|
Passing to the region covered by map No. 25, our eyes are caught by the curious figure, formed by the five brightest stars of the constellation Cassiopeia, somewhat resembling the letter W. Like Perseus, this is a rich constellation, both in star clusters and double stars. Among the latter we select as our first example sigma, in which we find a combination of color that is at once very unusual and very striking—green and blue. The magnitudes are five and seven, distance 3", p. 324 deg.. Another beautiful colored double is eta, whose magnitudes are four and seven and a half, distance 5", p. 200 deg., colors white and purple. This is one of the comparatively small number of stars the measure of whose distance has been attempted, and a keen sense of the uncertainty of such measures is conveyed by the fact that authorities of apparently equal weight place eta Cassiopeiae at such discordant distances as 124,000,000,000,000 miles, 70,000,000,000,000 miles, and 42,000,000,000,000 miles. It will be observed that the difference between the greatest and the least of these estimates is about double the entire distance given by the latter. The same thing is practically true of the various attempts to ascertain the distance of the other stars which have a perceptible parallax, even those which are evidently the nearest. In some cases the later measures increase the distance, in other cases they diminish it; in no case is there anything like a complete accord. Yet of course we are not to infer that it is hopeless to learn anything about the distances of the stars. With all their uncertainties and disagreements the few parallaxes we possess have laid a good foundation for a knowledge of the dimensions of at least the nearer parts of the universe.
We find an interesting triple in psi, the magnitudes of the larger components being four and a half and eight and a half, distance 30". The smaller star has a nine-and-a-half-magnitude companion, distance 3". A more beautiful triple is iota, magnitudes four, seven, and eight, distances 2", p. 256 deg., and 7.5", p. 112 deg.. Cassiopeia contains many star clusters, three of which are indicated in the map. Of these 392 is perhaps the most interesting, as it includes stars of many magnitudes, among which are a red one of the eighth magnitude, and a ninth-magnitude double whose components are 8" apart. Not far from the star kappa we find the spot where the most brilliant temporary star on record made its appearance on November 11, 1572. Tycho Brahe studied this phenomenon during the entire period of its visibility, which lasted until March, 1574. It burst out suddenly with overpowering splendor, far outshining every fixed star, and even equaling Venus at her brightest. In a very short time it began to fade, regularly diminishing in brightness, and at the same time undergoing changes of color, ending in red, until it disappeared. It has never been seen since, and the suspicion once entertained that it was a variable with a period considerably exceeding three hundred years has not been confirmed. There is a tenth-magnitude star near the place given by Tycho as that occupied by the stranger. Many other faint stars are scattered about, however, and Tycho's measures were not sufficiently exact to enable us to identify the precise position of his star. If the phenomenon was due to a collision, no reappearance of the star is to be expected.
Camelopardalus is a very inconspicuous constellation, yet it furnishes considerable occupation for the telescope. Sigma 390, of magnitude five, has a companion of magnitude nine and a half, distance 15", 160 deg.. Sigma 385, also of the fifth magnitude, has a ninth-magnitude companion, distance only 2.4", p. 160 deg.. According to some observers, the larger star is yellow and the smaller white. The star 1 is a very pretty double, magnitudes both six, distance 10.4". Its neighbor 2 of magnitude six has an eighth-magnitude companion, distance 1.7", p. 278 deg.. The star 7 of magnitude five is also double, the companion of magnitude eight being distant only 1.2". A glance at star cluster 940, which shows a slight central condensation, completes our work in Camelopardalus, and we turn to Ursa Major, represented in map No. 26. Here there are many interesting doubles and triples. Beginning with iota we find at once occupation for our largest glass. The magnitudes are three and ten, distance 10", p. 357 deg.. In the double star 23 the magnitudes are four and nine, distance 23", p. 272 deg.. A more pleasing object is sigma^2, a greenish fifth-magnitude star which has an eighth-magnitude companion, distance 2.6", p. 245 deg.. A good double for our four-inch glass is xi, whose magnitudes are four and five, distance 1.87", p. 183 deg.. This is a binary with a period of revolution of about sixty years, and is interesting as the first binary star whose orbit was determined. Savary calculated it in 1828. Near by is nu, a difficult double, magnitudes four and ten and a half, distance 7", p. 147 deg.. In 57 we find again an easy double magnitudes six and eight, distance 5.5", p. 4 deg.. Another similar double is 65, magnitudes six and eight, distance 3.9", p. 38 deg.. A third star, magnitude seven, is seen at a distance of 114" from the primary.
We come now to Ursa Major's principal attraction zeta, frequently called Mizar. The naked eye perceives near it a smaller star, named Alcor. With the three-inch glass and a medium power we divide Mizar into two bright stars brilliantly contrasted in color, the larger being white and the smaller blue-green. Beside Alcor, several fainter stars are seen scattered over the field of view, and, taken all in all, there are very few equally beautiful sights in the starry heavens. The magnitudes of the double are three and four, distance 14.5", p. 148 deg.. The large star is again double, although no telescope has been able to show it so, its duplicity being revealed, like that of beta Aurigae, by the periodical splitting of the lines in its spectrum.
Ursa Major contains several nebulae which may be glimpsed with telescopes of moderate dimensions. An interesting pair of these objects, both of which are included in one field of view, is formed by 1949 and 1950. The first named is the brighter of the two, its nucleus resembling a faint star. The nebula 2343 presents itself to us in the form of a faint, hazy star, but with large telescopes its appearance is very singular. According to a picture made by Lord Rosse, it bears no little resemblance to a skull, there being two symmetrically placed holes in it, each of which contains a star.
The portion of Canes Venatici, represented in map No. 26, contains two or three remarkable objects. Sigma 1606 is a close double, magnitudes six and seven, distance 1", p. 336 deg.. It is a pretty sight with the five-inch. The double star 2 is singular in that its larger component is red and its smaller blue; magnitudes six and eight, distance 11.4", p. 260 deg.. Still more beautiful is 12, commonly called Cor Caroli. This double is wide, and requires but a slight magnifying power. The magnitudes are three and six, distance 20", colors white or light yellow and blue. The nebula 3572, although we can see it only as a pair of misty specks, is in reality a very wonderful object. Lord Rosse's telescope has revealed in it a complicated spiral structure, recalling the photographs of the Andromeda nebula, and indicating that stupendous changes must be in process within it, although our records of observation are necessarily too brief to bring out any perceptible alteration of figure. It would seem that the astronomer has, of all men, the best reasons for complaining of the brevity of human life.
Lastly, we turn to Ursa Minor and the Pole Star. The latter is a celebrated double, not difficult, except with a telescope of less than three inches aperture in the hands of an inexperienced observer. The magnitudes are two and nine, distance 18.5". The small star has a dull blue color. In 1899 it was discovered by spectroscopic evidence that the Pole Star is triple. In pi' we see a wide double, magnitudes six and seven, distance 30", p. 83 deg..
This completes our survey of the starry heavens.
CHAPTER VIII
SCENES ON THE PLANETS
"These starry globes far surpassed the earth in grandeur, and the latter looked so diminutive that our empire, which appeared only as a point on its surface, awoke my pity."—CICERO, THE DREAM OF SCIPIO.
Although amateurs have played a conspicuous part in telescopic discovery among the heavenly bodies, yet every owner of a small telescope should not expect to attach his name to a star. But he certainly can do something perhaps more useful to himself and his friends; he can follow the discoveries that others, with better appliances and opportunities, have made, and can thus impart to those discoveries that sense of reality which only comes from seeing things with one's own eyes. There are hundreds of things continually referred to in books and writings on astronomy which have but a misty and uncertain significance for the mere reader, but which he can easily verify for himself with the aid of a telescope of four or five inches aperture, and which, when actually confronted by the senses, assume a meaning, a beauty, and an importance that would otherwise entirely have escaped him. Henceforth every allusion to the objects he has seen is eloquent with intelligence and suggestion.
Take, for instance, the planets that have been the subject of so many observations and speculations of late years—Mars, Jupiter, Saturn, Venus. For the ordinary reader much that is said about them makes very little impression upon his mind, and is almost unintelligible. He reads of the "snow patches" on Mars, but unless he has actually seen the whitened poles of that planet he can form no clear image in his mind of what is meant. So the "belts of Jupiter" is a confusing and misleading phrase for almost everybody except the astronomer, and the rings of Saturn are beyond comprehension unless they have actually been seen.
It is true that pictures and photographs partially supply the place of observation, but by no means so successfully as many imagine. The most realistic drawings and the sharpest photographs in astronomy are those of the moon, yet I think nobody would maintain that any picture in existence is capable of imparting a really satisfactory visual impression of the appearance of the lunar globe. Nobody who has not seen the moon with a telescope—it need not be a large one—can form a correct and definite idea of what the moon is like.
The satisfaction of viewing with one's own eyes some of the things the astronomers write and talk about is very great, and the illumination that comes from such viewing is equally great. Just as in foreign travel the actual seeing of a famous city, a great gallery filled with masterpieces, or a battlefield where decisive issues have been fought out illuminates, for the traveler's mind, the events of history, the criticisms of artists, and the occurrences of contemporary life in foreign lands, so an acquaintance with the sights of the heavens gives a grasp on astronomical problems that can not be acquired in any other way. The person who has been in Rome, though he may be no archaeologist, gets a far more vivid conception of a new discovery in the Forum than does the reader who has never seen the city of the Seven Hills; and the amateur who has looked at Jupiter with a telescope, though he may be no astronomer, finds that the announcement of some change among the wonderful belts of that cloudy planet has for him a meaning and an interest in which the ordinary reader can not share.
Jupiter is perhaps the easiest of all the planets for the amateur observer. A three-inch telescope gives beautiful views of the great planet, although a four-inch or a five-inch is of course better. But there is no necessity for going beyond six inches' aperture in any case. For myself, I should care for nothing better than my Byrne five-inch of fifty-two inches' focal distance. With such a glass more details are visible in the dark belts and along the bright equatorial girdle than can be correctly represented in a sketch before the rotation of the planet has altered their aspect, while the shadows of the satellites thrown upon the broad disk, and the satellites themselves when in transit, can be seen sometimes with exquisite clearness. The contrasting colors of various parts of the disk are also easily studied with a glass of four or five inches' aperture.
There is a charm about the great planet when he rides high in a clear evening sky, lording it over the fixed stars with his serene, unflickering luminousness, which no possessor of a telescope can resist. You turn the glass upon him and he floats into the field of view, with his cortege of satellites, like a yellow-and-red moon, attended by four miniatures of itself. You instantly comprehend Jupiter's mastery over his satellites—their allegiance is evident. No one would for an instant mistake them for stars accidentally seen in the same field of view. Although it requires a very large telescope to magnify their disks to measurable dimensions, yet the smallest glass differentiates them at once from the fixed stars. There is something almost startling in their appearance of companionship with the huge planet—this sudden verification to your eyes of the laws of gravitation and of central forces. It is easy, while looking at Jupiter amid his family, to understand the consternation of the churchmen when Galileo's telescope revealed that miniature of the solar system, and it is gratifying to gaze upon one of the first battle grounds whereon science gained a decisive victory for truth.
The swift changing of place among the satellites, as well as the rapidity of Jupiter's axial rotation, give the attraction of visible movement to the Jovian spectacle. The planet rotates in four or five minutes less than ten hours—in other words, it makes two turns and four tenths of a third turn while the earth is rolling once upon its axis. A point on Jupiter's equator moves about twenty-seven thousand miles, or considerably more than the entire circumference of the earth, in a single hour. The effect of this motion is clearly perceptible to the observer with a telescope on account of the diversified markings and colors of the moving disk, and to watch it is one of the greatest pleasures that the telescope affords.
It would be possible, when the planet is favorably situated, to witness an entire rotation of Jupiter in the course of one night, but the beginning and end of the observation would be more or less interfered with by the effects of low altitude, to say nothing of the tedium of so long a vigil. But by looking at the planet for an hour at a time in the course of a few nights every side of it will have been presented to view. Suppose the first observation is made between nine and ten o'clock on any night which may have been selected. Then on the following night between ten and eleven o'clock Jupiter will have made two and a half turns upon his axis, and the side diametrically opposite to that seen on the first night will be visible. On the third night between eleven and twelve o'clock Jupiter will have performed five complete rotations, and the side originally viewed will be visible again.
Owing to the rotundity of the planet, only the central part of the disk is sharply defined, and markings which can be easily seen when centrally located become indistinct or disappear altogether when near the limb. Approach to the edge of the disk also causes a foreshortening which sometimes entirely alters the aspect of a marking. It is advisable, therefore, to confine the attention mainly to the middle of the disk. As time passes, clearly defined markings on or between the cloudy belts will be seen to approach the western edge of the disk, gradually losing their distinctness and altering their appearance, while from the region of indistinct definition near the eastern edge other markings slowly emerge and advance toward the center, becoming sharper in outline and more clearly defined in color as they swing into view.
Watching these changes, the observer is carried away by the reflection that he actually sees the turning of another distant world upon its axis of rotation, just as he might view the revolving earth from a standpoint on the moon. Belts of reddish clouds, many thousands of miles across, are stretched along on each side of the equator of the great planet he is watching; the equatorial belt itself, brilliantly lemon-hued, or sometimes ruddy, is diversified with white globular and balloon-shaped masses, which almost recall the appearance of summer cloud domes hanging over a terrestrial landscape, while toward the poles shadowy expanses of gradually deepening blue or blue-gray suggest the comparative coolness of those regions which lie always under a low sun.
After a few nights' observation even the veriest amateur finds himself recognizing certain shapes or appearances—a narrow dark belt running slopingly across the equator from one of the main cloud zones to the other, or a rift in one of the colored bands, or a rotund white mass apparently floating above the equator, or a broad scallop in the edge of a belt like that near the site of the celebrated "red spot," whose changes of color and aspect since its first appearance in 1878, together with the light it has thrown on the constitution of Jupiter's disk, have all but created a new Jovian literature, so thoroughly and so frequently have they been discussed.
And, having noticed these recurring features, the observer will begin to note their relations to one another, and will thus be led to observe that some of them gradually drift apart, while others drift nearer; and after a time, without any aid from books or hints from observatories, he will discover for himself that there is a law governing the movements on Jupiter's disk. Upon the whole he will find that the swiftest motions are near the equator, and the slowest near the poles, although, if he is persistent and has a good eye and a good instrument, he will note exceptions to this rule, probably arising, as Professor Hough suggests, from differences of altitude in Jupiter's atmosphere. Finally, he will conclude that the colossal globe before him is, exteriorly at least, a vast ball of clouds and vapors, subject to tremendous vicissitudes, possibly intensely heated, and altogether different in its physical constitution, although made up of similar elements, from the earth. Then, if he chooses, he can sail off into the delightful cloud-land of astronomical speculation, and make of the striped and spotted sphere of Jove just such a world as may please his fancy—for a world of some kind it certainly is.
For many observers the satellites of Jupiter possess even greater attractions than the gigantic ball itself. As I have already remarked, their movements are very noticeable and lend a wonderful animation to the scene. Although they bear classical names, they are almost universally referred to by their Roman numbers, beginning with the innermost, whose symbol is I, and running outward in regular order II, III, and IV.[5] The minute satellite much nearer to the planet than any of the others, which Mr. Barnard discovered with the Lick telescope in 1892, is called the fifth, although in the order of distance it would be the first. In size and importance, however, it can not rank with its comparatively gigantic brothers. Of course, no amateur's telescope can afford the faintest glimpse of it.
[5] Their names, in the same order as their numbers, are Io, Europa, Ganymede, and Callisto.
Satellite I, situated at a mean distance of 261,000 miles from Jupiter's center—about 22,000 miles farther than the moon is from the earth—is urged by its master's overpowering attraction to a speed of 320 miles per minute, so that it performs a complete revolution in about forty-two hours and a half. The others, of course, move more slowly, but even the most distant performs its revolution in several hours less than sixteen days. The plane of their orbits is presented edgewise toward the earth, from which it follows that they appear to move back and forth nearly in straight lines, some apparently approaching the planet, while others are receding from it. The changes in their relative positions, which can be detected from hour to hour, are very striking night after night, and lead to a great variety of arrangements always pleasing to the eye.
The most interesting phenomena that they present are their transits and those of their round, black shadows across the face of the planet; their eclipses by the planet's shadow, when they disappear and afterward reappear with astonishing suddenness; and their occultations by the globe of Jupiter. Upon the whole, the most interesting thing for the amateur to watch is the passage of the shadows across Jupiter. The distinctness with which they can be seen when the air is steady is likely to surprise, as it is certain to delight, the observer. When it falls upon a light part of the disk the shadow of a satellite is as black and sharply outlined as a drop of ink; on a dark-colored belt it can not so easily be seen.
It is more difficult to see the satellites themselves in transit. There appears to be some difference among them as to visibility in such circumstances. Owing to their luminosity they are best seen when they have a dark belt for a background, and are least easily visible when they appear against a bright portion of the planet. Every observer should provide himself with a copy of the American Ephemeris for the current year, wherein he will find all the information needed to enable him to identify the various satellites and to predict, by turning Washington mean time into his own local time, the various phenomena of the transits and eclipses.
While a faithful study of the phenomena of Jupiter is likely to lead the student to the conclusion that the greatest planet in our system is not a suitable abode for life, yet the problem of its future, always fascinating to the imagination, is open; and whosoever may be disposed to record his observations in a systematic manner may at least hope to render aid in the solution of that problem.
Saturn ranks next to Jupiter in attractiveness for the observer with a telescope. The rings are almost as mystifying to-day as they were in the time of Herschel. There is probably no single telescopic view that can compare in the power to excite wonder with that of Saturn when the ring system is not so widely opened but that both poles of the planet project beyond it. One returns to it again and again with unflagging interest, and the beauty of the spectacle quite matches its singularity. When Saturn is in view the owner of a telescope may become a recruiting officer for astronomy by simply inviting his friends to gaze at the wonderful planet. The silvery color of the ball, delicately chased with half-visible shadings, merging one into another from the bright equatorial band to the bluish polar caps; the grand arch of the rings, sweeping across the planet with a perceptible edging of shadow; their sudden disappearance close to the margin of the ball, where they go behind it and fall straightway into night; the manifest contrast of brightness, if not of color, between the two principal rings; the fine curve of the black line marking the 1,600-mile gap between their edges—these are some of the elements of a picture that can never fade from the memory of any one who has once beheld it in its full glory.
Saturn's moons are by no means so interesting to watch as are those of Jupiter. Even the effect of their surprising number (raised to nine by Professor Pickering's discovery in 1899 of a new one which is almost at the limit of visibility, and was found only with the aid of photography) is lost, because most of them are too faint to be seen with ordinary telescopes, or, if seen, to make any notable impression upon the eye. The two largest—Titan and Japetus—are easily found, and Titan is conspicuous, but they give none of that sense of companionship and obedience to a central authority which strikes even the careless observer of Jupiter's system. This is owing partly to their more deliberate movements and partly to the inclination of the plane of their orbits, which seldom lies edgewise toward the earth.
But the charm of the peerless rings is abiding, and the interest of the spectator is heightened by recalling what science has recently established as to their composition. It is marvelous to think, while looking upon their broad, level surfaces—as smooth, apparently, as polished steel, though thirty thousand miles across—that they are in reality vast circling currents of meteoritic particles or dust, through which run immense waves, condensation and rarefaction succeeding one another as in the undulations of sound. Yet, with all their inferential tumult, they may actually be as soundless as the depths of interstellar space, for Struve has shown that those spectacular rings possess no appreciable mass, and, viewed from Saturn itself, their (to us) gorgeous seeming bow may appear only as a wreath of shimmering vapor spanning the sky and paled by the rivalry of the brighter stars.
In view of the theory of tidal action disrupting a satellite within a critical distance from the center of its primary, the thoughtful observer of Saturn will find himself wondering what may have been the origin of the rings. The critical distance referred to, and which is known as Roche's limit, lies, according to the most trustworthy estimates, just outside the outermost edge of the rings. It follows that if the matter composing the rings were collected into a single body that body would inevitably be torn to pieces and scattered into rings; and so, too, if instead of one there were several or many bodies of considerable size occupying the place of the rings, all of these bodies would be disrupted and scattered. If one of the present moons of Saturn—for instance, Mimas, the innermost hitherto discovered—should wander within the magic circle of Roche's limit it would suffer a similar fate, and its particles would be disseminated among the rings. One can hardly help wondering whether the rings have originated from the demolition of satellites—Saturn devouring his children, as the ancient myths represent, and encircling himself, amid the fury of destruction, with the dust of his disintegrated victims. At any rate, the amateur student of Saturn will find in the revelations of his telescope the inspirations of poetry as well as those of science, and the bent of his mind will determine which he shall follow.
Professor Pickering's discovery of a ninth satellite of Saturn, situated at the great distance of nearly eight million miles from the planet, serves to call attention to the vastness of the "sphere of activity" over which the ringed planet reigns. Surprising as the distance of the new satellite appears when compared with that of our moon, it is yet far from the limit where Saturn's control ceases and that of the sun becomes predominant. That limit, according to Prof. Asaph Hall's calculation, is nearly 30,000,000 miles from Saturn's center, while if our moon were removed to a distance a little exceeding 500,000 miles the earth would be in danger of losing its satellite through the elopement of Artemis with Apollo.
Although, as already remarked, the satellites of Saturn are not especially interesting to the amateur telescopist, yet it may be well to mention that, in addition to Titan and Japetus, the satellite named Rhea, the fifth in order of distance from the planet, is not a difficult object for a three-or four-inch telescope, and two others considerably fainter than Rhea—Dione (the fourth) and Tethys (the third)—may be seen in favorable circumstances. The others—Mimas (the first), Enceladus (the second), and Hyperion (the seventh)—are beyond the reach of all but large telescopes. The ninth satellite, which has received the name of Ph[oe]be, is much fainter than any of the others, its stellar magnitude being reckoned by its discoverer at about 15.5.
Mars, the best advertised of all the planets, is nearly the least satisfactory to look at except during a favorable opposition, like those of 1877 and 1892, when its comparative nearness to the earth renders some of its characteristic features visible in a small telescope. The next favorable opposition will occur in 1907.
When well seen with an ordinary telescope, say a four-or five-inch glass, Mars shows three peculiarities that may be called fairly conspicuous—viz., its white polar cap, its general reddish, or orange-yellow, hue, and its dark markings, one of the clearest of which is the so-called Syrtis Major, or, as it was once named on account of its shape, "Hourglass Sea." Other dark expanses in the southern hemisphere are not difficult to be seen, although their outlines are more or less misty and indistinct. The gradual diminution of the polar cap, which certainly behaves in this respect as a mass of snow and ice would do, is a most interesting spectacle. As summer advances in the southern hemisphere of Mars, the white circular patch surrounding the pole becomes smaller, night after night, until it sometimes disappears entirely even from the ken of the largest telescopes. At the same time the dark expanses become more distinct, as if the melting of the polar snows had supplied them with a greater depth of water, or the advance of the season had darkened them with a heavier growth of vegetation.
The phenomena mentioned above are about all that a small telescope will reveal. Occasionally a dark streak, which large instruments show is connected with the mysterious system of "canals," can be detected, but the "canals" themselves are far beyond the reach of any telescope except a few of the giants handled by experienced observers. The conviction which seems to have forced its way into the minds even of some conservative astronomers, that on Mars the conditions, to use the expression of Professor Young, "are more nearly earthlike than on any other of the heavenly bodies which we can see with our present telescopes," is sufficient to make the planet a center of undying interest notwithstanding the difficulties with which the amateur is confronted in his endeavors to see the details of its markings.
THE ILLUMINATION OF VENUS'S ATMOSPHERE AT THE BEGINNING OF HER TRANSIT ACROSS THE SUN.
In Venus "the fatal gift of beauty" may be said, as far as our observations are concerned, to be matched by the equally fatal gift of brilliance. Whether it be due to atmospheric reflection alone or to the prevalence of clouds, Venus is so bright that considerable doubt exists as to the actual visibility of any permanent markings on her surface. The detailed representations of the disk of Venus by Mr. Percival Lowell, showing in some respects a resemblance to the stripings of Mars, can not yet be accepted as decisive. More experienced astronomers than Mr. Lowell have been unable to see at all things which he draws with a fearless and unhesitating pencil. That there are some shadowy features of the planet's surface to be seen in favourable circumstances is probable, but the time for drawing a "map of Venus" has not yet come.
The previous work of Schiaparelli lends a certain degree of probability to Mr. Lowell's observations on the rotation of Venus. This rotation, according to the original announcement of Schiaparelli, is probably performed in the same period as the revolution around the sun. In other words, Venus, if Schiaparelli and Lowell are right, always presents the same side to the sun, possessing, in consequence, a day hemisphere and a night hemisphere which never interchange places. This condition is so antagonistic to all our ideas of what constitutes habitability for a planet that one hesitates to accept it as proved, and almost hopes that it may turn out to have no real existence. Venus, as the twin of the earth in size, is a planet which the imagination, warmed by its sunny aspect, would fain people with intelligent beings a little fairer than ourselves; but how can such ideas be reconciled with the picture of a world one half of which is subjected to the merciless rays of a never-setting sun, while the other half is buried in the fearful gloom and icy chill of unending night?
Any amateur observer who wishes to test his eyesight and his telescope in the search of shades or markings on the disk of Venus by the aid of which the question of its rotation may finally be settled should do his work while the sun is still above the horizon. Schiaparelli adopted that plan years ago, and others have followed him with advantage. The diffused light of day serves to take off the glare which is so serious an obstacle to the successful observation of Venus when seen against a dark sky. Knowing the location of Venus in the sky, which can be ascertained from the Ephemeris, the observer can find it by day. If his telescope is not permanently mounted and provided with "circles" this may not prove an easy thing to do, yet a little perseverance and ingenuity will effect it. One way is to find, with a star chart, some star whose declination is the same, or very nearly the same, as that of Venus, and which crosses the meridian say twelve hours ahead of her. Then set the telescope upon that star, when it is on the meridian at night, and leave it there, and the next day, twelve hours after the star crossed the meridian, look into your telescope and you will see Venus, or, if not, a slight motion of the tube will bring her into view.
For many amateurs the phases of Venus will alone supply sufficient interest for telescopic observation. The changes in her form, from that of a round full moon when she is near superior conjunction to the gibbous, and finally the half-moon phase as she approaches her eastern elongation, followed by the gradually narrowing and lengthening crescent, until she is a mere silver sickle between the sun and the earth, form a succession of delightful pictures.
Not very much can be said for Mercury as a telescopic object. The little planet presents phases like those of Venus, and, according to Schiaparelli and Lowell, it resembles Venus in its rotation, keeping always the same side to the sun. In fact, Schiaparelli's discovery of this peculiarity in the case of Mercury preceded the similar discovery in the case of Venus. There are markings on Mercury which have reminded some astronomers of the moon, and there are reasons for thinking that the planet can not be a suitable abode for living beings, at least for beings resembling the inhabitants of the earth.
Uranus and Neptune are too far away to present any attraction for amateur observers.
CHAPTER IX
THE MOUNTAINS AND PLAINS OF THE MOON, AND THE SPECTACLES OF THE SUN
"... the Moon, whose orb The Tuscan artist views through optic glass At evening from the top of Fesole, Or in Valdarno, to descry new lands, Rivers or mountains in her spotty globe."—PARADISE LOST.
The moon is probably the most interesting of all telescopic objects. This arises from its comparative nearness to the earth. A telescope magnifying 1,000 diameters brings the moon within an apparent distance of less than 240 miles. If telescopes are ever made with a magnifying power of 10,000 diameters, then, provided that atmospheric difficulties can be overcome, we shall see the moon as if it were only about twenty miles off, and a sensitive astronomer might be imagined to feel a little hesitation about gazing so closely at the moon—as if he were peering into a neighbor world's window.
But a great telescope and a high magnifying power are not required to interest the amateur astronomer in the study of the moon. Our three-inch telescope is amply sufficient to furnish us with entertainment for many an evening while the moon is running through its phases, and we shall find delight in frequently changing the magnifying power as we watch the lunar landscapes, because every change will present them in a different aspect.
It should be remembered that a telescope, unless a terrestrial eyepiece or prism is employed, reverses such an object as the moon top for bottom. Accordingly, if the moon is on or near the meridian when the observations are made, we shall see the north polar region at the bottom and the south polar region at the top. In other words, the face of the moon as presented in the telescope will be upside down, north and south interchanging places as compared with their positions in a geographical map. But east and west remain unaltered in position, as compared with such a map—i. e., the eastern hemisphere of the moon is seen on the right and the western hemisphere on the left. It is the moon's western edge that catches the first sunlight when "new moon" begins, and, as the phase increases, passing into "first quarter" and from that to "full moon," the illumination sweeps across the disk from west to east.
The narrow sickle of the new moon, hanging above the sunset, is a charming telescopic sight. Use a low power, and observe the contrast between the bright, smooth round of the sunward edge, which has almost the polish of a golden rim, and the irregular and delicately shaded inner curve, where the adjacent mountains and plains picturesquely reflect or subdue the sunshine. While the crescent grows broader new objects are continually coming into view as the sun rises upon them, until at length one of the most conspicuous and remarkable of the lunar "seas," the Mare Crisium, or Sea of Crises, lies fully displayed amid its encircling peaks, precipices, and craters. The Mare Crisium is all in the sunlight between the third and fourth day after "new moon." It is about 350 by 280 miles in extent, and if ever filled with water must have been a very deep sea, since its arid bed lies at a great but not precisely ascertained depth below the general level of the moon. There are a few small craters on the floor of the Mare Crisium, the largest bearing the name of Picard, and its borders are rugged with mountains. On the southwestern side is a lofty promontory, 11,000 feet in height, called Cape Agarum. At the middle of the eastern side a kind of bay opens deep in the mountains, whose range here becomes very narrow. Southeast of this bay lies a conspicuous bright point, the crater mountain Proclus, on which the sun has fully risen in the fourth day of the moon, and which reflects the light with extraordinary liveliness. Adjoining Proclus on the east and south is a curious, lozenge-shaped flat, broken with short, low ridges, and possessing a most peculiar light-brown tint, easily distinguished from the general color tone of the lunar landscapes. It would be interesting to know what was passing in the mind of the old astronomer who named this singular region Palus Somnii. It is not the only spot on the moon which has been called a "marsh," and to which an unexplained connection with dreams has been ascribed.
Nearly on the same meridian with Proclus, at a distance of about a hundred miles northward, lies a fine example of a ring mountain, rather more than forty miles in diameter, and with peak-tipped walls which in some places are 13,000 feet in height, as measured from the floor within. This is Macrobius. There is an inconspicuous central mountain in the ring.
North of the Mare Crisium, and northwest of Macrobius, we find a much larger mountain ring, oblong in shape and nearly eighty miles in its greatest diameter. It is named Cleomenes. The highest point on its wall is about 10,000 feet above the interior. Near the northeast corner of the wall yawns a huge and very deep crater, Tralles, while at the northern end is another oblong crater mountain called Burckhardt.
From Cleomenes northward to the pole, or to the northern extremity of the crescent, if our observations are made during new moon, the ground appears broken with an immense number of ridges, craters, and mountain rings, among which we may telescopically wander at will. One of the more remarkable of these objects, which may be identified with the aid of Lunar Chart No. 1, is the vast ringed plain near the edge of the disk, named Gauss. It is more than a hundred and ten miles in diameter. Owing to its situation, so far down the side of the lunar globe, it is foreshortened into a long ellipse, although in reality it is nearly a circle. A chain of mountains runs north and south across the interior plain. Geminus, Berzelius, and Messala are other rings well worth looking at. The remarkable pair called Atlas and Hercules demand more than passing attention. The former is fifty-five and the latter forty-six miles in diameter. Each sinks 11,000 feet below the summit of the loftiest peak on its encircling wall. Both are full of interesting detail sufficient to occupy the careful observer for many nights. The broad ring bearing the name of Endymion is nearly eighty miles in diameter, and has one peak 15,000 feet high. The interior plain is flat and dark. Beyond Endymion on the edge of the disk is part of a gloomy plain called the Mare Humboltianum.
After glancing at the crater-shaped mountains on the western and southern border of the Mare Crisium, Alhazen, Hansen, Condorcet, Firmicus, etc., we pass southward into the area covered in Lunar Chart No. 2. The long dark plain south of the Mare Crisium is the Mare Fecunditatis, though why it should have been supposed to be particularly fecund, or fertile, is by no means clear. On the western border of this plain, about three hundred miles from the southern end of the Mare Crisium, is the mountain ring, or circumvallation, called Langrenus, about ninety miles across and in places 10,000 feet high. There is a fine central mountain with a number of peaks. Nearly a hundred miles farther south, on the same meridian, lies an equally extensive mountain ring named Vendelinus. The broken and complicated appearance of its northern walls will command the observer's attention. Another similar step southward, and still on the same meridian brings us to a yet finer mountain ring, slightly larger than the others, and still more complicated in its walls, peaks, and terraces, and in its surroundings of craters, gorges, and broken ridges. This is Petavius. West of Petavius, on the very edge of the disk, is a wonderful formation, a walled plain named Humboldt, which is looked down upon at one point near its eastern edge by a peak 16,000 feet in height. About a hundred and forty miles south of Petavius is the fourth great mountain ring lying on the same meridian. Its name is Furnerius. Look particularly at the brilliantly shining crater on the northeast slope of the outer wall of Furnerius.
Suppose that our observations are now interrupted, to be resumed when the moon, about "seven days old," is in its first quarter. If we had time, it would be a most interesting thing to watch the advance of the lunar sunrise every night, for new beauties are displayed almost from hour to hour; but, for the purposes of our description it is necessary to curtail the observations. At first quarter one half of the lunar hemisphere which faces the earth is illuminated by the sun, and the line of sunrise runs across some of the most wonderful regions of the moon.
We begin, referring once more to Lunar Chart No. 1, in the neighborhood of the north pole of the moon. Here the line along which day and night meet is twisted and broken, owing to the roughness of the lunar surface. About fifteen degrees southwest of the pole lies a remarkable square-cornered, mountain-bordered plain, about forty miles in length, called Barrow. Very close to the pole is a ring mountain, about twenty-five miles in diameter, whose two loftiest peaks, 8,000 to 9,000 feet high, according to Neison, must, from their situation, enjoy perpetual day.
The long, narrow, dark plain, whose nearest edge is about thirty degrees south of the pole, is the Mare Frigoris, bordered on both sides by uplands and mountains. At its southern edge we find the magnificent Aristoteles, a mountain ring, sixty miles across, whose immense wall is composed of terraces and ridges running up to lofty peaks, which rise nearly 11,000 feet above the floor of the valley. About a hundred miles south of Aristoteles is Eudoxus, another fine mountain ring, forty miles in diameter, and quite as deep as its northern neighbor. These two make a most striking spectacle.
We are now in the neighborhood of the greatest mountain chains on the moon, the lunar Alps lying to the east and the lunar Caucasus to the south of Aristoteles and Eudoxus, while still farther south, separated from the Caucasus by a strait not more than a hundred miles broad, begins the mighty range of the lunar Apennines. We first turn the telescope on the Alps. As the line of sunrise runs directly across their highest peaks, the effect is startling. The greatest elevations are about 12,000 feet. The observer's eye is instantly caught by a great valley, running like a furrow through the center of the mountain mass, and about eighty or ninety miles in length. The sealike expanse south and southeast of the Alps is the Mare Imbrium, and it is along the coast of this so-called sea that the Alps attain their greatest height. The valley, or gorge, above mentioned, appears to cut through the loftiest mountains and to reach the "coast," although it is so narrowed and broken among the greater peaks that its southern portion is almost lost before it actually reaches the Mare Imbrium. Opening wider again as it enters the Mare, it forms a deep bay among precipitous mountains.
The Caucasus Mountains are not so lofty nor so precipitous as the Alps, and consequently have less attraction for the observer. They border the dark, oval plain of the Mare Serenitatis on its northeastern side. The great bay running out from the Mare toward the northwest, between the Caucasus and the huge mountain ring of Posidonius, bears the fanciful name of Lacus Somniorum. In the old days when the moon was supposed to be inhabited, those terrestrial godfathers, led by the astronomer Riccioli, who were busy bestowing names upon the "seas" and mountains of our patient satellite, may have pleased their imagination by picturing this arm of the "Serene Sea" as a peculiarly romantic sheet of water, amid whose magical influences the lunar gentlefolk, drifting softly in their silver galleons and barges, and enjoying the splendors of "full earth" poured upon their delightful little world, were accustomed to fall into charming reveries, as even we hard-headed sons of Adam occasionally do when the waters under the keel are calm and smooth and the balmy air of a moonlit night invokes the twin spirits of poetry and music.
Posidonius, the dominating feature of the shore line here, is an extraordinary example of the many formations on the moon which are so different from everything on the earth that astronomers do not find it easy to bestow upon them names that truly describe them. It may be called a ring mountain or a ringed plain, for it is both. Its diameter exceeds sixty miles, and the interior plain lies about 2,000 feet below the outer surface of the lunar ground. The mountain wall surrounding the ring is by no means remarkable for elevation, its greatest height not exceeding 6,000 feet, but, owing to the broad sweep of the curved walls, the brightness of the plain they inclose, and the picturesque irregularity of the silhouette of shadow thrown upon the valley floor by the peaks encircling it, the effect produced upon the observer is very striking and attractive.
Having finished with Posidonius and glanced across the broken region of the Taurus Mountains toward the west, we turn next to consider the Mare Serenitatis. This broad gray plain, which, with a slight magnifying power, certainly looks enough like a sea to justify the first telescopists in thinking that it might contain water, is about 430 by 425 miles in extent, its area being 125,000 square miles. Running directly through its middle, nearly in a north and south line, is a light streak, which even a good opera glass shows. This streak is the largest and most wonderful of the many similar rays which extend on all sides from the great crater, or ring, of Tycho in the southern hemisphere. The ray in question is more than 2,000 miles long, and, like its shorter congeners, it turns aside for nothing; neither "sea," nor peak, nor mountain range, nor crater ring, nor gorge, nor canon, is able to divert it from its course. It ascends all heights and drops into all depths with perfect indifference, but its continuity is not broken. When the sun does not illuminate it at a proper angle, however, the mysterious ray vanishes. Is it a metallic vein, or is it volcanic lava or ash? Was the globe of the moon once split open along this line?
The Mare Serenitatis is encircled by mountain ranges to a greater extent than any of the other lunar "seas." On its eastern side the Caucasus and the Apennines shut it in, except for a strait a hundred miles broad, by means of which it is connected with the Mare Imbrium. On the south the range of the Haemus Mountains borders it, on the north and northwest the Caucasus and the Taurus Mountains confine it, while on the west, where again it connects itself by a narrow strait with another "sea," the Mare Tranquilitatis, it encounters the massive uplift of Mount Argaeus. Not far from the eastern strait is found the remarkable little crater named Linne, not conspicuous on the gray floor of the Mare, yet easily enough found, and very interesting because a considerable change of form seems to have come over this crater some time near the middle of the nineteenth century. In referring to it as a crater it must not be forgotten that it does not form an opening in the top of a mountain. In fact, the so-called craters on the moon, generally speaking, are simply cavities in the lunar surface, whose bottoms lie deep below the general level, instead of being elevated on the summit of mountains, and inclosed in a conical peak. In regard to the alleged change in Linne, it has been suggested, not that a volcanic eruption brought it about, but that a downfall of steep walls, or of an unsupported rocky floor, was the cause. The possibility of such an occurrence, it must be admitted, adds to the interest of the observer who regularly studies the moon with a telescope.
Just on the southern border of the Mare, the beautiful ring Menelaus lies in the center of the chain of the Haemus Mountains. The ring is about twenty miles across, and its central peak is composed of some highly reflecting material, so that it shines very bright. The streak or ray from Tycho which crosses the Mare Serenitatis passes through the walls of Menelaus, and perhaps the central peak is composed of the same substance that forms the ray. Something more than a hundred miles east-southeast from Menelaus, in the midst of the dark Mare Vaporum, is another brilliant ring mountain which catches the eye, Manilius. It exceeds Menelaus in brightness as well as in size, its diameter being about twenty-five miles. There is something singular underlying the dark lunar surface here, for not only is Manilius extraordinarily brilliant in contrast with the surrounding plain, but out of that plain, about forty miles toward the east, projects a small mountain which is also remarkable for its reflecting properties, as if the gray ground were underlain by a stratum of some material that flashes back the sunlight wherever it is exposed. The crater mountain, Sulpicius Gallus, on the border of the Mare, north of Manilius and east of Menelaus, is another example of the strange shining quality of certain formations on the moon.
Follow next the Haemus range westward until the attention falls upon the great ring mountain Plinius, more than thirty miles across, and bearing an unusual resemblance to a fortification. Mr. T. G. Elger, the celebrated English selenographer, says of Plinius that, at sunrise, "it reminds one of a great fortress or redoubt erected to command the passage between the Mare Tranquilitatis and the Mare Serenitatis." But, of course, the resemblance is purely fanciful. Men, even though they dwelt in the moon, would not build a rampart 6,000 feet high!
Mount Argaeus, at the southwest corner of the Mare Serenitatis, is a very wonderful object when the sun has just risen upon it. This occurs five days after the new moon.
Returning to the eastern extremity of the Mare, we glance, in passing, at the precipitous Mount Hadley, which rises more than 15,000 feet above the level of the Mare and forms the northern point of the Apennine range. Passing into the region of the Mare Imbrium, whose western end is divided into the Palus Putredinis on the south and the Palus Nebularum on the north, we notice three conspicuous ring mountains, Cassini near the Alps, and Aristillus and Autolycus, a beautiful pair, nearly opposite the strait connecting the two Maria. Cassini is thirty-six miles in diameter, Aristillus thirty-four, and Autolycus twenty-three. The first named is shallow, only 4,000 feet in depth from the highest point of its wall, while Aristillus carries some peaks on its girdle 11,000 feet high. Autolycus, like Cassini, is of no very great depth.
Westward from the middle of an imaginary line joining Aristillus and Cassini is the much smaller crater Theaetetus. Outside the walls of this are a number of craterlets, and a French astronomer, Charbonneaux, of the Meudon Observatory, reported in December, 1900, that he had repeatedly observed white clouds appearing and disappearing over one of these small craters.
South of the Mare Vaporum are found some of the most notable of those strange lunar features that are called "clefts" or "rills." Two crater mountains, in particular, are connected with them, Ariadaeus at the eastern edge of the Mare Tranquilitatis and Hyginus on the southern border of the Mare Vaporum. These clefts appear to be broad and deep chasms, like the canons cut by terrestrial rivers, but it can not be believed that the lunar canons are the work of rivers. They are rather cracks in the lunar crust, although their bottoms are frequently visible. The principal cleft from Ariadaeus runs eastward and passes between two neighboring craters, the southern of which is named Silberschlag, and is noteworthy for its brightness. The Hyginus cleft is broader and runs directly through the crater ring of that name.
The observer will find much to interest him in the great, irregular, and much-broken mountain ring called Julius Caesar, as well as in the ring mountains, Godin, Agrippa, and Triesnecker. The last named, besides presenting magnificent shadows when the sunlight falls aslant upon it, is the center of a complicated system of rills, some of which can be traced with our five-inch glass.
We next take up Lunar Chart No. 2, and pay a telescopic visit to the southwestern quarter of the lunar world. The Mare Tranquilitatis merges through straits into two southern extensions, the Mare Fecunditatis and the Mare Nectaris. The great ring mountains or ringed plains, Langrenus, Vendelinus, Petavius, and Furnerius, all lying significantly along the same lunar meridian, have already been noticed. Their linear arrangement and isolated position recall the row of huge volcanic peaks that runs parallel with the shore of the Pacific Ocean in Oregon and Washington—Mount Jefferson, Mount Hood, Mount St. Helen's, Mount Tacoma—but these terrestrial volcanoes, except in elevation, are mere pins' heads in the comparison.
In the eastern part of the Mare Fecunditatis lies a pair of relatively small craters named Messier, which possess particular interest because it has been suspected, though not proved, that a change of form has occurred in one or other of the pair. Maedler, in the first half of the nineteenth century, represented the two craters as exactly alike in all respects. In 1855 Webb discovered that they are not alike in shape, and that the easternmost one is the larger, and every observer easily sees that Webb's description is correct. Messier is also remarkable for the light streak, often said to resemble a comet's tail, which extends from the larger crater eastward to the shore of the Mare Fecunditatis.
Goclenius and Guttemberg, on the highland between the Mare Fecunditatis and the Mare Nectaris, are intersected and surrounded by clefts, besides being remarkable for their broken and irregular though lofty walls. Guttemberg is forty-five miles and Goclenius twenty-eight miles in diameter. The short mountain range just east of Guttemberg, and bordering a part of the Mare Nectaris on the west, is called the Pyrenees.
The Mare Nectaris, though offering in its appearance no explanation of its toothsome name—perhaps it was regarded as the drinking cup of the Olympian gods—is one of the most singular of the dark lunar plains in its outlines. At the south it ends in a vast semicircular bay, sixty miles across, which is evidently a half-submerged mountain ring. But submerged by what? Not water, but perhaps a sea of lava which has now solidified and forms the floor of the Mare Nectaris. The name of this singular formation is Fracastorius. Elger has an interesting remark about it.
"On the higher portion of the interior, near the center," he says, "is a curious object consisting apparently of four light spots, arranged in a square, with a craterlet in the middle, all of which undergo notable changes of aspect under different phases."
Other writers also call attention to the fine markings, minute craterlets, and apparently changeable spots on the floor of Fracastorius.
We go now to the eastern side of the Mare Nectaris, where we find one of the most stupendous formations in the lunar world, the great mountain ring of Theophilus, noticeably regular in outline and perfect in the completeness of its lofty wall. The circular interior, which contains in the center a group of mountains, one of whose peaks is 6,000 feet high, sinks 10,000 feet below the general level of the moon outside the wall! One of the peaks on the western edge towers more than 18,000 feet above the floor within, while several other peaks attain elevations of 15,000 to 16,000 feet. The diameter of the immense ring, from crest to crest of the wall, is sixty-four miles. Theophilus is especially wonderful on the fifth and sixth days of the moon, when the sun climbs its shining pinnacles and slowly discloses the tremendous chasm that lies within its circles of terrible precipices.
On the southeast Theophilus is connected by extensions of its walls with a shattered ring of vast extent called Cyrillus; and south from Cyrillus, and connected with the same system of broken walls, lies the still larger ring named Catharina, whose half-ruined walls and numerous crater pits present a fascinating spectacle as the shadows retreat before the sunrise advancing across them. These three—Theophilus, Cyrillus, and Catharina—constitute a scene of surpassing magnificence, a glimpse of wonders in another world sufficient to satisfy the most riotous imagination.
South of the Mare Nectaris the huge ring mountain of Piccolomini attracts attention, its massive walls surrounding a floor nearly sixty miles across, and rising in some places to an altitude of nearly 15,000 feet. It should be understood that wherever the height of the mountain wall of such a ring is mentioned, the reference level is that of the interior plain or floor. The elevation, reckoned from the outer side, is always very much less.
The entire region south and east of Theophilus and its great neighbors is marvelously rough and broken. Approaching the center of the moon, we find a system of ringed plains even greater in area than any of those we have yet seen. Hipparchus is nearly a hundred miles long from north to south, and nearly ninety miles broad from east to west. But its walls have been destroyed to such an extent that, after all, it yields in grandeur to a formation like Theophilus.
Albategnius is sixty-five miles across, with peaks from 10,000 to 15,000 feet in height. Sacrobosco is a confused mass of broken and distorted walls. Aliacensis is remarkable for having a peak on the eastern side of its wall which is more than 16,000 feet high. Werner, forty-five miles in diameter, is interesting because under its northeastern wall Maedler, some seventy years ago, saw a light spot of astonishing brightness, unmatched in that respect by anything on the moon except the peak of Aristarchus, which we shall see later. This spot seems afterward to have lost brilliance, and the startling suggestion has been made that its original brightness might have been due to its then recent deposit from a little crater that lies in the midst of it. Walter is of gigantic dimensions, about one hundred miles in diameter. Unlike the majority of the ringed plains, it departs widely from a circle. Stoefler is yet larger than Walter; but most interesting of all these gigantic formations is Maurolycus, whose diameter exceeds one hundred and fifty miles, and which has walls 13,000 or 14,000 feet high. Yet, astonishing though it may seem, this vast and complicated mass of mountain walls, craters, and peaks, is virtually unseen at full moon, owing to the perpendicularity of the sunlight, which prevents the casting of shadows.
We shall next suppose that another period of about seven days has elapsed, the moon in the meantime reaching its full phase. We refer for guidance to Lunar Chart No. 3. The peculiarity of the northeastern quadrant which immediately strikes the eye is the prevalence of the broad plains called Maria, or "seas." The northern and central parts are occupied by the Mare Imbrium, the "Sea of Showers" or of "Rains," with its dark bay the Sinus AEstuum, while the eastern half is covered by the vast Oceanus Procellarum, the "Ocean of Storms" or of "Tempests."
Toward the north a conspicuous oval, remarkably dark in hue, immediately attracts our attention. It is the celebrated ringed plain of Plato, about sixty miles in diameter and surrounded by a saw-edged rampart, some of whose pinnacles are 6,000 or 7,000 feet high. Plato is a favorite subject for study by selenographers because of the changes of color which its broad, flat floor undergoes as the sun rises upon it, and also because of the existence of enigmatical spots and streaks whose visibility changes. South of Plato, in the Mare Imbrium, rises a precipitous, isolated peak called Pico, 8,000 feet in height. Its resemblance in situation to the conical mountain Pico in the Azores strikes the observer.
Eastward of Plato a line of highlands, separating the Mare Imbrium from the Mare Frigoris, carries the eye to the beautiful semicircular Sinus Iridum, or "Bay of Rainbows." The northwestern extremity of this remarkable bay is guarded by a steep and lofty promontory called Cape Laplace, while the southeastern extremity also has its towering guardian, Cape Heraclides. The latter is interesting for showing, between nine and ten days after full moon, a singularly perfect profile of a woman's face looking out across the Mare Imbrium. The winding lines, like submerged ridges, delicately marking the floor of the Sinus Iridum and that of the Mare beyond, are beautiful telescopic objects. The "bay" is about one hundred and thirty-five miles long by eighty-four broad.
The Mare Imbrium, covering 340,000 square miles, is sparingly dotted over with craters. All of the more conspicuous of them are indicated in the chart. The smaller ones, like Caroline Herschel, Helicon, Leverrier, Delisle, etc., vary from eight to twelve miles in diameter. Lambert is seventeen miles in diameter, and Euler nineteen, while Timocharis is twenty-three miles broad and 7,000 feet deep below its walls, which rise only 3,000 feet above the surface of the Mare.
Toward the eastern border of the sea, south of the Harbinger Mountains, we find a most remarkable object, the mountain ring, or crater plain, called Aristarchus. This ring is not quite thirty miles in diameter, but there is nothing on the moon that can compare with it in dazzling brilliance. The central peak, 1,200 or 1,300 feet high, gleams like a mountain of crusted snow, or as if it were composed of a mass of fresh-broken white metal, or of compacted crystals. Part of the inner slope of the east wall is equally brilliant. In fact, so much light is poured out of the circumvallation that the eye is partially blinded, and unable distinctly to see the details of the interior. No satisfactory explanation of the extraordinary reflecting power of Aristarchus has ever been offered. Its neighbor toward the east, Herodotus, is somewhat smaller and not remarkably bright, but it derives great interest from the fact that out of a breach in its northern wall issues a vast cleft, or chasm, which winds away for nearly a hundred miles across the floor of the Mare, making an abrupt turn when it reaches the foot of the Harbinger Mountains.
The comparatively small crater, Lichtenberg, near the northeastern limb of the moon, is interesting because Maedler used to see in its neighborhood a pale-red tint which has not been noticed since his day.
Returning to the western side of the quadrant represented in Lunar Chart No. 3, we see the broad and beautifully regular ringed plain of Archimedes, fifty miles in diameter and 4,000 feet deep.
A number of clefts extend between the mountainous neighborhood of Archimedes and the feet of the gigantic Apennine Mountains on the southwest. The little double crater, Beer, between Archimedes and Timocharis, is very bright.
The Apennines extend about four hundred and eighty miles in a northwesterly and southeasterly direction. One of their peaks near the southern end of the range, Mount Huygens, is at least 18,000 feet high, and the black silhouettes of their sharp-pointed shadows thrown upon the smooth floor of the Mare Imbrium about the time of first quarter present a spectacle as beautiful as it is unique. The Apennines end at the southeast in the ring mountain, Eratosthenes, thirty-eight miles across and very deep, one of its encircling chain of peaks rising 16,000 feet above the floor, and about half that height above the level of the Mare Imbrium. The shadows cast by Eratosthenes at sunrise are magnificent.
And now we come to one of the supreme spectacles of the moon, the immense ring or crater mountain Copernicus. This is generally regarded as the grandest object that the telescope reveals on the earth's satellite. It is about fifty-six miles across, and its interior falls to a depth of 8,000 feet below the Mare Imbrium. Its broad wall, composed of circle within circle of ridges, terraces, and precipices, rises on the east about 12,000 feet above the floor. On the inner side the slopes are very steep, cliff falling below cliff, until the bottom of the fearful abyss is attained. To descend those precipices and reach the depressed floor of Copernicus would be a memorable feat for a mountaineer. In the center of the floor rises a complicated mountain mass about 2,400 feet high. All around Copernicus the surface of the moon is dotted with countless little crater pits, and splashed with whitish streaks. Northward lie the Carpathian Mountains, terminating on the east in Tobias Mayer, a ring mountain more than twenty miles across. The mountain ring Kepler, which is also the center of a great system of whitish streaks and splashes, is twenty-two miles in diameter, and notably brilliant.
Finally, we turn to the southeastern quadrant of the moon, represented in Lunar Chart No. 4. The broad, dark expanse extending from the north is the Mare Nubium on the west and the Oceanus Procellarum on the east. Toward the southeast appears the notably dark, rounded area of the Mare Humorum inclosed by highlands and rings. We begin with the range of vast inclosures running southward near the central meridian, and starting with Ptolemaeus, a walled plain one hundred and fifteen miles in its greatest diameter and covering an area considerably exceeding that of the State of Massachusetts. Its neighbor toward the south, Alphonsus, is eighty-three miles across. Next comes Arzachel, more than sixty-five miles in diameter. Thebit, more than thirty miles across, is very deep. East of Thebit lies the celebrated "lunar railroad," a straight, isolated wall about five hundred feet high and sixty-five miles long, dividing at its southern end into a number of curious branches, forming the buttresses of a low mountain. Purbach is sixty miles broad, and south of that comes a wonderful region where the ring mountains Hell, Ball, Lexell, and others, more or less connected with walls, inclose an area even larger than Ptolemaeus, but which, not being so distinctly bordered as some of the other inclosed plains, bears no distinctive name.
The next conspicuous object toward the south ranks with Copernicus among the grandest of all lunar phenomena—the ring, or crater, Tycho. It is about fifty-four miles in diameter and some points on its wall rise 17,000 feet above the interior. In the center is a bright mountain peak 5,000 feet high. But wonderful as are the details of its mountain ring, the chief attraction of Tycho is its manifest relation to the mysterious bright rays heretofore referred to, which extend far across the surface of the moon in all directions, and of which it is the center. The streaks about Copernicus are short and confused, constituting rather a splash than a regular system of rays; but those emanating from Tycho are very long, regular, comparatively narrow, and form arcs of great circles which stretch away for hundreds of miles, allowing no obstacle to interrupt their course.
Southwest of Tycho lies the vast ringed plain of Maginus, a hundred miles broad and very wonderful to look upon, with its labyrinth of formations, when the sun slopes across it, and yet, like Maurolycus, invisible under a vertical illumination. "The full moon," to use Maedler's picturesque expression, "knows no Maginus." Still larger and yet more splendid is Clavius, which exceeds one hundred and forty miles in diameter and covers 16,000 square miles of ground within its fringing walls, which carry some of the loftiest peaks on the moon, several attaining 17,000 feet. The floor is deeply depressed, so that an inhabitant of this singular inclosure, larger than Massachusetts, Connecticut, and Rhode Island combined, would dwell in land sunk two miles below the general level of the world about him.
In the neighborhood of the south pole lies the large walled plain of Newton, whose interior is the deepest known depression on the moon. It is so deep that the sunshine never touches the larger part of the floor of the inner abyss, and a peak on its eastern wall rises 24,000 feet sheer above the tremendous pit. Other enormous walled plains are Longomontanus, Wilhelm I, Schiller, Bailly, and Schickard. The latter is one hundred and thirty-four miles long and bordered by a ring varying from 4,000 to 9,000 feet in height. Wargentin, the oval close to the moon's southeast limb, beyond Schickard, is a unique formation in that, instead of its interior being sunk below the general level, it is elevated above it. It has been suggested that this peculiarity is due to the fact that the floor of Wargentin was formed by inflation from below, and that it has cooled and solidified in the shape of a gigantic dome arched over an immense cavity beneath. A dome of such dimensions, however, could not retain its form unless partly supported from beneath.
Hainzel is interesting from its curious outline; Cichus for the huge yawning crater on its eastern wall; Capuanus for a brilliant shining crater also on its eastern wall; and Mercator for possessing bright craters on both its east and its west walls. Vitello has a bright central mountain and gains conspicuousness from its position at the edge of the dark Mare Humorum. Agatharchides is the broken remnant of a great ring mountain. Gassendi, an extremely beautiful object, is about fifty-five miles across. It is encircled with broken walls, craters and bright points, and altogether presents a very splendid appearance about the eleventh day of the moon's age.
Letronne is a half-submerged ring, at the southern end of the Oceanus Procellarum, which recalls Fracastorius in the western lunar hemisphere. It lies, however, ten degrees nearer the equator than Fracastorius. Billy is a mountain ring whose interior seems to have been submerged by the dark substance of the Oceanus Procellarum, although its walls have remained intact. Mersenius is a very conspicuous ring, forty miles in diameter, east of the Mare Humorum. Vieta, fifty miles across, is also a fine object. Grimaldi, a huge dusky oval, is nearly one hundred and fifty miles in its greatest length. The ring mountain Landsberg, on the equator, and near the center of the visible eastern hemisphere, is worth watching because Elger noticed changes of color in its interior in 1888.
Bullialdus, in the midst of the Mare Nubium, is a very conspicuous and beautiful ring mountain about thirty-eight miles in diameter, with walls 8,000 feet high above the interior.
Those who wish to see the lunar mountains in all their varying aspects will not content themselves with views obtained during the advance of the sunlight from west to east, between "new moon" and "full moon," but will continue their observations during the retreat of the sunlight from east to west, after the full phase is passed.
It is evident that the hemisphere of the moon which is forever turned away from the earth is quite as marvelous in its features as the part that we see. It will be noticed that the entire circle of the moon's limb, with insignificant interruptions, is mountainous. Possibly the invisible side of our satellite contains yet grander peaks and crater mountains than any that our telescopes can reach. This probability is increased by the fact that the loftiest known mountain on the moon is never seen except in silhouette. It is a member of a great chain that breaks the lunar limb west of the south pole, and that is called the Leibnitz Mountains. The particular peak referred to is said by some authorities to exceed 30,000 feet in height. Other great ranges seen only in profile are the Doerfel Mountains on the limb behind the ring plain Bailly, the Cordilleras, east of Eichstadt, and the D'Alembert Mountains beyond Grimaldi. The profile of these great mountains is particularly fine when they are seen during an eclipse of the sun. Then, with the disk of the sun for a background, they stand out with startling distinctness.
THE SUN
When the sun is covered with spots it becomes a most interesting object for telescopic study. Every amateur's telescope should be provided with apparatus for viewing the sun. A dark shade glass is not sufficient and not safe. What is known as a solar prism, consisting of two solid prisms of glass, cemented together in a brass box which carries a short tube for the eyepiece, and reflecting an image of the sun from their plane of junction—while the major remnant of light and heat passes directly through them and escapes from an opening provided for the purpose—serves very well. Better and more costly is an apparatus called a helioscope, constructed on the principle of polarization and provided with prisms and reflectors which enable the observer, by proper adjustment, to govern very exactly and delicately the amount of light that passes into the eyepiece.
Furnished with an apparatus of this description we can employ either a three-, four-, or five-inch glass upon the sun with much satisfaction. For the amateur's purposes the sun is only specially interesting when it is spotted. The first years of the twentieth century will behold a gradual growth in the number and size of the solar spots as those years happen to coincide with the increasing phase of the sun-spot period. Large sun spots and groups of spots often present an immense amount of detail which tasks the skill of the draughtsman to represent it. But a little practice will enable one to produce very good representations of sun spots, as well as of the whitish patches called faculae by which they are frequently surrounded.
For the simple purpose of exhibiting the spotted face of the sun without much magnifying power, a telescope may be used to project the solar image on a white sheet or screen. If the experiment is tried in a room, a little ingenuity will enable the observer to arrange a curtain covering the window used, in such a way as to exclude all the light except that which comes through the telescope. Then, by placing a sheet of paper or a drawing board before the eyepiece and focusing the image of the sun upon it, very good results may be obtained.
If one has a permanent mounting and a driving clock, a small spectroscope may be attached, for solar observations, even to a telescope of only four or five inches aperture, and with its aid most interesting views may be obtained of the wonderful red hydrogen flames that frequently appear at the edge of the solar disk.
CHAPTER X
ARE THERE PLANETS AMONG THE STARS?
"... And if there should be Worlds greater than thine own, inhabited By greater things, and they themselves far more In number than the dust of thy dull earth, What wouldst thou think?"—BYRON'S CAIN.
This always interesting question has lately been revived in a startling manner by discoveries that have seemed to reach almost deep enough to touch its solution. The following sentences, from the pen of Dr. T. J. J. See, of the Lowell Observatory, are very significant from this point of view:
"Our observations during 1896-'97 have certainly disclosed stars more difficult than any which astronomers had seen before. Among these obscure objects about half a dozen are truly wonderful, in that they seem to be dark, almost black in color, and apparently are shining by a dull reflected light. It is unlikely that they will prove to be self-luminous. If they should turn out dark bodies in fact, shining only by the reflected light of the stars around which they revolve, we should have the first case of planets—dark bodies—noticed among the fixed stars."
Of course, Dr. See has no reference in this statement to the immense dark bodies which, in recent years, have been discovered by spectroscopic methods revolving around some of the visible stars, although invisible themselves. The obscure objects that he describes belong to a different class, and might be likened, except perhaps in magnitude, to the companion of Sirius, which, though a light-giving body, exhibits nevertheless a singular defect of luminosity in relation to its mass. Sirius has only twice the mass, but ten thousand times the luminosity, of its strange companion! Yet the latter is evidently rather a faint, or partially extinguished, sun than an opaque body shining only with light borrowed from its dazzling neighbor. The objects seen by Dr. See, on the contrary, are "apparently shining by a dull reflected light."
If, however (as he evidently thinks is probable), these objects should prove to be really non-luminous, it would not follow that they are to be regarded as more like the planets of the solar system than like the dark companions of certain other stars. A planet, in the sense which we attach to the word, can not be comparable in mass and size with the sun around which it revolves. The sun is a thousand times larger than the greatest of its attendant planets, Jupiter, and more than a million times larger than the earth. It is extremely doubtful whether the relation of sun and planet could exist between two bodies of anything like equal size, or even if one exceeded the other many times in magnitude. It is only when the difference is so great that the smaller of the two bodies is insignificant in comparison with the larger, that the former could become a cool, life-bearing globe, nourished by the beneficent rays of its organic comrade and master.
Judged by our terrestrial experience, which is all we have to go by, the magnitude of a planet, if it is to bear life resembling that of the earth, is limited by other considerations. Even Jupiter, which, as far as our knowledge extends, represents the extreme limit of great planetary size, may be too large ever to become the abode of living beings of a high organization. The force of gravitation on the surface of Jupiter exceeds that on the earth's surface as 2.64 to 1. Considering the effects of this on the weight and motion of bodies, the density of the atmosphere, etc., it is evident that Jupiter would, to say the very least, be an exceedingly uncomfortable place of abode for beings resembling ourselves. But Jupiter, if it is ever to become a solid, rocky globe like ours, must shrink enormously in volume, since its density is only 0.24 as compared with the earth. Now, the surface gravity of a planet depends on its mass and its radius, being directly as the former and inversely as the square of the latter. But in shrinking Jupiter will lose none of its mass, although its radius will become much smaller. The force of gravity will consequently increase on its surface as the planet gets smaller and more dense.
The present mean diameter of Jupiter is 86,500 miles, while its mass exceeds that of the earth in the ratio of 316 to 1. Suppose Jupiter shrunk to three quarters of its present diameter, or 64,800 miles, then its surface gravity would exceed the earth's nearly five times. With one half its present diameter the surface gravity would become more than ten times that of the earth. On such a planet a man's bones would snap beneath his weight, even granting that he could remain upright at all! It would seem, then, that, unless we are to abandon terrestrial analogies altogether and "go it blind," we must set an upper limit to the magnitude of a habitable planet, and that Jupiter represents such upper limit, if, indeed, he does not transcend it.
The question then becomes, Can the faint objects seen by Dr. See and his fellow-observers, in the near neighborhood of certain stars, be planets in the sense just described, or are they necessarily far greater in magnitude than the largest planet, in the accepted sense of that word, which can be admitted into the category—viz., the planet Jupiter? This resolves itself into another question: At what distance would Jupiter be visible with a powerful telescope, supposing it to receive from a neighboring star an amount of illumination not less than that which it gets from the sun? To be sure, we do not know how far away the faint objects described by Dr. See are; but, at any rate, we can safely assume that they are at the distance of the nearest stars, say somewhere about three hundred thousand times the earth's distance from the sun. The sun itself removed to that distance would appear to our eyes only as a star of the first magnitude. But Zoellner has shown that the sun exceeds Jupiter in brilliancy 5,472,000,000 times. Seen from equal distances, however, the ratio would be about 218,000,000 to 1. This would be the ratio of their light if both sun and Jupiter could be removed to about the distance of the nearest stars. Since the sun would then be only as bright as one of the stars of the first magnitude, and since Jupiter would be 218,000,000 times less brilliant, it is evident that the latter would not be visible at all. The faintest stars that the most powerful telescopes are able to show probably do not fall below the sixteenth or, at the most, the seventeenth magnitude. But a seventeenth-magnitude star is only between two and three million times fainter than the sun would appear at the distance above supposed, while, as we have seen, Jupiter would be more than two hundred million times fainter than the sun. |
|