p-books.com
Pleasures of the telescope
by Garrett Serviss
1  2  3  4     Next Part
Home - Random Browse

PLEASURES OF THE TELESCOPE

AN ILLUSTRATED GUIDE FOR AMATEUR ASTRONOMERS AND A POPULAR DESCRIPTION OF THE CHIEF WONDERS OF THE HEAVENS FOR GENERAL READERS

BY GARRETT P. SERVISS

AUTHOR OF ASTRONOMY WITH AN OPERA-GLASS

"This being made, He yearned for worlds to make From other chaos out beyond our night— For to create is still God's prime delight. The large moon, all alone, sailed her dark lake, And the first tides were moving to her might; Then Darkness trembled, and began to quake Big with the birth of stars, and when He spake A million worlds leapt into radiant light."

LLOYD MIFFLIN.

WITH MANY ILLUSTRATIONS

NEW YORK D. APPLETON AND COMPANY 1901



COPYRIGHT, 1901, BY D. APPLETON AND COMPANY.



PREFACE

By the introduction of a complete series of star maps, drawn specially for the use of the amateur and distributed through the body of the work, thus facilitating consultation, it is believed that this book makes a step in advance of its predecessors. The maps show all of the stars visible to the naked eye in the regions of sky represented, and, in addition, some stars that can only be seen with optical aid. The latter have been placed in the maps as guide posts in the telescopic field to assist those who are searching for faint and inconspicuous objects referred to in the text. As the book was not written for those who possess the equipment of an observatory, with telescopes driven by clockwork and provided with graduated circles, right ascensions and declinations are not given. All of the telescopic phenomena described are, however, represented in the maps. Star clusters are indicated by a conventional symbol, and nebulae by a little white circle; while a small cross serves to mark the places where notable new stars have appeared. The relative magnitudes of the stars are approximately shown by the dimensions of their symbols in the maps, the smaller stars being represented by white dots and the larger by star-shaped figures.

In regard to binary stars, it should be remembered that, in many cases, their distances and angles of position change so rapidly that any statement concerning them remains valid only for a few years at the most. There is also much confusion among the measurements announced by different authorities. In general, the most recent measurements obtainable in 1900 are given in the text, but the observer who wishes to study close and rapid binaries will do well to revise his information about them as frequently as possible. An excellent list of double stars kept up to date, will be found in the annual Companion to the Observatory, published in London.

In the lunar charts the plan of inserting the names of the principal formations has been preferred to that usually followed, of indicating them only by numbers, accompanied by a key list. Even in the most detailed charts of the moon only a part of what is visible with telescopes can be shown, and the representation, at best, must be merely approximate. It is simply a question of what to include and what to omit; and in the present case the probable needs of the amateur observer have governed the selection—readiness and convenience of reference being the chief aim.

It should, perhaps, be said here that the various chapters composing this book—like those of "Astronomy with an Opera-glass"—were, in their original form, with the single exception of Chapter IX, published in Appletons' Popular Science Monthly. The author, it is needless to say, was much gratified by the expressed wish of many readers that these scattered papers should be revised and collected in a more permanent form. As bearing upon the general subject of the book, a chapter has been added, at the end, treating on the question of the existence of planets among the stars. This also first appeared in the periodical above mentioned.

In conclusion, the author wishes for his readers as great a pleasure in the use of the telescope as he himself has enjoyed.

G. P. S.

BOROUGH OF BROOKLYN, NEW YORK, January, 1901.



CONTENTS

CHAPTER I PAGE

THE SELECTION AND TESTING OF A GLASS 1

How to get a good telescope—Difference between reflectors and refractors—How a telescope is made achromatic—The way to test a telescope on stars.

CHAPTER II

IN THE STARRY HEAVENS 19

Orion and its wonders, Lepus, Canis Major, Argo, Monoceros, Canis Minor, and the Head of Hydra.

CHAPTER III

FROM GEMINI TO LEO AND ROUND ABOUT 38

The zodiacal constellations Gemini, Cancer, and Leo, and their neighbors Auriga, the Lynx, Hydra, Sextans, and Coma Berenices.

CHAPTER IV

VIRGO AND HER NEIGHBORS 57

Crater and Corvus, Hydra, Virgo, the "Field of the Nebulae," Libra, Booetes, and the great Arcturus, Canes Venatici, and Corona Borealis.

CHAPTER V

IN SUMMER STAR-LANDS 75

Scorpio and its red-green gem, Ophiuchus, Sagittarius, Scutum Sobieskii, Capricornus, Serpens, Hercules, Draco, Aquila, and Delphinus.

CHAPTER VI

FROM LYRA TO ERIDANUS 97

Lyra and its brilliant Vega, Cygnus, Vulpecula, Aquarius, Equuleus, Pegasus, Cetus, and Eridanus.

CHAPTER VII

PISCES, ARIES, TAURUS, AND THE NORTHERN MARS 117

The first double star ever discovered, the Pleiades and their photographic wonders, the Royal Family of the Sky, Andromeda, Cassiopeia, Perseus and Cepheus, Ursa Major, Camelopardalus, Ursa Minor, and the Pole Star.

CHAPTER VIII

SCENES ON THE PLANETS 139

Jupiter, its belts and its moons—Saturn, the ringed planet—Saturn's moons and Roche's limit—Mars and its white polar caps and so-called seas and continents—Venus and her atmosphere—The peculiar rotations of Venus and Mercury.

CHAPTER IX

THE MOUNTAINS AND PLAINS OF THE MOON AND THE SPECTACLES OF THE SUN 156

Peculiarities of the lunar landscapes—The so-called seas, the craters, the ring mountains, the inclosed plains, the mountain ranges, Tycho's mysterious streaks, and other lunar features described—How to view the sun and its spots.

CHAPTER X

ARE THERE PLANETS AMONG THE STARS? 183

Significance of Dr. See's observations—Why our telescopes do not show planets circling around distant suns—Reasons for thinking that such planets may exist—The bearing of stellar evolution on the question.



PLEASURES OF THE TELESCOPE

CHAPTER I

THE SELECTION AND TESTING OF A GLASS

"O telescope, instrument of much knowledge, more precious than any scepter! Is not he who holds thee in his hand made king and lord of the works of God?"—JOHN KEPLER.

If the pure and elevated pleasure to be derived from the possession and use of a good telescope of three, four, five, or six inches aperture were generally known, I am certain that no instrument of science would be more commonly found in the homes of intelligent people. The writer, when a boy, discovered unexpected powers in a pocket telescope not more than fourteen inches long when extended, and magnifying ten or twelve times. It became his dream, which was afterward realized, to possess a more powerful telescope, a real astronomical glass, with which he could see the beauties of the double stars, the craters of the moon, the spots on the sun, the belts and satellites of Jupiter, the rings of Saturn, the extraordinary shapes of the nebulae, the crowds of stars in the Milky Way, and the great stellar clusters. And now he would do what he can to persuade others, who perhaps are not aware how near at hand it lies, to look for themselves into the wonder-world of the astronomers.

There is only one way in which you can be sure of getting a good telescope. First, decide how large a glass you are to have, then go to a maker of established reputation, fix upon the price you are willing to pay—remembering that good work is never cheap—and finally see that the instrument furnished to you answers the proper tests for a telescope of its size. There are telescopes and telescopes. Occasionally a rare combination of perfect homogeneity in the material, complete harmony between the two kinds of glass of which the objective is composed, and lens surfaces whose curves are absolutely right, produces a telescope whose owner would part with his last dollar sooner than with it. Such treasures of the lens-maker's art can not, perhaps, be commanded at will, yet, they are turned out with increasing frequency, and the best artists are generally able, at all times, to approximate so closely to perfection that any shortcoming may be disregarded.

In what is said above I refer, of course, to the refracting telescope, which is the form of instrument that I should recommend to all amateurs in preference to the reflector. But, before proceeding further, it may be well to recall briefly the principal points of difference between these two kinds of telescopes. The purpose of a telescope of either description is, first, to form an image of the object looked at by concentrating at a focus the rays of light proceeding from that object. The refractor achieves this by means of a carefully shaped lens, called the object glass, or objective. The reflector, on the other hand, forms the image at the focus of a concave mirror.



A very pretty little experiment, which illustrates these two methods of forming an optical image, and, by way of corollary, exemplifies the essential difference between refracting and reflecting telescopes, may be performed by any one who possesses a reading glass and a magnifying hand mirror. In a room that is not too brightly illuminated pin a sheet of white paper on the wall opposite to a window that, by preference, should face the north, or away from the position of the sun. Taking first the reading glass, hold it between the window and the wall parallel to the sheet of paper, and a foot or more distant from the latter. By moving it to and fro a little you will be able to find a distance, corresponding to the focal length of the lens, at which a picture of the window is formed on the paper. This picture, or image, will be upside down, because the rays of light cross at the focus. By moving the glass a little closer to the wall you will cause the picture of the window to become indistinct, while a beautiful image of the houses, trees, or other objects of the outdoor world beyond, will be formed upon the paper. We thus learn that the distance of the image from the lens varies with the distance of the object whose image is formed. In precisely a similar manner an image is formed at the focus of the object glass of a refracting telescope.



Take next your magnifying or concave mirror, and detaching the sheet of paper from the wall, hold it nearly in front of the mirror between the latter and the window. When you have adjusted the distance to the focal length of the mirror, you will see an image of the window projected upon the paper, and by varying the distance, as before, you will be able to produce, at will, pictures of nearer or more remote objects. It is in this way that images are formed at the focus of the mirror of a reflecting telescope.

Now, you will have observed that the chief apparent difference between these two methods of forming an image of distant objects is that in the first case the rays of light, passing through the transparent lens, are brought to a focus on the side opposite to that where the real object is, while in the second case the rays, being reflected from the brilliant surface of the opaque mirror, come to a focus on the same side as that on which the object itself is. From this follows the most striking difference in the method of using refracting and reflecting telescopes. In the refractor the observer looks toward the object; in the reflector he looks away from it. Sir William Herschel made his great discoveries with his back to the sky. He used reflecting telescopes. This principle, again, can be readily illustrated by means of our simple experiment with a reading glass and a magnifying mirror. Hold the reading glass between the eye and a distant object with one hand, and with the other hand place a smaller lens such as a pocket magnifier, near the eye, and in line with the reading glass. Move the two carefully until they are at a distance apart equal to the sum of the focal lengths of the lenses, and you will see a magnified image of the distant object. In other words, you have constructed a simple refracting telescope. Then take the magnifying mirror, and, turning your back to the object to be looked at, use the small lens as before—that is to say, hold it between your eye and the mirror, so that its distance from the latter is equal to the sum of the focal lengths of the mirror and the lens, and you will see again a magnified image of the distant object. This time it is a reflecting telescope that you hold in your hands.

The magnification of the image reminds us of the second purpose which is subserved by a telescope. A telescope, whether refracting or reflecting, consists of two essential parts, the first being a lens, or a mirror, to form an image, and the second a microscope, called an eyepiece, to magnify the image. The same eyepieces will serve for either the reflector or the refractor. But in order that the magnification may be effective, and serve to reveal what could not be seen without it, the image itself must be as nearly perfect as possible; this requires that every ray of light that forms the image shall be brought to a point in the image precisely corresponding to that from which it emanates in the real object. In reflectors this is effected by giving a parabolic form to the concave surface of the mirror. In refractors there is a twofold difficulty to be overcome. In the first place, a lens with spherical surfaces does not bend all the rays that pass through it to a focus at precisely the same distance. The rays that pass near the outer edge of the lens have a shorter focus than that of the rays which pass near the center of the lens; this is called spherical aberration. A similar phenomenon occurs with a concave mirror whose surface is spherical. In that case, as we have seen, the difficulty is overcome by giving the mirror a parabolic instead of a spherical form. In an analogous way the spherical aberration of a lens can be corrected by altering its curves, but the second difficulty that arises with a lens is not so easily disposed of: this is what is called chromatic aberration. It is due to the fact that the rays belonging to different parts of the spectrum have different degrees of refrangibility, or, in other words, that they come to a focus at different distances from the lens; and this is independent of the form of the lens. The blue rays come to a focus first, then the yellow, and finally the red. It results from this scattering of the spectral rays along the axis of the lens that there is no single and exact focus where all meet, and that the image of a star, for instance, formed by an ordinary lens, even if the spherical aberration has been corrected, appears blurred and discolored. There is no such difficulty with a mirror, because there is in that case no refraction of the light, and consequently no splitting up of the elements of the spectrum.

In order to get around the obstacle formed by chromatic aberration it is necessary to make the object glass of a refractor consist of two lenses, each composed of a different kind of glass. One of the most interesting facts in the history of the telescope is that Sir Isaac Newton could see no hope that chromatic aberration would be overcome, and accordingly turned his attention to the improvement of the reflecting telescope and devised a form of that instrument which still goes under his name. And even after Chester More Hall in 1729, and John Dollond in 1757, had shown that chromatic aberration could be nearly eliminated by the combination of a flint-glass lens with one of crown glass, William Herschel, who began his observations in 1774, devoted his skill entirely to the making of reflectors, seeing no prospect of much advance in the power of refractors.

A refracting telescope which has been freed from the effects of chromatic aberration is called achromatic. The principle upon which its construction depends is that by combining lenses of different dispersive power the separation of the spectral colors in the image can be corrected while the convergence of the rays of light toward a focus is not destroyed. Flint glass effects a greater dispersion than crown glass nearly in the ratio of three to two. The chromatic combination consists of a convex lens of crown backed by a concave, or plano-concave, lens of flint. When these two lenses are made of focal lengths which are directly proportional to their dispersions, they give a practically colorless image at their common focus. The skill of the telescope-maker and the excellence of his work depend upon the selection of the glasses to be combined and his manipulation of the curves of the lenses.



Now, the reader may ask, "Since reflectors require no correction for color dispersion, while that correction is only approximately effected by the combination of two kinds of lenses and two kinds of glass in a refractor, why is not the reflector preferable to the refractor?"

The answer is, that the refractor gives more light and better definition. It is superior in the first respect because a lens transmits more light than a mirror reflects. Professor Young has remarked that about eighty-two per cent of the light reaches the eye in a good refractor, while "in a Newtonian reflector, in average condition, the percentage seldom exceeds fifty per cent, and more frequently is lower than higher." The superiority of the refractor in regard to definition arises from the fact that any distortion at the surface of a mirror affects the direction of a ray of light three times as much as the same distortion would do at the surface of a lens. And this applies equally both to permanent errors of curvature and to temporary distortions produced by strains and by inequality of temperature. The perfect achromatism of a reflector is, of course, a great advantage, but the chromatic aberration of refractors is now so well corrected that their inferiority in that respect may be disregarded. It must be admitted that reflectors are cheaper and easier to make, but, on the other hand, they require more care, and their mirrors frequently need resilvering, while an object glass with reasonable care never gets seriously out of order, and will last for many a lifetime.

Enough has now, perhaps, been said about the respective properties of object glasses and mirrors, but a word should be added concerning eyepieces. Without a good eyepiece the best telescope will not perform well. The simplest of all eyepieces is a single double-convex lens. With such a lens the magnifying power of the telescope is measured by the ratio of the focal length of the objective to that of the eye lens. Suppose the first is sixty inches and the latter half an inch; then the magnifying power will be a hundred and twenty diameters—i. e., the disk of a planet, for instance, will be enlarged a hundred and twenty times along each diameter, and its area will be enlarged the square of a hundred and twenty, or fourteen thousand four hundred times. But in reckoning magnifying power, diameter, not area, is always considered. For practical use an eyepiece composed of an ordinary single lens is seldom advantageous, because good definition can only be obtained in the center of the field. Lenses made according to special formulae, however, and called solid eyepieces, give excellent results, and for high powers are often to be preferred to any other. The eyepieces usually furnished with telescopes are, in their essential principles, compound microscopes, and they are of two descriptions, "positive" and "negative." The former generally goes under the name of its inventor, Ramsden, and the latter is named after great Dutch astronomer, Huygens. The Huygens eyepiece consists of two plano-convex lenses whose focal lengths are in the ratio of three to one. The smaller lens is placed next to the eye. Both lenses have their convex surfaces toward the object glass, and their distance apart is equal to half the sum of their focal lengths. In this kind of eyepiece the image is formed between the two lenses, and if the work is properly done such an eyepiece is achromatic. It is therefore generally preferred for mere seeing purposes. In the Ramsden eyepiece two plano-convex lenses are also used, but they are of equal focal length, are placed at a distance apart equal to two thirds of the focal length of either, and have their convex sides facing one another. With such an eyepiece the image viewed is beyond the farther or field lens instead of between the two lenses, and as this fact renders it easier to adjust wires or lines for measuring purposes in the focus of the eyepiece, the Ramsden construction is used when a micrometer is to be employed. In order to ascertain the magnifying power which an eyepiece gives when applied to a telescope it is necessary to know the equivalent, or combined, focal length of the two lenses. Two simple rules, easily remembered, supply the means of ascertaining this. The equivalent focal length of a negative or Huygens eyepiece is equal to half the focal length of the larger or field lens. The equivalent focal length of a positive or Ramsden eyepiece is equal to three fourths of the focal length of either of the lenses. Having ascertained the equivalent focal length of the eyepiece, it is only necessary to divide it into the focal length of the object glass (or mirror) in order to know the magnifying power of your telescope when that particular eyepiece is in use.



A first-class object glass (or mirror) will bear a magnifying power of one hundred to the inch of aperture when the air is in good condition—that is, if you are looking at stars. If you are viewing the moon, or a planet, better results will always be obtained with lower powers—say fifty to the inch at the most. And under ordinary atmospheric conditions a power of from fifty to seventy-five to the inch is far better for stars than a higher power. With a five-inch telescope that would mean from two hundred and fifty to three hundred and seventy-five diameters, and such powers should only be applied for the sake of separating very close double stars. As a general rule, the lowest power that will distinctly show what you desire to see gives the best results. The experienced observer never uses as high powers as the beginner does. The number of eyepieces purchased with a telescope should never be less than three—a very low power—say ten to the inch; a very high power, seventy-five or one hundred to the inch, for occasional use; and a medium power—say forty to the inch—for general use. If you can afford it, get a full battery of eyepieces—six or eight, or a dozen—for experience shows that different objects require different powers in order to be best seen, and, moreover, a slight change of power is frequently a great relief to the eye.

There is one other thing of great importance to be considered in purchasing a telescope—the mounting. If your glass is not well mounted on a steady and easily managed stand, you might better have spent your money for something more useful. I have endured hours of torment while trying to see stars through a telescope that was shivering in the wind and dancing to every motion of the bystanders, to say nothing of the wriggling contortions caused by the application of my own fingers to the focusing screw. The best of all stands is a solid iron pillar firmly fastened into a brick or stone pier, sunk at least four feet in the ground, and surmounted by a well-made equatorial bearing whose polar axis has been carefully placed in the meridian. It can be readily protected from the weather by means of a wooden hood or a rubber sheet, while the tube of the telescope may be kept indoors, being carried out and placed on its bearing only when observations are to be made. With such a mounting you can laugh at the observatories with their cumbersome domes, for the best of all observatories is the open air. But if you dislike the labor of carrying and adjusting the tube every time it is used, and are both fond of and able to procure luxuries, then, after all, perhaps, you had better have the observatory, dome, draughts and all.

The next best thing in the way of a mounting is a portable tripod stand. This may be furnished either with an equatorial bearing for the telescope, or an altazimuth arrangement which permits both up-and-down and horizontal motions. The latter is cheaper than the equatorial and proportionately inferior in usefulness and convenience. The essential principle of the equatorial bearing is motion about two axes placed at right angles to one another. When the polar axis is in the meridian, and inclined at an angle equal to the latitude of the place, the telescope can be moved about the two axes in such a way as to point to any quarter of the sky, and the motion of a star, arising from the earthy rotation, can be followed hour after hour without disturbing the instrument. When thus mounted, the telescope may be driven by clockwork, or by hand with the aid of a screw geared to a handle carrying a universal joint.

And now for testing the telescope. It has already been remarked that the excellence of a telescope depends upon the perfection of the image formed at the focus of the objective. In what follows I have only a refractor in mind, although the same principles would apply to a reflector. With a little practice anybody who has a correct eye can form a fair judgment of the excellence of a telescopic image. Suppose we have our telescope steadily mounted out of doors (if you value your peace of mind you will not try to use a telescope pointed out of a window, especially in winter), and suppose we begin our observations with the pole star, employing a magnifying power of sixty or seventy to the inch. Our first object is to see if the optician has given us a good glass. If the air is not reasonably steady we had better postpone our experiment to another night, because we shall find that the star as seen in the telescope flickers and "boils," and behaves in so extraordinary a fashion that there is no more definition in the image than there is steadiness in a bluebottle buzzing on a window pane. But if the night is a fine one the star image will be quiescent, and then we may note the following particulars: The real image is a minute bright disk, about one second of arc in diameter if we are using a four-and-a-half or five-inch telescope, and surrounded by one very thin ring of light, and the fragments, so to speak, of one or possibly two similar rings a little farther from the disk, and visible, perhaps, only by glimpses. These "diffraction rings" arise from the undulatory nature of light, and their distance apart as well as the diameter of the central disk depend upon the length of the waves of light. If the telescope is a really good one, and both object glass and eyepiece are properly adjusted, the disk will be perfectly round, slightly softer at the edge, but otherwise equally bright throughout; and the ring or rings surrounding it will be exactly concentric, and not brighter on one side than on another. Even if our telescope were only two inches or two inches and a half in aperture we should at once notice a little bluish star, the mere ghost of a star in a small telescope, hovering near the polar star. It is the celebrated "companion," but we shall see it again when we have more time to study it. Now let us put the star out of focus by turning the focusing screw. Suppose we turn it in such a way that the eyepiece moves slightly outside the focus, or away from the object glass. Very beautiful phenomena immediately begin to make their appearance. A slight motion outward causes the little disk to expand perceptibly, and just as this expansion commences, a bright-red point appears at the precise center of the disk. But, the outward motion continuing, this red center disappears, and is replaced by a blue center, which gradually expands into a sort of flare over the middle of the disk. The disk itself has in the mean time enlarged into a series of concentric bright rings, graduated in luminosity with beautiful precision from center toward circumference. The outermost ring is considerably brighter, however, than it would be if the same gradation applied to it as applies to the inner rings, and it is surrounded, moreover, on its outer edge by a slight flare which tends to increase its apparent width. Next let us return to the focus and then move the eyepiece gradually inside the focal point or plane. Once more the star disk expands into a series of circles, and, if we except the color phenomena noticed outside the focus, these circles are precisely like those seen before in arrangement, in size, and in brightness. If they were not the same, we should pronounce the telescope to be imperfect. There is one other difference, however, besides the absence of the blue central flare, and that is a faint reddish edging around the outer ring when the expansion inside the focus is not carried very far. Upon continuing to move the eyepiece inside or outside the focus we observe that the system of rings becomes larger, while the rings themselves rapidly increase in number, becoming at the same time individually thinner and fainter.



By studying the appearance of the star disk when in focus and of the rings when out of focus on either side, an experienced eye can readily detect any fault that a telescope may have. The amateur, of course, can only learn to do this by considerable practice. Any glaring and serious fault, however, will easily make itself manifest. Suppose, for example, we observe that the image of a star instead of being perfectly round is oblong, and that a similar defect appears in the form of the rings when the eyepiece is put out of focus. We know at once that something is wrong; but the trouble may lie either in the object glass, in the eyepiece, in the eye of the observer himself, or in the adjustment of the lenses in the tube. A careful examination of the image and the out-of-focus circles will enable us to determine with which of these sources of error we have to deal. If the star image when in focus has a sort of wing on one side, and if the rings out of focus expand eccentrically, appearing wider and larger on one side than on the other, being at the same time brightest on the least expanded side, then the object glass is probably not at right angles to the axis of the tube and requires readjustment. That part of the object glass on the side where the rings appear most expanded and faintest needs to be pushed slightly inward. This can be effected by means of counterscrews placed for that purpose in or around the cell. But it, after we have got the object glass properly squared to the axis of the tube or the line of sight, the image and the ring system in and out of focus still appear oblong, the fault of astigmatism must exist either in the objective, the eyepiece, or the eye. The chances are very great that it is the eye itself that is at fault. We may be certain of this if we find, on turning the head so as to look into the telescope with the eye in different positions, that the oblong image turns with the head of the observer, keeping its major axis continually in the same relative position with respect to the eye. The remedy then is to consult an oculist and get a pair of cylindrical eyeglasses. If the oblong image does not turn round with the eye, but does turn when the eyepiece is twisted round, then the astigmatism is in the latter. If, finally, it does not follow either the eye or the eyepiece, it is the objective that is at fault.

But instead of being oblong, the image and the rings may be misshapen in some other way. If they are three-cornered, it is probable that the object glass is subjected to undue pressure in its cell. This, if the telescope has been brought out on a cool night from a warm room, may arise from the unequal contraction of the metal work and the glass as they cool off. In fact, no good star image can be got while a telescope is assuming the temperature of the surrounding atmosphere. Even the air inclosed in the tube is capable of making much trouble until its temperature has sunk to the level of that outside. Half an hour at least is required for a telescope to adjust itself to out-of-door temperature, except in the summer time, and it is better to allow an hour or two for such adjustment in cold weather. Any irregularity in the shape of the rings which persists after the lenses have been accurately adjusted and the telescope has properly cooled may be ascribed to imperfections, such as veins or spots of unequal density in the glass forming the objective.



The spherical aberration of an object glass may be undercorrected or overcorrected. In the former case the central rings inside the focus will appear faint and the outer ones unduly strong, while outside the focus the central rings will be too bright and the outer ones too feeble. But if the aberration is overcorrected the central rings will be overbright inside the focus and abnormally faint outside the focus.



Assuming that we have a telescope in which no obvious fault is discernible, the next thing is to test its powers in actual work. In what is to follow I shall endeavor to describe some of the principal objects in the heavens from which the amateur observer may expect to derive pleasure and instruction, and which may at the same time serve as tests of the excellence of his telescope. No one should be deterred or discouraged in the study of celestial objects by the apparent insignificance of his means of observation. The accompanying pictures of the planet Mars may serve as an indication of the fact that a small telescope is frequently capable of doing work that appears by no means contemptible when placed side by side with that of the greater instruments of the observatories.



CHAPTER II

IN THE STARRY HEAVENS

"Now constellations, Muse, and signs rehearse; In order let them sparkle in thy verse."—MANILIUS.

Let us imagine ourselves the happy possessors of three properly mounted telescopes of five, four, and three inches aperture, respectively. A fine midwinter evening has come along, the air is clear, cool, and steady, and the heavens, of that almost invisible violet which is reserved for the lovers of celestial scenery, are spangled with stars that hardly twinkle. We need not disturb our minds about a few thin clouds here and there floating lazily in the high air; they announce a change of weather, but they will not trouble us to-night.

Which way shall we look? Our eyes will answer the question for us. However we may direct them, they instinctively return to the south, and are lifted to behold Orion in his glory, now near the meridian and midway to the zenith, with Taurus shaking the glittering Pleiades before him, and Canis Major with the flaming Dog Star following at his heels.

Not only is Orion the most brilliant of all constellations to the casual star-gazer, but it contains the richest mines that the delver for telescopic treasures can anywhere discover. We could not have made a better beginning, for here within a space of a few square degrees we have a wonderful variety of double stars and multiple stars, so close and delicate as to test the powers of the best telescopes, besides a profusion of star-clusters and nebulae, including one of the supreme marvels of space, the Great Nebula in the Sword.



Our star map No. 1 will serve as a guide to the objects which we are about to inspect. Let us begin operations with our smallest telescope, the three-inch. I may remark here that, just as the lowest magnifying power that will clearly reveal the object looked for gives ordinarily better results than a higher power, so the smallest telescope that is competent to show what one wishes to see is likely to yield more satisfaction, as far as that particular object is concerned, than a larger glass. The larger the object glass and the higher the power, the greater are the atmospheric difficulties. A small telescope will perform very well on a night when a large one is helpless.

Turn the glass upon beta (Rigel), the white first-magnitude star in Orion's left foot. Observe whether the image with a high power is clear, sharp, and free from irregular wisps of stray light. Look at the rings in and out of focus, and if you are satisfied with the performance, try for the companion. A good three-inch is certain to show it, except in a bad state of the atmosphere, and even then an expert can see it, at least by glimpses. The companion is of the ninth magnitude, some say the eighth, and the distance is about 9.5", angle of position (hereafter designated by p.) 199 deg..[1] Its color is blue, in decided contrast with the white light of its great primary. Sir John Herschel, however, saw the companion red, as others have done. These differences are doubtless due to imperfections of the eye or the telescope. In 1871 Burnham believed he had discovered that the companion was an exceedingly close double star. No one except Burnham himself succeeded in dividing it, and he could only do so at times. Afterward, when he was at Mount Hamilton, he tried in vain to split it with the great thirty-six-inch telescope, in 1889, 1890, and 1891. His want of success induced him to suggest that the component stars were in rapid motion, and so, although he admitted that it might not be double after all, he advised that it should be watched for a few years longer. His confidence was justified, for in 1898 Aitken, with the Lick telescope, saw and measured the distance of the extremely minute companion—distance 0.17", p. 177 deg..

[1] The angle of position measures the inclination to the meridian of a line drawn between the principal star and its companion; in other words, it shows in what direction from the primary we must look for the companion. It is reckoned from 0 deg. up to 360 deg., beginning at the north point and passing around by east through south and west to north again. Thus, if the angle of position is 0 deg. or 360 deg., the companion is on the north side of the primary; if the angle is 90 deg., the companion is to the east; if 180 deg., to the south; if 270 deg., to the west, and so for intermediate angles. It must be remembered, however, that in the field of the telescope the top is south and the bottom north, unless a prism is used, when directions become complicated. East and west can be readily identified by noticing the motion of a star through the field; it moves toward the west and from the east.

Rigel has been suspected of a slight degree of variability. It is evidently a star of enormous actual magnitude, for its parallax escapes trustworthy measurement. It can only be ranked among the very first of the light-givers of the visible universe. Spectroscopically it belongs to a peculiar type which has very few representatives among the bright stars, and which has been thus described: "Spectra in which the hydrogen lines and the few metallic lines all appear to be of equal breadth and sharp definition." Rigel shows a line which some believe to represent magnesium; but while it has iron lines in its spectrum, it exhibits no evidence of the existence of any such cloud of volatilized iron as that which helps to envelop the sun.

For another test of what the three-inch will do turn to zeta, the lower, or left-hand, star in the Belt. This is a triple, the magnitudes being second, sixth, and tenth. The sixth-magnitude star is about 2.5" from the primary, p. 149 deg., and has a very peculiar color, hard to describe. It requires careful focusing to get a satisfactory view of this star with a three-inch telescope. Use magnifying powers up to two hundred and fifty diameters. With our four-inch the star is much easier, and the five-inch shows it readily with a power of one hundred. The tenth-magnitude companion is distant 56", p. 8 deg., and may be glimpsed with the three-inch. Upon the whole, we shall find that we get more pleasing views of zeta Orionis with the four-inch glass.

Just to the left of zeta, and in the same field of view with a very low power, is a remarkable nebula bearing the catalogue number 1227. We must use our five-inch on this with a low power, but with zeta out of the field in order to avoid its glare. The nebula is exceedingly faint, and we can be satisfied if we see it simply as a hazy spot, although with much larger telescopes it has appeared at least half a degree broad. Tempel saw several centers of condensation in it, and traced three or four broad nebulous streams, one of which decidedly suggested spiral motion.

The upper star in the Belt, delta, is double; distance, 53", p. 360 deg.; magnitudes, second and seventh very nearly; colors, white and green or blue. This, of course, is an easy object for the three-inch with a low magnifying power. It would be useless to look for the two fainter companions of delta, discovered by Burnham, even with our five-inch glass. But we shall probably need the five-inch for our next attempt, and it will be well to put on a high power, say three hundred diameters. The star to be examined is the little brilliant dangling below the right-hand end of the Belt, toward Rigel. It appears on the map as eta. Spare no pains in getting an accurate focus, for here is something worth looking at, and unless you have a trained eye you will not easily see it. The star is double, magnitudes third and sixth, and the distance from center to center barely exceeds 1", p. 87 deg.. A little tremulousness of the atmosphere for a moment conceals the smaller star, although its presence is manifest from the peculiar jutting of light on one side of the image of the primary. But in an instant the disturbing undulations pass, the air steadies, the image shrinks and sharpens, and two points of piercing brightness, almost touching one another, dart into sight, the more brilliant one being surrounded by an evanescent circle, a tiny ripple of light, which, as it runs round the star and then recedes, alternately embraces and releases the smaller companion. The wash of the light-waves in the atmosphere provokes many expressions of impatience from the astronomer, but it is often a beautiful phenomenon nevertheless.

Between eta and delta is a fifth-magnitude double star, Sigma 725, which is worth a moment's attention. The primary, of a reddish color, has a very faint star, eleventh magnitude, at a distance of 12.7", p. 88 deg..

Still retaining the five-inch in use, we may next turn to the other end of the Belt, where, just under zeta, we perceive the fourth-magnitude star sigma. He must be a person of indifferent mind who, after looking with unassisted eyes at the modest glimmering of this little star, can see it as the telescope reveals it without a thrill of wonder and a cry of pleasure. The glass, as by a touch of magic, changes it from one into eight or ten stars. There are two quadruple sets three and a half minutes of arc apart. The first set exhibits a variety of beautiful colors. The largest star, of fourth magnitude, is pale gray; the second in rank, seventh magnitude, distance 42", p. 61 deg., presents a singular red, "grape-red" Webb calls it; the third, eighth magnitude, distance 12", p. 84 deg., is blue; and the fourth, eleventh magnitude, distance 12", p. 236 deg., is apparently white. Burnham has doubled the fourth-magnitude star, distance 0.23". The second group of four stars consists of three of the eighth to ninth magnitude, arranged in a minute triangle with a much fainter star near them. Between the two quadruple sets careful gazing reveals two other very faint stars. While the five-inch gives a more satisfactory view of this wonderful multiple star than any smaller telescope can do, the four-inch and even the three-inch would have shown it to us as a very beautiful object. However we look at them, there is an appearance of association among these stars, shining with their contrasted colors and their various degrees of brilliance, which is significant of the diversity of conditions and circumstances under which the suns and worlds beyond the solar walk exist.

From sigma let us drop down to see the wonders of Orion's Sword displayed just beneath. We can use with advantage any one of our three telescopes; but since we are going to look at a nebula, it is fortunate that we have a glass so large as five inches aperture. It will reveal interesting things that escape the smaller instruments, because it grasps more than one and a half times as much light as the four-inch, and nearly three times as much as the three-inch; and in dealing with nebulae a plenty of light is the chief thing to be desired. The middle star in the Sword is theta, and is surrounded by the celebrated Nebula of Orion. The telescope shows theta separated into four stars arranged at the corners of an irregular square, and shining in a black gap in the nebula. These four stars are collectively named the Trapezium. The brightest is of the sixth magnitude, the others are of the seventh, seven and a half, and eighth magnitudes respectively. The radiant mist about them has a faint greenish tinge, while the four stars, together with three others at no great distance, which follow a fold of the nebula like a row of buttons on a coat, always appear to me to show an extraordinary liveliness of radiance, as if the strange haze served to set them off.



Our three-inch would have shown the four stars of the Trapezium perfectly well, and the four-inch would have revealed a fifth star, very faint, outside a line joining the smallest of the four and its nearest neighbor. But the five-inch goes a step farther and enables us, with steady gazing to see even a sixth star, of only the twelfth magnitude, just outside the Trapezium, near the brightest member of the quartet. The Lick telescope has disclosed one or two other minute points of light associated with the Trapezium. But more interesting than the Trapezium is the vast cloud, full of strange shapes, surrounding it. Nowhere else in the heavens is the architecture of a nebula so clearly displayed. It is an unfinished temple whose gigantic dimensions, while exalting the imagination, proclaim the omnipotence of its builder. But though unfinished it is not abandoned. The work of creation is proceeding within its precincts. There are stars apparently completed, shining like gems just dropped from the hand of the polisher, and around them are masses, eddies, currents, and swirls of nebulous matter yet to be condensed, compacted, and constructed into suns. It is an education in the nebular theory of the universe merely to look at this spot with a good telescope. If we do not gaze at it long and wistfully, and return to it many times with unflagging interest, we may be certain that there is not the making of an astronomer in us.

Before quitting the Orion nebula do not fail to notice an eighth-magnitude star, a short distance northeast of the Great Nebula, and nearly opposite the broad opening in the latter that leads in toward the gap occupied by the Trapezium. This star is plainly enveloped in nebulosity, that is unquestionably connected with the larger mass of which it appears to form a satellite.

At the lower end of the Sword is the star iota, somewhat under the third magnitude. Our three-inch will show that it has a bluish companion of seventh or eighth magnitude, at a little more than 11" distance, p. 142 deg., and the larger apertures will reveal a third star, of tenth magnitude, and reddish in color, distance 49", p. 103 deg.. Close by iota we find the little double star Sigma 747, whose components are of five and a half and six and a half magnitudes respectively, and separated 36", p. 223 deg.. Above the uppermost star in the Sword is a small star cluster, No. 1184, which derives a special interest from the fact that it incloses a delicate double star, Sigma 750, whose larger component is of the sixth magnitude, while the smaller is of the ninth, and the distance is only 4.3", p. 59 deg.. We may try the four-inch on this object.

Having looked at alpha (Betelgeuse), the great topaz star on Orion's right shoulder, and admired the splendor of its color, we may turn the four-inch upon the star Sigma 795, frequently referred to by its number as "52 Orionis." It consists of one star of the sixth and another of sixth and a half magnitude, only 1.5" apart, p. 200 deg.. Having separated them with a power of two hundred and fifty diameters on the four-inch, we may try them with a high power on the three-inch. We shall only succeed this time if our glass is of first-rate quality and the air is perfectly steady.

The star lambda in Orion's head presents an easy conquest for the three-inch, as it consists of a light-yellow star of magnitude three and a half and a reddish companion of the sixth magnitude; distance 4", p. 43 deg.. There is also a twelfth-magnitude star at 27", p. 183 deg., and a tenth or eleventh magnitude one at 149", p. 278 deg.. These are tests for the five-inch, and we must not be disappointed if we do not succeed in seeing the smaller one even with that aperture.

Other objects in Orion, to be found with the aid of our map, are: Sigma 627, a double star, magnitude six and a half and seven, distance 21", p. 260 deg.; Omicron Sigma 98, otherwise named iota Orionis, double, magnitude six and seven, distance 1", p. 180 deg., requires five-inch glass; Sigma 652, double, magnitudes six and a half and eight, distance 1.7", p. 184 deg.; rho, double, magnitudes five and eight and a half, the latter blue, distance 7", p. 62 deg., may be tried with a three-inch; tau, triple star, magnitudes four, ten and a half, and eleven, distances 36", p. 249 deg., and 36", p. 60 deg.. Burnham discovered that the ten-and-a-half magnitude star is again double, distance 4", p. 50 deg.. There is not much satisfaction in attempting tau Orionis with telescopes of ordinary apertures; Sigma 629 otherwise m Orionis, double, magnitudes five and a half (greenish) and seven, distance 31.7", p. 28 deg., a pretty object; Sigma 728, otherwise A 32, double, magnitudes five and seven, distance, 0.5" or less, p. 206 deg., a rapid binary,[2] which is at present too close for ordinary telescopes, although it was once within their reach; Sigma 729, double, magnitudes six and eight, distance 2", p. 26 deg., the smaller star pale blue—try it with a four-inch, but five-inch is better; Sigma 816, double, magnitudes six and half and eight and a half, distance 4", p. 289 deg.; psi 2, double, magnitudes five and a half and eleven, distance 3", or a little less, p. 322 deg.; 905, star cluster, contains about twenty stars from the eighth to the eleventh magnitude; 1267, nebula, faint, containing a triple star of the eighth magnitude, two of whose components are 51" apart, while the third is only 1.7" from its companion, p. 85 deg.; 1376, star cluster, small and crowded; 1361, star cluster, triangular shape, containing thirty stars, seventh to tenth magnitudes, one of which is a double, distance 2.4".

[2] The term "binary" is used to describe double stars which are in motion about their common center of gravity.

Let us now leave the inviting star-fields of Orion and take a glance at the little constellation of Lepus, crouching at the feet of the mythical giant. We may begin with a new kind of object, the celebrated red variable R Leporis (map No. 1). This star varies from the sixth or seventh magnitude to magnitude eight and a half in a period of four hundred and twenty-four days. Hind's picturesque description of its color has frequently been quoted. He said it is "of the most intense crimson, resembling a blood-drop on the black ground of the sky." It is important to remember that this star is reddest when faintest, so that if we chance to see it near its maximum of brightness it will not impress us as being crimson at all, but rather a dull, coppery red. Its spectrum indicates that it is smothered with absorbing vapors, a sun near extinction which, at intervals, experiences an accession of energy and bursts through its stifling envelope with explosive radiance, only to faint and sink once more. It is well to use our largest aperture in examining this star.

We may also employ the five-inch for an inspection of the double star iota, whose chief component of the fifth magnitude is beautifully tinged with green. The smaller companion is very faint, eleventh magnitude, and the distance is about 13", p. 337 deg..

Another fine double in Lepus is kappa, to be found just below iota; the components are of the fifth and eighth magnitudes, pale yellow and blue respectively, distance 2.5", p. 360 deg.; the third-magnitude star alpha has a tenth-magnitude companion at a distance of 35", p. 156 deg., and its neighbor beta (map No. 2), according to Burnham, is attended by three eleventh-magnitude stars, two of which are at distances of 206", p. 75 deg., and 240", p. 58 deg., respectively, while the third is less than 3" from beta, p. 288 deg.; the star gamma (map No. 2) is a wide double, the distance being 94", and the magnitudes four and eight. The star numbered 45 is a remarkable multiple, but the components are too faint to possess much interest for those who are not armed with very powerful telescopes.



From Lepus we pass to Canis Major (map No. 2). There is no hope of our being able to see the companion of alpha (Sirius), at present (1901), even with our five-inch. Discovered by Alvan Clark with an eighteen-inch telescope in 1862, when its distance was 10" from the center of Sirius, this ninth-magnitude star has since been swallowed up in the blaze of its great primary. At first, it slightly increased its distance, and from 1868 until 1879 most of the measures made by different observers considerably exceeded 11". Then it began to close up, and in 1890 the distance scarcely exceeded 4". Burnham was the last to catch sight of it with the Lick telescope in that year. After that no human eye saw it until 1896, when it was rediscovered at the Lick Observatory. Since then the distance has gradually increased to nearly 5". According to Burnham, its periodic time is about fifty-three years, and its nearest approach to Sirius should have taken place in the middle of 1892. Later calculations reduce the periodic time to forty-eight or forty-nine years. If we can not see the companion of the Dog Star with our instruments, we can at least, while admiring the splendor of that dazzling orb, reflect with profit upon the fact that although the companion is ten thousand times less bright than Sirius, it is half as massive as its brilliant neighbor. Imagine a subluminous body half as ponderous as the sun to be set revolving round it somewhere between Uranus and Neptune. Remember that that body would possess one hundred and sixty-five thousand times the gravitating energy of the earth, and that five hundred and twenty Jupiters would be required to equal its power of attraction, and then consider the consequences to our easy-going planets! Plainly the solar system is not cut according to the Sirian fashion. We shall hardly find a more remarkable coupling of celestial bodies until we come, on another evening, to a star that began, ages ago, to amaze the thoughtful and inspire the superstitious with dread—the wonderful Algol in Perseus.

We may remark in passing that Sirius is the brightest representative of the great spectroscopic type I, which includes more than half of all the stars yet studied, and which is characterized by a white or bluish-white color, and a spectrum possessing few or at best faint metallic lines, but remarkably broad, black, and intense lines of hydrogen. The inference is that Sirius is surrounded by an enormous atmosphere of hydrogen, and that the intensity of its radiation is greater, surface for surface, than that of the sun. There is historical evidence to support the assertion, improbable in itself, that Sirius, within eighteen hundred years, has changed color from red to white.

With either of our telescopes we shall have a feast for the eye when we turn the glass upon the star cluster No. 1454, some four degrees south of Sirius. Look for a red star near the center. Observe the curving rows so suggestive of design, or rather of the process by which this cluster was evolved out of a pre-existing nebula. You will recall the winding streams in the Great Nebula of Orion. Another star cluster worth a moment's attention is No. 1479, above and to the left of Sirius. We had better use the five-inch for this, as many of the stars are very faint. Not far away we find the double star , whose components are of the fifth and eighth magnitudes, distance 2.8", p. 343 deg.. The small star is pale blue. Cluster No. 1512 is a pleasing object with our largest aperture. In No. 1511 we have a faint nebula remarkable for the rows of minute stars in and near it. The star gamma is an irregular variable. In 1670 it is said to have almost disappeared, while at the beginning of the eighteenth century it was more than twice as bright as it is to-day. The reddish star delta is also probably variable. In my "Astronomy with an Opera Glass" will be found a cut showing a singular array of small stars partly encircling delta. These are widely scattered by a telescope, even with the lowest power.

Eastward from Canis Major we find some of the stars of Argo Navis. Sigma 1097, of the sixth magnitude, has two minute companions at 20" distance, p. 311 deg. and 312 deg.. The large star is itself double, but the distance, 0.8", p. 166 deg., places it beyond our reach. According to Burnham, there is yet a fourth faint star at 31", p. 40 deg.. Some three degrees and a half below and to the left of the star just examined is a beautiful star cluster, No. 1551. Nos. 1564, 1571, and 1630 are other star clusters well worth examination. A planetary nebula is included in 1564. With very powerful telescopes this nebula has been seen ring-shaped. Sigma 1146, otherwise known as 5 Navis, is a pretty double, colors pale yellow and blue, magnitudes five and seven, distance 3.25", p. 19 deg.. Our three-inch will suffice for this.



North of Canis Major and Argo we find Monoceros and Canis Minor (map No. 3). The stars forming the western end of Monoceros are depicted on map No. 1. We shall begin with these. The most interesting and beautiful is 11, a fine triple star, magnitudes five, six, and seven, distances 7.4", p. 131 deg., and 2.7", p. 103 deg.. Sir William Herschel regarded this as one of the most beautiful sights in the heavens. It is a good object to try our three-inch on, although it should not be difficult for such an aperture. The star 4 is also a triple, magnitudes six, ten, and eleven, distances 3.4", p. 178 deg., and 10", p. 244 deg.. We should glance at the star 5 to admire its fine orange color. In 8 we find a golden fifth-magnitude star, combined with a blue or lilac star of the seventh magnitude, distance 14", p. 24 deg.. Sigma 938 is a difficult double, magnitudes six and a half and twelve, distance 10", p. 210 deg.. Sigma 921 is double, magnitudes six and a half and eight, distance 16", p. 4 deg.. At the spot marked on the map 1424 we find an interesting cluster containing one star of the sixth magnitude.

The remaining stars of Monoceros will be found on map No. 3. The double and triple stars to be noted are S, or Sigma 950 (which is also a variable and involved in a faint nebula), magnitudes six and nine, distance 2.5", p. 206 deg.; Sigma 1183, double, magnitudes five and a half and eight, distance 31", p. 326 deg.; Sigma 1190, triple, magnitudes five and a half, ten, and nine, distances 31", p. 105 deg., and 67", p. 244 deg.. The clusters are 1465, which has a minute triple star near the center; 1483, one member of whose swarm is red; 1611, very small but rich; and 1637, interesting for the great number of ninth-magnitude stars that it contains. We should use the five-inch for all of these.

Canis Minor and the Head of Hydra are also contained on map No. 3. Procyon, alpha of Canis Minor, has several minute stars in the same field of view. There is, besides, a companion which, although it was known to exist, no telescope was able to detect until November, 1896. It must be of immense mass, since its attraction causes perceptible perturbations in the motion of Procyon. Its magnitude is eight and a half, distance 4.83", p. 338 deg.. One of the small stars just referred to, the second one east of Procyon, distant one third of the moon's diameter, is an interesting double. Our four-inch may separate it, and the five-inch is certain to do so. The magnitudes are seven and seven and a half or eight, distance 1.2", p. 133 deg.. This star is variously named Sigma 1126 and 31 Can. Min. Bode. Star No. 14 is a wide triple, magnitudes six, seven, and eight, distances 75, p. 65 deg., and 115", p. 154 deg..

PROCYON AND ITS NEIGHBORS.

In the Head of Hydra we find Sigma 1245, a double of the sixth and seventh magnitudes, distance 10.5", p. 25 deg.. The larger star shows a fine yellow. In epsilon we have a beautiful combination of a yellow with a blue star, magnitudes four and eight, distance 3.4", p. 198 deg.. Finally, let us look at theta for a light test with the five-inch. The two stars composing it are of the fourth and twelfth magnitudes, distance 50", p. 170 deg..

The brilliant constellations of Gemini and Taurus tempt us next, but warning clouds are gathering, and we shall do well to house our telescopes and warm our fingers by the winter fire. There will be other bright nights, and the stars are lasting.



CHAPTER III

FROM GEMINI TO LEO AND ROUND ABOUT

"If thou wouldst gaze on starry Charioteer, And hast heard legends of the wondrous Goat, Vast looming shalt thou find on the Twins' left, His form bowed forward."—POSTE'S ARATUS.



The zodiacal constellations of Gemini, Cancer, and Leo, together with their neighbors Auriga, the Lynx, Hydra, Sextans, and Coma Berenices, will furnish an abundance of occupation for our second night at the telescope. We shall begin, using our three-inch glass, with alpha, the chief star of Gemini (map No. 4). This is ordinarily known as Castor. Even an inexperienced eye perceives at once that it is not as bright as its neighbor Pollux, beta. Whether this fact is to be regarded as indicating that Castor was brighter than Pollux in 1603, when Bayer attached their Greek letters, is still an unsettled question. Castor may or may not be a variable, but it is, at any rate, one of the most beautiful double stars in the heavens. A power of one hundred is amply sufficient to separate its components, whose magnitudes are about two and three, the distance between them being 6", p. 226 deg.. A slight yet distinct tinge of green, recalling that of the Orion nebula, gives a peculiar appearance to this couple. Green is one of the rarest colors among the stars. Castor belongs to the same general spectroscopic type in which Sirius is found, but its lines of hydrogen are broader than those seen in the spectrum of the Dog Star. There is reason for thinking that it may be surrounded with a more extensive atmosphere of that gaseous metal called hydrogen than any other bright star possesses. There seems to be no doubt that the components of Castor are in revolution around their common center of gravity, although the period is uncertain, varying in different estimates all the way from two hundred and fifty to one thousand years; the longer estimate is probably not far from the truth. There is a tenth-magnitude star, distance 73", p. 164 deg., which may belong to the same system.

From Castor let us turn to Pollux, at the same time exchanging our three-inch telescope for the four-inch, or, still better, the five-inch. Pollux has five faint companions, of which we may expect to see three, as follows: Tenth magnitude, distance 175", p. 70 deg.; nine and a half magnitude, distance 206", p. 90 deg., and ninth magnitude, distance 229", p. 75 deg.. Burnham has seen a star of thirteen and a half magnitude, distance 43", p. 275 deg., and has divided the tenth-magnitude star into two components, only 1.4" apart, the smaller being of the thirteenth magnitude, and situated at the angle 128 deg.. A calculation based on Dr. Elkin's parallax of 0.068" for Pollux shows that that star may be a hundredfold more luminous than the sun, while its nearest companion may be a body smaller than our planet Jupiter, but shining, of course, by its own light. Its distance from Pollux, however, exceeds that of Jupiter from the sun in the ratio of about one hundred and thirty to one.

In the double star pi we shall find a good light test for our three-inch aperture, the magnitudes being six and eleven, distance 22", p. 212 deg.. The four-inch will show that kappa is a double, magnitudes four and ten, distance 6", p. 232 deg.. The smaller star is of a delicate blue color, and it has been suspected of variability. That it may be variable is rendered the more probable by the fact that in the immediate neighborhood of kappa there are three undoubted variables, S, T, and U, and there appears to be some mysterious law of association which causes such stars to group themselves in certain regions. None of the variables just named ever become visible to the naked eye, although they all undergo great changes of brightness, sinking from the eighth or ninth magnitude down to the thirteenth or even lower. The variable R, which lies considerably farther west, is well worth attention because of the remarkable change of color which it sometimes exhibits. It has been seen blue, red, and yellow in succession. It varies from between the sixth and seventh magnitudes to less than the thirteenth in a period of about two hundred and forty-two days.

Not far away we find a still more curious variable zeta; this is also an interesting triple star, its principal component being a little under the third magnitude, while one of the companions is of the seventh magnitude, distance 90", p. 355 deg., and the other is of the eleventh magnitude or less, distance 65", p. 85 deg.. We should hardly expect to see the fainter companion with the three-inch. The principal star varies from magnitude three and seven tenths down to magnitude four and a half in a period of a little more than ten days.



With the four-or five-inch we get a very pretty sight in delta, which appears split into a yellow and a purple star, magnitudes three and eight, distance 7", p. 206 deg..

Near delta, toward the east, lies one of the strangest of all the nebulae. (See the figures 1532 on the map.) Our telescopes will show it to us only as a minute star surrounded with a nebulous atmosphere, but its appearance with instruments of the first magnitude is so astonishing and at the same time so beautiful that I can not refrain from giving a brief description of it as I saw it in 1893 with the great Lick telescope. In the center glittered the star, and spread evenly around it was a circular nebulous disk, pale yet sparkling and conspicuous. This disk was sharply bordered by a narrow black ring, and outside the ring the luminous haze of the nebula again appeared, gradually fading toward the edge to invisibility. The accompanying cut, which exaggerates the brightness of the nebula as compared with the star, gives but a faint idea of this most singular object. If its peculiarities were within the reach of ordinary telescopes, there are few scenes in the heavens that would be deemed equally admirable.

In the star eta we have another long-period variable, which is also a double star; unfortunately the companion, being of only the tenth magnitude and distant less than 1" from its third-magnitude primary, is beyond the reach of our telescopes. But eta points the way to one of the finest star clusters in the sky, marked 1360 on the map. The naked eye perceives that there is something remarkable in that place, and the opera glass faintly reveals its distant splendors, but the telescope fairly carries us into its presence. Its stars are innumerable, varying from the ninth magnitude downward to the last limit of visibility, and presenting a wonderful array of curves which are highly interesting from the point of view of the nebular origin of such clusters. Looking backward in time, with that theory to guide us, we can see spiral lines of nebulous mist occupying the space that now glitters with interlacing rows of stars. It is certainly difficult to understand how such lines of nebula could become knotted with the nuclei of future stars, and then gradually be absorbed into those stars; and yet, if such a process does not occur, what is the meaning of that narrow nebulous streak in the Pleiades along which five or six stars are strung like beads on a string? The surroundings of this cluster, 1360, as one sweeps over them with the telescope gradually drawing toward the nucleus, have often reminded me of the approaches to such a city as London. Thicker and closer the twinkling points become, until at last, as the observers eye follows the gorgeous lines of stars trending inward, he seems to be entering the streets of a brilliantly lighted metropolis.

Other objects in Gemini that we can ill miss are: , double, magnitudes three and eleven, distance 73", p. 76 deg., colors yellow and blue; 15, double, magnitudes six and eight, distance 33", p. 205 deg.; gamma, remarkable for array of small stars near it; 38, double, magnitudes six and eight, distance 6.5", p. 162 deg., colors yellow and blue (very pretty); lambda, double, magnitudes four and eleven, distance 10", p. 30 deg., color of larger star blue—try with the five-inch; epsilon, double, magnitudes three and nine, distance 110", p. 94 deg..

From Gemini we pass to Cancer. This constellation has no large stars, but its great cluster Praesepe (1681 on map No. 4) is easily seen as a starry cloud with the naked eye. With the telescope it presents the most brilliant appearance with a very low power. It was one of the first objects that Galileo turned to when he had completed his telescope, and he wonderingly counted its stars, of which he enumerated thirty-six, and made a diagram showing their positions.

The most interesting star in Cancer is zeta, a celebrated triple. The magnitudes of its components are six, seven, and seven and a half; distances 1.14", p. 6 deg., and 5.7", p. 114 deg.. We must use our five-inch glass in order satisfactorily to separate the two nearest stars. The gravitational relationship of the three stars is very peculiar. The nearest pair revolve around their common center in about fifty-eight years, while the third star revolves with the other two, around a center common to all three, in a period of six or seven hundred years. But the movements of the third star are erratic, and inexplicable except upon the hypothesis advanced by Seeliger, that there is an invisible, or dark, star near it by whose attraction its motion is perturbed.

In endeavoring to picture the condition of things in zeta Cancri we might imagine our sun to have a companion sun, a half or a third as large as itself, and situated within what may be called planetary distance, circling with it around their center of gravity; while a third sun, smaller than the second and several times as far away, and accompanied by a black or non-luminous orb, swings with the first two around another center of motion. There you would have an entertaining complication for the inhabitants of a system of planets!

Other objects in Cancer are: Sigma 1223, double star, magnitudes six and six and a half, distance 5", p. 214 deg.; Sigma 1291, double, magnitudes both six, distance 1.3", p. 328 deg.—four-inch should split it; iota, double, magnitudes four and a half and six and a half, distance 30", p. 308 deg.; 66, double magnitudes six and nine, distance 4.8", p. 136 deg.; Sigma 1311, double, magnitudes both about the seventh, distance 7", p. 200 deg.; 1712, star cluster, very beautiful with the five-inch glass.



The constellation of Auriga may next command our attention (map No. 5). The calm beauty of its leading star Capella awakens an admiration that is not diminished by the rivalry of Orion's brilliants glittering to the south of it. Although Capella must be an enormously greater sun than ours, its spectrum bears so much resemblance to the solar spectrum that a further likeness of condition is suggested. No close telescopic companion to Capella has been discovered. A ninth-magnitude companion, distant 159", p. 146 deg., and two others, one of twelfth magnitude at 78", p. 317 deg., the other of thirteenth magnitude at 126", p. 183 deg., may be distant satellites of the great star, but not planets in the ordinary sense, since it is evident that they are self-luminous. It is a significant fact that most of the first-magnitude stars have faint companions which are not so distant as altogether to preclude the idea of physical relationship.

But while Capella has no visible companion, Campbell, of the Lick Observatory, has lately discovered that it is a conspicuous example of a peculiar class of binary stars only detected within the closing decade of the nineteenth century. The nature of these stars, called spectroscopic binaries, may perhaps best be described while we turn our attention from Capella to the second star in Auriga beta (Menkalina), which not only belongs to the same class, but was the first to be discovered. Neither our telescopes, nor any telescope in existence, can directly reveal the duplicity of beta Aurigae to the eye—i. e., we can not see the two stars composing it, because they are so close that their light remains inextricably mingled after the highest practicable magnifying power has been applied in the effort to separate them. But the spectroscope shows that the star is double and that its components are in rapid revolution around one another, completing their orbital swing in the astonishingly short period of four days! The combined mass of the two stars is estimated to be two and a half times the mass of the sun, and the distance between them, from center to center, is about eight million miles.

The manner in which the spectroscope revealed the existence of two stars in beta Aurigae is a beautiful illustration of the unexpected and, so to speak, automatic application of an old principle in the discovery of new facts not looked for. It was noticed at the Harvard Observatory that the lines in the photographed spectrum of beta Aurigae (and of a few other stars to be mentioned later) appeared single in some of the photographs and double in others. Investigation proved that the lines were doubled at regular intervals of about two days, and that they appeared single in the interim. The explanation was not far to seek. It is known that all stars which are approaching us have their spectral lines shifted, by virtue of their motion of approach, toward the violet end of the spectrum, and that, for a similar reason, all stars which are receding have their lines shifted toward the red end of the spectrum. Now, suppose two stars to be revolving around one another in a plane horizontal, or nearly so, to the line of sight. When they are at their greatest angular distance apart as seen from the earth one of them will evidently be approaching at the same moment that the other is receding. The spectral lines of the first will therefore be shifted toward the violet, and those of the second will be shifted toward the red. Then if the stars, when at their greatest distance apart, are still so close that the telescope can not separate them, their light will be combined in the spectrum; but the spectral lines, being simultaneously shifted in opposite directions, will necessarily appear to be doubled. As the revolution of the stars continues, however, it is clear that their motion will soon cease to be performed in the line of sight, and will become more and more athwart that line, and as this occurs the spectral lines will gradually assume their normal position and appear single. This is the sequence of phenomena in beta Aurigae. And the same sequence is found in Capella and in several other more or less conspicuous stars in various parts of the heavens.

Such facts, like those connecting rows and groups of stars with masses and spiral lines of nebula are obscure signboards, indicating the opening of a way which, starting in an unexpected direction, leads deep into the mysteries of the universe.

Southward from beta we find the star theta, which is a beautiful quadruple. We shall do best with our five-inch here, although in a fine condition of the atmosphere the four-inch might suffice. The primary is of the third magnitude; the first companion is of magnitude seven and a half, distance 2", p. 5 deg.; the second, of the tenth magnitude, distance 45", p. 292 deg.; and the third, of the tenth magnitude, distance 125", p. 350 deg..

We should look at the double Sigma 616 with one of our larger apertures in order to determine for ourselves what the colors of the components are. There is considerable diversity of opinion on this point. Some say the larger star is pale red and the smaller light blue; others consider the color of the larger star to be greenish, and some have even called it white. The magnitudes are five and nine, distance 6", p. 350 deg..

Auriga contains several noteworthy clusters which will be found on the map. The most beautiful of these is 1295, in which about five hundred stars have been counted.

The position of the new star of 1892, known as Nova Aurigae, is also indicated on the map. While this never made a brilliant appearance, it gave rise to a greater variety of speculative theories than any previous phenomenon of the kind. Although not recognized until January 24, 1892, this star, as photographic records prove, was in existence on December 9, 1891. At its brightest it barely exceeded magnitude four and a half, and its maximum occurred within ten days after its first recognition. When discovered it was of the fifth magnitude. It was last seen in its original form with the Lick telescope on April 26th, when it had sunk to the lowest limit of visibility. To everybody's astonishment it reappeared in the following August, and on the 17th of that month was seen shining with the light of a tenth-magnitude star, but presenting the spectrum of a nebula! Its visual appearance in the great telescope was now also that of a planetary nebula. Its spectrum during the first period of its visibility had been carefully studied, so that the means existed for making a spectroscopic comparison of the phenomenon in its two phases. During the first period, when only a stellar spectrum was noticed, remarkable shiftings of the spectral lines occurred, indicating that two and perhaps three bodies were concerned in the production of the light of the new star, one of which was approaching the earth, while the other or the others receded with velocities of several hundred miles per second! On the revival in the form of a planetary nebula, while the character of the spectrum had entirely changed, evidences of rapid motion in the line of sight remained.

But what was the meaning of all this? Evidently a catastrophe of some kind had occurred out there in space. The idea of a collision involving the transformation of the energy of motion into that of light and heat suggests itself at once. But what were the circumstances of the collision? Did an extinguished sun, flying blindly through space, plunge into a vast cloud of meteoric particles, and, under the lashing impact of so many myriads of missiles, break into superficial incandescence, while the cosmical wrack through which it had driven remained glowing with nebulous luminosity? Such an explanation has been offered by Seeliger. Or was Vogel right when he suggested that Nova Aurigae could be accounted for by supposing that a wandering dark body had run into collision with a system of planets surrounding a decrepit sun (and therefore it is to be hoped uninhabited), and that those planets had been reduced to vapor and sent spinning by the encounter, the second outburst of light being caused by an outlying planet of the system falling a prey to the vagabond destroyer? Or some may prefer the explanation, based on a theory of Wilsing's, that two great bodies, partially or wholly opaque and non-luminous at their surfaces, but liquid hot within, approached one another so closely that the tremendous strain of their tidal attraction burst their shells asunder so that their bowels of fire gushed briefly visible, amid a blaze of spouting vapors. And yet Lockyer thinks that there was no solid or semisolid mass concerned in the phenomenon at all, but that what occurred was simply the clash of two immense swarms of meteors that had crossed one another's track.

Well, where nobody positively knows, everybody has free choice. In the meantime, look at the spot in the sky where that little star made its appearance and underwent its marvelous transformation, for, even if you can see no remains of it there, you will feel your interest in the problem it has presented, and in the whole subject of astronomy, greatly heightened and vivified, as the visitor to the field of Waterloo becomes a lover of history on the spot.

The remaining objects of special interest in Auriga may be briefly mentioned: 26, triple star, magnitudes five, eight, and eleven, distances 12", p. 268 deg., and 26", p. 113 deg.; 14, triple star, magnitudes five, seven and a half, and eleven, distances 14", p. 224 deg., and 12.6", p. 342 deg., the last difficult for moderate apertures; lambda, double, magnitudes five and nine, distance 121", p. 13 deg.; epsilon, variable, generally of third magnitude, but has been seen of only four and a half magnitude; 41, double, magnitudes five and six, distance 8", p. 354 deg.; 996, 1067, 1119, and 1166, clusters all well worth inspection, 1119 being especially beautiful.

The inconspicuous Lynx furnishes some fine telescopic objects, all grouped near the northwestern corner of the constellation. Without a six-inch telescope it would be a waste of time to attack the double star 4, whose components are of sixth and eighth magnitudes, distance 0.8", p. 103 deg.; but its neighbor, 5, a fine triple, is within our reach, the magnitudes being six, ten, and eight, distances 30", p. 139 deg., and 96", p. 272 deg.. In 12 Lyncis we find one of the most attractive of triple stars, which in good seeing weather is not beyond the powers of a three-inch glass, although we shall have a far more satisfactory view of it with the four-inch. The components are of the sixth, seventh, and eighth magnitudes, distances 1.4", p. 117 deg., and 8.7", p. 304 deg.. A magnifying power which just suffices clearly to separate the disks of the two nearer stars makes this a fine sight. A beautiful contrast of colors belongs to the double star 14, but unfortunately the star is at present very close, the distance between its sixth and seventh magnitude components not exceeding 0.8", position angle 64 deg.. Sigma 958 is a pretty double, both stars being of the sixth magnitude, distance 5", p. 257 deg.. Still finer is Sigma 1009, a double, whose stars are both a little above the seventh magnitude and nearly equal, distance 3", p. 156 deg.. A low power suffices to show the three stars in 19, their magnitudes being six and a half, seven and a half, and eight, distances 15", p. 312 deg., and 215", p. 358 deg.. Webb describes the two smaller stars as plum-colored. Plum-colored suns!

At the opposite end of the constellation are two fine doubles, Sigma 1333, magnitudes six and a half and seven, distance 1.4", p. 39 deg.; and 38, magnitudes four and seven, distance 2.9", p. 235 deg..

Under the guidance of map No. 6 we turn to Leo, which contains one of the leading gems among the double stars, gamma, whose components, of the second and fourth magnitudes, are respectively yellow and green, the green star, according to some observers, having a peculiar tinge of red. Their distance apart is 3.7", p. 118 deg., and they are undoubtedly in revolution about a common center, the probable period being about four hundred years. The three-inch glass should separate them easily when the air is steady, and a pleasing sight they are.

The star iota is a closer double, and also very pretty, magnitudes four and eight, colors lemon and light blue, distance 2.17", p. 53 deg.. Other doubles are tau, magnitudes five and seven, distance 95", p. 170 deg.; 88, magnitudes seven and nine, distance 15", p. 320 deg.; 90, triple, magnitudes six, seven and a half, and ten, distance, 3.5", p. 209 deg., and 59", p. 234 deg.; 54, magnitudes four and a half and seven, distance 6.2", p. 102 deg.; and 49, magnitudes six and nine, distance 2.4", p. 158 deg..

Leo contains a remarkable variable star, R, deep red in color, and varying in a space of a hundred and forty-four days from the fifth to the tenth magnitude. It has also several nebulae, of which only one needs special mention, No. 1861. This is spindle-shaped, and large telescopes show that it consists of three nebulae. The observer with ordinary instruments finds little to see and little to interest him in these small, faint nebulae.

We may just glance at two double stars in the small constellation of Sextans, situated under Leo. These are: 9, magnitudes seven and eight, distance 53", p. 292 deg.; and 35, magnitudes six and seven, distance 6.9", p. 240 deg..



Coma Berenices (map No. 6) includes several interesting objects. Let us begin with the star 2, a double, of magnitudes six and seven and a half, distance 3.6", p. 240 deg.. The color of the smaller star is lilac. This hue, although not extremely uncommon among double stars elsewhere, recurs again and again, with singular persistence, in this little constellation. For instance, in the very next star that we look at, 12, we find a double whose smaller component is lilac. The magnitudes in 12 are five and eight, distance 66", p. 168 deg.. So also the wide double 17, magnitudes five and a half and six, distance 145", exhibits a tinge of lilac in the smaller component; the triple 35, magnitudes five, eight, and nine, distances 1", p. 77 deg., and 28.7", p. 124 deg., has four colors yellow, lilac, and blue, and the double 24, magnitudes five and six, distance 20", p. 270 deg., combines an orange with a lilac star, a very striking and beautiful contrast. We should make a mistake if we regarded this wonderful distribution of color among the double stars as accidental. It is manifestly expressive of their physical condition, although we can not yet decipher its exact meaning.

The binary 42 Comae Berenicis is too close for ordinary telescopes, but it is highly interesting as an intermediate between those pairs which the telescope is able to separate and those—like beta Aurigae—which no magnifying power can divide, but which reveal the fact that they are double by the periodical splitting of their spectral lines. The orbit in 42 Comae Berenicis is a very small one, so that even when the components are at their greatest distance apart they can not be separated by a five-or six-inch glass. Burnham, using the Lick telescope, in 1890 made the distance 0.7"; Hall, using the Washington telescope, in 1891 made it a trifle more than 0.5". He had measured it in 1886 as only 0.27". The period of revolution is believed to be about twenty-five years.

In Coma Berenices there is an outlying field of the marvelous nebulous region of Virgo, which we may explore on some future evening. But the nebulae in Coma are very faint, and, for an amateur, hardly worth the trouble required to pick them up. The two clusters included in the map, 2752 and 3453, are bright enough to repay inspection with our largest aperture.



Although Hydra is the largest constellation in the heavens, extending about seven hours, or 105 deg., in right ascension, it contains comparatively few objects of interest, and most of these are in the head or western end of the constellation, which we examined during our first night at the telescope. In the central portion of Hydra, represented on map No. 7, we find its leading star alpha, sometimes called Alphard, or Cor Hydrae, a bright second-magnitude star that has been suspected of variability. It has a decided orange tint, and is accompanied, at a distance of 281", p. 153 deg., by a greenish tenth-magnitude star. Bu. 339 is a fine double, magnitudes eight and nine and a half, distance 1.3", p. 216 deg.. The planetary nebula 2102 is about 1' in diameter, pale blue in color, and worth looking at, because it is brighter than most objects of its class. Tempel and Secchi have given wonderful descriptions of it, both finding multitudes of stars intermingled with nebulous matter.

For a last glimpse at celestial splendors for the night, let us turn to the rich cluster 1630, in Argo, just above the place where the stream of the Milky Way—here bright in mid-channel and shallowing toward the shores—separates into two or three currents before disappearing behind the horizon. It is by no means as brilliant as some of the star clusters we have seen, but it gains in beauty and impressiveness from the presence of one bright star that seems to captain a host of inferior luminaries.



CHAPTER IV

VIRGO AND HER NEIGHBORS

... "that region Where still by night is seen The Virgin goddess near to bright Booetes."—POSTE'S ARATUS.



Following the order of right ascension, we come next to the little constellations Crater and Corvus, which may be described as standing on the curves of Hydra (map No. 8). Beginning with Crater, let us look first at alpha, a yellow fourth-magnitude star, near which is a celebrated red variable R. With a low power we can see both alpha and R in the same field of view, like a very wide double. There is a third star of ninth magnitude, and bluish in color, near R on the side toward alpha. R is variable both in color and light. When reddest, it has been described as "scarlet," "crimson," and "blood-colored"; when palest, it is a deep orange-red. Its light variation has a period the precise length of which is not yet known. The cycle of change is included between the eighth and ninth magnitudes.

While our three-inch telescope suffices to show R, it is better to use the five-inch, because of the faintness of the star. When the color is well seen, the contrast with alpha is very pleasing.

There is hardly anything else in Crater to interest us, and we pass over the border into Corvus, and go at once to its chief attraction, the star delta. The components of this beautiful double are of magnitudes three and eight; distance 24", p. 211 deg.; colors yellow and purple.

The night being dark and clear, we take the five-inch and turn it on the nebula 3128, which the map shows just under the border of Corvus in the edge of Hydra. Herschel believed he had resolved this into stars. It is a faint object and small, not exceeding one eighth of the moon's diameter.

Farther east in Hydra, as indicated near the left-hand edge of map No. 8, is a somewhat remarkable variable, R Hydrae. This star occasionally reaches magnitude three and a half, while at minimum it is not much above the tenth magnitude. Its period is about four hundred and twenty-five days.



While we have been examining these comparatively barren regions, glad to find one or two colored doubles to relieve the monotony of the search, a glittering white star has frequently drawn our eyes eastward and upward. It is Spica, the great gem of Virgo, and, yielding to its attraction, we now enter the richer constellation over which it presides (map No. 9). Except for its beauty, which every one must admire, Spica, or alpha Virginis, has no special claim upon our attention. Some evidence has been obtained that, like beta Aurigae and Capella, it revolves with an invisible companion of great mass in an orbit only six million miles in diameter. Spica's spectrum resembles that of Sirius. The faint star which our larger apertures show about 6' northeast of Spica is of the tenth magnitude.

Sweeping westward, we come upon Sigma 1669, a pretty little double with nearly equal components of about the sixth magnitude, distance 5.6", p. 124 deg.. But our interest is not fully aroused until we reach gamma, a star with a history. The components of this celebrated binary are both nearly of the third magnitude, distance about 5.8", p. 150 deg.. They revolve around their common center in something less than two hundred years. According to some authorities, the period is one hundred and seventy years, but it is not yet certainly ascertained. It was noticed about the beginning of the seventeenth century that gamma Virginis was double. In 1836 the stars were so close together that no telescope then in existence was able to separate them, although it is said that the disk into which they had merged was elongated at Pulkowa. In a few years they became easily separable once more. If the one-hundred-and-seventy-year period is correct, they should continue to get farther apart until about 1921. According to Asaph Hall, their greatest apparent distance is 6.3", and their least apparent distance 0.5"; consequently, they will never again close up beyond the separating power of existing telescopes.

There is a great charm in watching this pair of stars even with a three-inch telescope—not so much on account of what is seen, although they are very beautiful, as on account of what we know they are doing. It is no slight thing to behold two distant stars obeying the law that makes a stone fall to the ground and compels the earth to swing round the sun.

In theta we discover a fine triple, magnitudes four and a half, nine, and ten; distances 7", p. 345 deg., and 65", p. 295 deg.. The ninth-magnitude star has been described as "violet," but such designations of color are often misleading when the star is very faint. On the other hand it should not be assumed that a certain color does not exist because the observer can not perceive it, for experience shows that there is a wide difference among observers in the power of the eye to distinguish color. I have known persons who could not perceive the difference of hue in some of the most beautifully contrasted colored doubles to be found in the sky. I am acquainted with an astronomer of long experience in the use of telescopes, whose eye is so deficient in color sense that he denies that there are any decided colors among the stars. Such persons miss one of the finest pleasures of the telescope. In examining theta Virginis we shall do best to use our largest aperture, viz., the five-inch. Yet Webb records that all three of the stars in this triple have been seen with a telescope of only three inches aperture. The amateur must remember in such cases how much depends upon practice as well as upon the condition of the atmosphere. There are lamentably few nights in a year when even the best telescope is ideally perfect in performance, but every night's observation increases the capacity of the eye, begetting a kind of critical judgment which renders it to some extent independent of atmospheric vagaries. It will also be found that the idiosyncrasies of the observer are reflected in his instrument, which seems to have its fits of excellence, its inspirations so to speak, while at other times it behaves as if all its wonderful powers had departed.

Another double that perhaps we had better not try with less than four inches aperture is 84 Virginis. The magnitudes are six and nine; distance, 3.5", p. 233 deg.. Colors yellow and blue. Sigma 1846 is a fifth-magnitude star with a tenth-magnitude companion, distance only 4", p. 108 deg.. Use the five-inch.

And now we approach something that is truly marvelous, the "Field of the Nebulae." This strange region, lying mostly in the constellation Virgo, is roughly outlined by the stars beta, eta, gamma, delta, and epsilon, which form two sides of a square some 15 deg. across. It extends, however, for some distance into Coma Berenices, while outlying nebulae belonging to it are also to be found in the eastern part of Leo. Unfortunately for those who expect only brilliant revelations when they look through a telescope, this throng of nebulae consists of small and inconspicuous wisps as ill defined as bits of thistle-down floating high in the air. There are more than three hundred of them all told, but even the brightest are faint objects when seen with the largest of our telescopes. Why do they congregate thus? That is the question which lends an interest to the assemblage that no individual member of it could alone command. It is a mystery, but beyond question it is explicable. The explanation, however, is yet to be discovered.

The places of only three of the nebulae are indicated on the map. No. 2806 has been described as resembling in shape a shuttle. Its length is nearly one third of the moon's diameter. It is brightest near the center, and has several faint companions. No. 2961 is round, 4' in diameter, and is accompanied by another round nebula in the same field of view toward the south. No. 3105 is double, and powerful telescopes show two more ghostly companions. There is an opportunity for good and useful work in a careful study of the little nebulae that swim into view all over this part of Virgo. Celestial photography has triumphs in store for itself here.

Scattered over and around the region where the nebulae are thickest we find eight or nine variable stars, three of the most remarkable of which, R, S, and U, may be found on the map. R is very irregular, sometimes attaining magnitude six and a half, while at other times its maximum brightness does not exceed that of an eighth-magnitude star. At minimum it sinks to the tenth or eleventh magnitude. Its period is one hundred and forty-five days. U varies from magnitude seven or eight down to magnitude twelve or under and then regains its light, in a period of about two hundred and seven days. S is interesting for its brilliant red color. When brightest, it exceeds the sixth magnitude, but at some of its maxima the magnitude is hardly greater than the eighth. At minimum it goes below the twelfth magnitude. Period, three hundred and seventy-six days.



Next east of Virgo is Libra, which contains a few notable objects (map No. 10). The star alpha has a fifth-magnitude companion, distant about 230", which can be easily seen with an opera glass. At the point marked A on the map is a curious multiple star, sometimes referred to by its number in Piazzi's catalogues as follows: 212 P. xiv. The two principal stars are easily seen, their magnitudes being six and seven and a half; distance 15", p. 290 deg.. Burnham found four other faint companions, for which it would be useless for us to look. The remarkable thing is that these faint stars, the nearest of which is distant about 50" from the largest member of the group and the farthest about 129", do not share, according to their discoverer, in the rapid proper motion of the two main stars.

1  2  3  4     Next Part
Home - Random Browse