|
[3] The earliest name for this richly colored variety is Limax coccineus Gistel, but it is not Limax coccineus Martyn, 1784; so the next name, lamarckii, prevails.
One could see that there had once been considerable excavations, but the good layers were now deeply covered by talus, and could only be exposed after much digging. It was about thirty years since the pits had been worked. Dr. Bacmeister found for us a strong country youth, Max Deschle, who dug under our direction all next day in the quarry near the house. The rock is not so easy to work as that at Florissant, and it does not split so well into slabs, but we readily found a number of fossils. Most numerous were the plants; leaves of cinnamon (Cinnamomurn polymorphum), soapberry (Sapindus falcifolius), maple (Acer trilobatum), grass (Poacites loevis) and reeds (Phragmites oeningensis), with twigs of the conifer Glyptostrobus europoeus. We obtained a single seed of the very characteristic Podogonium knorrii. Certain molluscs were abundant; Planorbis declivis, Lymnoea pachygaster, Pisidium priscum, with occasional fragments of the mussel Anodonta lavateri. Ostracods, Cypris faba, were also found. The best find, however, was a well-preserved fish, the lepidocottus brevis (Agassiz), showing in the region of the stomach its last meal, of Planorbis declivis. This greatly interested Max, who during the rest of the day chanted, as he swung the pick, "Fischlein, Fischlein, komme!"—but no other Fischlein was apparently within hearing distance. Not a single insect was obtained, except that on the talus at one of the other quarries I picked up a poorly preserved beetle, apparently the Nitidula melanaria of Heer.
We left Wangen on the morning of August 6, and proceeded up the Rhine to Schaffhausen and Basle. At Basle we found a certain number of Oeningen (Wangen) fossils in the museum.
Comparing Wangen with Florissant, it appears that the Colorado locality is more extensive, more easily worked, and provides many more well-preserved fossils. On the other hand, Wangen has proved far richer in vertebrates and crustacea, and on the whole gives us a better idea of the fauna as it must have existed. Florissant far exceeds Wangen in the number of described species, but this is only because it has so many more insects. Each locality furnishes us with extraordinarily rich materials, enabling us to picture the life of Miocene times. Each, by comparison, throws light on the other, and while the period represented is not sufficiently remote to show much evidence of progressive evolution, it is hard to exaggerate the value of the facts for students of geographical distribution. Much light may also be thrown on the relative stability of specific characters.
Work on the Florissant fauna is going forward, though not so fast as one could wish. It is very much to be hoped that the Wangen quarries will receive attention before many years have passed. Labor is comparatively cheap in Germany, and with a force of a dozen men it would not take long to open up the quarries and get at the best beds. It is really extraordinary that no one has seen and taken advantage of the opportunities presented. Probably no obstacles of any consequence would be put in the way; at least the owner of the quarries came by when we were digging, and expressed only his good will. With new researches in the field, combined with studies of the rich materials awaiting examination at Zurich and elsewhere, no doubt the knowledge we possess of the European Miocene fauna could be very greatly increased, to the advantage of all students of Tertiary life.
THE THEORY AND PRACTISE OF FROST FIGHTING[1]
[1] Some of the instruments used were obtained through a grant from the Elizabeth Thompson Science Fund.
BY ALEXANDER McADIE
BOTCH PROFESSOR OF METEOROLOGY, HARVARD UNIVERSITY
ONLY in recent years have aerologists given much attention to the slow-moving currents of the lower strata of the atmosphere. These differ greatly from the whirls and cataracts of both low and high levels which we familiarly know as the winds. The upper and larger air streams play a part in the formation of frost, and we do not underestimate their function; but primarily it is a slow surface flow, almost a creeping of the air near the ground, which controls the temperature and is all-important in frost formation. So important is it that the first law of frost fighting may be expressed as follows:
Where air is in motion and where there is good circulation, frost is not so likely to occur as where the air is stagnant.
In other words frost in the ordinary meaning of the word is a problem IN LOCAL AIR DRAINAGE. It is true that there are times when with thorough ventilation and mixing of the air strata the temperature will fall rapidly and damage from frost result; but such conditions are perhaps more fittingly described as cold waves or freezes, as distinguished from frosts. Thus, in California during the first week of January, 1913, when there was much air movement, the citrus fruit crop was damaged to the extent of $20,000,000. The condition is generally referred to as a frost, but it was quite different from the usual frost conditions in that section. It is, however, interesting to note that improved frost-fighting devices were used with much success and the total savings aggregated about $25,000,000. The orange growers also had the benefit of accurate forecasts and expert advice and were thus able to provide fuel and labor in advance. Passing over at present the larger disturbances, we shall consider only the frosts of still nights. And it should not be forgotten that the accumulated losses of these frosts may equal the losses of the individual freezes, for the latter occur at long intervals, while the quiet frosts of the early fall and the late spring are recurrent, destroying flowers, fruits and tender vegetation in many sections, year after year.
Air may flow in any direction, but attention has been centered more upon the flow in a horizontal than in a vertical direction. Thus none of the wind instruments used at Weather Bureau stations gives any record of the up and down movement of the air. In frosts of the usual type this vertical displacement is all-important. True, there may be brought into the district, by horizontal displacement, large masses of cold air and the temperature thus materially lowered; but the marked INVERSION of temperature occurs only when these horizontal currents or winds are lulled. On windy nights, as is well known, there is less likelihood of frost than on quiet nights, because of the thorough mixing of the air vertically. There is then no tendency for stratification and the formation of levels of different temperature, followed by low surface temperature.
In general, the temperature falls as one rises in the air; but, at times of frost, it is found that the higher levels are warmer than the lower ones. The coldest stratum is found about ten centimeters (four inches) above the ground; while at a distance of ten meters temperatures are as much as five degrees higher than at the ground.
It may be well to refer for a moment to the variations in temperature known as inversions. In the accompanying diagram it will be seen that the temperature falls with elevation, and starting from the ground on a day when the temperature is near the freezing point, 273 degrees A., one finds at a height of seven thousand meters a fall of about forty degrees. It is not easy to represent on a single diagram the variation in detail and therefore we have divided the air column into three parts, the scales being as one to a hundred.
The right-hand diagram shows the gradual rise in temperature for a height of one meter and the peculiar inversion that occurs a few centimeters above the ground. Unfortunately it is in this layer where detailed temperature observations are most needed that our instruments are least satisfactory. Ordinary thermometers can not be relied on for such small differences and the exploration of this stratum by self-recording instruments is difficult. In the middle diagram is shown the temperature gradient at times of frost, from the ground to a height of one hundred meters. It will be seen that at a height of fifty meters the temperature may be ten degrees higher; and in general the rise continues with elevation. A good illustration of a valley inversion is given by the chart of May 20, in which continuous records for three levels, 18, 64 and 196 meters above sea level, are given. At such times fruit or flowers on hillsides escape damage from frost while in all the depressions and low level places the injury may be marked. These differences in temperature are not at all unusual and may be anticipated on clear, still nights during spring, fall and winter. Clouds or a moderate wind will prevent such an inversion. We shall refer again to this in speaking of the cranberry bogs of the Cape Cod district and the frost warnings issued from Blue Hill Observatory.
The great inversion in the atmosphere, however, is that which we have indicated as occurring at the height of nine thousand meters. Above this, the temperature ceases to fall and we enter what has been called the stratosphere or isothermal region. For convenience we will call this upper change the MAJOR inversion and the lower one near the ground the MINOR inversion. In some ways we know more about the former than the latter. Strictly speaking, the minor inversion is the chief factor in determining local climate since it controls night and early morning temperatures and in large measure the early or late blooming of flowers and ripening of fruits.
Ordinarily cold air falls to the ground; but not always, for under certain conditions cold, heavy air may actually rise, displacing warm, lighter air. But such conditions can be explained and there is no contradiction of the fundamental law that if acted on only by gravity, cold air, being denser, will settle to the ground and warm air, being lighter, will rise. And there must be a certain relation between the height of the level from which the cold air falls and the level to which the warm air rises. In other words, we have to apply the laws of falling bodies since a given mass of air, although invisible, is matter and as subject to gravity as a cannon ball.
One of Galileo's most ingenious experiments consisted in swinging a pendulum and then by means of a nail driven in various positions intercepting the swing. He found that the bob always rose to the same level whatever circuit it was forced to take. But Galileo did not know what every schoolboy to-day knows, that air exerts pressure and is subject to physical processes like other matter, else he would certainly have given to the world a delicate air pendulum; and devised experiments on the movement of air that would have opened men's eyes to the fascinating flow and counter-flow of the air, even on a seemingly still night, one favorable for the formation of frost.
The problem of the moving air mass, however, is more complicated than it looks. For with the air is mixed a quantity of water vapor. In a strict sense they are independent variables, and the view set forth in most text-books that air has a certain capacity for water vapor is misleading. We seldom meet with pure, dry air. A cubic meter of such a gas mixture would weigh 1,247 grams, at a temperature of 283 degrees A. (50 degrees F.). If chilled ten degrees, that is, to the freezing point of water, it would weigh 46 grams more. So that by cooling, air becomes denser and heavier. A cubic meter of a mixture of air and water vapor at saturation, at the first temperature above mentioned weighs only 1,242 grams, or five grams less, and if this were cooled ten degrees the mixture would weigh three grams less than the same volume of pure dry air. We see that in each case the mixture of air and water vapor weighs less than the air by itself. One would think that by adding water vapor which, while light, still has weight, the total weight would be the sum of both. It really is so, notwithstanding the above figures, and the explanation of the puzzle is that there was an increase in pressure with expansion, so that the volume of the air and saturated vapor was greater than one cubic meter. Since then a cubic meter of air and saturated vapor weighs less than a cubic meter of dry air at freezing temperature, speaking generally, we may expect moist air to rise and dry air to fall. Consequently, if in addition to falling temperature there is also a drying of the air, we shall have an accelerated settling or falling of cold dry air to the ground, which of course favors the formation of frost. The water vapor plays also another role besides that of varying the weight per unit volume. The heat received by the ground consists of waves of a certain wavelength; but the heat re-radiated by the ground consists of waves of longer wave-length, and these so-called long waves (12 thousandths of a millimeter) are readily absorbed by water vapor. Thus water vapor acts like a blanket and holds the heat, preventing loss of heat by radiation to space. Further on we shall speak of the high specific heat of both water and water vapor as compared with air and show the bearing of this in frost fighting; but at present we may from what precedes formulate the second law of frost fighting as follows: "Frost is more likely to occur where the air is dry than where it is moist." It is also true that a dusty atmosphere is less favorable for frost than a dust-free atmosphere. Thus we may generalize and say that whatever favors clear, still, dry air favors frost. The theory of successful frost fighting then is to interfere with or prevent these processes which as we have seen facilitate cooling close to the ground. In what way can this best be done?
The most natural way would be by conserving the earth's heat, which could be accomplished by covering plants with cloth, straw, newspaper, or perhaps better still, modern weather-proof sheeting, or in still another way by a cover of moistened dense smoke, generally called a smudge. A second method would be by means of direct application of heat; and this is accomplished in orange groves by means of improved orchard heaters. Large fires waste heat and are neither economical nor effective. A third method would be based upon a mixing of the air strata, thus getting the benefit of the warmer higher levels. Fourth, advantage might be taken of some agency such as water or water vapor, having a high specific heat. Finally, if the crop is of a certain character such as the cranberry, it will be found advisable to use sand, to drain and clean, here again making use of the specific heat of some intermediary. And, furthermore, any one of these methods may be combined with some other method.
Regarding the first method, that of covers, it may be said that the practice goes back to the early husbandmen; but only in the last few years has the true function of the cover been properly interpreted and we are still far from obtaining maximum efficiency. Nor is there yet a suitable, scientific cover available. Any medium that interferes with loss of heat through free radiation before and after sunset is a cover. The best type of cover is a cloud; and clouds, whether high or low, are good frost protectors. On cloudy nights there is little likelihood of frost; and when we can bring about the formation of a layer of condensed water vapor we can practically eliminate frost. We have mentioned above the fact that the earth radiates the heat it has received not in the same but in longer wave-lengths perhaps three times as long. These are easily trapped and held by the vapor of water. Furthermore, the rate of radiation is a function of the absolute temperature and so the rapidity of loss depends somewhat upon the heat received. Therefore the cover should be used as early in the afternoon as possible, that is just before sunset. Aside from the water cover or vapor cover there are cheap cloth screens, fiber screens and in some places lath screens.
The second method, that of direct heating, has met with much success in the orange groves of California and elsewhere. Modern heating and covering methods date from experiments begun in 1895. A number of basic patents granted to the writer in this connection have been dedicated to the public. At the present time there are on the market some twenty forms of heaters, which have been described with more or less detail in farm journals and official publications. It is not necessary to refer to them further here. The fuel originally used was wood, straw and coal, but these are now supplanted by crude oil or distillate. It has also been seriously proposed to use electric heaters; also to use gas in the groves. With modern orchard heaters properly installed and handled, there is no difficulty in raising the temperature of even comparatively large tracts five degrees and maintaining a temperature above freezing, thus preventing refrigeration of plant tissue.
The third method, that of utilizing the heat of higher levels by mixing, has not yet been commercially developed; but the methods of applying water, either in the spraying of trees or the running of ditches or the flooding of bogs, together with methods of sanding, cleaning; and draining, have all been proved helpful. Methods available and most effective in one section may not necessarily be effective in another section or with different crop requirements. Certain devices most effective in the groves of California may not answer in Florida or Louisiana because of entirely different weather conditions. In the Gulf coast states where water is available it may be advantageously used to hold back ripening and retard development until after the cold waves of middle and late February have passed, whereas in the west coast sections conditions are very different, water having a definite value and the critical periods coming in late December or early January.
In what precedes stress has been laid chiefly upon the fall of temperature and the congelation of the water vapor. There is, however, another important matter connected with injury to plant tissue, and that is the rise in temperature AFTER the frost. A too rapid defrosting may do considerable damage where no damage was originally done by the low temperature. It is in this connection that water may be used to great advantage. Water, water-vapor and ice have, compared with other substances, remarkably high specific heats. If the specific heat under constant pressure of water be taken as unity, that of ice is 0.49; of water-vapor 0.45 and of air 0.24. Or in a general way we may say that water has four times the capacity for heat that air has. Therefore it is apparent that water will serve excellently to prevent rapid change in temperature. This is important at sunrise and shortly after when some portion of the chilled plant tissue may be exposed to a warming sufficient to raise the temperature of the exposed portion ten degrees in an hour. The latent heat of fusion of ice is 79.6 calories and the latent heat of vaporization of water is nearly 600 calories (a gram calorie is the amount of heat that will raise the temperature of a gram of pure water one degree) or in exact terms from 273 degrees A. to 274 degrees A. Therefore in the process of changing from solid to liquid to vapor, as from ice to water to vapor, there is a large amount of heat required. The latent heat serves to prevent fall in temperature and also serves to retard a too rapid rise. This does not mean, as is generally assumed, that the air will be warmed, but it does mean a retardation of temperature change. And it is essential that the restoration of the tissues and juices to their normal state be accomplished gradually, neither too rapidly nor yet too slowly.
There is probably an optimum temperature for thawing or defrosting frozen fruits and flowers. Finally the temperature records as ordinarily obtained need careful interpretation. It may be that the freezing point of liquids under pressure in the plant cells or exposed to the air through the stomata is not the same as in the free air. It is unfortunate too that in most places data showing temperatures of soil, plant and air are of doubtful character. A word of warning may be given against the too ready acceptance of Weather Bureau records made in cities and on the roofs of buildings. Garden and field conditions vary greatly from these. It is further advisable to obtain a continuous record of the temperature of evaporation such as is shown by the records herewith. The two temperature curves made simultaneously and easily read at any moment enable the gardener or orchardist to forecast the probable minimum temperature of the ensuing ten or twelve hours. But not always, and some study is necessary. A slight increase in cloudiness or a slight shift in wind direction will prevent the fall in temperature which otherwise seemed probable. With a persistent inversion of temperature there is sometimes an increasing absolute humidity.
SUMMARY
The problem is many sided and we must consider the motion of the air vertically as well as horizontally. Air gains and loses heat chiefly by convection, and any gain or loss by conduction may be neglected. The plant gains heat by convection, radiation and perhaps by conduction of an internal rather than surface character. The ground gains and loses heat chiefly by radiation. But the whole process is complicated and may not even be uniform. Frosts generally are preceded by a loss of heat from the lower air strata, due to convection and a horizontal translation of the air. Then follows an equally rapid and great loss of heat by free radiation. There are minor changes such as the setting free of heat in condensation and the utilization in evaporation, but these latent heats are of less importance than the actual transference of the air and vapor and the removal of the latter as an absorber and retainer of heat.
Frosts are recurrent phenomena reasonably certain to occur within given dates, and, as pointed out above, the cumulative losses are considerable. Methods of protection to be serviceable must be available for more than one occasion, for there is no profit in saving a crop on one night and losing it on the succeeding night. But the effort is worth while. Consider that the horticulturist regularly risks the labor of many months on the temperatures of a few hours. An efficient frost fighting device is in a way the entering wedge for solving problems of climate control. One may not take a crop indoors, it is true, but there is no valid reason, in the light of what has been already accomplished, why at critical periods which may be anticipated, the needed volume of surface air may not be sufficiently warmed; and the losses which have heretofore been considered inevitable be prevented.
THE PROGRESS OF SCIENCE
THE NEW YORK MEETING OF THE NATIONAL ACADEMY OF SCIENCES
THE National Academy of Sciences held its annual autumn meeting during the third week of November in the American Museum of Natural History. The central situation of New York City and its scientific attractions led to a large meeting and an excellent program There were present over sixty members, nearly one half of a membership widely scattered over the country. When the academy was established in 1863 as the adviser of the government in scientific questions, the membership was limited to fifty which was subsequently increased to 100, under which it was kept until recently. The present distribution of the 141 members among different institutions in which there are more than two is: Harvard, 19; Yale, 15; Chicago, 13; Johns Hopkins, 12; Columbia, 11; U. S. Geological Survey, 8; Carnegie Institution, 5; California, Rockefeller Institute, Smithsonian, 4; Clark, Wisconsin, Cornell, Stanford, 3.
The scientific program of the meeting began with a lecture by Professor Michael I. Pupin, of Columbia University, who described the work on aerial transmission of speech of which no authentic account has hitherto been made public. To Professor Pupin we owe the discovery through mathematical analysis and experimental work of the telephone relays which recently made speech by wire between New York City and San Francisco possible, and we now have an authoritative account of speaking across the land and sea a quarter way round the earth. One session of the academy was devoted to four papers of general interest. Professor Herbert S. Jennings, of the Johns Hopkins University, described experiments showing evolution in progress, and Professor John M. Coulter, of the University of Chicago, discussed the causes of evolution in plants Professor B. B. Boltwood made a report on the life of radium which may he regarded as a study of inorganic evolution. Professor Theodore Richards, of Harvard University, spoke of the investigations recently conducted in the Wolcott Gibbs Memorial Laboratory. These are in continuation of the work accomplished by Professor Richards in the determination of atomic weights, which led to the award to him of a Nobel prize, the third to be given for scientific work done in this country, the two previous awards having been to Professor Michelson, of the University of Chicago, in physics, and Dr. Carrel, of the Rockefeller Institute, in physiology.
Of more special papers, some of which, however, were of general and even popular interest, there were on the program 36, distributed somewhat unequally among the sections into which the academy is divided as follows: Mathematics, 0; Astronomy, 3; Physics and Engineering, 7; Chemistry, 1; Geology and Paleontology, 6; Botany, 7; Zoology and Animal Morphology, 8; Physiology and Pathology, 4; Anthropology and Psychology, 0. A program covering all the sciences belongs in a sense to the eighteenth rather than to the twentieth century; still there is human as well as scientific interest in listening to those who are leaders in the conduct of scientific work.
The academy was fortunate in meeting in the American Museum of Natural History, where in addition to the scientific sessions luncheon and an evening reception were provided. The museum has assumed leadership both in exhibits for the public and in the scientific research which it is accomplishing. The planning of museum exhibits is itself a kind of research and in this direction the American Museum, together with the National Museum in Washington and the Field Museum in Chicago, now surpasses any of the museums of the old world and in the course of the next ten years will have no rivals there. It is interesting that the city and an incorporated board of trustees are able to cooperate in the support of the museum, as is also the case with the Zoological Park and the Botanical Gardens which the members of the academy visited in the course of the meeting.
FREDERIC WARD PUTNAM
POWELL in Washington, Brinton in Philadelphia and Putnam in Cambridge may be regarded as the founders of modern anthropology in America. In the death of Putnam, at the age of seventy-six years, we have lost the last of these leaders.
Putnam is often spoken of as the father of anthropological museums because he, more than any other one person, contributed to their development. He seems to have been a museum man by birth, for at an early age we find him listed as curator of ornithology in the Essex Institute of Salem, Mass. The Peabody Museum of Archeology at Cambridge is largely his work, he having entered the institution in 1875 and continued as its head until his death. This institution is in many respects one of the most typical anthropological museums in America. During his college career Professor Putnam came under the influence of Professor Louis Agassiz and was for several years an assistant in the laboratory of that distinguished scientist. It seems likely that this was the source of Professor Putnam's faith and enthusiasm for the accumulation and preservation of concrete data. As his interest in anthropology grew, he seems to have sought to bring together in the Peabody Museum a collection of scientific material that should have the same relation to the new and developing science of anthropology as the collections of Professor Agassiz's laboratory had to the science of biology. Professor Putnam's great skill in developing the Peabody Museum brought him into public notice and led to his appointment as director of the anthropological section of the World Columbian Exposition in Chicago The exhibit he prepared made an unusual impression and it is said that largely to his personal influence is due the interest of the late Marshall Field in developing and providing for the museum which now bears his name. After this achievement Professor Putnam was invited by the American Museum of Natural History to organize the department of anthropology which he proceeded to do upon broad lines, giving it a status and impetus which is still manifest. Later on he was invited to the University of California to organize a department and a museum similar to the one at Harvard and this also is now one of our leading institutions. Thus it is clear that the history of American anthropological museums is to a large extent the life history of Professor Putnam.
The one new and important idea which Professor Putnam brought into his museum work was that they should be in reality institutions of research. Until that time they were chiefly collections of curios brought together by purchase of miscellaneous collections without regard to the scientific problems involved. Professor Putnam's idea was that the museum should go into the field and by systematic research and investigation develop a definite problem, bringing to the museum such illustrative and concrete data as should come to hand in the prosecution of research. Professor Putnam also played a large part in securing the recognition of anthropology by universities and by his position at Harvard pointed the way to mutual cooperation between museums and universities. He possessed an unusual personality which enabled him to approach and interest men of affairs so as to secure their financial support for anthropological research and as a teacher he was intensely interested in young men, offering them every possible opportunity for advancement and never really losing personal interest in them as long as he lived.
SCIENTIFIC ITEMS
WE record with regret the deaths of Brigadier-general George M. Sternberg, retired, surgeon-general of the army, from 1893 to 1902, distinguished for his investigations of yellow fever and other diseases; of Edward Lee Greene, associate in botany at the Smithsonian Institution; of Wirt Tassin, formerly chief chemist and assistant curator of the division of mineralogy, U. S. National Museum; of Augustus Jay Du Bois, for thirty years professor of civil engineering in the Sheffield Scientific School, Yale University; of Sir Andrew Noble, F.R.S., distinguished for his scientific work on artillery and explosives; of Edward A. Minchin, F.R.S., professor of protozoology in the University of London, and of R. Assheton, F.R.S., university lecturer in animal embryology at the University of Cambridge.
THE Nobel prize for chemistry for 1914 has been awarded to Professor Theodore William Richards, of Harvard University, for his work on atomic weights. The prize for physics has been awarded to Professor Max von Laue of Frankfort-on-Main, for his work on the diffraction of rays in crystals.
PROFESSOR ADOLF VON BAEYER celebrated his eightieth birthday on October 31. With the beginning of the present semester he retired from the chair of chemistry at Munich in which he succeeded von Liebig in 1875.—The Romanes lecture before the University of Oxford will be delivered this year by Professor E. B. Poulton, Hope professor of zoology in the university, on December 7. The subject will be "Science and the Great War."
AT the recent meeting in Manchester, as we learn from Nature, the general committee of the British Association unanimously adopted the following resolution, which has been forwarded to the Prime Minister, the Chancellor of the Exchequer and the Presidents of the Board of Education and of Agriculture and Fisheries: "That the British Association for the Advancement of Science, believing that the higher education of the nation is of supreme importance in the present crisis of our history, trusts that his Majesty's government will, by continuing its financial support, maintain the efficiency of teaching and research in the universities and university colleges of the United Kingdom."
COLUMBIA UNIVERSITY received by the will of Amos F. Eno the residuary estate which may amount to several million dollars. In addition, the General Society of Mechanics and Tradesmen receives $1,800,000, and bequests of $250,000 each are made to New York University, The American Museum of Natural History, the Metropolitan Museum of Art and the New York Association for improving the Condition of the Poor—Mr. James J. Hill has presented $125,000 to Harvard University to be added to the principal of the professorship in the Harvard graduate school of business administration, which bears his name. The James J. Hill professorship of transportation was founded by a gift of $125,000, announced last commencement day, the donors including John Pierpont Morgan, Thomas W. Lamont, Robert Bacon and Howard Elliott.—The sum of about $400,000 has been subscribed in the University of Michigan alumni campaign for $1,000,000 with which to build and endow a home for the Michigan Union, as a memorial to Dr. James B. Angell, president emeritus.
THE END |
|