p-books.com
Organic Gardener's Composting
by Steve Solomon
Previous Part     1  2  3  4  5     Next Part
Home - Random Browse

The truth of the matter is that worms eat decaying organic matter and any soil amendment that increases plant growth without acidifying soil will increase earthworm food supply and thus worm population. Using lime as an antidote to acid-based fertilizers prevents making the soil inhospitable to earthworms. And many chemical fertilizers do not provoke acid reactions. The organic movement loses this round-but not the battle. And certainly not the war.

Food supply primarily determines earthworm population. To increase their numbers it is merely necessary to bring in additional organic matter or add plant nutrients that cause more vegetation to be grown there. In one study, simply returning the manure resulting from hay taken off a pasture increased earthworms by one-third. Adding lime and superphosphate to that manure made an additional improvement of another 33 percent. Every time compost is added to a garden, the soil's ability to support earthworms increases.

Some overly enthusiastic worm fanciers believe it is useful to import large numbers of earthworms. I do not agree. These same self-interested individuals tend to breed and sell worms. If the variety being offered is Eisenia foetida, the brandling, red wiggler, or manure worm used in vermicomposting, adding them to soil is a complete waste of money. This species does not survive well in ordinary soil and can breed in large numbers only in decomposing manure or other proteinaceous organic waste with a low C/N. All worm species breed prolifically. If there are any desirable worms present in soil, their population will soon match the available food supply and soil conditions. The way to increase worm populations is to increase organic matter, up mineral fertility, and eliminate acidity.

Earthworms and their beneficial activities are easily overlooked and left out of our contemplations on proper gardening technique. But understanding their breeding cycle allows gardeners to easily assist the worms efforts to multiply. In temperate climates, young earthworms hatch out in the fall when soil is cooling and moisture levels are high. As long as the soil is not too cold they feed actively and grow. By early spring these young worms are busily laying eggs. With summer's heat the soil warms and dries out. Even if the gardener irrigates, earthworms naturally become less active. They still lay a few eggs but many mature worms die. During high summer the few earthworms found will be small and young. Unhatched eggs are plentiful but not readily noticed by casual inspection so gardeners may mistakenly think they have few worms and may worry about how to increase their populations. With autumn the population cycle begins anew.

Soil management can greatly alter worm populations. But, how the field is handled during summer has only a slight effect. Spring and summer tillage does kill a few worms but does not damage eggs. By mulching, the soil can be kept cooler and more favorable to worm activities during summer while surface layers are kept moister. Irrigation helps similarly. Doing these things will allow a gardener the dubious satisfaction of seeing a few more worms during the main gardening season. However, soil is supposed to become inhospitably hot and dry during summer (worm's eye view) and there's not much point in struggling to maintain large earthworm populations during that part of the year. Unfortunately, summer is when gardeners pay the closest attention to the soil.

Worms maintain their year-round population by overwintering and then laying eggs that hatch late in the growing season. The most harm to worm multiplication happens by exposing bare soil during winter. Worm activity should be at a peak during cool weather. Though worms inadvertently pass a lot of soil through their bodies as they tunnel, soil is not their food. Garden worms and nightcrawlers intentionally rise to the surface to feed. They consume decaying vegetation lying on the surface. Without this food supply they die off. And in northern winters worms must be protected from suddenly experiencing freezing temperatures while they "harden off" and adapt themselves to surviving in almost frozen soil. Under sod or where protected by insulating mulch or a layer of organic debris, soil temperature drops gradually as winter comes on. But the first day or two of cold winter weather may freeze bare soil solid and kill off an entire field full of worms before they've had a chance to adapt.

Almost any kind of ground cover will enhance winter survival. A layer of compost, manure, straw, or a well-grown cover crop of ryegrass, even a thin mulch of grass clippings or weeds can serve as the food source worms need. Dr. Hopp says that soil tilth can be improved a great deal merely by assisting worms over a single winter.

Gardeners can effectively support the common earthworm without making great alterations in the way we handle our soil. From a worm's viewpoint, perhaps the best way to recycle autumn leaves is to till them in very shallowly over the garden so they serve as insulation yet are mixed with enough soil so that decomposition is accelerated. Perhaps a thorough garden clean-up is best postponed until spring, leaving a significant amount of decaying vegetation on top of the soil. (Of course, you'll want to remove and compost any diseased plant material or species that may harbor overwintering pests.) The best time to apply compost to tilled soil may also be during the autumn and the very best way is as a dressing atop a leaf mulch because the compost will also accelerate leaf decomposition. This is called "sheet composting" and will be discussed in detail shortly.

Certain pesticides approved for general use can severely damage earthworms. Carbaryl (Sevin), one of the most commonly used home garden chemical pesticides, is deadly to earthworms even at low levels. Malathion is moderately toxic to worms. Diazinon has not been shown to be at all harmful to earthworms when used at normal rates.

Just because a pesticide is derived from a natural source and is approved for use on crops labeled "organically grown" is no guarantee that it is not poisonous to mammals or highly toxic to earthworms. For example, rotenone, an insecticide derived from a tropical root called derris, is as poisonous to humans as organophosphate chemical pesticides. Even in very dilute amounts, rotenone is highly toxic to fish and other aquatic life. Great care must be taken to prevent it from getting into waterways. In the tropics, people traditionally harvest great quantities of fish by tossing a handful of powdered derris (a root containing rotenone) into the water, waiting a few minutes, and then scooping up stunned, dead, and dying fish by the ton. Rotenone is also deadly to earthworms. However, rotenone rarely kills worms because it is so rapidly biodegradable. Sprayed on plants to control beetles and other plant predators, its powerful effect lasts only a day or so before sun and moisture break it down to harmless substances. But once I dusted an entire raised bed of beetle-threatened bush bean seedlings with powdered rotenone late in the afternoon. The spotted beetles making hash of their leaves were immediately killed. Unexpectedly, it rained rather hard that evening and still-active rotenone was washed off the leaves and deeply into the soil. The next morning the surface of the bed was thickly littered with dead earthworms. I've learned to treat rotenone with great caution.

Microbes and Soil Fertility

There are still other holistic standards to measure soil productivity. With more than adequate justification the great Russian soil microbiologist N.S. Krasilnikov judged fertility by counting the numbers of microbes present. He said,

". . soil fertility is determined by biological factors, mainly by microorganisms. The development of life in soil endows it with the property of fertility. The notion of soil is inseparable from the notion of the development of living organisms in it. Soil is created by microorganisms. Were this life dead or stopped, the former soil would become an object of geology [not biology]."

Louise Howard, Sir Albert's second wife, made a very similar judgment in her book, Sir Albert Howard in India.

"A fertile soil, that is, a soil teeming with healthy life in the shape of abundant microflora and microfauna, will bear healthy plants, and these, when consumed by animals and man, will confer health on animals and man. But an infertile soil, that is, one lacking in sufficient microbial, fungous, and other life, will pass on some form of deficiency to the plants, and such plant, in turn, who pass on some form of deficiency to animal and man."

Although the two quotes substantively agree, Krasilnikov had a broader understanding. The early writers of the organic movement focused intently on mycorrhizal associations between soil fungi and plant roots as the hidden secret of plant health. Krasilnikov, whose later writings benefited from massive Soviet research did not deny the significance of mycorrhizal associations but stressed plant-bacterial associations. Both views contain much truth.

Krasilnikov may well have been the greatest soil microbiologist of his era, and Russians in general seem far ahead of us in this field. It is worth taking a moment to ask why that is so. American agricultural science is motivated by agribusiness, either by direct subsidy or indirectly through government because our government is often strongly influenced by major economic interests. American agricultural research also exists in a relatively free market where at this moment in history, large quantities of manufactured materials are reliably and cheaply available. Western agricultural science thus tends to seek solutions involving manufactured inputs. After all, what good is a problem if you can't solve it by profitably selling something.

But any Soviet agricultural researcher who solved problems by using factory products would be dooming their farmers to failure because the U.S.S.R.'s economic system was incapable of regularly supplying such items. So logically, Soviet agronomy focused on more holistic, low-tech approaches such as manipulating the soil microecology. For example, Americans scientifically increase soil nitrogen by spreading industrial chemicals; the Russians found low-tech ways to brew bacterial soups that inoculated a field with slightly more efficient nitrogen-fixing microorgamsms.

Soil microbiology is also a relatively inexpensive line of research that rewards mental cleverness over massive investment. Multimillion dollar laboratories with high-tech equipment did not yield big answers when the study was new. Perhaps in this biotech era, recombinant genetics will find high-tech ways to tailor make improved microorganisms and we'll surpass the Russians.

Soil microorganism populations are incredibly high. In productive soils there may be billions to the gram. (One gram of fluffy soil might fill 1/2 teaspoon.) Krasilnikov found great variations in bacterial counts. Light-colored nonproductive earths of the North growing skimpy conifer trees or poor crops don't contain very many microorganisms. The rich, black, grain-producing soils of the Ukraine (like our midwestern corn belt) carry very large microbial populations.

One must be clever to study soil microbes and fungi. Their life processes and ecological interactions can't be easily observed directly in the soil with a microscope. Usually, scientists study microorganisms by finding an artificial medium on which they grow well and observe the activities of a large colony or pure culture—a very restricted view. There probably are more species of microorganisms than all other living things combined, yet we often can't identify one species from another similar one by their appearance. We can generally classify bacteria by shape: round ones, rod-shaped ones, spiral ones, etc. We differentiate them by which antibiotic kills them and by which variety of artificial material they prefer to grow on. Pathogens are recognized by their prey. Still, most microbial activities remain a great mystery.

Krasilnikov's great contribution to science was discovering how soil microorganisms assist the growth of higher plants. Bacteria are very fussy about the substrate they'll grow on. In the laboratory, one species grows on protein gel, another on seaweed. One thrives on beet pulp while another only grows on a certain cereal extract. Plants "understand" this and manipulate their soil environment to enhance the reproduction of certain bacteria they find desirable while suppressing others. This is accomplished by root exudates.

For every 100 grams of above-ground biomass, a plant will excrete about 25 grams of root exudates, creating a chemically different zone (rhizosphere) close to the root that functions much like the culture medium in a laboratory. Certain bacteria find this region highly favorable and multiply prolifically, others are suppressed. Bacterial counts adjacent to roots will be in hundreds of millions to billions per gram of soil. A fraction of an inch away beyond the influence of the exudates, the count drops greatly.

Why do plants expend energy culturing bacteria? Because there is an exchange, a quid pro quo. These same bacteria assist the plant in numerous ways. Certain types of microbes are predators. Instead of consuming dead organic matter they attack living plants. However, other species, especially actinomycetes, give off antibiotics that suppress pathogens. The multiplication of actinomycetes can be enhanced by root exudates.

Perhaps the most important benefit plants receive from soil bacteria are what Krasilnikov dubbed "phytamins," a word play on vitamins plus phyta or "plant" in Greek. Helpful bacteria exude complex water-soluble organic molecules that plants uptake through their roots and use much like humans need certain vitamins. When plants are deprived of phytamins they are less than optimally healthy, have lowered disease resistance, and may not grow as large because some phytamins act as growth hormones.

Keep in mind that beneficial microorganisms clustering around plant roots do not primarily eat root exudates; exudates merely optimize environmental conditions to encourage certain species. The main food of these soil organisms is decaying organic matter and humus. Deficiencies in organic matter or soil pH outside a comfortable range of 5.75-7.5 greatly inhibit beneficial microorganisms.

For a long time it has been standard "chemical" ag science to deride the notion that plant roots can absorb anything larger than simple, inorganic molecules in water solution. This insupportable view is no longer politically correct even among adherents of chemical usage. However, if you should ever encounter an "expert" still trying to intimidate others with these old arguments merely ask them, since plant roots cannot assimilate large organic molecules, why do people succeed using systemic chemical pesticides? Systemics are large, complex poisonous organic molecules that plants uptake through their roots and that then make the above-ground plant material toxic to predators. Ornamentals, like roses, are frequently protected by systemic chemical pesticides mixed into chemical fertilizer and fed through the soil.

Root exudates have numerous functions beyond affecting microorganisms. One is to suppress or encourage the growth of surrounding plants Gardeners experience this as plant companions and antagonists. Walnut tree root exudates are very antagonistic to many other species. And members of the onion family prevent beans from growing well if their root systems are intermixed.

Many crop rotational schemes exist because the effects of root exudates seem to persist for one or even two years after the original plant grew That's why onions grow very well when they are planted where potatoes grew the year before. And why farmers grow a three year rotation of hay, potatoes and onions. That is also why onions don't grow nearly as well following cabbage or squash. Farmers have a much easier time managing successions. They can grow 40 acres of one crop followed by 40 acres of another. But squash from 100 square feet may overwhelm the kitchen while carrots from the same 100 square feet the next year may not be enough. Unless you keep detailed records, it is hard to remember exactly where everything grew as long as two years ago in a vegetable garden and to correlate that data with this year's results. But when I see half a planting on a raised bed grow well and the adjacent half grow poorly, I assume the difficulty was caused by exudate remains from whatever grew there one, or even, two years ago.

In 1990, half of crop "F" grew well, half poorly. this was due to the presence of crop "D" in 1989. The gardener might remember that "D" was there last year. But in 1991, half of crop "G" grew well, half poorly. This was also due to the presence of crop "D" two years ago. Few can make this association.

These effects were one reason that Sir Albert Howard thought it was very foolish to grow a vegetable garden in one spot for too many years. He recommended growing "healing grass" for about five years following several years of vegetable gardening to erase all the exudate effects and restore the soil ecology to normal.

Mycorrhizal association is another beneficial relationship that should exist between soil organisms and many higher plants. This symbiotic relationship involves fungi and plant roots. Fungi can be pathogenic, consuming living plants. But most of them are harmless and eat only dead, decaying organic matter. Most fungi are soil dwellers though some eat downed or even standing trees.

Most people do not realize that plant roots adsorb water and water-soluble nutrients only through the tiny hairs and actively growing tips near the very end of the root. The ability for any new root to absorb nutrition only lasts a short time, then the hairs slough off and the root develops a sort of hard bark. If root system growth slows or stops, the plant's ability to obtain nourishment is greatly reduced. Roots cannot make oxygen out of carbon dioxide as do the leaves. That's why it is so important to maintain a good supply of soil air and for the soil to remain loose enough to allow rapid root expansion.

When roots are cramped, top growth slows or ceases, health and disease resistance drops, and plants may become stressed despite applications of nutrients or watering. Other plants that do not seem to be competing for light above ground may have ramified (filled with roots) far wider expanses soil than a person might think. Once soil is saturated with the roots and the exudates from one plant, the same space may be closed off to the roots of another. Gardeners who use close plantings and intensive raised beds often unknowingly bump up against this limiting factor and are disappointed at the small size of their vegetables despite heavy fertilization, despite loosening the earth two feet deep with double digging, and despite regular watering. Thought about in this way, it should be obvious why double digging improves growth on crowded beds by increasing the depth to which plants can root.

The roots of plants have no way to aggressively breakdown rock particles or organic matter, nor to sort out one nutrient from another. They uptake everything that is in solution, no more, no less while replacing water evaporated from their leaves. However, soil fungi are able to aggressively attack organic matter and even mineral rock particles and extract the nutrition they want. Fungi live in soil as long, complexly interconnected hair-like threads usually only one cell thick. The threads are called "hyphae." Food circulates throughout the hyphae much like blood in a human body. Sometimes, individual fungi can grow to enormous sizes; there are mushroom circles hundreds of feet in diameter that essentially are one single very old organism. The mushrooms we think of when we think "fungus" are actually not the organism, but the transitory fruit of a large, below ground network.

Certain types of fungi are able to form a symbiosis with specific plant species. They insert a hyphae into the gap between individual plant cells in a root hair or just behind the growing root tip. Then the hyphae "drinks" from the vascular system of the plant, robbing it of a bit of its life's blood. However, this is not harmful predation because as the root grows, a bark develops around the hyphae. The bark pinches off the hyphae and it rapidly decays inside the plant, making a contribution of nutrients that the plant couldn't otherwise obtain. Hyphae breakdown products may be in the form of complex organic molecules that function as phytamins for the plant.

Not all plants are capable of forming mycorrhizal associations. Members of the cabbage family, for example, do not. However, if the species can benefit from such an association and does not have one, then despite fertilization the plant will not be as healthy as it could be, nor grow as well. This phenomenon is commonly seen in conifer tree nurseries where seedling beds are first completely sterilized with harsh chemicals and then tree seeds sown. Although thoroughly fertilized, the tiny trees grow slowly for a year or so. Then, as spores of mycorrhizal fungi begin falling on the bed and their hyphae become established, scattered trees begin to develop the necessary symbiosis and their growth takes off. On a bed of two-year-old seedlings, many individual trees are head and shoulders above the others. This is not due to superior genetics or erratic soil fertility. These are the individuals with a mycorrhizal association.

Like other beneficial microorganisms, micorrhizal fungi do not primarily eat plant vascular fluid, their food is decaying organic matter. Here's yet another reason to contend that soil productivity can be measured by humus content.



CHAPTER EIGHT

Maintaining Soil Humus



Organic matter benefits soil productivity not because it is present, but because all forms of organic matter in the soil, including its most stable form—humus—are disappearing. Mycorrhizal fungi and beneficial bacterial colonies around plant roots can exist only by consuming soil organic matter. The slimes and gums that cement soil particles into relatively stable aggregates are formed by microorganisms as they consume soil organic matter. Scats and casts that are soil crumbs form only because organic matter is being consumed. If humus declines, the entire soil ecology runs down and with it, soil tilth and the health and productivity of plants.

If you want to manage your garden soil wisely, keep foremost in mind that the rate of humus loss is far more important than the amount of humus present. However, natural processes remove humus without our aid or attention while the gardener's task is to add organic matter. So there is a very understandable tendency to focus on addition, not subtraction. But, can we add too much? And if so, what happens when we do?

How Much Humus is Soil Supposed to Have?

If you measured the organic matter contents of various soils around the United States there would be wide differences. Some variations on crop land are due to great losses that have been caused by mismanagement. But even if you could measure virgin soils never used by humans there still would be great differences. Hans Jenny, a soil scientist at the University of Missouri during the 1940s, noticed patterns in soil humus levels and explained how and why this occurs in a wonderfully readable book, Factors in Soil Formation. These days, academic agricultural scientists conceal the basic simplicity of their knowledge by unnecessarily expressing their data with exotic verbiage and higher mathematics. In Jenny's time it was not considered demeaning if an intelligent layman could read and understand the writings of a scientist or scholar. Any serious gardener who wants to understand the wide differences in soil should become familiar with Factors in Soil Formation. About organic matter in virgin soils, Jenny said:

"Within regions of similar moisture conditions, the organic matter content of soil . . . decreases from north to south. For each fall of 10 degree C (18 degree F) in annual temperature the average organic matter content of soil increases two or three times, provided that [soil moisture] is kept constant."

Moist soil during the growing season encourages plant growth and thus organic matter production. Where the soil becomes dry during the growing season, plant growth slows or stops. So, all things being equal, wet soils contain more organic matter than dry ones. All organic matter eventually rots, even in soil too dry to grow plants. The higher the soil temperature the faster the decomposition. But chilly (not frozen) soils can still grow a lot of biomass. So, all things being equal, hot soils have less humus in them than cold ones. Cool, wet soils will have the highest levels; hot, dry soils will be lowest in humus.

This model checks out in practice. If we were to measure organic matter in soils along the Mississippi River where soil moisture conditions remain pretty similar from south to north, we might find 2 percent in sultry Arkansas, 3 percent in Missouri and over 4 percent in Wisconsin, where soil temperatures are much lower. In Arizona, unirrigated desert soils have virtually no organic matter. In central and southern California where skimpy and undependable winter rains peter out by March, it is hard to find an unirrigated soil containing as much as 1 percent organic matter while in the cool Maritime northwest, reliable winter rains keep the soil damp into June and the more fertile farm pastures or natural prairies may develop as much as 5 percent organic matter.

Other factors, like the basic mineral content of the soil or its texture, also influence the amount of organic matter a spot will create and will somewhat increase or decrease the humus content compared to neighboring locations experiencing the same climate. But the most powerfully controlling influences are moisture and temperature.

On all virgin soils the organic matter content naturally sustains itself at the highest possible level. And, average annual additions exactly match the average annual amount of decomposition. Think about that for a moment. Imagine that we start out with a plot of finely-ground rock particles containing no life and no organic matter. As the rock dust is colonized by life forms that gradually build in numbers it becomes soil. The organic matter created there increases nutrient availability and accelerates the breakdown of rock particles, further increasing the creation of organic matter. Soil humus steadily increases. Eventually a climax is sustained where there is as much humus in the soil as there can be.

The peak plant and soil ecology that naturally lives on any site is usually very healthy and is inevitably just as abundant as there is moisture and soil minerals to support it. To me this suggests how much organic matter it takes to grow a great vegetable garden. My theory is that in terms of soil organic matter, vegetables grow quite well at the humus level that would peak naturally on a virgin site. In semi-arid areas I'd modify the theory to include an increase as a result of necessary irrigation. Expressed as a rough rule of thumb, a mere 2 percent organic matter in hot climates increasing to 5 percent in cool ones will supply sufficient biological soil activities to grow healthy vegetables if the mineral nutrient levels are high enough too.

Recall my assertion that what is most important about organic matter is not how much is present, but how much is lost each year through decomposition. For only by decomposing does organic matter release the nutrients it contains so plants can uptake them; only by being consumed does humus support the microecology that so markedly contributes phytamins to plant nutrition, aggressively breaks down rock particles and releases the plant nutrients they contain; only by being eaten does soil organic matter support bacteria and earthworms that improve productivity and create better tilth.

Here's something I find very interesting. Temperate climates having seasons and winter, vary greatly in average temperature. Comparing annual decomposition loss from a hot soil carrying 2 percent humus with annual decomposition loss from a cooler soil carrying 5 percent, roughly the same amount of organic matter will decay out of each soil during the growing season. This means that in temperate regions we have to replace about the same amount of organic matter no matter what the location.

Like other substantial colleges of agriculture, the University of Missouri ran some very valuable long-term studies in soil management. In 1888, a never-farmed field of native prairie grasses was converted into test plots. For fifty succeeding years each plot was managed in a different but consistent manner. The series of experiments that I find the most helpful recorded what happens to soil organic matter as a consequence of farming practices. The virgin prairie had sustained an organic matter content of about 3.5 percent. The lines on the graph show what happened to that organic matter over time.

Timothy grass is probably a slightly more efficient converter of solar energy into organic matter than was the original prairie. After fifty years of feeding the hay cut from the field and returning all of the livestock's manure, the organic matter in the soil increased about 1/2 percent. Obviously, green manuring has very limited ability to increase soil humus above climax levels. Growing oats and returning enough manure to represent the straw and grain fed to livestock, the field held its organic matter relatively constant.

Growing small grain and removing everything but the stubble for fifty years greatly reduced the organic matter. Keep in mind that half the biomass production in a field happens below ground as roots. And keep in mind that the charts don't reveal the sad appearance the crops probably had once the organic matter declined significantly. Nor do they show that the seed produced on those degenerated fields probably would no longer sprout well enough to be used as seedgrain, so new seed would have been imported into the system each season, bringing with it new supplies of plant nutrients. Without importing that bushel or so of wheat seed on each acre each year, the curves would have been steeper and gone even lower.

Corn is the hardest of the cereals on soil humus. The reason is, wheat is closely broadcast in fall and makes a thick grassy overwintering stand that forms biomass out of most of the solar energy striking the field from spring until early summer when the seed forms. Leafy oats create a little more biomass than wheat. Corn, on the other hand, is frost tender and can't be planted early. It is also not closely planted but is sown in widely-spaced rows. Corn takes quite a while before it forms a leaf canopy that uses all available solar energy. In farming lingo, corn is a "row crop."

Vegetables are also row crops. Many types don't form dense canopies that soak up all solar energy for the entire growing season like a virgin prairie. As with corn, the ground is tilled bare, so for much of the best part of the growing season little or no organic matter is produced. Of all the crops that a person can grow, vegetables are the hardest on soil organic matter. There is no way that vegetables can maintain soil humus, even if all their residues are religiously composted and returned. Soil organic matter would decline markedly even in an experiment in which we raised some small animals exclusively on the vegetables and returned all of their manure and urine too.

When growing vegetables we have to restore organic matter beyond the amount the garden itself produces. The curves showing humus decline at the University of Missouri give us a good hint as to how much organic matter we are going to lose from vegetable gardening. Let's make the most pessimistic possible estimate and suppose that vegetable gardening is twice as hard on soil as was growing corn and removing everything but the stubble and root systems.

With corn, about 40 percent of the entire organic matter reserve is depleted in the first ten years. Let's suppose that vegetables might remove almost all soil humus in ten years, or 10 percent each year for the first few years. This number is a crude. and for most places in America, a wildly pessimistic guess.

However, 10 percent loss per year may understate losses in some places. I have seen old row crop soils in California's central valley that look like white-colored blowing dust. Nor does a 10 percent per year estimate quite allow for the surprising durability I observe in the still black and rich-looking old vegetable seed fields of western Washington State's Skaget Valley. These cool-climate fields have suffered chemical farming for decades without having been completely destroyed—yet.

How much loss is 10 percent per year? Let's take my own garden for example. It started out as an old hay pasture that hadn't seen a plow for twenty-five or more years and where, for the five years I've owned the property, the annual grass production is not cut, baled, and sold but is cut and allowed to lie in place. Each year's accumulation of minerals and humus contributes to the better growth of the next year's grass. Initially, my grass had grown a little higher and a little thicker each year. But the steady increase in biomass production seems to have tapered off in the last couple of years. I suppose by now the soil's organic matter content probably has been restored and is about 5 percent.

I allocate about one acre of that old pasture to garden land. In any given year my shifting gardens occupy one-third of that acre. The other two-thirds are being regenerated in healing grass. I measure my garden in fractions of acres. Most city folks have little concept of an acre; its about 40,000 square feet, or a plot 200' x 200'.

Give or take some, the plow pan of an acre weighs about two million pounds. The plow pan is that seven inches of topsoil that is flipped over by a moldboard plow, the seven inches where most biological activity occurs, where virtually all of the soil's organic matter resides. Two million pounds equals one thousand tons of topsoil in the first seven inches of an acre. Five percent of that one thousand tons can be organic matter, up to fifty priceless tons of life that changes 950 tons of dead dust into a fertile, productive acre. If 10 percent of that fifty tons is lost as a consequence of one year's vegetable gardening, that amounts to five tons per acre per year lost or about 25 pounds lost per 100 square feet.

Patience, reader. There is a very blunt and soon to be a very obvious point to all of this arithmetic. Visualize this! Lime is spread at rates up to four tons per acre. Have you ever spread 1 T/A or 50 pounds of lime over a garden 33 x 33 feet? Mighty hard to accomplish! Even 200 pounds of lime would barely whiten the ground of a 1,000 square-foot garden. It is even harder to spread a mere 5 tons of compost over an acre or only 25 pounds on a 100-square-foot bed. It seems as though nothing has been accomplished, most of the soil still shows, there is no layer of compost, only a thin scattering.

But for the purpose of maintaining humus content of vegetable ground at a healthy level, a thin scattering once a year is a gracious plenty. Even if I were starting with a totally depleted, dusty, absolutely humusless, ruined old farm field that had no organic matter whatsoever and I wanted to convert it to a healthy vegetable garden, I would only have to make a one-time amendment of 50 tons of ripe compost per acre or 2,500 pounds per 1,000 square feet. Now 2,500 pounds of humus is a groaning, spring-sagging, long-bed pickup load of compost heaped up above the cab and dripping off the sides. Spread on a small garden, that's enough to feel a sense of accomplishment about. Before I knew better I used to incorporate that much composted horse manure once or twice a year and when I did add a half-inch thick layer that's about what I was applying.

Fertilizing Vegetables with Compost

Will a five ton per acre addition of compost provide enough nutrition to grow great vegetables? Unfortunately, the answer usually is no. In most gardens, in most climates, with most of what passes for "compost," it probably won't. That much compost might well grow decent wheat.

The factors involved in making this statement are numerous and too complex to fully analyze in a little book like this one. They include the intrinsic mineralization of the soil itself, the temperature of the soil during the growing season, and the high nutritional needs of the vegetables themselves. In my experience, a few alluvial soils that get regular, small additions of organic matter can grow good vegetable crops without additional help. However, these sites are regularly flooded and replenished with highly mineralized rock particles. Additionally, they must become very warm during the growing season. But not all rock particles contain high levels of plant nutrients and not all soils get hot enough to rapidly break down soil particles.

Soil temperature has a great deal to do with how effectively compost can act as fertilizer. Sandy soils warm up much faster in spring and sand allows for a much freer movement of air, so humus decomposes much more rapidly in sand. Perhaps a sunny, sandy garden on a south-facing slope might grow pretty well with small amounts of strong compost. As a practical matter, if most people spread even the most potent compost over their gardens at only twenty-five pounds per 100 square feet, they would almost certainly be disappointed.

Well then, if five tons of quality compost to the acre isn't adequate for most vegetables, what about using ten or twenty tons of the best. Will that grow a good garden? Again, the answer must allow for a lot of factors but is generally more positive. If the compost has a low C/N and that compost, or the soil itself, isn't grossly deficient in some essential nutrient, and if the soil has a coarse, airy texture that promotes decomposition, then somewhat heavier applications will grow a good-looking garden that yields a lot of food.

However, one question that is rarely asked and even more rarely answered satisfactorily in the holistic farming and gardening lore is: Precisely how much organic matter or humus is needed to maximize plant health and the nutritional qualities of the food we're growing? An almost equally important corollary of this is: Can there be too much organic matter?

This second question is not of practical consequence for biological grain/livestock farmers because it is almost financially impossible to raise organic matter levels on farm soils to extraordinary amounts. Large-scale holistic farmers must grow their own humus on their own farm. Their focus cannot be on buying and bringing in large quantities of organic matter; it must be on conserving and maximizing the value of the organic matter they produce themselves.

Where you do hear of an organic farmer (not vegetable grower but cereal/livestock farmer) building extraordinary fertility by spreading large quantities of compost, remember that this farmer must be located near an inexpensive source of quality material. If all the farmers wanted to do the same there would not be enough to go around at an economic price unless, perhaps, the entire country became a "closed system" like China. We would have to compost every bit of human excrement and organic matter and there still wouldn't be enough to meet the demand. Even if we became as efficient as China, keep in mind the degraded state of China's upland soils and the rapid desertification going on in their semi-arid west. China is robbing Peter to pay Paul and may not have a truly sustainable agriculture either.

I've frequently encountered a view among devotees of the organic gardening movement that if a little organic matter is a good thing, then more must be better and even more better still. In Organic Gardening magazine and Rodale garden books we read eulogies to soils that are so high in humus and so laced with earthworms that one can easily shove their arm into the soft earth elbow deep but must yank it out fast before all the hairs have been chewed off by worms, where one must jump away after planting corn seeds lest the stalk poke you in the eye, where the pumpkins average over 100 pounds each, where a single trellised tomato vine covers the entire south side of a house and yields bushels. All due to compost.

I call believers of the organic faith capital "O" organic gardeners. These folks almost inevitably have a pickup truck used to gather in their neighborhood's leaves and grass clippings on trash day and to haul home loads from local stables and chicken ranches. Their large yards are ringed with compost bins and their annual spreadings of compost are measured in multiples of inches. I was one once, myself.

There are two vital and slightly disrespectful questions that should be asked about this extreme of gardening practice. Is this much humus the only way to grow big, high-yielding organic vegetable gardens and two, are vegetables raised on soils super-high in humus maximally nutritious. If the answer to the first question is no, then a person might avoid a lot of work by raising the nutrient level of their soil in some other manner acceptable to the organic gardener. If the answer to the second question is less nutritious, then serious gardeners and homesteaders who are making home-grown produce into a significant portion of their annual caloric intake had better reconsider their health assumptions. A lot of organic gardeners cherish ideas similar to the character Woody Allen played in his movie, Sleeper.

Do you recall that movie? It is about a contemporary American who, coming unexpectedly close to death, is frozen and then reanimated and healed 200 years in the future. However, our hero did not expect to die or be frozen when he became ill and upon awakening believes the explanation given to him is a put on and that his friends are conspiring to make him into a fool. The irritated doctor in charge tells Woody to snap out of it and be prepared to start a new life. This is no joke, says the doctor, all of Woody's friends are long since dead. Woody's response is a classic line that earns me a few chuckles from the audience every time I lecture: 'all my friends can't be dead! I owned a health food store and we all ate brown rice.'

Humus and the Nutritional Quality of Food

I believe that the purpose of food is not merely to fill the belly or to provide energy, but to create and maintain health. Ultimately, soil fertility should be evaluated not by humus content, nor microbial populations, nor earthworm numbers, but by the long-term health consequences of eating the food. If physical health degenerates, is maintained, or is improved we have measured the soil's true worth. The technical name for this idea is a "biological assay." Evaluating soil fertility by biological assay is a very radical step, for connecting long-term changes in health with the nutritional content of food and then with soil management practices invalidates a central tenet of industrial farming: that bulk yield is the ultimate measure of success or failure. As Newman Turner, an English dairy farmer and disciple of Sir Albert Howard, put it:

"The orthodox scientist normally measures the fertility of a soil by its bulk yield, with no relation to effect on the ultimate consumer.

I have seen cattle slowly lose condition and fall in milk yield when fed entirely on the abundant produce of an apparently fertile soil. Though the soil was capable of yielding heavy crops, those crops were not adequate in themselves to maintain body weight and milk production in the cow, without supplements. That soil, though capable of above-average yields, and by the orthodox quantitative measure regarded as fertile, could not, by the more complete measure of ultimate effect on the consumer, be regarded but anything but deficient in fertility.

Fertility therefore, is the ability to produce at the highest recognized level of yield, crops of quality which, when consumed over long periods by animals or man, enable them to sustain health, bodily condition and high level of production without evidence of disease or deficiency of any kind.

Fertility cannot be measured quantitatively. Any measure of soil fertility must be related to the quality of its produce. . . . the most simple measure of soil fertility is its ability to transmit, through its produce, fertility to the ultimate consumer."

Howard also tells of creating a super-healthy herd of work oxen on his research farm at Indore, India. After a few years of meticulous composting and restoration of soil life, Howard's oxen glowed with well-being. As a demonstration he intentionally allowed his animals to rub noses across the fence with neighboring oxen known to be infected with hoof and mouth and other cattle plagues. His animals remained healthy. I have read so many similar accounts in the literature of the organic farming movement that in my mind there is no denying the relationship between the nutritional quality of plants and the presence of organic matter in soil. Many other organic gardeners reach the same conclusion. But most gardeners do not understand one critical difference between farming and gardening: most agricultural radicals start farming on run-down land grossly deficient in organic matter. The plant and animal health improvements they describe come from restoration of soil balance, from approaching a climax humus level much like I've done in my pasture by no longer removing the grass.

But home gardeners and market gardeners near cities are able to get their hands on virtually unlimited quantities of organic matter. Encouraged by a mistaken belief that the more organic matter the healthier, they enrich their soil far beyond any natural capacity. Often this is called "building up the soil." But increasing organic matter in gardens well above a climax ecology level does not further increase the nutritional value of vegetables and in many circumstances will decrease their value markedly.

For many years I have lectured on organic gardening to the Extension Service's master gardener classes. Part of the master gardener training includes interpreting soil test results. In the early 1980s when Oregon State government had more money, all master gardener trainees were given a free soil test of their own garden. Inevitably, an older gentlemen would come up after my lecture and ask my interpretation of his puzzling soil test.

Ladies, please excuse me. Lecturing in this era of women's lib I've broken my politically incorrect habit of saying "the gardener, he ..." but in this case it was always a man, an organic gardener who had been building up his soil for years.

The average soils in our region test moderately-to strongly acid; are low in nitrogen, phosphorus, calcium, and magnesium; quite adequate in potassium; and have 3-4 percent organic matter. Mr. Organic's soil test showed an organic matter content of 15 to 20 percent with more than adequate nitrogen and a pH of 7.2. However there was virtually no phosphorus, calcium or magnesium and four times the amount of potassium that any farm agent would ever recommend. On the bottom of the test, always written in red ink, underlined, with three exclamation points, "No more wood ashes for five years!!!" Because so many people in the Maritime northwest heat with firewood, the soil tester had mistakenly assumed that the soil became alkaline and developed such a potassium imbalance from heavy applications of wood ashes.

This puzzled gardener couldn't grasp two things about his soil test report. One, he did not use wood ashes and had no wood stove and two, although he had been "building up his soil for six or seven years," the garden did not grow as well as he had imagined it would. Perhaps you see why this questioner was always a man. Mr. Organic owned a pickup and loved to haul organic matter and to make and spread compost. His soil was full of worms and had a remarkably high humus level but still did not grow great crops.

It was actually worse than he understood. Plants uptake as much potassium as there is available in the soil, and concentrate that potassium in their top growth. So when vegetation is hauled in and composted or when animal manure is imported, large quantities of potassium come along with them. As will be explained shortly, vegetation from forested regions like western Oregon is even more potassium-rich and contains less of other vital nutrients than vegetation from other areas. By covering his soil several inches thick with manure and compost every year he had totally saturated the earth with potassium. Its cation exchange capacity or in non-technical language, the soil's ability to hold other nutrients had been overwhelmed with potassium and all phosphorus, calcium, magnesium, and other nutrients had largely been washed away by rain. It was even worse than that! The nutritional quality of the vegetables grown on that superhumusy soil was very, very low and would have been far higher had he used tiny amounts of compost and, horror of all horrors, chemical fertilizer.

Climate and the Nutritional Quality of Food

Over geologic time spans, water passing through soil leaches or removes plant nutrients. In climates where there is barely enough rain to grow cereal crops, soils retain their minerals and the food produced there tends to be highly nutritious. In verdant, rainy climates the soil is leached of plant nutrients and the food grown there is much less nutritious. That's why the great healthy herds of animals were found on scrubby, semi-arid grasslands like the American prairies; in comparison, lush forests carry far lower quantities of animal biomass.

Some plant nutrients are much more easily leached out than others. The first valuable mineral to go is calcium. Semi-arid soils usually still retain large quantities of calcium. The nutrient most resistant to leaching is potassium. Leached out forest soils usually still retain relatively large amounts of potassium. William Albrecht observed this data and connected with it a number of fairly obvious and vital changes in plant nutritional qualities that are caused by these differences in soil fertility. However obvious they may be, Albrecht's work was not considered politically correct by his peers or the interest groups that supported agricultural research during the mid-twentieth century and his contributions have been largely ignored. Worse, his ideas did not quite fit with the ideological preconceptions of J.l. Rodale, so organic gardeners and farmers are also ignorant of Albrecht's wisdom.

Albrecht would probably have approved of the following chart that expresses the essential qualities of dryland and humid soils.

Soil Mineral Content by Climate Area

Plant Nutrient Dryland Prairie Soil Humid Forest Soil nitrogen high low phosphorus high low potassium high moderately high calcium very high low pH neutral acid

Dryland soils contain far higher levels of all minerals than leached soils. But Albrecht speculated that the key difference between these soils is the ratio of calcium to potassium. In dryland soils there is much more calcium in the soil than there is potassium while in wetter soils there is as much or more potassium than calcium. To test his theory he grew some soybeans in pots. One pot had soil with a high amount of calcium relative to the amount of potassium, imitating dryland prairie soil. The other pot had just as much calcium but had more potassium, giving it a ratio similar to a high quality farm soil in the eastern United States. Both soils grew good-looking samples of soybean plants, but when they were analyzed for nutritional content they proved to be quite different.

Soil Yield Calories Protein Calcium Phosphorus Potassium Humid 17.8 gm High 13% 0.27% 0.14% 2.15% Dryland 14.7 gm Medium 17% 0.74% 0.25% 1.01%

The potassium-fortified soil gave a 25 percent higher bulk yield but the soybeans contained 25 percent less protein. The consumer of those plants would have to burn off approximately 30 percent more carbohydrates to obtain the same amount of vital amino acids essential to all bodily functions. Wet-soil plants also contain only one-third as much calcium, an essential nutrient, whose lack over several generations causes gradual reduction of skeletal size and dental deterioration. They also contain only half as much phosphorus, another essential nutrient. Their oversupply of potassium is not needed; humans eating balanced diets usually excrete large quantities of unnecessary potassium in their urine.

Albrecht then analyzed dozens of samples of vegetation that came from both dryland soils and humid soils and noticed differences in them similar to the soybeans grown under controlled conditions. The next chart, showing the average composition of plant vegetation from the two different regions, is taken directly from Albrecht's research. The figures are averages of large numbers of plant samples, including many different food crops from each climate.

Average Nutritional Content by Climate

Nutrient Dryland Soil Humid Soil Potassium 2.44% 1.27% Calcium 1.92% 0.28% Phosphorus 0.78% 0.42% Total mineral nutrition 5.14% 1.97% Ratio of Potassium to Calciuim 1.20/1 4.50/1

Analyzed as a whole, these data tell us a great deal about how we should manage our soil to produce the most nutritious food and about the judicious use of compost in the garden as well. I ask you to refer back to these three small charts as I point out a number of conclusions that can be drawn from them.

The basic nutritional problem that all animals have is not about finding energy food, but how to intake enough vitamins, minerals and usable proteins. What limits our ability to intake nutrients is the amount of bulk we can process—or the number of calories in the food. With cows, for example, bulk is the limiter. The cow will completely fill her digestive tract at all times and will process all the vegetation she can digest every day of her life. Her health depends on the amount of nutrition in that bulk. With humans, our modern lifestyle limits most of us to consuming 1,500 to 1,800 calories a day. Our health depends on the amount of nutrients coming along with those calories.

So I write the fundamental equation for human health as follows:

HEALTH = NUTRITION IN FOOD DIVIDED BY CALORIES IN THAT FOOD

If the food that we eat contains all of the nutrients that food could possibly contain, and in the right ratios, then we will get sufficient nutrition while consuming the calories we need to supply energy. However, to the degree that our diet contains denatured food supplying too much energy, we will be lacking nutrition and our bodies will suffer gradual degeneration. This is why foods such as sugar and fat are less healthful because they are concentrated sources of energy that contain little or no nutrition. Nutritionless food also contributes to "hidden hungers" since the organism craves something that is missing. The body overeats, and becomes fat and unhealthy.

Albrecht's charts show us that food from dry climates tends to be high in proteins and essential minerals while simultaneously lower in calories. Food from wet climates tends to be higher in calories while much lower in protein and essential mineral nutrients. Albrecht's writings, as well as those of Weston Price, and Sir Robert McCarrison listed in the bibliography, are full of examples showing how human health and longevity are directly associated with these same variations in climate, soil, and food nutrition.

Albrecht pointed out a clear example of soil fertility causing health or sickness. In 1940, when America was preparing for World War II, all eligible men were called in for a physical examination to determine fitness for military service. At that time, Americans did not eat the same way we do now. Food was produced and distributed locally. Bread was milled from local flour. Meat and milk came from local farmers. Vegetables and potatoes did not all come from California. Regional differences in soil fertility could be seen reflected in the health of people.

Albrecht's state, Missouri, is divided into a number of distinct rainfall regions. The northwestern part is grassy prairie and receives much less moisture than the humid, forested southeastern section. If soil tests were compared across a diagonal line drawn from the northwest to the southeast, they would exactly mimic the climate-caused mineral profile differences Albrecht had identified. Not unexpectedly, 200 young men per 1,000 draftees were medically unfit for military service from the northwest part of Missouri while 400 per 1,000 were unfit from the southeastern part. And 300 per 1,000 were unfit from the center of the state.

Another interesting, and rather frightening, conclusion can be drawn from the second chart. Please notice that by increasing the amount of potassium in the potting soil, Albrecht increased the overall yield by 25 percent while simultaneously lowering all of the other significant nutritional aspects. Most of this increase of yield was in the form of carbohydrates, that in a food crops equates to calories. Agronomists also know that adding potassium fertilizer greatly and inexpensively increases yield. So American farm soils are routinely dosed with potassium fertilizer, increasing bulk yield and profits without consideration for nutrition, or for the ultimate costs in public health. Organic farmers often do not understand this aspect of plant nutrition either and may use "organic" forms of potassium to increase their yields and profits. Buying organically grown food is no guarantee that it contains the ultimate in nutrition.

So, if health comes from paying attention to the ratio of nutrition to calories in our food, then as gardeners who are in charge of creating a significant amount of our own fodder, we can take that equation a step further:

HEALTH = Nutrition/Calories = Calcium/Potassium

When we decide how to manage our gardens we can take steps to imitate dryland soils by keeping potassium levels lower while maintaining higher levels of calcium.

Now take another close look at the third chart. Average vegetation from dryland soils contains slightly more potassium than calcium (1.2:1) while average vegetation from wetland soils contains many more times more potassium than calcium (4.5:1). When we import manure or vegetation into our garden or farm soils we are adding large quantities of potassium. Those of us living in rainy climates that were naturally forested have it much worse in this respect than those of us gardening on the prairies or growing irrigated gardens in desert climates because the very vegetation and manure we use to "build up" our gardens contains much more potassium while most of our soils already contain all we need and then some.

It should be clear to you now why some organic gardeners receive the soil tests like the man at my lecture. Even the soil tester, although scientifically trained and university educated, did not appreciate the actual source of the potassium overdose. The tester concluded it must have been wood ashes when actually the potassium came from organic matter itself.

I conclude that organic matter is somewhat dangerous stuff whose use should be limited to the amount needed to maintain basic soil tilth and a healthy, complex soil ecology.

Fertilizing Gardens Organically

Scientists analyzing the connections between soil fertility and the nutritional value of crops have repeatedly remarked that the best crops are grown with compost and fertilizer. Not fertilizer alone and not compost alone. The best place for gardeners to see these data is Werner Schupan's book (listed in the bibliography).

But say the word "fertilizer" to an organic gardener and you'll usually raise their hackles. Actually there is no direct linkage of the words "fertilizer" and "chemical." A fertilizer is any concentrated plant nutrient source that rapidly becomes available in the soil. In my opinion, chemicals are the poorest fertilizers; organic fertilizers are far superior.

The very first fertilizer sold widely in the industrial world was guano. It is the naturally sun-dried droppings of nesting sea birds that accumulates in thick layers on rocky islands off the coast of South America. Guano is a potent nutrient source similar to dried chicken manure, containing large quantities of nitrogen, fair amounts of phosphorus, and smaller quantities of potassium. Guano is more potent than any other manure because sea birds eat ocean fish, a very high protein and highly mineralized food. Other potent organic fertilizers include seed meals; pure, dried chicken manure; slaughterhouse wastes; dried kelp and other seaweeds; and fish meal.

Composition of Organic Fertilizers

Material % Nitrogen % Phos. % Potassium Alfalfa meal 2.5 0.5 2.1 Bone meal (raw) 3.5 21.0 0.2 Bone meal (steamed) 2.0 21.0 0.2 Chicken manure (pure, fresh) 2.6 1.25 0.75 Cottonseed meal 7.0 3.0 2.0 Blood meal 12.0 3.0 — Fish meal 8.0 7.0 — Greensand — 1.5 7.0 Hoof and Horn 12.5 2.0 — Kelp meal 1.5 0.75 4.9 Peanut meal 3.6 0.7 0.5 Tankage 11.0 5.0 —

Growing most types of vegetables requires building a level of soil fertility that is much higher than required by field crops like cereals, soybeans, cotton and sunflowers. Field crops can be acceptably productive on ordinary soils without fertilization. However, because we have managed our farm soils as depreciating industrial assets rather than as relatively immortal living bodies, their ability to deliver plant nutrients has declined and the average farmer usually must add additional nutrients in the form of concentrated, rapidly-releasing fertilizers if they are going to grow a profitable crop.

Vegetables are much more demanding than field crops. They have long been adapted to growing on potent composts or strong manures like fresh horse manure or chicken manure. Planted and nourished like wheat, most would refuse to grow or if they did survive in a wheat field, vegetables would not produce the succulent, tender parts we consider valuable.

Building higher than normal levels of plant nutrients can be done with large additions of potent compost and manure. In semi-arid parts of the country where vegetation holds a beneficial ratio of calcium to potassium food grown that way will be quite nutritious. In areas of heavier rainfall, increasing soil fertility to vegetable levels is accomplished better with fertilizers. The data in the previous section gives strong reasons for many gardeners to limit the addition of organic matter in soil to a level that maintains a healthy soil ecology and acceptable tilth. Instead of supplementing compost with low quality chemical fertilizers, I recommend making and using a complete organic fertilizer mix to increase mineral fertility.

Making and Using Complete Organic Fertilizer

The basic ingredients used for making balanced organic fertilizers can vary and what you decide on will largely depend on where you live. Seed meal usually forms the body of the blend. Seed meals are high in nitrogen and moderately rich in phosphorus because plants concentrate most of the phosphorus they collect during their entire growth cycle into their seeds to serve to give the next generation a strong start. Seed meals contain low but more than adequate amounts of potassium.

The first mineral to be removed by leaching is calcium. Adding lime can make all the difference in wet soils. Dolomite lime also adds magnesium and is the preferable form of lime to use in a fertilizer blend on most soils. Gypsum could be substituted for lime in arid areas where the soils are naturally alkaline but still may benefit from additional calcium. Kelp meal contains valuable trace minerals. If I were short of money, first I'd eliminate the kelp meal, then the phosphate source.

All ingredients going into this formula are measured by volume and the measurements can be very rough: by sack, by scoop, or by coffee can. You can keep the ingredients separated and mix fertilizer by the bucketful as needed or you can dump the contents of half a dozen assorted sacks out on a concrete sidewalk or driveway and blend them with a shovel and then store the mixture in garbage cans or even in the original sacks the ingredients came in.

This is my formula.

4 parts by volume: Any seed meal such as cottonseed meal, soybean meal, sunflower meal, canola meal, linseed meal, safflower, peanut meal or coconut meal. Gardeners with deep pocketbooks and insensitive noses can also fish meal. Gardeners without vegetarian scruples may use meat meal, tankage, leather dust, feather meal or other slaughterhouse waste.

1 part by volume: Bone meal or rock phosphate

1 part by volume: Lime, preferably dolomite on most soils.

(Soils derived from serpentine rock contain almost toxic levels of magnesium and should not receive dolomite. Alkaline soils may still benefit from additional calcium and should get gypsum instead of ordinary lime.)

1/2 part by volume: kelp meal or other dried seaweed.

To use this fertilizer, broadcast and work in about one gallon per each 100 square feet of growing bed or 50 feet of row. This is enough for all low-demand vegetables like carrots, beans and peas.

For more needy species, blend an additional handful or two into about a gallon of soil below the transplants or in the hill. If planting in rows, cut a deep furrow, sprinkle in about one pint of fertilizer per 10-15 row feet, cover the fertilizer with soil and then cut another furrow to sow the seeds in about two inches away. Locating concentrations of nutrition close to seeds or seedlings is called "banding."

I have a thick file of letters thanking me for suggesting the use of this fertilizer blend. If you've been "building up your soil" for years, or if your vegetables never seem to grow as large or lustily as you imagine they should, I strongly suggest you experiment with a small batch of this mixture. Wouldn't you like heads of broccoli that were 8-12 inches in diameter? Or zucchini plants that didn't quit yielding?



CHAPTER NINE

Making Superior Compost



The potency of composts can vary greatly. Most municipal solid waste compost has a high carbon to nitrogen ratio and when tilled into soil temporarily provokes the opposite of a good growth response until soil animals and microorganisms consume most of the undigested paper. But if low-grade compost is used as a surface mulch on ornamentals, the results are usually quite satisfactory even if unspectacular.

If the aim of your own composting is to conveniently dispose of yard waste and kitchen garbage, the information in the first half of the book is all you need to know. If you need compost to make something that dependably GROWS plants like it was fertilizer, then this chapter is for you.

A Little History

Before the twentieth century, the fertilizers market gardeners used were potent manures and composts. The vegetable gardens of country folk also received the best manures and composts available while the field crops got the rest. So I've learned a great deal from old farming and market gardening literature about using animal manures. In previous centuries, farmers classified manures by type and purity. There was "long" and "short" manure, and then, there was the supreme plant growth stimulant, chicken manure.

Chicken manure was always highly prized but usually in short supply because preindustrial fowl weren't caged in factories or permanently locked in hen houses and fed scientifically formulated mixes. The chicken breed of that era was usually some type of bantam, half-wild, broody, protective of chicks, and capable of foraging. A typical pre-1900 small-scale chicken management system was to allow the flock free access to hunt their own meals in the barnyard and orchard, luring them into the coop at dusk with a bit of grain where they were protected from predators while sleeping helplessly. Some manure was collected from the hen house but most of it was dropped where it could not be gathered. The daily egg hunt was worth it because, before the era of pesticides, having chickens range through the orchard greatly reduced problems with insects in fruit.

The high potency of chicken manure derives from the chickens' low C/N diet: worms, insects, tender shoots of new grass, and other proteinaceous young greens and seeds. Twentieth-century chickens "living" in egg and meat factories must still be fed low C/N foods, primarily grains, and their manure is still potent. But anyone who has savored real free-range eggs with deep orange yokes from chickens on a proper diet cannot be happy with what passes for "eggs" these days.

Fertilizing with pure chicken manure is not very different than using ground cereal grains or seed meals. It is so concentrated that it might burn plant leaves like chemical fertilizer does and must be applied sparingly to soil. It provokes a marked and vigorous growth response. Two or three gallons of dry, pure fresh chicken manure are sufficient nutrition to GROW about 100 square feet of vegetables in raised beds to the maximum.

Exclusively incorporating pure chicken manure into a vegetable garden also results in rapid humus loss, just as though chemical fertilizers were used. Any fertilizing substance with a C/N below that of stabilized humus, be it a chemical or a natural substance, accelerates the decline in soil organic matter. That is because nitrate nitrogen, the key to constructing all protein, is usually the main factor limiting the population of soil microorganisms. When the nitrate level of soil is significantly increased, microbe populations increase proportionately and proceeds to eat organic matter at an accelerated rate.

That is why small amounts of chemical fertilizer applied to soil that still contains a reasonable amount of humus has such a powerful effect. Not only does the fertilizer itself stimulate the growth of plants, but fertilizer increases the microbial population. More microbes accelerate the breakdown of humus and even more plant nutrients are released as organic matter decays. And that is why holistic farmers and gardeners mistakenly criticize chemical fertilizers as being directly destructive of soil microbes. Actually, all fertilizers, chemical or organic, indirectly harm soil life, first increasing their populations to unsustainable levels that drop off markedly once enough organic matter has been eaten. Unless, of course, the organic matter is replaced.

Chicken manure compost is another matter. Mix the pure manure with straw, sawdust, or other bedding, compost it and, depending on the amount and quantity of bedding used and the time allowed for decomposition to occur, the resultant C/N will be around 12:1 or above. Any ripened compost around 12:1 still will GROW plants beautifully. Performance drops off as the C/N increases.

Since chicken manure was scarce, most pre-twentieth century market gardeners depended on seemingly unlimited supplies of "short manure," generally from horses. The difference between the "long" and the "short" manure was bedding. Long manure contained straw from the stall while short manure was pure street sweepings without adulterants. Hopefully, the straw portion of long manure had absorbed a quantity of urine.

People of that era knew the fine points of hay quality as well as people today know their gasoline. Horses expected to do a day's work were fed on grass or grass/clover mixes that had been cut and dried while they still had a high protein content. Leafy hay was highly prized while hay that upon close inspection revealed lots of stems and seed heads would be rejected by a smart buyer. The working horse's diet was supplemented with a daily ration of grain. Consequently, uncomposted fresh short manure probably started out with a C/N around 15:1. However, don't count on anything that good from horses these days. Most horses aren't worked daily so their fodder is often poor. Judging from the stemmy, cut-too-late grass hay our local horses have to try to survive on, if I could find bedding-free horse manure it would probably have a C/N more like 20:1. Manure from physically fit thoroughbred race horses is probably excellent.

Using fresh horse manure in soil gave many vegetables a harsh flavor so it was first composted by mixing in some soil (a good idea because otherwise a great deal of ammonia would escape the heap). Market gardeners raising highly demanding crops like cauliflower and celery amended composted short manure by the inches-thick layer. Lesser nutrient-demanding crops like snap beans, lettuce, and roots followed these intensively fertilized vegetables without further compost.

Long manures containing lots of straw were considered useful only for field crops or root vegetables. Wise farmers conserved the nitrogen and promptly composted long manures. After heating and turning the resulting C/N would probably be in a little below 20:1. After tilling it in, a short period of time was allowed while the soil digested this compost before sowing seeds. Lazy farmers spread raw manure load by load as it came from the barn and tilled it in once the entire field was covered. This easy method allows much nitrogen to escape as ammonia while the manure dries in the sun. Commercial vegetable growers had little use for long manure.

One point of this brief history lesson is GIGO: garbage in, garbage out. The finished compost tends to have a C/N that is related to the ingredients that built the heap. Growers of vegetables will wisely take note.

Anyone interested in learning more about preindustrial market gardening might ask their librarian to seek out a book called French Gardening by Thomas Smith, published in London about 1905. This fascinating little book was written to encourage British market gardeners to imitate the Parisian marcier, who skillfully earned top returns growing out-of-season produce on intensive, double-dug raised beds, often under glass hot or cold frames. Our trendy American Biodynamic French Intensive gurus obtained their inspiration from England through this tradition.

Curing the Heap

The easiest and most sure-fire improver of compost quality is time. Making a heap with predominantly low C/N materials inevitably results in potent compost if nitrate loss is kept to a minimum. But the C/N of almost any compost heap, even one starting with a high C/N will eventually lower itself. The key word here is eventually. The most dramatic decomposition occurs during the first few turns when the heap is hot. Many people, including writers of garden books, mistakenly think that the composting ends when the pile cools and the material no longer resembles what made up the heap. This is not true. As long as a compost heap is kept moist and is turned occasionally, it will continue to decompose. "Curing" or "ripening" are terms used to describe what occurs once heating is over.

A different ecology of microorganisms predominates while a heap is ripening. If the heap contains 5 to 10 percent soil, is kept moist, is turned occasionally so it stays aerobic, and has a complete mineral balance, considerable bacterial nitrogen fixation may occur.

Most gardeners are familiar with the microbes that nodulate the roots of legumes. Called rhizobia, these bacteria are capable of fixing large quantities of nitrate nitrogen in a short amount of time. Rhizobia tend to be inactive during hot weather because the soil itself is supplying nitrates from the breakdown of organic matter. Summer legume crops, like cowpeas and snap beans, tend to be net consumers of nitrates, not makers of more nitrates than they can use. Consider this when you read in carelessly researched garden books and articles about the advantages of interplanting legumes with other crops because they supposedly generate nitrates that "help" their companions.

But during spring or fall when lowered soil temperatures retard decomposition, rhizobia can manufacture from 80 to 200 pounds of nitrates per acre. Peas, clovers, alfalfa, vetches, and fava beans can all make significant contributions of nitrate nitrogen and smart farmers prefer to grow their nitrogen by green manuring legumes. Wise farmers also know that this nitrate, though produced in root nodules, is used by legumes to grow leaf and stem. So the entire legume must be tilled in if any net nitrogen gain is to be realized. This wise practice simultaneously increases organic matter.

Rhizobia are not capable of being active in compost piles, but another class of microbes is. Called azobacteria, these free-living soil dwellers also make nitrate nitrogen. Their contribution is not potentially as great as rhizobia, but no special provision must be made to encourage azobacteria other than maintaining a decent level of humus for them to eat, a balanced mineral supply that includes adequate calcium, and a soil pH between 5.75 and 7.25. A high-yielding crop of wheat needs 60-80 pounds of nitrates per acre. Corn and most vegetables can use twice that amount. Azobacteria can make enough for wheat, though an average nitrate contribution under good soil conditions might be more like 30-50 pounds per year.

Once a compost heap has cooled, azobacteria will proliferate and begin to manufacture significant amounts of nitrates, steadily lowering the C/N. And carbon never stops being digested, further dropping the C/N. The rapid phase of composting may be over in a few months, but ripening can be allowed to go on for many more months if necessary.

Feeding unripened compost to worms is perhaps the quickest way to lower C/N and make a potent soil amendment. Once the high heat of decomposition has passed and the heap is cooling, it is commonly invaded by redworms, the same species used for vermicomposting kitchen garbage. These worms would not be able to eat the high C/N material that went into a heap, but after heating, the average C/N has probably dropped enough to be suitable for them.

The municipal composting operation at Fallbrook, California makes clever use of this method to produce a smaller amount of high-grade product out of a larger quantity of low-grade ingredients. Mixtures of sewage sludge and municipal solid waste are first composted and after cooling, the half-done high C/N compost is shallowly spread out over crude worm beds and kept moist. More crude compost is added as the worms consume the waste, much like a household worm box. The worm beds gradually rise. The lower portion of these mounds is pure castings while the worm activity stays closer to the surface where food is available. When the beds have grown to about three feet tall, the surface few inches containing worms and undigested food are scraped off and used to form new vermicomposting beds. The castings below are considered finished compost. By laboratory analysis, the castings contain three or four times as much nitrogen as the crude compost being fed to the worms.

The marketplace gives an excellent indicator of the difference between their crude compost and the worm casts. Even though Fallbrook is surrounded by large acreages devoted to citrus orchards and row crop vegetables, the municipality has a difficult time disposing of the crude product. But their vermicompost is in strong demand.

Sir Albert Howard's Indore Method

Nineteenth-century farmers and market gardeners had much practical knowledge about using manures and making composts that worked like fertilizers, but little was known about the actual microbial process of composting until our century. As information became available about compost ecology, one brilliant individual, Sir Albert Howard, incorporated the new science of soil microbiology into his composting and by patient experiment learned how to make superior compost

During the 1920s, Albert Howard was in charge of a government research farm at Indore, India. At heart a Peace Corps volunteer, he made Indore operate like a very representative Indian farm, growing all the main staples of the local agriculture: cotton, sugar cane, and cereals. The farm was powered by the same work oxen used by the surrounding farmers. It would have been easy for Howard to demonstrate better yields through high technology by buying chemical fertilizers or using seed meal wastes from oil extraction, using tractors, and growing new, high-yielding varieties that could make use of more intense soil nutrition. But these inputs were not affordable to the average Indian farmer and Howard's purpose was to offer genuine help to his neighbors by demonstrating methods they could easily afford and use.

In the beginning of his work at Indore, Howard observed that the district's soils were basically fertile but low in organic matter and nitrogen. This deficiency seemed to be due to traditionally wasteful practices concerning manures and agricultural residues. So Howard began developing methods to compost the waste products of agriculture, making enough high-quality fertilizer to supply the entire farm. Soon, Indore research farm was enjoying record yields without having insect or disease problems, and without buying fertilizer or commercial seed. More significantly, the work animals, fed exclusively on fodder from Indore's humus-rich soil, become invulnerable to cattle diseases. Their shining health and fine condition became the envy of the district.

Most significant, Howard contended that his method not only conserved the nitrogen in cattle manure and crop waste, not only conserved the organic matter the land produced, but also raised the processes of the entire operation to an ecological climax of maximized health and production. Conserving the manure and composting the crop waste allowed him to increase the soil's organic matter which increased the soil's release of nutrients from rock particles that further increased the production of biomass which allowed him to make even more compost and so on. What I have just described is not surprising, it is merely a variation on good farming that some humans have known about for millennia.

What was truly revolutionary was Howard's contention about increasing net nitrates. With gentle understatement, Howard asserted that his compost was genuinely superior to anything ever known before. Indore compost had these advantages: no nitrogen or organic matter was lost from the farm through mishandling of agricultural wastes; the humus level of the farm's soils increased to a maximum sustainable level; and, the amount of nitrate nitrogen in the finished compost was higher than the total amount of nitrogen contained in the materials that formed the heap. Indore compost resulted in a net gain of nitrate nitrogen. The compost factory was also a biological nitrate factory.

Howard published details of the Indore method in 1931 in a slim book called The Waste Products of Agriculture. The widely read book brought him invitations to visit plantations throughout the British Empire. It prompted farmers world-wide to make compost by the Indore method. Travel, contacts, and new awareness of the problems of European agriculture were responsible for Howard's decision to create an organic farming and gardening movement.

Howard repeatedly warned in The Waste Products of Agriculture that if the underlying fundamentals of his process were altered, superior results would not occur. That was his viewpoint in 1931. However, humans being what we are, it does not seem possible for good technology to be broadcast without each user trying to improve and adapt it to their own situation and understanding. By 1940, the term "lndore compost" had become a generic term for any kind of compost made in a heap without the use of chemicals, much as "Rototiller" has come to mean any motor-driven rotarytiller.

Howard's 1931 concerns were correct—almost all alterations of the original Indore system lessened its value—but Howard of 1941 did not resist this dilutive trend because in an era of chemical farming any compost was better than no compost, any return of humus better than none.

Still, I think it is useful to go back to the Indore research farm of the 1920s and to study closely how Albert Howard once made the world's finest compost, and to encounter this great man's thoughts before he became a crusading ideologue, dead set against any use of agricultural chemicals. A great many valuable lessons are still contained in The Waste Products of Agriculture. Unfortunately, even though many organic gardeners are familiar with the later works of Sir Albert Howard the reformer, Albert Howard the scientist and researcher, who wrote this book, is virtually unknown today.

At Indore, all available vegetable material was composted, including manure and bedding straw from the cattle shed, unconsumed crop residues, fallen leaves and other forest wastes, weeds, and green manures grown specifically for compost making. All of the urine from the cattle shed-in the form of urine earth—and all wood ashes from any source on the farm were also included. Being in the tropics, compost making went on year-round. Of the result, Howard stated that

"The product is a finely divided leafmould, of high nitrifying power, ready for immediate use [without temporarily inhibiting plant growth]. The fine state of division enables the compost to be rapidly incorporated and to exert its maximum influence on a very large area of the internal surface of the soil."

Howard stressed that for the Indore method to work reliably the carbon to nitrogen ratio of the material going into the heap must always be in the same range. Every time a heap was built the same assortment of crop wastes were mixed with the same quantities of fresh manure and urine earth. As with my bread-baking analogy, Howard insured repeatability of ingredients.

Any hard, woody materials—Howard called them "refractory"—must be thoroughly broken up before composting, otherwise the fermentation would not be vigorous, rapid, and uniform throughout the process. This mechanical softening up was cleverly accomplished without power equipment by spreading tough crop wastes like cereal straw or pigeon pea and cotton stalks out over the farm roads, allowing cartwheels, the oxens' hooves, and foot traffic to break them up.

Decomposition must be rapid and aerobic, but not too aerobic. And not too hot. Quite intentionally, Indore compost piles were not allowed to reach the highest temperatures that are possible. During the first heating cycle, peak temperatures were about 140 degree. After two weeks, when the first turn was made, temperatures had dropped to about 125 degree, and gradually declined from there. Howard cleverly restricted the air supply and thermal mass so as to "bank the fires" of decomposition. This moderation was his key to preventing loss of nitrogen. Provisions were made to water the heaps as necessary, to turn them several times, and to use a novel system of mass inoculation with the proper fungi and bacteria. I'll shortly discuss each of these subjects in detail. Howard was pleased that there was no need to accept nitrogen loss at any stage and that the reverse should happen. Once the C/N had dropped sufficiently, the material was promptly incorporated into the soil where nitrate nitrogen will be best preserved. But the soil is not capable of doing two jobs at once. It can't digest crude organic matter and simultaneously nitrify humus. So compost must be finished and completely ripe when it was tilled in so that:

". . . there must be no serious competition between the last stages of decay of the compost and the work of the soil in growing the crop. This is accomplished by carrying the manufacture of humus up to the point when nitrification is about to begin. In this way the Chinese principle of dividing the growing of a crop into two separate processes—(1) the preparation of the food materials outside the field, and (2) the actual growing of the crop-can be introduced into general agricultural practice."

And because he actually lived on a farm, Howard especially emphasized that composting must be sanitary and odorless and that flies must not be allowed to breed in the compost or around the work cattle. Country life can be quite idyllic—without flies.

The Indore Compost Factory

At Indore, Howard built a covered, open-sided, compost-making factory that sheltered shallow pits, each 30 feet long by 14 feet wide by 2 feet deep with sloping sides. The pits were sufficiently spaced to allow loaded carts to have access to all sides of any of them and a system of pipes brought water near every one. The materials to be composted were all stored adjacent to the factory. Howard's work oxen were conveniently housed in the next building.

Soil and Urine Earth

Howard had been raised on an English farm and from childhood he had learned the ways of work animals and how to make them comfortable. So, for the ease of their feet, the cattle shed and its attached, roofed loafing pen had earth floors. All soil removed from the silage pits, dusty sweepings from the threshing floors, and silt from the irrigation ditches were stored near the cattle shed and used to absorb urine from the work cattle. This soil was spread about six inches deep in the cattle stalls and loafing pen. About three times a year it was scraped up and replaced with fresh soil, the urine-saturated earth then was dried and stored in a special covered enclosure to be used for making compost.

The presence of this soil in the heap was essential. First, the black soil of Indore was well-supplied with calcium, magnesium, and other plant nutrients. These basic elements prevented the heaps from becoming overly acid. Additionally, the clay in the soil was uniquely incorporated into the heap so that it coated everything. Clay has a strong ability to absorb ammonia, preventing nitrogen loss. A clay coating also holds moisture. Without soil, "an even and vigorous mycelial growth is never quickly obtained." Howard said "the fungi are the storm troops of the composting process, and must be furnished with all the armament they need."

Crop Wastes

Crop wastes were protected from moisture, stored dry under cover near the compost factory. Green materials were first withered in the sun for a few days before storage. Refractory materials were spread on the farm's roads and crushed by foot traffic and cart wheels before stacking. All these forms of vegetation were thinly layered as they were received so that the dry storage stacks became thoroughly mixed. Care was taken to preserve the mixing by cutting vertical slices out of the stacks when vegetation was taken to the compost pits. Howard said the average C/N of this mixed vegetation was about 33:1. Every compost heap made year-round was built with this complex assortment of vegetation having the same properties and the same C/N.

Special preliminary treatment was given to hard, woody materials like sugarcane, millet stumps, wood shavings and waste paper. These were first dumped into an empty compost pit, mixed with a little soil, and kept moist until they softened. Or they might be soaked in water for a few days and then added to the bedding under the work cattle. Great care was taken when handling the cattle's bedding to insure that no flies would breed in it.

Manure

Though crop wastes and urine-earth could be stored dry for later use, manure, the key ingredient of Indore compost, had to be used fresh. Fresh cow dung contains bacteria from the cow's rumen that is essential to the rapid decomposition of cellulose and other dry vegetation. Without their abundant presence composting would not begin as rapidly nor proceed as surely.

Charging the Compost Pits

Every effort was made to fill a pit to the brim within one week. If there wasn't enough material to fill an entire pit within one week, then a portion of one pit would be filled to the top. To preserve good aeration, every effort was made to avoid stepping on the material while filling the pit. As mixtures of manure and bedding were brought out from the cattle shed they were thinly layered atop thin layers of mixed vegetation brought in from the dried reserves heaped up adjacent to the compost factory. Each layer was thoroughly wet down with a clay slurry made of three ingredients: water, urine-earth, and actively decomposing material from an adjacent compost pit that had been filled about two weeks earlier. This insured that every particle within the heap was moist and was coated with nitrogen-rich soil and the microorganisms of decomposition. Today, we would call this practice "mass inoculation."

Pits Versus Heaps

India has two primary seasons. Most of the year is hot and dry while the monsoon rains come from dune through September. During the monsoon, so much water falls so continuously that the earth becomes completely saturated. Even though the pits were under a roof, they would fill with water during this period. So in the monsoon, compost was made in low heaps atop the ground. Compared to the huge pits, their dimensions were smaller than you would expect: 7 x 7 feet at the top, 8 x 8 feet at the base and no more than 2 feet high. When the rains started, any compost being completed in pits was transferred to above-ground heaps when it was turned.

Howard was accomplishing several things by using shallow pits or low but very broad heaps. One, thermal masses were reduced so temperatures could not reach the ultimate extremes possible while composting. The pits were better than heaps because air flow was further reduced, slowing down the fermentation, while their shallowness still permitted sufficient aeration. There were enough covered pits to start a new heap every week.

Previous Part     1  2  3  4  5     Next Part
Home - Random Browse