, bringing out the minutiae, and showing the nuclei, outlines of cells, etc. It is used as a saturated solution in distilled or very pure spring water; sea-water also dissolves it. The concentrated solution, of a lovely violet colour, kills small organisms at once, and then burns them. They are left in it from thirty minutes to an hour, then withdrawn, and placed in alcohol, after which they can be made transparent with essence of terebinth and mounted in Canada balsam. Beautiful results are thus obtained with echinoderms, zoophytes, worms and marine arthropoda. For delicate researches, especially in the ciliated infusoria, it is better than osmic acid, without its great cost, and is everywhere easily obtained."—G. du Plessis.

GLYCERINE (see Chapter IV).—Glycerine will be found useful for rubbing on the eyes or noses of animals to keep them moist and prevent their drying up when modelling, as well as for many other purposes, which will readily occur to the practical worker.

CORALS, etc, may be cleaned by first soaking in warm water, to remove surface dust, etc, then allowing the tap to run on them for some hours, and afterwards soaking them in a weak solution of chloride of lime for a short time, until fairly bleached.

BIRDS may be roughly preserved from immediate decay by pouring down their throats, or into their bodies by an incision under the wing, crude creosote or carbolic acid. I remember once having a collection of birds from India prepared in this way, which after a lapse of years were successfully skinned and made up—"as well as could be expected."

Sometimes I have been written to by correspondents to say that they had cured some mammals' skins by Formula No. 9, and that there was an efflorescence about the mouth, or that mildew had appeared. My answer has ever been:

Firstly, that possibly the specimen had been cased up too soon. At least two months should elapse after stuffing before mammals should be mounted in a case.

Secondly, that common alum had been used instead of burnt alum.

Thirdly, that an undue proportion of saltpetre had been mixed with the alum.

Should mildew make its appearance, it would point to improper mounting —i.e, not trimming off enough flesh or fat, or to the specimen being mounted in a case before it was sufficiently dry. If it be mildew, the specimen must come out of the case and be properly dried. If it be merely crystallisation of impure alum, the crystals must be washed off with warm water from time to time as they form, until no more appear. It must be remembered, however, that a damp house, or juxtaposition to a wet wall, will ruin the most carefully mounted specimens.

Correspondents may be quite sure that neither the method nor the formula are to blame in the matter. The great point is to wipe off the mildew or crystals as fast as they appear until no more form, which will determine when the specimen is thoroughly dry.

How to solder, either by the blowpipe or by the "bit," is now and then useful knowledge. Any mechanic will impart this for a consideration.

CHAPTER XIII.

CASES, MOUNTS, SHIELDS, EGG CABINETS, ROCKWORK, FERNS, GRASSES, SEA-WEEDS, ETC, FOR "FITTING UP."

CASES can be made in all styles. The oldest is the "box," which needs no description. Next in age is the "canted-corner case," a most odious abomination beloved of the amateur; the shape of the ground plan being as Fig. 38. A to A the front, B to B the back, C C C is glass, the points A A are wooden or metal uprights, pinning together top and bottom; B B B B is wood; hence it follows that all the space outside the dotted lines is useless, or if used at all, the uprights (A A) cross perhaps the most important part of the work, so that this shaped case resolves itself into the following difficulty: either the case is too large for the object, or two lines cross it.

Fig. 38—Plan of "canted-corner" case.

The usual glass-ended square case is easily made by any amateur joiner in this wise: Take two pieces of wood for top and bottom to size required, plane and square them up together to ensure their being exactly alike; then, with a "plough" plane, set to 0.375 in, "plough out" all around the front and sides of each to half its thickness. Take the back and nail it to the top and bottom with brads; having done which, next take two pieces of wood for the uprights of sufficient thickness to suit the case—too great thickness being guarded against.

Fig. 39—Section of "uprights" or pillars of square case.

Let us, however, assume that each of these pieces is 0.75 in. square, the height immaterial, "plough" these out on two sides, the "plough" still set at 0.375 in. for depth. For the front, "plough" out 0.375 in. from the edge, and 0.375 in. deep, this still leaves 0.375 in. out of the 0.75 in. untouched; turn the upright now on its side and repeat the "ploughing," allowing for just missing the point of intersection. Fig. 39 shows a section; the dark part is the wood left, the dotted squares show where the wood has been removed; the corner A, outside the dotted line, is afterwards rounded off. Each upright is "ploughed" alike; they are then glued and nailed to the top and bottom by brads running through; the rounded edges falling outside.

The case is now finished, as will be seen, for the reception of glass at its front and sides. First, however, it will have to be blacked or ebonised. Mix, therefore, some "lamp" or "drop" black in powder with thin glue-water, boil, and lay the mixture on with a stiff brush over the case whilst warm. When quite dry, rub it down with fine sand paper.

The subjects being mounted in the case, paper the glass in with brown paper and strong paste, and then go over the previously blackened case with a very thin coat of Brunswick black. When this is dry put a slip of 0.5 in. or 0.75 in. gilt moulding (procured at the picture frame maker's) all around the front of the case on top of the prepared glass, and just within the edges of the wood "ploughed" out to receive it, nicely mitring the comers with a mitre and shooting block.

The foundation of this latter is a sound 1 in. board, 2 ft. 6 in. long by 18 in. wide, or of any other convenient dimensions. Upon this is screwed another piece an inch or more thick (Fig. 40), so as to make a step (C C). Both pieces must be dry, so as not to be liable to warp; upon the higher part are screwed two strips of hard wood (B B) about 1.5 in. or 2 in. wide, forming a right angle where they meet. The whole must be very accurately made, and although deal will answer the purpose, hard wood of some kind will be more satisfactory. Beech or oak will do very well.

Fig. 40—Mitre block.

Suppose a piece of moulding to require mitring; it has only to be laid as shown against the guide bar (B), and sawn off on the line (CC), or laid on the other side against the second guide bar, and similarly cut off. It will be necessary to use both sides in this way, because, although the piece cut off has also an angle of 45 deg, it would need to be turned over and applied to the other, which could not be done without reversing the moulding. In a plain unmoulded strip this, of course, would not signify.

Gilt moulding may be put at each end or not, according to the fancy and pocket of the workman. The case is now finished, and shows the front and two sides of glass framed in by gilt, outside of which is the narrow black line of the wood. If it be desired to get up the wood of the case in a superior manner, it must first be blacked with the glue and lamp-black, sand-papered down, blacked and sand-papered again, and finally French polished.

The most substantial and effective case is the "stop-chamfered" one, made either in deal ebonized, or fancy woods polished. In this the glass is put in from the back with putty, or papered in, and finally held in place by "beads" of wood, the top is lined with linen and coloured in oil, and after the work is put in (from the back) the back-board (previously lined and coloured) is screwed up, and thus you have a case perfectly impervious to dust or to the changes of the atmosphere. Unless the amateur is a good workman, it will be better for him to get such a case turned out by a professional joiner, to ensure clean-cut work.

These are very handsome and neat cases, especially if the back be "ploughed" out deeply to receive a canvas on a stretcher, on which a characteristic scene is painted. In this event the included work must be good, and the fitting-up as plain as possible.

Cases for fishes are best glazed by "sprung" or semi-convex glass for the fronts, which often does away with the necessity for glass ends, and gives also a more artistic and finished appearance.

Glass shades, especially those of an oval shape, suit many birds well, but for large work are more expensive than cases. Stands in black or gilt are usually supplied with them; but those in mahogany, oak, and other fancy woods must be ordered, unless the amateur possesses a lathe, and the requisite knowledge to use it. In fitting up these with rockwork, etc, it is best to arrange the work on a "false bottom," or at least to cover up with paper the polished stand, lest it be spoiled.

MOUNTS.—"Mounts," which are simply tops of round or oval shades fitted into corresponding stands or frames of wood, or are open cylinders of glass with a flat piece cemented on one end, were, I believe, first invented by Mr. George Ashmead, of Bishopsgate-street, London. They are very effective, and also occupy but little space, as they hang up on the wall in positions where shades or cases will not go.

The method of making up a "mount" is as follows: Procure from a glass merchant the top of a shade, let us say 12 in. in diameter by 7 in. high. To this have a stand or rim turned out of thoroughly dry wood of sufficient size to overlap the shade 1 in. all round—14 in. in diameter, therefore, for a 12 in. shade. A groove should be turned in them stand of sufficient width to allow the glass to play freely.

The groove, however, should be so arranged that the excess in width should fall outside the glass. The centre of the stand inside the groove being tinted for a sky, as desired, the objects, whether small birds or butterflies, are introduced in the usual manner, and the glass is then cemented, in the groove, over them.

Waste cylinders of glass may be economised for making mounts. It will then, however, be necessary to have a circular plate for the top cut by a glazier's turn-table. These are really better for showing up anything than the round-topped mounts, as they cast no reflection; but the top plates are harder to put on and to keep on when finished. Strongly pasted black tape will do to fix the very small ones, but for larger the tops should be cemented with thick white-lead, left to dry, and then further cemented with narrow tape smeared with white-lead, or any of the cements given in chapter IV. If it be desired to give a rounded edge to this taping, plaster or whiting mixed with glue and lamp-black may be laid on thickly, rubbed down with fine sand-paper, and polished, or if the black is left out, the cement may be gilded, after the manner of picture frames.

The stand itself may be "dished" out in the centre, in concave form, and thus more room allowed for the enclosed specimens; but in this case the stand must be of some thickness.

At one time the glasses were put in the stands with glue and cork, or glue and paper, until it was found, in nine cases out of ten, that glue, under atmospheric changes, sooner or later broke the glass, or else entirely released it. Putty was then used, but that failed to hold with the tenacity required, as there was a constant tendency of the shade to fall out by its natural weight when hanging up. I have accordingly mixed white-lead with putty with better results, in the proportion of two parts putty; one ditto white-lead (thick, such as gasfitters use); one-eighth ditto gold size—or I have used red-lead, mixed with common putty and boiled oil; and, again, simply plaster of Paris mixed with water. These last two are the best holdfasts of glass within my experience.

Supposing the stand to be ebonized, or of mahogany or any other fancy wood, the putty or plaster can be coloured to any required tint, or if the stand is gilt the cement can be gilded over. Failing to make a very neat job, it will be necessary to wind a piece of chenille around the shade in order to hide the junction.

As it is very difficult to prevent a small percentage of the cement from working inside, and thus spoiling the neatness of the sky effect, I have devised the following plan, which I do not think is generally known: Instead of using a solid stand with groove for the back of the mount, I turn a rim of wood to form a ring, in such a manner that it shall just pass over the shade without allowing the latter to fall through at its bottom edge. Underneath this rim, or ring, I turn it out to within a quarter of an inch of its edge to receive the back, turned out of a piece of thinner wood.

The rim of wood is best turned by being nearly cut through on its upper or pattern side, the wood then reversed on the lathe, turned out to receive the back, then altered again, and the rim cut entirely through. To fix this, the rim is fitted on over the glass, and kept in place with cement. The work is made up on the back, which is then screwed, or pasted, or glued, in the hollow turned out at the back of the rim. By this method there is no cement showing inside on the sky-line of the work when finished, nor can the glass possibly tumble out, being, of course, held by the rim, which is of necessity smaller than the bottom of the glass. Such rims may, of course, be ebonized, of fancy woods, or gilded, according to the taste of the workman. A small screw-plate with ring should be attached to hang it up by.

A modification of the "mount" is made by securing five pieces of glass together in the usual manner, by tape pasted on each edge to make a square glass cover, making up the work on a piece of board of the required size, rebated or grooved all around, or by nailing on strips of wood to receive the glass cover, which is then pasted or cemented to the edges of the board, and finally finished off by dropping over all picture-frame moulding, cut and joined to size, to which the back is screwed. This style does either for fishes or dead game to stand upon a hall table, or easily becomes a "mount" by the simple process of screwing on "plate-rings," and hanging it up on a wall.

The colouring of the backs of cases and mounts is of two kinds—distemper and oil; that is to say, supposing paper, calico or sheeting is used for the back of the cases or mounts. Colour the paper or other material—if you wish to show a toned sky—with whiting in which a little glue-water or paste is dissolved, or with common flake-white and size (note that there must be a good body of white to give a luminous appearance), tinting at the same time with blue, shading off into pink, etc. The colours most useful are ultramarine, vermilion, and chrome yellow in powder. This colouring will not do if putty is used to put the glass in with, as the oil flies over the tinted sky. For oil painting place a thin calico or canvas on the backs, and colour with the tints you desire, mixed in oil and turps. Putty can be used in any part with this colouring. One coat of colour is sufficient, as if another is added an unpleasant glaze is the result.

SHIELDS.—Heads of mammals, etc, when set up and finished, should be mounted on "shields" of fancy wood; oak or mahogany being the best, unless ebonized and gilded pine is preferred. The shapes are usually a modification of the conventional "heart," such as will be found in a pack of cards. This being purely a matter of individual taste, the taxidermist may easily make as many patterns as he chooses by doubling a piece of brown or stiff paper and cutting his shapes out therefrom. One of these paper patterns may be traced around upon a piece of planed wood of the suitable size, and cut out by a "bow "-saw, the edges trimmed and bevelled, and the surface finally polished. A key-hole (protected by metal screwed across in the instances of large or weighty heads), is bored or cut, by which to hang it up, and the neck-block of the specimen is screwed thereto by three screws of sufficient length placed in the form of a triangle. Horns alone are attached to shields by screws running through the frontal bone, or, if without this, are attached—to a model of the frontal bone in wood, by nuts and screws.

CABINETS FOR EGGS AND SKINS.—I have lately seen many cabinets for eggs, skins, etc, constructed on a capital system, the invention, I believe, of Mr. Salvin, the eminent ornithologist. The drawers are made of varying depths, from 1 in. to 6 in, and the bottoms are fitted with tongues overlapping each side, which fit into grooves cut in the carcase of the cabinet, and so arranged by a little calculation that a shallow drawer can immediately be inserted in the place previously occupied by a deep one, or vice versa—i.e, a deep 6 in. drawer, which may be No. 30, at the bottom, can be pushed upwards at any intermediate point between that and No. 1.

The modus operandi is as follows: Whatever the depth decided on of the drawers, the carcase is grooved all the way down to half the depth of the shallowest drawer, if in even inches, or to a multiple of each drawer if otherwise. Example: Take a foot rule and mark off 10 in on a piece of paper, dividing it into alternate half inches making, of course, twenty half inches; this represents the carcase. Then take some strips of paper or cardboard, which cut to 1 in, 1.5 in, 2 in. 2.5 in. and 3 in. respectively, total 10 in. These represent the drawers; putting them in their order, they will, of course, fit in the 10 in. Now change them about, top to bottom, or bottom in the middle, or in any way that you like, and you will find that they will always fall in a groove, leaving room for the others, when pushed down, without any open space between.

The same method is adopted in the cabinets under the invertebrate show cases in the Liverpool Museum, which I recently visited under the able guidance of the clever and genial curator, Mr. Moore, so well known, together with his family, in connection with many unique and beautiful osteological preparations.

CASING UP WITH ROCKWORK, ETC.—Brown paper was formerly the piece de resistance of those who aspired to imitate rocks on which to place or to surround their animals. It was used by being first soaked in water and drawn over pieces of wood, boxes, or large cinders even, to give shape. It was then glued, and small stones and sand thrown on. Usually uncoloured, it revealed itself in its naked ugliness, and looked what it was—paper. Later, it was more artistically arranged, and when divested of folds by the application of more paper, plenty of glue, and well coloured, it certainly looked decent. Then came peat, a glorious innovation for quick, if not artistic, work. This dried earth, dug from bogs, admits of being carved and shaped to almost any form. Sandstone and some other rocks may be represented by it, as also trunks of trees. Well glued and sanded, it takes colour readily, or it may be gone over with a mixture of whiting and plaster of Paris with glue-water, and finally coloured; or dry plaster may be mixed with thick oil paint as a "priming" medium.

"Virgin" cork is the latest rockwork model. Its shape being irregular, it is well suited to imitate craggy rocks, added to which it takes thick colour or whiting well, glued or unglued.

Nothing, however, beats a mixture of all methods—paper, peat, and cork, their lines broken up or blended with wadding. The whole of this, well glued, sanded, and properly coloured, will defy the most critical unprofessional judgment to declare it anything but what it seems—hard rock.

I am speaking, of course, of small cases; large work requires consideration. Peat will not do for anything but the illustration of small subjects. It is too heavy, and does not readily adapt itself to imitate large masses of overhanging rock; added to which, its expense in large quantities is very great. It is also dirty to work with, and is often a harbour for larvae of various moths—inimical to the taxidermist. I so recognised all these facts in the treatment of the rockwork in the Leicester Museum, that I determined to use paper only, treating it by an old method, artistically elaborated.

This method was, after making a rough drawing and calculation as to the positions the specimens would occupy in the case, to nail strips of "quartering" across the backs of the cases, to which again were nailed strips of 0.75 in. wood, crossing in all directions, but especially where the drawings indicated a mass of rock. On these, and to these, small shelves of wood were nailed in the positions to be subsequently occupied by the specimens. To these shelves cardboard was tacked, and bent upward and downward to the pointed or square shapes assumed by the rocks modelled from. [Footnote: It is quite necessary in artistic modelling not only to have coloured drawings of the rocks you are imitating, but to have an actual piece by you as a little guide to form and colour.] Where the edges were too sharp they were beaten in by a mallet, or altered by glueing on wadding.

The mass of rock being joined here and there to break up the appearance of shelves, and to give a certain homogeneity, was then treated by having brown paper well glued on both sides, stuck all over the edges, joins, or accidental fissures; this, suffered to dry, was then well painted with a mixture of whiting and glue-water, again allowed to dry, and again painted. When this last was dry it was gone over with a thin wash of glue-water, and sharp "silver" sand thrown on; when dry, coloured by staining it with various oil colours (not tube), and some few powder colours—blue-black, yellow ochre, Vandyke brown, celestial blue (cheap), burnt sienna, etc, thinned with turps, afterwards touched up, when dry, with touches of tube colours, smartly and cleanly put on. This would be the treatment and colouring for greyish-brown or yellowish-grey smooth, dry-looking rocks, sandstones, etc.; and by a little alteration of tint and treatment in places, would imitate the various slates.

For chalk and limestone, mix plaster and sand with the whiting and lay it on thickly, not throwing on sand, as a final operation. Colours, of course, are different here, more bright and light green predominating; but the colouring of the rockwork, etc, to imitate the various kinds of rocks required, is only to be learned by experience; in point of fact, to colour rocks in an effective manner is really the work of an artist, for it is requisite to know the properties of colours, and to "scumble" and "stipple" or "glaze" one colour over another to get "depth." A few hints may, however, help out the tyro.

For rough sea rocks, after sanding and glueing, go over the rockwork with a mixture of chrome yellow and Prussian blue, mixed with oil and turps, the blue predominating; touch up the points with white, and allow it to dry. The next day deepen the shadows with Brunswick black, "stippling" lightly the remainder of the rock with the same. Arrange sea-shells and sea-weed, here and there, where the mounted subject allows of this treatment. This is a shining dark bluish-green and brown rock, suitable for sea-gulls, divers, etc.

For rough grey land rock, paint over all with lamp-black in powder, mixed with plaster of Paris, and touch up the points with oil white. When the work is quite dry, go over all with a glaze of Prussian blue mixed with Brunswick black. Fit up with ferns, grass, and golden lichens on the points, or in the hollows. This makes a greyish rock with no gloss, and is suitable for owls and similar birds.

For rough sandstone rock, paint over with chrome yellow and a very little blue mixed with oil white, the latter predominating; dust over on the points with red sand, touch up the hollows with Brunswick black, suffer to dry, and then go over all with a very little rose pink or vermilion, worked up in turps with a little varnish. Fit up with ferns, grasses, and mosses. This is a reddish-yellow rock, suitable for anything not having red or yellow fur or feathers.

The predominating colour may be mixed with the whiting, etc, to paint over the artificial rock; but there is a certain loss of brilliancy in the colours which follow, unless a white ground has been previously laid on.

For certain objects a great advantage is obtained by making up the rockwork on a false bottom and slipping it, ready finished, into the case.

There are hundreds of other varieties, but they must be worked out by each person according to his proclivities. It might as well be expected that a picture could be painted from printed directions as to imagine that one person could make a rockwork precisely similar to another without seeing it done, or without working it out by his own experience.

Trees for large groups may be carved out of successive layers of peat, or modelled up with brown paper and virgin cork; better still by arranging brown paper over rods or a wire framework, covered previously by tow, and afterwards coloured to nature. The leaves of some trees dry and colour up well, and can be introduced on the natural or artificial twigs.

TWIGS.—Artificial twigs can be made by twisting tow round wire, glueing, and throwing on sawdust, peat-dust, etc, and afterwards colouring. The most natural way, however, is to rub up the gold and grey lichens, and throw them on the glued tow, filling up afterwards with larger pieces to break the lines. Natural and artificial twigs mix well together; the latter, from their flexibility, allowing of any treatment.

FERNS, GRASSES, ETC, FOR "FITTING up."—Time was when our ancestors were content to stick their preserved specimens in boxes with nothing to break the blank of white paper which backed them up. Nowadays we have arrived at such a pitch of decorative art in taxidermy, as in all things, that this stiffness of outline does not suffice; accordingly, we break our background by flowing lines of beauty, produced by the graceful aids of dried ferns and grasses, twigs of trees, etc.

Many ferns are not suitable for decoration; for instance, the male fern (Filix-mas) is of too tender a texture to stand upright when weighted with colour. The very best fern is the common brake (Pteris aquilina), as also the common polypody (Polypodium vulgare). The fronds of the brake should be gathered in August or September, when they are fully matured and hard, and also when the weather, is hot and dry. If gathered in continuous wet weather, hardly any amount of drying will prevent the fronds from ultimately becoming mouldy, when no amount of after-drying prevents them going brittle and dropping to pieces. Ferns which have lost their green colouring matter, and are going red and yellow, dry well, and retain their colours nicely if quickly dried.

Foreign ferns, such as the various adiantums, the "gold" and "silver" ferns, and many others, dry well, and retain their colour if care be used; nothing suits foreign birds better as a background than the ferns and grasses of the various countries they inhabit.

Paper used in the drying of botanical specimens is sold, but being too expensive for this particular purpose, a supply of large sheets of common grey paper used by ironmongers or grocers, or even brown paper, will suffice—the ferns should, directly they are gathered, be laid out straight on a board, or on a floor, and covered with paper, then more ferns, again a layer of paper, and so on—a board weighted with bricks should be placed over all, and suffered to remain for a few days; the ferns are then to be turned, the paper dried, and the process repeated.

When thoroughly dry, the ferns may be coloured with oil paint thinned with turps and varnish, sufficient to give lustre without shininess. Here and there break the green colour with white, red, blue, and yellow, in a manner which will occur to anyone having artistic ability. Ferns treated in this manner soon dry, and retain their colour for an indefinite period, the only thing to be said against them being their rather unnatural flatness—due to pressure; this, however, may be counteracted by a little judgment during the drying, one plan being the regulation of pressure at certain points, aided also by clean dry sand.

Several hard-leaved plants (mostly foreign) found in our conservatories are also excellent driers, many taking colour readily.

Many grasses (not the flowers, but the leaves or blades) dry well. Amongst the best of these is the "wiregrass," found in woods, growing especially over runnels in those localities. The flower also of this plant is most eligible as a decorative agent. The wood melick is another elegant and suitable plant.

The sedges (Carex) dry and colour well, as also several of the water-rushes, reeds, and flags. The "toad-rush" (Juncus bufonius), and its allies, found in damp places, by roads, by canals, and in pasture or corn-fields, dry and colour excellently.

Sphagnum, or bog moss, especially when having pink tips, is a most beautiful object; the only thing to be said against it is the difficulty of getting it free from water, and the length of time it takes afterwards to dry.

Mosses of various sorts growing in woods on trees—lichens, gold and grey, mosses or lichen-covered twigs, sprigs of heather, furze, sea-lavender—all dry well, and come in usefully.

Many persons like their moss and grasses dyed: this is perhaps allowable in some cases for common work; but if a bird or a mammal is nicely mounted, the plainer the fitting, and nearer nature, the better. To those, however, who desire to dye their grasses, I recommend Judson's powder dyes as the readiest medium, the directions for manipulating which are given with them. Any rough grass in flower does for dyeing, and a visit to the fields just before haymaking will supply the amateur with all he wants for this.

Teazles, thistles, and the umbels (seed-heads) of various plants, chiefly compositae, will be found of service; but everything must be thoroughly dried before being coloured, or before being introduced into shades or cases. Nothing must be coloured with water colours or gums, as some writers contend, or mould will inevitably follow. A few drops of creosote, or the black carbolic acid of commerce, poured into the case or shade just before closing up, is a very good thing to prevent mildew, though if everything is thoroughly dried, and only oil colours are used, no danger from this cause need be apprehended.

SEA-WEEDS, SHELLS, ETC.—Sea-weeds, which are constantly used in fitting up cases of sea birds, need no description as to their collection, further than to say that all sea-weeds, whether sea-weeds proper, corallines, and zoophytes, must be well washed in spring water, many times changed, to thoroughly remove the salt, and must be well dried before being introduced into cases or shades. Those who require full descriptions of British sea-weeds, their collection and preservation, I must refer to "British Marine Algae," by W. H. Grattan, published at the office of The Bazaar, 170, Strand, London.

Few sea-weeds proper are applicable to the purpose of the taxidermist, though some of the oar-weeds can be used, and many of the red sea-weeds (Rhodosperms) can be floated out in water and carelessly arranged on paper, if wanted for fitting-up purposes, or more carefully arranged if for a collection. After washing, these small plants adhere by their natural mucilage to the paper on which they may be floated out.

Of all the sea-weeds proper the Carrageen mosses (Chondrus crispus and mamillosus) are the most eligible, and if dried and arranged in cases are very elegant. The common coralline (Corallina officinalis)—a sea-weed which so rapidly attracts carbonate of lime as to be almost of a stony or coral-like texture—is another invaluable plant for fitting up. When wet it is usually purple or pink, but on exposure to the sun becomes white.

Amongst the zoophytes which, though looking like the sea-weeds, are not of vegetable origin, there are many which are most useful, not to say indispensable to the taxidermist. Leaving out the foreign corals, sea-fans, sponges, etc, we shall certainly find the most useful English species to be first: the broad leaved horn-wrack (Flustra foliacia), that mass of thin hand-like leaves, of the colour of brown paper, which is cast up on some shores, often in great quantities. Other useful sorts are those like little trees, such as the common sea fir (Sertularia, abietina and operculata); these last are found especially attached to stones, shells and sea-weeds. The lobster's horn coralline (Antennularia antennina) and the various sponges are also most useful things, the branched sponge (Halichondria oculata) and others being amongst the best for use. Several of the bladder-wracks or "sea-grapes" will dry nicely, as also will the egg cases of the whelk and the "sea purses" and "skate barrows," really the egg bags of the dogfish and skate.

The starfish, or "five fingers," will, after washing, dry well, or can be plunged in any one of the hardening solutions mentioned in Chapter IV. The various sea urchins (Echinii), if emptied of their contents, make pretty objects, either with or without their spines. The beautiful sea anemones are, however, impossible to preserve as dried objects, but must be modelled in glass or wax, as imitations. Various shells come in handily also; amongst those may be mentioned the common razor shells (Solen ensis and siliqua), several of the Venus shells, the common limpets, the chitons, several of the trochi, and last, but not least, the shells of the speckled scallop (Pecten varius).

Many freshwater, as also land shells, come in for decorating cases of littoral birds. Amongst those of the first we may instance Limnoea stagnalis, palustris, peregra, etc, Dreissena polymorpha, Planorbis corneus, etc.; the various Unios, anodons, and many others.

Amongst the land shells very many of the Helices, such as the gaily-coloured nemoralis, or its variety hortensis, caperata, arbustorum, cantiana, etc, as well as many other specimens.

The preservation of most freshwater and land shells is exceedingly easy, the greater number of specimens requiring only to be plunged into boiling water, and the contents removed—an easy operation in the case of the bivalves, and the contents of univalves or snail-like shells being also easily wormed out with a pin or crooked awl. [Footnote: Mr. R. B. Woodward, F.G.S, etc. in one of the very best and most practical of those wonderful little penny "Handbooks" for young collectors, advises a large spoonful of salt being added to the boiling water, for two reasons, one, because it puts them out of pain at once, and also makes their subsequent extraction more easy. "It is a good plan (says he) to soak the smaller shells in cold water (without salt), before killing them, as they swell out with the water, and do not when dead retreat so far into their shells."]

For works on shells see "Manual of the Mollusca," by Dr. S. P. Woodward, J. Gywn-Jeffreys' "British Conchology," Lovell Reeve's "British Land and Freshwater Mollusks," and several clever articles in Science Gossip and the Conchological Journal, by Mr. G. Sherriff Tye and others.

Glue is sufficient to fix all these objects in their places on rockwork, in cases; resins, such as mastic or shellac, or any of the cements mentioned in Chapter IV, are, however, the best mediums to fix such objects upon tablets for scientific purposes. For fixing shells on labelled cards, Mr. Woodward recommends gum arabic, with one-sixth of its bulk of pure glycerine added to it, which makes a semi-elastic cement, with the advantage also of allowing the shells to be taken from their tablets, at any time, by the intervention of hot water.

DRYING AND STORAGE OF SPECIMENS.—It is always a vexed question how to keep newly-mounted specimens free from moths, and flies, and dust, whilst drying. The difficulty is, that you cannot put them away at once in boxes, cases, or shades, for if you do they do not dry at all, but "sweat" and slowly rot, or else become mildewed. If you expose them fully without any covering, they are soon covered with dust, and liable at any moment to—first, the attacks of meat flies, and next of moths and beetles.

Good insect powder is, as I have before pointed out, a deterrent; still, to make assurance doubly sure, I would always, in the case of valuable specimens, enclose them in square cages, made one side of glass, and the three other sides and top of fine meshed muslin, wirework, or perforated zinc, the latter sufficiently fine not to allow small moths and flies to creep in. These can be made of various sizes, can be varied by having a top and back of wood, can have the front to open like a meat safe with shelves, or be simply cases to lift over the specimens like shades; in any case, however, the front glass allows you to see how all is going on, and the wire sides permit a free current of air to pass through to dry the specimens.

In this manner I have been enabled to laugh at the little wretches of insects buzzing around, and flattening their noses against the zinc, in vain endeavours to interview some charming specimens of young birds, whose "fluffy" plumage they delight in. Like the cats, they are "so fond of noticing those dear little birds!"

Skins not in constant use for reference should, when dried, be wrapped in soft paper amidst insect powder, and put away in closely fitting drawers. "Paper fasteners" are very useful to clip the ends of the paper—folded over—which encloses them.

AQUARIA.—This being a subject a little outside my province, I do not purpose dwelling on it, further than to say that all information will be found in "The Aquarium, its History, Structure, and Management," by Dr. J. E. Taylor, F.L.S, etc.; Gosse's "Handbook of the Marine Aquarium," and many others. Two recipes, culled from the Scientific American, 1879, may be of service, however: "Cheap tanks can be made of wood and glass, the frame and bottom being of wood, and sides of glass. In order to make the joints watertight, care must be taken to get a proper aquarium putty or cement. The following is a good recipe: Put an egg-cupful of oil and 4 oz. tar to 1 lb. resin, melt over a gentle fire, test it to see if it has the proper consistency when cooled; if it has not, heat longer, or add more resin or tar. Pour the cement into the angles in a heated state, but not boiling hot, as it would crack the glass. The cement will be firm in a few minutes. Then tip the aquarium in a different position, and treat a second angle likewise, and so on. The cement does not poison the water."

"To mend the broken glass of an aquarium, fasten a strip of glass over the crack, inside the aquarium, using for a cement white shellac dissolved in one-eighth its weight of Venice turpentine."

CHAPTER XIV.

GENERAL REMARKS ON ARTISTIC "MOUNTING," MODELLED FOLIAGE, SCREENS, LAMPS, NATURAL HISTORY JEWELLERY, ETC.

ARTISTIC MOUNTING.—GENERAL REMARKS.—By the time the student has slowly worked his way to this chapter, he will no doubt—should he be apt, and have an artistic mind—have achieved things beyond the mere drudgery of the profession. I take it that, being interested in his work, he will not have rested content with mounting—even in a perfect manner—his animals at rest, but will have "had a shy" at animals in action, or engaged in some characteristic occupation. The days of birds on "hat-pegs," stiff-legged, long-necked and staring, round-eyed, at nothing—of mammals, whose length and stiffness are their greatest merit—has passed away for ever; and only in dreary museums, far behind the age, where funereal silence obtains, and where the dust of mummied animals arises to awe and half poison the adventurous explorer, are these "specimens" to be found.

Public museums are, unfortunately, in nine cases out of ten, not good schools for delineating the natural attitudes or characteristics of animals. This arises partly from the fact that all, save the more modern ones, retain their original specimens mounted in the old style. The newer work of the museums of London, Paris, Madrid, etc, is, however generally of quite a different stamp. [Footnote: Since this was written, the new South Kensington Natural History Museum has been built and I lately had the pleasure of a private view—through the courtesy of Mr. R. Bowdler Sharpe F.L.S.—of the new style of mounting of the future, i.e. pairs of birds their nests and young, surrounded with carefully-modelled foliage and accessories. I there saw a bunch of "willow-herb" magnificently modelled. I was pleased, however, from an artist's point of view, to discover that we in Leicester could give them a "Roland for an Oliver" in our white-throats, together with their nest and young, surrounded by a modelled bramble-bush in blossom; and with our swallows in section of a cow-house—neither of which groups have yet been attempted for the national collection. I am trembling with apprehension, however, that ere long Mr. Sharpe and his "merry men"—one of them, a German, the cleverest bird-mounter I ever saw—will leave us in the lurch. Nevertheless, healthy emulation of the best features of our national collection will do us no harm. ]

This struck me most forcibly with regard to that of Madrid, which I visited some years ago. The vertebrate specimens were old and wretchedly mounted, the lepidoptera nowhere; but the recently acquired animals were splendidly rendered. The youthful and painstaking amateur will, no doubt, however, do as I did when a boy—viz, pitch upon some professional taxidermist, to whose window he will repair at all available opportunities to learn his style, now and then venturing on some small purchase (usually a pair of eyes), to gain admittance to the glories within, and have speech with the great man himself. Exploring in this manner, I have had occasion to thank many of the leading London taxidermists for little "tips" ungrudgingly given.

A few hints may suffice to help the reader. The most important canon is: Do not mix your orders of birds; that is to say, abstain from surrounding a hawk tearing its prey, with various birds in all attitudes, placidly ignoring the existence of their enemy. A scene of this kind irresistibly reminds me of the stage "aside," when the villain of the piece audibly proclaims vengeance against the unconscious hero but two yards away on his right or left.

Birds not of the same kind, and from different parts of the world, are often cased together, but this is open to criticism, unless you avowedly wish to illustrate the whole order for purposes of reference, as in the instance of, say, the Columbae (pigeons). Pairs of birds are the most effective, if the idea of the surroundings is nicely carried out.

I have seen one or two very funny effects in the "Black Country." In one example, a scarlet ibis, mounted in a case on a broken piece of highly gorgeous china gaselier; in another, two puppies facing each other on velvet, a piece of rock salt in the middle, on which stood a lapwing, surrounded by foreign birds in all attitudes. Need I warn the reader against such flights of fancy and works of art?

It is, I would remark, quite impossible to give directions as to attitudes, but on one point I might advise, in order to save the many inquiries addressed to me, from time to time, upon the subject of the straightness or otherwise of gulls' legs. The fact is—gulls, when standing, tuck the tibia quite close to the abdomen, apparently under the wing, and reveal only a very little portion of the tibio-tarsal joint, keeping the metatarse perfectly straight, or, as someone wrote to me once, "like two arrows or sticks." (For explanation of these parts named, see Plate II, (N, q, P.) )

Although most works on taxidermy profess to give descriptions of the attitudes of animals, I cannot do so for the simple reason that I consider the acquirement a speciality and purely a matter of experience. Nature must be closely studied; failing this, reference must be made to illustrated works on natural history. All of Gould's works are grand guides to attitudes of specimens and accessories, as also that beautiful work of my friend H. E. Dresser, F.L.S, etc, on the "Birds of Europe;" but as the price of these magnificent works places them beyond the reach of any but rich people, the amateur may fall back on Morris's "British Birds" and Bree's "Birds of Europe" for coloured plates, and Routledge's "Wood's Natural History" for uncoloured plates of many mammals, birds, and fishes; those signed by Coleman being especially artistic and natural. Add to these Cassell's new "Natural History," edited by Dr. Duncan, F.R.S.—really the best book on popular natural history we have.

Other works, perhaps not so easily accessible, are the "Proceedings of the Zoological Society," and the "Ibis," for coloured illustrations of animals—often in characteristic attitudes, and which, with the above-named works, fitly replace the more ancient "pictures" of animals, arranged on the "fore and aft" system, and from which instead of nature, our taxidermists took their original ideas; indeed, the English school, with true British insularity, would, I presume, have continued the mounting of animals by this "fore and aft" method, had not the Germans and French broken rudely in on our slumbering taxidermists at the Great Exhibition of 1851. [Footnote: Is it not singular that even now anything stiff, inartistic, "solidly" (i.e. clumsily) made, or behind the age, is cherished with the utmost veneration, as being a proof of the solidity of our "Old English Methods" (and skulls)!]

I propose now to give a few hints on groups, etc, not describing their management, but merely giving a list of subjects. First, let me say that in order of merit, in all arts connected with the preservation of natural history objects, I must, after many years study, give the palm to the Germans, not only in all matters connected with artistic taxidermy, but in their elegant and truthful setting of beetles, their sensible setting of lepidoptera, and their really beautiful method of making skins of birds etc.

Next come the French, then the English, and lastly, the Americans. The Americans are the worst simply because they adopt the crudest English methods of taxidermy, with other bad habits of ours. I may say that I never saw an artistic piece of work, nor a well made skin, coming from America, unless done by a German or a Frenchman. I believe, however, the European element is working wonders amongst them, and reading Mr. Batty's book (if he be a true American), I was very favourably impressed with the signs of progress contained therein, and I should not at all wonder if soon our American friends "go ahead" and quickly leave us behind.

Professor Henry a. Ward, of Rochester, New York, U.S.A, in a well-written article in one of his "Bulletins" sent to me, has, since I wrote the above, confessed the great superiority of European over American taxidermists, but says that within the last few (very few) years, their native taxidermists have greatly improved, owing to the importation of clever foreign artists, who are gradually educating the American workmen.

Just before this there was an entertaining article in the "Century" magazine, and illustrations were given showing the best work of the American taxidermic artists. I must say, however, that, unless the draughtsman failed to copy what an educated eye looks for, none of this work struck me as being of a high order—one or two "pieces," indeed, being decidedly capable of improvement. Possibly this improvement has taken place by now; anyway, I heartily wish Brother Jonathan good luck in his taxidermic studies.

At present, however, I say to all rising taxidermists, follow the lead of the Germans—they are true artists; and with the Italian modelling and French neatness of workmanship to fall back on, success is certain.

Looking back to '51, let us see what one of these foreigners (mentioned in chapter I) could teach us. Among over fifty groups of animals shown in the Great Exhibition were:

A stag caught by five hounds (price 180 pounds).

A wild boar set on by three hounds.

A couple of old and young foxes in front of their "earth" (60 pounds).

Trophy of 25 heads of animals of the chase.

Nest of a horned owl. Two old birds and five young defending themselves against two polecats (30 pounds).

Goshawk attacking an eagle owl.

These were followed by comic groups, six of which illustrated Goethe's fable of "Reinecke the Fox," and were skilfully managed as well as amusing. Some others were:

A duel between two dormice, with moles as gravediggers.

"A Declaration of Love." Two weasels.

"A Nursery Maid." One old and four young weasels.

"Shaving a Luxury." One frog shaving another.

Apropos of the above, frogs lend themselves better to comic scenes than almost any other animal, from their ridiculous likeness, when erect on their hind legs, to mighty man. Hence advantage is often taken of this; and amongst mirth-provoking caricatures I have seen "A Steeplechase," frogs mounted on puppies as horses, some tumbling at the water-jump, others riding to win, some unhorsed, scrambling after their steeds, and so on; "The Battle of the Nile," frogs on rafts of leaves of water plants, attacking one another with small bulrushes; duel scenes; "Courtship" and "Matrimony"; "Fortiter in Re," a young frog soundly smacked (in the most approved fashion) by the irate paternal frog; the companion picture, "Suaviter in Modo," a young frog soothed by maternal affection.

Monkeys are the next best for comic scenes, but are more awkward to handle, and not half so funny, unless very carefully modelled to caricature the manners and customs of the human subject. Pourtrayed as shoemakers, acrobats, as "You dirty boy!" or, as in the Fisheries Exhibition of 1883, as "The Enthusiast" (a gouty monkey fishing in a tub placed in his sick chamber), they are, perhaps, the most successful. The addition of miniature furniture to assist the delusion is permissible; but, after all, these caricatures are not artistic taxidermy, and they are only allowable now and then as a relaxation.

Perhaps that which most exercises the skill and judgment of the taxidermic artist is reproducing large groups of some of Landseer's pictures, such as, "The Combat" (two stags fighting); the "Stag at Bay," and others in connection with hunting. Lion and tiger fighting over prey; two tigers fighting for possession of a deer; head and paws of lion or tiger peeping over a rock; tiger crouching for a spring on some feeding animal; lion and zebra; panther or jaguar crouching on an overhanging tree-trunk; leopard killed by a gemsbok antelope; polar bear killing seal on ice; lynx creeping over snow upon grouse; wolf leaping with fore-legs in air on receiving his death-shot; fox in "full cry;" fox just missing a pheasant or duck by only securing the tail feathers; two foxes fighting; fox and playing cubs; fox and trapped rabbit (after Ansdell); "Heads and Tails," fox coming over bank as rabbit disappears; dogs and puppies; cats and kittens (see Landseer's, Ansdell's, Couldery's, and Frank Paton's pictures for treatment of these); otters and young; otters with fish (see Landseer's and Rolfe's pictures for these); otters diving after fish, both seen in mid-water, are some of the studies which have been, or can be, executed.

Among birds, eagles and falcons at rest or in action are the most capable of artistic treatment, such as "The Eagle's Throne" (after Wolf); laemmergeyer carrying off lamb; hawks fighting over a small bird, allowing the latter to escape; peregrine falcon striking a bittern; eagle and wild cat; sea-eagle and gulls; osprey and fish. In connection with the last, one of the very best things I ever saw done with these specimens was in the Fisheries Exhibition, 1883, a piece of work—a study it might be called—executed by a German residing in London. It represented an osprey tugging a fish from some sea rocks.

Both fish and bird were excellently rendered; the latter, with wings expanded, had gripped the fish with both feet, and had raised it in the air some distance off the rocks; the fish was, however, entangled by a line and hook it had swallowed; and the action of the fish-hawk in attempting to tear the fish away was wonderfully fine, the feathers were raised about the head, the eye was fierce, and the sidelong waft of the wings was most natural. The study was all the more interesting from the fact that both bird and fish were poised in air without any visible means of support, the case enclosing them being of glass all around. How it was managed was easy for the professional eye to discover, but I do not think I should be doing justice to the inventor to describe the method.

Amongst the water birds, which are the next best, perhaps, for artistic treatment, come the swans, in the attitude of swimming (see Chapter XII.), ducks swimming, diving, and flying. "The Widowed Duck" —after the celebrated picture—was one of the things very nicely rendered in the "Fisheries Exhibition;" the painting of an artistic scene at the back of this case helped the effect wonderfully, as it usually does in good work. "Hooded Crows Tracking a Widgeon," and "Wounded Tern," fallen by its eggs, were two other clever groups—said to be "copyright," though how on earth such things can be copyright I do not know, especially as not one of the things exhibited could be called original; indeed, everything I saw at the "Fisheries," with the exception of the osprey mentioned above, had been done over and over again by German, French, and English artists.

The work of these "copyright" groups—excepting the foliage, which was rather "stiff"—was, however, very clean and nice, and favourably compared with work by other taxidermists, many of whose "pieces"—as the Americans say—should have been refused on the score of pretentious incompetence.

There was one detestable exhibit, all the more grievous as being professional. No wonder that people, seeing this sort of thing, should laugh at fish and bird "stuffing." As I looked and wondered, I felt that a first-class assortment of injurious epithets applied to such "work" would have relieved my perturbed spirit.

Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse