p-books.com
Old-Time Makers of Medicine
by James J. Walsh
Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse

Cusanus was an extremely practical man, and was constantly looking for and devising methods of applying practical principles of science to ordinary life. As we shall see in discussing his suggestion for the estimation of the pulse rate later on, he made many other similar suggestions for diagnostic purposes in medicine, and set forth other applications of mathematics and mechanics to his generation.

Many of Cusanus' books have curiously modern names. He wrote, for instance, a series of mathematical treatises, in Latin of course, on "Geometric Transmutations," on "Arithmetical Complements," on "Mathematical Complements," on "Mathematical Perfection," and on "The Correction of the Calendar." In his time the calendar was in error by more than nine days, and Cusanus was one of those who aroused sufficient interest in the subject, so that in the next century the correction was actually made by the great Jesuit mathematician, Father Clavius. Perhaps the work of Cusanus that is best known is that "On Learned Ignorance—De Docta Ignorantia," in which the Cardinal points out how many things that educated people think they know are entirely wrong. It reminds one very much of Josh Billings's remark that it is not so much the ignorance of mankind that makes them ridiculous, as the knowing so many things that ain't so. It is from this work that the astronomical quotations which we have made are taken. The book that is of special interest to physicians is his dialogue "On Static Experiments," which he wrote in 1450, and which contains the following passages:

"Since the weight of the blood and the urine of a healthy and of a diseased man, of a young man and an old man, of a German and an African, is different for each individual, why would it not be a great benefit to the physician to have all of these various differences classified? For I think that a physician would make a truer judgment from the weight of the urine viewed in connection with its color than he could make from its color alone, which might be fallacious. So, also, weight might be used as a means of identifying the roots, the stems, the leaves, the fruits, the seeds, and the juice of plants if the various weights of all the plants were properly noted, together with their variety, according to locality. In this way the physician would appreciate their nature better by means of their weight than if he judged them by their taste alone. He might know, then, from a comparison of the weights of the plants and their various parts when compared with the weight of the blood and the urine, how to make an application and a dosage of drugs from the concordances and differences of the medicaments, and even might be able to make an excellent prognosis in the same way. Thus, from static experiments, he would approach by a more precise knowledge to every kind of information.

"Do you not think if you would permit the water from the narrow opening of a clepsydra [water-clock] to flow into a basin for as long as was necessary to count the pulse a hundred times in a healthy young man, and then do the same thing for an ailing young man, that there would be a noticeable difference between the weights of the water that would flow during the period? From the weight of the water, therefore, one would arrive at a better knowledge of the differences in the pulse of the young and the old, the healthy and the unhealthy, and so, also, as to information with regard to various diseases, since there would be one weight and, therefore, one pulse in one disease, and another weight and another pulse in another disease. In this way a better judgment of the differences in the pulse could be obtained than from the touch of the vein, just as more can be known from the urine about its weight than from its color alone.

"Just in the same way would it not be possible to make a more accurate judgment with regard to the breathing, if the inspirations and expirations were studied according to the weight of the water that passed during a certain interval? If, while water was flowing from a clepsydra, one were to count a hundred expirations in a boy, and then in an old man, of course, there would not be the same amount of water at the end of the enumeration. Then this same thing might be done for other ages and states of the body. As a consequence, when the physician once knew what the weight of water that represented the number of expirations of a healthy boy or youth, and then of an individual of the same age ill of some infirmity or other, there is no doubt that, by this observation, he will come to a knowledge of the health or illness and something about the case, and, perhaps, also with more certainty would be able to choose the remedy and the dose required. If he found in a healthy young man apparently the same weight as in an old and decrepit individual, he might readily be brought to the conclusion that the young man would surely die, and in this way have some evidence for his prognosis in the case. Besides, if in fevers, in the same way, careful studies were made of the differences in the weight of water for pulse and respiration in the warm and the cold paroxysms, would it not be possible thus to know the disease better and, perhaps, also get a more efficacious remedy?"

As will be seen from this passage, Cusanus had many more ideas than merely the accurate estimation of the pulse frequency when he suggested the use of the water-clock. Evidently the thought had come to him that the specific gravity of the substances, that is, their weight in comparison to the weight of water, might be valuable information. Before his time, physicians had depended only on the color and the taste of the urine for diagnostic purposes. He proposed that they should weigh it, and even suggested that they should weigh, also, the blood, I suppose in case of venesection, for comparison's sake. He also thought that the comparative weight of various roots, stems, leaves, juices of plants might give hints for the therapeutic uses of these substances. This is the sort of idea that we are apt to think of as typically modern. Specific gravities and atomic weights have been more than once supposed to represent laws in therapeutics, which so far, however, we have not succeeded in finding, but it is interesting to realize that it is nearly five hundred years since the first thought in this line was clearly expressed by a distinguished thinker and scientific writer.

There are many interesting expressions in Cusanus' writings which contradict most of the impressions commonly entertained with regard to the scholars of the Middle Ages. It is usually assumed that they did not think seriously, but speculatively, that they feared to think for themselves, neglected the study of nature around them, considered authority the important source of knowledge, and were as far as possible from the standpoint of modern scientific students and investigators. Here is a passage from Nicholas, on knowing and thinking, that might well have been written by a great intellectual man at any time in the world's history, and that could only emanate from a profound scholar at any time.

"To know and to think, to see the truth with the eye of the mind, is always a joy. The older a man grows the greater is the pleasure which it affords him, and the more he devotes himself to the search after truth, the stronger grows his desire of possessing it. As love is the life of the heart, so is the endeavor after knowledge and truth the life of the mind. In the midst of the movements of time, of the daily work of life, of its perplexities and contradictions, we should lift our gaze fearlessly to the clear vault of heaven, and seek ever to obtain a firmer grasp of and a keener insight into the origin of all goodness and beauty, the capacities of our own hearts and minds, the intellectual fruits of mankind throughout the centuries, and the wondrous works of nature around us; at the same time remembering always that in humility alone lies true greatness, and that knowledge and wisdom are alone profitable in so far as our lives are governed by them."

The career of Nicholas of Cusa is interesting, because it sums up so many movements, and, above all, educational currents in the fifteenth century. He was born in the first year of the century, and lived to be sixty-four. He was the son of a wine grower, and attracted the attention of his teachers because of his intellectual qualities. In spite of comparatively straitened circumstances, then, he was afforded the best opportunities of the time for education. He went first to the school of the Brethren of the Common Life at Deventer, the intellectual cradle of so many of the scholars of this century. Such men as Erasmus, Conrad Mutianus, Johann Sintheim, Hermann von dem Busche, whom Strauss calls "the missionary of human wisdom," and the teacher of most of these, Alexander Hegius, who has been termed the schoolmaster of Germany, with Nicholas of Cusa and Rudolph Agricola and others, who might readily be mentioned, are the fruits of the teaching of these schools of the Brethren of the Common Life, in one of which Thomas a Kempis, the author of "The Imitation of Christ," was, for seventy years out of his long life of ninety, a teacher.

Cusanus succeeded so well at school that he was later sent to the University of Heidelberg, and subsequently to Padua, where he took up the study of Roman law, receiving his doctorate at the age of twenty-three. This series of educational opportunities will be surprising only to those who do not know educational realities at the beginning of the fifteenth century. There has never been a time when a serious seeker after knowledge could find more inspiration. On his return to Germany, Father Krebs became canon of the cathedral in Coblenz. This gave him a modest income, and leisure for intellectual work which was eagerly employed. He was scarcely more than thirty when he was chosen as a delegate to the Council at Basel. After this he was made Archdeacon of the Cathedral of Luettich, and from this time his rise in ecclesiastical preferment was rapid. He had attracted so much attention at the Council of Basel that he was chosen as a legate of the Pope for the bringing about certain reforms in Germany. Subsequently he was sent on ecclesiastical missions to the Netherlands, and even to Constantinople. At the early age of forty he was made a Cardinal. After this he was always considered as one of the most important consultors of the Papacy in all matters relating to Germany. During the last twenty-five years of his life in all the relations of the Holy See to Germany, appeal was constantly made to the wisdom, the experience, and the thoroughly conservative, yet foreseeing, judgment of this son of the people, whose education had lifted him up to be one of the leaders of men in Europe.

It was during this time that he wrote most of his books on mathematics, which have earned for him a prominent place in Cantor's "History of Mathematics," about a score of pages being devoted to his work. Much of his thinking was done while riding on horseback or in the rude vehicles of the day on the missions to which he was sent as Papal Legate. He is said to have worked out the formula for the cycloid curve while watching the path described by flies that had lighted on the wheels of his carriage, and were carried forward and around by them. His scientific books, though they included such startling anticipations of Copernicus' doctrines as we have already quoted (Copernicus did not publish the first sketch of his theory for more than a quarter of a century after Cusanus' death), far from disturbing his ecclesiastical advancement or injuring his career as a churchman, seem actually to have been considered as additional reasons for considering him worthy of confidence and consultation.

As the result of his careful studies of conditions in Germany, he realized very clearly how much of unfortunate influence the political status of the German people, with their many petty rulers and the hampering of development consequent upon the trivial rivalries, the constant bickerings, and the inordinate jealousies of these numerous princelings, had upon his native country. Accordingly, towards the end of his life he sketched what he thought would be the ideal political status for the German people. As in everything that he wrote, he went straight to the heart of the matter and, without mincing words, stated just exactly what he thought ought to be done. Considering that this scheme of Cusanus for the prosperity and right government of the German people was not accomplished until more than four centuries after his death, it is interesting, indeed, to realize how this clergyman of the middle of the fifteenth century should have come to any such thought. Nothing, however, makes it clearer than this, that it is not time that fosters thinking, but that great men at any time come to great thoughts. Cusanus wrote:

"The law and the kingdom should be placed under the protection of a single ruler or authority. The small separate governments of princes and counts consume a disproportionately large amount of revenue without furnishing any real security. For this reason we must have a single government, and for its support we must have a definite amount of the income from taxes and revenues yearly set aside by a representative parliament and before this parliament (reichstag) must be given every year a definite account of the money that was spent during the preceding year."

Cusanus' life and work stand, then, as a type of the accomplishment, the opportunities, the power of thought, the practical scholarship, the mathematical accuracy, the fine scientific foresight of a scholar of the fifteenth century. For us, in medicine, it is interesting indeed to realize that it is from a man of this kind that a great new departure in medicine with regard to the employment of exact methods of diagnosis had its first suggestion in modern times. The origin of that suggestion is typical. It has practically always been true that it was not the man who had exhausted, or thought that he had done so, all previous medical knowledge, who made advances in medicine for us. It has nearly always been a young man early in his career, and at a time when, as yet, his mind was not overloaded with the medical theories of his own time. Cusanus was probably not more than thirty when he made the suggestion which represents the first practical hint for the use of laboratory methods in modern medicine. It came out of his thoughtful consideration of medical problems rather than from a store of garnered information as to what others thought. It is a lesson in the precious value of breadth of education and serious training of mind for real progress at all times.



XIV

BASIL VALENTINE, LAST OF THE ALCHEMISTS, FIRST OF THE CHEMISTS

"Fieri enim potest ut operator erret et a via regia deflectat, sed ut erret natura quando recte tractatur fieri non potest."

"For it is quite possible that the physician should err and be turned aside from the straight (royal) road, but that nature when she is rightly treated should err is quite impossible."

This is one of the preliminary maxims of a treatise on medicine written by a physician born not later than the first half of the fifteenth century, and who may have lived even somewhat earlier. We are so prone to think of the men of that time as utterly dependent on authority, not daring to follow their own observation, suspecting nature, and almost sure to be convinced that only by going counter to her could success in the treatment of disease be obtained, that it is a surprise to most people to find how completely the attitude of mind, that is supposed to be so typically modern in this regard, was anticipated full four centuries ago. There are other expressions of this same great physician and medical writer, Basil Valentine, which serve to show how faithfully he strove with the lights that he had to work out the treatment of patients, just as we do now, by trying to find out nature's way, so as to imitate her beneficent processes and purposes. It is quite clear that he is but one of many faithful, patient observers and experimenters—true scientists in the best sense of the word—who lived in all the centuries of the Middle Ages.

Speculations and experiments with regard to the elixir of life, the philosopher's stone, and the transmutation of metals, are presumed to have filled up all the serious interests of the alchemists, supposed to be almost the only scientists of those days. As a matter of fact, however, men were making original observations of profound significance, and these were considered so valuable by their contemporaries that, though printing had not yet been invented, even the immense labor involved in the manifold copying of large folio volumes by the slow hand process did not suffice to deter them from multiplying the writings of these men so numerously that they were preserved in many copies for future generations, until the printing press came to perpetuate them.

Of this there is abundant evidence in the preceding pages as regards medicine, and, above all, surgery, while a summary of accomplishments of workers in other departments will be found in Appendix II, "Science at the Medieval Universities."

At the beginning of the twentieth century, with some of the supposed foundations of modern chemistry crumbling to pieces under the influence of the peculiarly active light thrown upon our nineteenth century chemical theories by the discovery of radium, and our observations on radio-active elements generally, there is a reawakening of interest in some of the old-time chemical observers, whose work used to be laughed at as so unscientific, or, at most, but a caricature of real science, and whose theory of the transmutation of elements into one another was considered so absurd. It is interesting in the light of this to recall that the idea that the elementary substances were essentially distinct from each other, and that it would be impossible under any circumstances to convert one element into another, belongs entirely to the nineteenth century. Even so deeply scientific a mind as that of Newton, in the preceding century, could not bring itself to acknowledge the tradition, that came to be accepted subsequent to his time, of the absurdity of metallic transformation. On the contrary, he believed quite formally in transmutation as a basic chemical principle, and declared that it might be expected to occur at any time. He had seen specimens of gold ores in connection with metallic copper, and concluded that this was a manifestation of the natural transformation of one of these yellow metals into the other.

With the discovery that radium transforms itself into helium, and that, indeed, all the so-called radioactivities of the heavy metals are probably due to a natural transmutation process constantly at work, the ideas of the older chemists cease entirely to be a subject for amusement. The physical chemists of the present day are very ready to admit that the old teaching of the absolute independence of something over seventy elements is no longer tenable, except as a working hypothesis. The doctrine of "matter and form," taught for so many centuries by the scholastic philosophers, which proclaimed that all matter is composed of two principles, an underlying material substratum, and a dynamic or informing principle, has now more acknowledged verisimilitude, or lies at least closer to the generally accepted ideas of the most progressive scientists, than it has at any time for the last two or three centuries. Not only the great physicists, but also the great chemists, are speculating along lines that suggest the existence of but one form of matter, modified according to the energies that it possesses under a varying physical and chemical environment. This is, after all, only a restatement in modern times of the teaching of St. Thomas of Aquin, in the thirteenth century.

It is not surprising, then, that there should be a reawakening of interest in the lives of some of the men, who, dominated by some of the earlier scholastic ideas, by the tradition of the possibility of finding the philosopher's stone, which would transmute the baser metals into the precious metals, devoted themselves with quite as much zeal as any modern chemist to the observation of chemical phenomena. One of the most interesting of these—indeed, he might well be said to be the greatest of the alchemists—is the man whose only name that we know is that which appears on a series of manuscripts written in the High German dialect of the end of the fifteenth and the beginning of the sixteenth century. That name is Basil Valentine, and the writer, according to the best historical traditions, was a Benedictine monk. The name Basil Valentine may only have been a pseudonym, for it has been impossible to trace it among the records of the monasteries of the time. That the writer was a monk, however, there seems to be no room for doubt, for his writings give abundant evidence of it, and, besides, in printed form they began to have their vogue at a time when there was little likelihood of their being attributed to a monastic source, unless an indubitable tradition connected them with some monastery.

This Basil Valentine (to accept the only name we have) did so much for the science of the composition of substances that he eminently deserves the designation that has been given him of the last of the alchemists and the first of the chemists. There is practically a universal recognition of the fact now that he deserves also the title of the Founder of Pharmaceutical Chemistry, not only because of the value of the observations contained in his writings, but also because of the fact that they proved so suggestive to certain scientific geniuses during the century succeeding Valentine's life. Almost more than to have added to the precious heritage of knowledge for mankind, it is a boon for a scientific observer to have awakened the spirit of observation in others, and to be the founder of a new school of thought. This Basil Valentine undoubtedly did, and, in the Renaissance, the incentive from his writings for such men as Paracelsus is easy to appreciate.

Besides, his work furnishes evidence that the investigating spirit was abroad just when it is usually supposed not to have been, for the Thuringian monk surely did not do all his investigation alone, but must have owed, as well as given, many a suggestion to his contemporaries.

Some ten years ago, when Sir Michael Foster, professor of physiology in the University of Cambridge, England, was invited to deliver the Lane Lectures at the Cooper Medical College in San Francisco, he took for his subject "The History of Physiology." In the course of his lecture on "The Rise of Chemical Physiology" he began with the name of Basil Valentine, who first attracted men's attention to the many chemical substances around them that might be used in the treatment of disease, and said of him:

"He was one of the alchemists, but in addition to his inquiries into the properties of metals and his search for the philosopher's stone, he busied himself with the nature of drugs, vegetable and mineral, and with their action as remedies for disease. He was no anatomist, no physiologist, but rather what nowadays we should call a pharmacologist. He did not care for the problem of the body, all he sought to understand was how the constituents of the soil and of plants might be treated so as to be available for healing the sick and how they produced their effects. We apparently owe to him the introduction of many chemical substances, for instance of hydrochloric acid, which he prepared from oil and vitriol of salt, and of many vegetable drugs. And he was apparently the author of certain conceptions which, as we shall see, played an important part in the development of chemistry and of physiology. To him, it seems, we owe the idea of the three 'elements,' as they were and have been called, replacing the old idea of the ancients of the four elements—earth, air, fire, and water. It must be remembered, however, that both in the ancient and the new idea the word 'element' was not intended to mean that which it means to us now, a fundamental unit of matter, but a general quality or property of matter. The three elements of Valentine were: (1) sulphur, or that which is combustible, which is changed or destroyed, or which at all events disappears during burning or combustion; (2) mercury, that which temporarily disappears during burning or combustion, which is dissociated in the burning from the body burnt, but which may be recovered, that is to say, that which is volatile, and (3) salt, that which is fixed, the residue or ash which remains after burning."

It is a little bit hard in our time for most people to understand just how such a development of thoroughly scientific chemical notions, with investigations for their practical application, should have come before the end of the Middle Ages. This difficulty of understanding, however, we are coming to realize in recent years, is entirely due to our ignorance of the period. We have known little or nothing about the science of the Middle Ages, because it was hidden away in rare old books, in rather difficult Latin, not easy to get at, and still less easy to understand always, and we have been prone to conclude that since we knew nothing about it, there must have been nothing. Just inasmuch as we have learned something definite about the medieval scholars, our admiration has increased. Professor Clifford Allbutt, the Regius Professor of Medicine at the University of Cambridge, in his Harveian Oration, delivered before the Royal College of Physicians in 1900, on "Science and Medieval Thought" (London, 1901), declared that "the schoolmen, in digging for treasure, cultivated the field of knowledge even for Galileo and Harvey, for Newton and Darwin." He might have added that they had laid foundations in all our modern sciences, in chemistry quite as well as in astronomy, physiology, and the medical sciences, in mathematics and botany.

In chemistry the advances made during the thirteenth, fourteenth, and fifteenth centuries were, perhaps, even more noteworthy than those in any other department of science. Albertus Magnus, who taught at Paris, wrote no less than sixteen treatises on chemical subjects, and, notwithstanding the fact that he was a theologian as well as a scientist, and that his printed works fill some fifteen folio volumes, he somehow found the time to make many observations for himself, and performed numberless experiments in order to clear up doubts. The larger histories of chemistry accord him his proper place, and hail him as a great founder in chemistry, and a pioneer in original investigation.

Even St. Thomas of Aquin, much as he was occupied with theology and philosophy, found some time to devote to chemical questions. After all, this is only what might have been expected of the favorite pupil of Albertus Magnus. Three treatises on chemical subjects from Aquinas' pen have been preserved for us, and it is to him that we are said to owe the use, in the Western world at least, of the word amalgam, which he first employed in describing various chemical methods of metallic combination with mercury that were discovered in the search for the genuine transmutation of metals.

Albertus Magnus' other great scientific pupil, Roger Bacon, the English Franciscan friar, followed more closely in the scientific ways of his great master, devoting himself almost entirely to the physical sciences. Altogether he wrote some eighteen treatises on chemical subjects. For a long time it was considered that he was the inventor of gunpowder, though this is now known to have been introduced into Europe by the Arabs. Roger Bacon studied gunpowder and various other explosive combinations in considerable detail, and it is for this reason that he obtained the undeserved reputation of being an original discoverer in this line. How well he realized how much might be accomplished by means of the energy stored up in explosives, can, perhaps, be best appreciated from the fact that he suggested that boats would go along the rivers and across seas without either sails or oars, and that carriages would go along the streets without horse or man power. He considered that man would eventually invent a method of harnessing these explosive mixtures, and of utilizing their energies for his purposes without danger. It is curiously interesting to find, as we begin the twentieth century, and gasolene is so commonly used for the driving of automobiles and motor boats, and is being introduced even into heavier transportation as the most available source of energy for suburban traffic, at least, that this generation should only be fulfilling the idea of the old Franciscan friar of the thirteenth century, who prophesied that in explosives there was the secret of eventually manageable energy for transportation purposes.

Succeeding centuries were not as fruitful in great scientists as the thirteenth, and yet, in the second half of the thirteenth, there was a Pope, John XXI, who had been a physician and professor of medicine before his election to the Papacy, three of whose scientific treatises—one on the transmutation of metals, which he considers an impossibility, at least as far as the manufacture of gold and silver was concerned; a treatise on diseases of the eyes, to which good authorities have not hesitated to give lavish praise for its practical value, considering the conditions in which it was written; and, finally, his treatise on the preservation of the health, written when he was himself over eighty years of age—are all considered by good authorities as worthy of the best scientific spirit of the time.

During the fourteenth century, Arnold of Villanova, the inventor of nitric acid, and the two Hollanduses, kept up the tradition of original investigation in chemistry. Altogether there are some dozen treatises from these three men on chemical subjects. The Hollanduses particularly did their work in a spirit of thoroughly frank, original investigation. They were more interested in minerals than in any other class of substances, but did not waste much time on the question of transmutation of metals. Professor Thompson, the professor of chemistry at Edinburgh, said, in his "History of Chemistry," many years ago, that the Hollanduses give very clear descriptions of their processes of treating minerals in investigating their composition, and these serve to show that their knowledge was by no means entirely theoretical, or acquired only from books.

It is not surprising, then, to have a great investigating pharmacologist come along sometime about the beginning of the fifteenth century, when, according to the best authorities, Basil Valentine was born. From traditions he seems to have had a rather long life, and his years run nearly parallel with his century. His career is a typical example of the personally obscure and intellectually brilliant lives which the old monks lived. Probably in nothing have recent generations been more deceived in historical matters than in their estimation of the intellectual attainments and accomplishment of the old monks. The more that we know of them, not from second-hand authorities, but from their own books and from what they accomplished in art and architecture, in agriculture, in science of all kinds, the more do we realize what busy men they were, and appreciate what genius they often brought to the solution of great problems. We have had much negative pseudo-information brought together with the definite purpose of discrediting monasticism, and now that positive information is gradually being accumulated, it is almost a shock to find how different are the realities of the story of the intellectual life during the Middle Ages from what many writers had pictured them.

To those who may be surprised that a man who did great things in medicine should have lived during the fifteenth century, it may be well to recall the names and a little of the accomplishment of the men of this period, who were Basil Valentine's contemporaries, at least in the sense that some portion of their lives and influence was coeval with his. Before the end of this century Columbus had discovered America, and by no happy accident, for many men of his generation did correspondingly great work. Cardinal Nicholas of Cusa had developed mathematics and applied mathematical ideas to the heavens, so that he could announce the conclusion that the earth was a star, like the other stars, and moved in the heavens as they do. Contemporary with Cusanus was Regiomontanus, who has been proclaimed the father of modern astronomy, and a distinguished mathematician. Toscanelli, the Florentine astronomer, whose years run almost parallel with those of the fifteenth century, did fine scholarly work, which deeply influenced Columbus and the great navigators of the time. The universities in Italy were attracting students from all over Europe, and such men as Linacre and Dr. Caius went down there from England. Raphael was but a young man at the end of the century, but he had done some noteworthy painting before it closed. Leonardo da Vinci was born just about the middle of the century, and did some marvellous work before the end of that century. Michael Angelo was only twenty-five at the close of the century, but he, too, did fine work, even at this early age. Among the other great Italian painters of this century are Fra Angelico, Perugino, Raphael's master, Pinturicchio, Signorelli, the pupil of his uncle, Vasari, almost as distinguished, Botticelli, Titian, and very many others, who would have been famous leaders in art in any other but this supremely great period.

It was not only in Italy, however, that there was a wonderful outburst of genius at this time, for Germany also saw the rise of a number of great men during this period. Jacob Wimpheling, the "Schoolmaster of Germany," as he has been called, whose educational work did much to determine the character of German education for two centuries, was born in 1450. Rudolph Agricola, who influenced the intellectual Europe of this time deeply, was born in 1443. Erasmus, one of the greatest of scholars, of teachers, and of controversialists, was born in 1467. Johann Reuchlin, the great linguist, who, next to Erasmus, is the most important character in the German Renaissance, was born in 1455. Then there was Sebastian Brant, the author of "The Ship of Fools," and Alexander Hegius, both of this same period. The most influential of them all, Thomas a Kempis, who died in 1471, and whose little book, "The Following of Christ," has influenced every generation deeply ever since, was probably a close contemporary of Basil Valentine. When one knows what European, and especially German scholars, were accomplishing at this time, no room is left for surprise that Basil Valentine should have lived and done work in medicine at this period that was to influence deeply the after history of medicine.

Most of what Basil Valentine did was accomplished in the first half of the fifteenth century. Coming, as he did, before the invention of printing, when the spirit of tradition was more rife and dominating than it has been since, it is almost needless to say that there are many curious legends associated with his name. Two centuries before his time, Roger Bacon, doing his work in England, had succeeded in attracting so much attention even from the common people, because of his wonderful scientific discoveries, that his name became a byword, and many strange magical feats were attributed to him. Friar Bacon was the great wizard, even in the plays of the Elizabethan period. A number of the same sort of myths attached themselves to the Benedictine monk of the fifteenth century. He was proclaimed in popular story to have been a wonderful magician. Even his manuscript, it was said, had not been published directly, but had been hidden in a pillar in the church attached to his monastery, and had been discovered there after the splitting open of the pillar by a bolt of lightning from heaven. It is the extension of this tradition that has sometimes led to the assumption that Valentine lived in an earlier century, some even going so far as to say that he, too, like Roger Bacon, was a product of the thirteenth century. It seems reasonably possible, however, to separate the traditional from what is actual in his existence, and thus to obtain some idea at least of his work, if not of the details of his life. The internal evidence from his works enables the historian of science to place his writing within half a century of the discovery of America.

One of the myths that have gathered around the name of Basil Valentine, because it has become a commonplace in philology, has probably made him more generally known than any of his actual discoveries. In one of the most popular of the old-fashioned text-books of chemistry in use about half a century ago, in the chapter on antimony, there was a story that students, if I may judge from my own experience, never forgot. It was said that Basil Valentine, a monk of the Middle Ages, was the discoverer of this substance. After having experimented with it in a number of ways, he threw some of it out of his laboratory one day when the swine of the monastery, finding it, proceeded to gobble it up, together with some other refuse. Just when they were finishing it, the monk discovered what they were doing. He feared the worst from it, but took the occasion to observe the effect upon the swine very carefully. He found that, after a preliminary period of digestive disturbance, these swine developed an enormous appetite, and became fatter than any of the others. This seemed a rather desirable result, and Basil Valentine, ever on the search for the practical, thought that he might use the remedy to good purpose on the members of the community. Some of the monks in the monastery were of rather frail health and delicate constitution, and most of them were rather thin, and he thought that the putting on of a little fat, provided it could be accomplished without infringement of the rule, might be a good thing for them. Accordingly, he administered, surreptitiously, some of the salts of antimony, with which he was experimenting, in the food served to these monks. The result, however, was not so favorable as in the case of the hogs. Indeed, according to one, though less authentic, version of the story, some of the poor monks, the unconscious subjects of the experiment, perished as the result of the ingestion of the antimonial compounds. According to the better version, they suffered only the usual unpleasant consequences of taking antimony, which are, however, quite enough for a fitting climax to the story. Basil Valentine called the new substance which he had discovered antimony, that is, opposed to monks. It might be good for hogs, but it was a form of monks' bane, as it were.[30]

Unfortunately for most of the good stories of history, modern criticism has nearly always failed to find any authentic basis for them, and they have had to go the way of the legends of Washington's hatchet and Tell's apple. We are sorry to say that that seems to be true also of this particular story. Antimony, the word, is very probably derived from certain dialectic forms of the Greek word for the metal, and the name is no more derived from anti and monachus than it is from anti and monos (opposed to single existence), another fictitious derivation that has been suggested, and one whose etymological value is supposed to consist in the fact that antimony is practically never found alone in nature.

Notwithstanding the apparent cloud of unfounded traditions that are associated with his name, there can be no doubt at all of the fact that Valentinus—to give him the Latin name by which he is commonly designated in foreign literatures—was one of the great geniuses, who, working in obscurity, make precious steps into the unknown that enable humanity after them to see things more clearly than ever before. There are definite historical grounds for placing Basil Valentine as the first of the series of careful observers who differentiated chemistry from the old alchemy and applied its precious treasures of information to the uses of medicine. It is said to have been because of the study of Basil Valentine's work that Paracelsus broke away from the Galenic traditions, so supreme in medicine up to his time, and began our modern pharmaceutics. Following Paracelsus came Van Helmont, the father of modern medical chemistry, and these three did more than any others to enlarge the scope of medication and to make observation rather than authority the most important criterion of truth in medicine. Indeed, the work of this trio of men of the fifteenth and sixteenth centuries—the Renaissance in medicine as in art—dominated medical treatment, or at least the department of pharmaceutics, down almost to our own day, and their influence is still felt in drug-giving.

While we do not know the absolute data of either the birth or the death of Basil Valentine and are not sure of the exact period even in which he lived and did his work, we are sure that a great original observer about the time of the invention of printing studied mercury and sulphur and various salts of the metals, and above all introduced antimony to the notice of the scientific world, and especially to the favor of practitioners of medicine. His book, "The Triumphal Chariot of Antimony," is full of conclusions not quite justified by his premises nor by his observations. There is no doubt, however, that the observational method which he employed furnished an immense amount of knowledge, and formed the basis of the method of investigation by which the chemical side of medicine was to develop during the next two or three centuries. Great harm was done by the abuse of antimony, but then great harm is done by the abuse of anything, no matter how good it may be. For a time it came to be the most important drug in medicine and was only replaced by venesection.

The fact of the matter is that doctors were looking for effects from their drugs, and antimony is, above all things, effective. Patients, too, wished to see the effect of the medicines they took. They do so even yet, and when antimony was administered there was no doubt about its working.

The most interesting of Basil Valentine's books, and the one which has had the most enduring influence, is undoubtedly "The Triumphal Chariot of Antimony."[31] It has been translated and has had a wide vogue in every language of modern Europe. Its recommendation of antimony had such an effect upon medical practice that it continued to be the most important drug in the pharmacopoeia down almost to the middle of the nineteenth century. If any proof were needed that Basil Valentine or that the author of the books that go under the name was a monk it would be found in the introduction to this volume, which not only states that fact very clearly, but also in doing so makes use of language that shows the writer to have been deeply imbued with the old monastic spirit. I quote the first paragraph of this introduction because it emphasizes this. The quotation is taken from the English translation of the work as published in London in 1678. Curiously enough, seeing the obscurity surrounding Valentine himself, we do not know for sure who made the translation. The translator apologizes somewhat for the deeply religious spirit of the book, but considers that he was not justified in eliminating any of this. The paragraph is left in the quaint, old-fashioned form so eminently suited to the thoughts of the old master, and the spelling and use of capitals is not changed.

"Basil Valentine: His Triumphant Chariot of Antimony.—Since I, Basil Valentine, by Religious Vows am bound to live according to the order of St. Benedict and that requires another manner of Spirit of Holiness than the common state of Mortals exercised in the profane business of this World; I thought it my duty before all things, in the beginning of this little book, to declare what is necessary to be known by the pious Spagyrist [old-time name for medical chemist], inflamed with an ardent desire of this Art, as what he ought to do, and whereunto to direct his striving, that he may lay such foundations of the whole matter as may be stable; lest his Building, shaken with the Winds, happen to fall, and the whole Edifice to be involved in shameful Ruine which otherwise being founded on more firm and solid principles, might have continued for a long series of time. Which Admonition I judged was, is and always will be a necessary part of my religious Office; especially since we must all die, and no one of us which are now, whether high or low, shall long be seen among the number of men. For it concerns me to recommend these Meditations of Mortality to Posterity, leaving them behind me, not only that honor may be given to the Divine Majesty, but also that men may obey him sincerely in all things.

"In this my meditation I found that there were five principal heads, chiefly to be considered by the wise and prudent spectators of our Wisdom and Art. The first of which is Invocation of God. The second, Contemplation of Nature. The third, True Preparation. The fourth, the Way of Using. The fifth, Utility and Fruit. For he who regards not these, shall never obtain place among true Chymists, or fill up the number of perfect Spagyrists. Therefore, touching these five heads, we shall here following treat and so far declare them, as that the general Work may be brought to light and perfected by an intent and studious Operator."

This book, though the title might seem to indicate it, is not devoted entirely to the study of antimony, but contains many important additions to the chemistry of the time. For instance, Basil Valentine explains in this work how what he calls the spirit of salt might be obtained. He succeeded in manufacturing this material by treating common salt with oil of vitriol and heat. From the description of the uses to which he put the end product of his chemical manipulation, it is evident that under the name of spirit of salt he is describing what we now know as hydrochloric acid. This is said to be the first definite mention of it in the history of science, and the method suggested for its preparation is not very different from that employed even at the present time. He also suggests in his volume how alcohol may be obtained in high strengths. He distilled the spirit obtained from wine over carbonate of potassium, and thus succeeded in depriving it of a great proportion of its water. We have said that he was deeply interested in the philosopher's stone. Naturally this turned his attention to the study of metals, and so it is not surprising to find that he succeeded in formulating a method by which metallic copper could be obtained. The material used for the purpose was copper pyrites, which was changed to an impure sulphate of copper by the action of oil of vitriol and moist air. The sulphate of copper occurred in solution, and the copper could be precipitated from it by plunging an iron bar into it. Basil Valentine recognized the presence of this peculiar yellow metal, and studied some of its qualities. He does not seem to have been quite sure, however, whether the phenomenon that he witnessed was not really a transmutation of at least some of the iron into copper as a consequence of the other chemicals present. There are some observations on chemical physiology, and especially with regard to respiration, in the book on antimony which show their author to have anticipated the true explanation of the theory of respiration. He states that animals breathe because air is needed to support their life, and that all the animals exhibit the phenomenon of respiration. He even insists that the fishes, though living in water, breathe air, and he adduces in support of this idea the fact that whenever a river is entirely frozen the fishes die. The reason for this being, according to this old-time physiological chemist, not that the fishes are frozen to death, but that they are not able to obtain air in the ice as they did in the water, and consequently perish.

There are many testimonials to the practical character of all his knowledge and his desire to apply it for the benefit of humanity. The old monk could not repress the expression of his impatience with physicians who gave to patients for "diseases of which they knew little, remedies of which they knew less." For him it was an unpardonable sin for a physician not to have faithfully studied the various mixtures that he prescribed for his patients, and not to know not only their appearance and taste and effect, but also the limits of their application. Considering that at the present time it is a frequent source of complaint that physicians often prescribe remedies with even whose physical appearance they are not familiar and whose composition is often quite unknown to them, this complaint of the old-time chemist alchemist will be all the more interesting for the modern physician. It is evident that when Basil Valentine allows his ire to get the better of him it is because of his indignation over the quacks who were abusing medicine and patients in his time, as they have ever since. There is a curious bit of aspersion on mere book learning in the passage that has a distinctly modern ring, and one feels the truth of Russell Lowell's expression that to read a classic, no matter how antique, is like reading a commentary on the morning paper, so up-to-date does genius ever remain:

"And whensoever I shall have occasion to contend in the School with such a Doctor, who knows not how himself to prepare his own medicines, but commits that business to another, I am sure I shall obtain the Palm from him; For indeed that good man knows not what medicines he prescribes to the sick; whether the color of them be white, black, gray, or blew (sic), he cannot tell; nor doth this wretched man know whether the medicine he gives be dry or hot, cold or humid; but he only knows that he found it so written in his books, and then pretends to knowledge or as it were Possession by Prescription of a very long time; yet he desires to further information. Here again let it be lawful to exclaim, Good God, to what a state is the matter brought! what Goodness of Minde is in these men! what care do they take of the sick! Wo, wo to them! in the day of Judgement they will find the fruit of their Ignorance and Rashness, then they will see him whom they pierced, when they neglected their Neighbor, sought after money and nothing else; whereas were they cordial in their profession, they would spend Nights and Days in Labour that they might become more learned in their Art, whence more certain health would accrew to the sick with their estimation and greater glory to themselves. But since Labour is tedious to them they commit the matter to chance, and being secure of their Honour, and content with their Fame, they (like Brawlers) defend themselves with a certain garrulity, without any respect had to Confidence or Truth."

Perhaps one of the reasons why Valentine's book has been of such enduring interest is that it is written in an eminently human vein and out of a lively imagination. It is full of figures relating to many other things besides chemistry, which serve to show how deeply this investigating observer was attentive to all the problems of life around him. For instance, when he wants to describe the affinity that exists between many substances in chemistry, and which makes it impossible for them not to be attracted to one another, he takes a figure from the attractions that he sees exist among men and women. It is curious to find affinities discussed in our modern sense so long ago. There are some paragraphs with regard to the influence of the passion of love that one might think rather a quotation from an old-time sermon than from a great ground-breaking book in the science of chemistry.

"Love leaves nothing entire or sound in man; it impedes his sleep, he cannot rest either day or night; it takes off his appetite that he hath no disposition either to meat or drink by reason of the continual torments of his heart and mind. It deprives him of all Providence, hence he neglects his affairs, vocation, and business. He minds neither study, labor, nor prayer; casts away all thoughts of anything but the body beloved; this is his study, this his most vain occupation. If to lovers the success be not answerable to their wish, or so soon and prosperously as they desire, how many melancholies henceforth arise, with griefs and sadness, with which they pine away and wax so lean as they have scarcely any flesh cleaving to the bones. Yea, at last they lose the life itself, as may be proved by many examples! for such men (which is an horrible thing to think of) slight and neglect all perils and detriments, both of the body and life, and of the soul and eternal salvation."

It is evident that human nature is not different in our sophisticated twentieth century from that which this observant old monk saw around him in the fifteenth. He continues:

"How many testimonies of this violence which is in love, are daily found? for it not only inflames the younger sort, but it so far exaggerates some persons far gone in years as through the burning heat thereof, they are almost mad. Natural diseases are for the most part governed by the complexion of man and therefore invade some more fiercely, others more gently; but Love, without distinction of poor or rich, young or old, seizeth all, and having seized so blinds them as forgetting all rules of reason, they neither see nor hear any snare."

But then the old monk thinks that he has said enough about this rather foreign subject, and apologizes for his digression in another paragraph that should remove any lingering doubt there might be with regard to the genuineness of his monastic character. At the end of the passage he makes the application in a very few words. The personal element in his confession is so naive and so simply straightforward that instead of seeming to be the result of conceit, which would surely have repelled the reader, it rather attracts and enhances his kindly feeling for its author. The paragraph would remind one in certain ways of that personal element that was to become more popular in literature after Montaigne in the next century made it rather the fashion.

"But of these enough; for it becomes not a religious man to insist too long upon these cogitations, or to give place to such a flame in his heart. Hitherto (without boasting I speak it) I have throughout the whole course of my life kept myself safe and free from it, and I pray and invoke God to vouchsafe me his Grace that I may keep holy and inviolate the faith which I have sworn, and live contented with my spiritual spouse, the Holy Catholick Church. For no other reason have I alleged these than that I might express the love with which all tinctures ought to be moved towards metals, if ever they be admitted by them into true friendship, and by love, which permeates the inmost parts, be converted into a better state."

The application of the figure at the end of his long digression is characteristic of the period in which he wrote, as also to a considerable extent of the German literary methods of the time.

In this volume on the use of antimony there are in most of the editions certain biographical notes which have sometimes been accepted as authentic, but oftener rejected. According to these, Basil Valentine was born in a town in Alsace, on the southern bank of the Rhine. As a consequence of this, there are several towns that have laid claim to being his birthplace. M. Jean Reynaud, the distinguished French philosophical writer of the first half of the nineteenth century, once said that Basil Valentine, like Ossian and Homer, had many towns claim him years after his death. He also suggested that, like those old poets, it was possible that the writings sometimes attributed to Basil Valentine were really the work not of one man, but of several individuals. There are, however, many objections to this theory, the most forcible of which is the internal evidence derived from the books themselves showing similarities of style and method of treating subjects too great for us to admit non-identity in the writers. M. Reynaud lived at a time when it was all the fashion to suggest that old works that had come down to us, like the Iliad and the Odyssey, and even such national epics as the Cid and the Arthur Legends and the Nibelungenlied were to be attributed to several writers rather than to one. We have passed that period of criticism, however, and have reverted to the idea of single authorship for these works, and the same conclusion has been generally come to with regard to the writings attributed to Basil Valentine.

Other biographic details contained in "The Triumphal Chariot of Antimony" are undoubtedly more correct. According to them Basil Valentine travelled in England and Holland on missions for his order, and went through France and Spain on a pilgrimage to St. James of Compostella.

Besides this work, there is a number of other books of Basil Valentine's, printed during the first half of the sixteenth century, that are well known and copies of which may be found in most of the important libraries. The United States Surgeon General's Library at Washington contains not a few of the works on medical subjects, and the New York Academy of Medicine Library has some valuable editions of certain of his works. Some of his other well-known books, each of which is a good-sized octavo volume, bear the following descriptive titles (I give them in English, though as they are usually found, they are in Latin, sixteenth-century translations of the original German): "The World in Miniature: or, The Mystery of the World and of Human Medical Science," published at Mayburg, 1609; "The Chemical Apocalypse: or, The Manifestation of Artificial Chemical Compounds," published in Erfurt in 1624; "A Chemico-Philosophic Treatise Concerning Things Natural and Preternatural, Especially Relating to the Metals and the Minerals," published at Frankfurt in 1676; "Haliography: or, The Science of Salts: A Treatise on the Preparation, Use, and Chemical Properties of All the Mineral, Animal, and Vegetable Salts," published at Bologna in 1644; "The Twelve Keys of Philosophy," Leipsic, 1630. These are of interest to the chemist and physicist rather than to the physician, and it is as a Maker of Medicine that we are concerned with Valentine here.

The great attention aroused in Basil Valentine's work at the Renaissance period can be best realized from the number of manuscript copies and their wide distribution. His books were not all printed at one place, but, on the contrary, in different portions of Europe. The original edition of "The Triumphal Chariot of Antimony" was published in Leipsic in the early part of the sixteenth century. The first editions of the other books, however, appeared at places so distant from Leipsic as Amsterdam and Bologna, while various cities of Germany, as Erfurt and Frankfurt, claim the original editions of still other works. Many of the manuscript copies still exist in various libraries in Europe; and while there is no doubt that some unimportant additions to the supposed works of Basil Valentine have come from the attribution to him of scientific treatises of other German writers, the style and the method of the principal works mentioned is entirely too similar not to have been the fruit of a single mind and that possessed of a distinct investigating genius, setting it far above any of its contemporaries in scientific speculation and observation.

The most interesting feature of all of Basil Valentine's writings that are extant is the distinctive tendency to make his observations of special practical utility. His studies in antimony were made mainly with the idea of showing how that substance might be used in medicine. He did not neglect to point out other possible uses, however, and knew the secret of the employment of antimony in order to give sharpness and definition to the impression produced by metal types. It would seem as though he was the first scientist who discussed this subject, and there is even some question of whether printers and typefounders did not derive their ideas in this matter from our chemist.

Interested though he was in the transmutation of metals, he never failed to try to find and suggest some medicinal use for all of the substances that he investigated. His was no greedy search for gold and no cumulation of investigations with the idea of benefiting only himself. Mankind was always in his mind, and perhaps there is no better demonstration of his fulfilment of the character of the monk than this constant solicitude to benefit others by every bit of investigation that he carried out. For him, with medieval nobleness of spirit, "the first part of every work must be the invocation of God, and the last, though no less important than the first, must be the utility and fruit for mankind that can be derived from it."

The career of the last of the Makers of Medicine in the Middle Ages may be summed up briefly in a few sentences that show how thoroughly this old Benedictine was possessed of the spirit of modern science. He believed in observation as the most important source of medical knowledge. He valued clinical experience far above book information. He insisted on personal acquaintanceship on the part of the physician with the drugs he used, and thought nothing more unworthy of a practitioner of medicine,—indeed he sets it down as almost criminal—than to give remedies of whose composition he was not well aware and whose effect he did not thoroughly understand. He thought that nature was the most important aid to the physician, much more important than drugs, though he was the first to realize the significance of chemical affinities, and he seems to have understood rather well how individual often were the effects obtained from drugs. He was a patient student, a faithful observer, a writer who did not begrudge time and care to the composition of large books on medicine, yet withal he was no dry-as-dust scholar, but eminently human in his sympathies with ailing humanity, and a strenuous upholder of the dignity of the profession to which he belonged. Scarcely more can be said of anyone in the history of medicine, at least so far as good intentions go; though many accomplished more, none deserve more honor than the Thuringian monk whom we know as Basil Valentine.

There are many other of these old-time Makers of Medicine of whom nearly the same thing can be said. Basil Valentine is only one of a number of men who worked faithfully and did much both for medical science and professional life during the thousand years from the fall of Rome to the fall of Constantinople, when, according to what used to be commonly accepted opinion, men were not animated by the spirit of research and of fine incentive to do good to men that we are so likely to think of as belonging exclusively to more modern times. A man whom he greatly influenced, Paracelsus, took up the tradition of scientific investigation where Basil Valentine had left it. His work, though more successfully revolutionary, was not done in such a fine spirit of sympathy with humanity nor with that simplicity of life and purity of intention that characterized the old monk's work. Paracelsus' birth in the year of the discovery of America places him among the makers of the foundations of our modern medicine, and he will be treated of in a volume on "The Forefathers in Medicine."



APPENDIX I

ST. LUKE THE PHYSICIAN[32]

In the midst of what has been called the "higher criticism" of the Bible in recent times, one of the long accepted traditions that has been most strenuously assailed and, indeed, in the minds of many scholars, seemed, for a time at least, quite discredited, was that St. Luke the Evangelist, the author of the Third Gospel and the Acts of the Apostles, was a physician. Distinguished authorities in early Christian apologetics have declared that the pillars of primitive Christian history are the genuine Epistles of St. Paul, the writings of St. Luke, and the history of Eusebius. It is quite easy to understand, then, that the attack upon the authenticity of the writings usually assigned to St. Luke, which in many minds seemed successful, has been considered of great importance. In the very recent time there has been a decided reaction in this matter. This has come, not so much from Roman Catholics, who have always clung to the traditional view, and whose great Biblical students have been foremost in the support of the previously accepted opinion, but from some of the most strenuous of the German higher critics, who now appreciate that destructive, so-called higher criticism went too far, and that the traditional view not only can be maintained, but is the only opinion that will adequately respond to all the new facts that have been found, and all the recently gathered information with regard to the relations of events in the olden time.

By far the most important contribution to the discussion in recent years came not long since from the pen of Professor Adolph Harnack, the professor of church history in the University of Berlin. Professor Harnack's name is usually cited as that of one of the most destructive of the higher critics. His recent book, however, "Luke the Physician,"[33] is an entire submission to the old-fashioned viewpoint that the writer of the Third Gospel and of the Acts of the Apostles was a Greek fellow-worker of St. Paul, who had been in company for years with Mark and Philip and James, and who had previously been a physician, and was evidently well versed in all the medical lore of that time. Harnack does not merely concede the old position. As might be expected, his rediscussion of the subject clinches the arguments for the traditional view, and makes it impossible ever to call it in question again. It is easy to understand how important are such admissions when we recall how much this traditional view has been assailed, and how those who have held it have been accused of old-fogyism and lack of scholarship, and unwarranted clinging to antiquated notions just because they thought they were of faith, and how, lacking in true scholarship, seriously hampering genuine investigation, such conservatism has been declared to be.

The question of Luke's having been a physician is an extremely valuable one, and no one in our time is better fitted by early training and long years of study to elucidate it than Professor Harnack. He began his excursions into historical writing years ago, as I understand, as an historian of early Christian medicine. Some of his works on medical conditions just before and after Christ are quoted confidently by the distinguished German medical historians. From this department he graduated into the field of the higher criticism. He is eminently in a position, therefore, to state the case with regard to St. Luke fully, and to indicate absolutely the conclusions that should be drawn from the premises of fact, writings, and traditions that we have. He does so in a very striking way. Perhaps no better example of his thoroughly lucid and eminently logical mode of argumentation is to be found than the paragraph in which he states the question. It might well be recommended as an example of terse forcefulness and logical sequence that deserves the emulation of all those who want to write on medical subjects. If we had more of these characteristic qualities of Harnack's style, our medical literature, so called, would not need to occupy so many pages of print as it does—yet would say more. Here it is:

St. Luke, according to St. Paul, was a physician. When a physician writes a historical work it does not necessarily follow that his profession shows itself in his writing; yet it is only natural for one to look for traces of the author's medical profession in such a work. These traces may be of different kinds: 1, The whole character of the narrative may be determined by points of view, aims, and ideals which are more or less medical (disease and its treatment); 2, marked preference may be shown for stories concerning the healing of diseases, which stories may be given in great number and detail; 3, the language may be colored by the language of physicians (medical technical terms, metaphors of medical character, etc.). All these three groups of characteristic signs are found, as we shall see, in the historical work which bears the name of St. Luke. Here, however, it may be objected that the subject matter itself is responsible for these traits, so that their evidence is not decisive for the medical calling of the author. Jesus appeared as a great physician and healer. All the evangelists say this of Him; hence it is not surprising that one of them has set this phase of His ministry in the foreground, and has regarded it as the most important. Our evangelist need not therefore have been a physician, especially if he were a Greek, seeing that in those days Greeks with religious interests were disposed to regard religion mainly under the category of healing and salvation. This is true, yet such a combination of characteristic signs will compel us to believe that the author was a physician if, 4, the description of the particular cases of disease shows distinct traces of medical diagnosis and scientific knowledge; 5, if the language, even where questions of medicine or of healing are not touched upon, is colored by medical phraseology; and, 6, if in those passages where the author speaks as an eye-witness medical traits are especially and prominently apparent. These three kinds of tokens are also found in the historical work of our author. It is accordingly proved that it proceeds from the pen of a physician.

The importance of the concession that Luke was a physician should be properly appreciated. His whole gospel is written from that standpoint. For him the Saviour was the healer, the good physician who went about curing the ills of the body, while ministering to people's souls. He has more accounts of miracles of healing than any of the other Evangelists. He has taken certain of the stories of the other Evangelists who were eye-witnesses, and when they were told in naive and popular language that obscured the real condition that was present, he has retold the story from the physician's standpoint, and thus the miracle becomes clearer than ever. In one case, where Mark has a slur on physicians, Luke eliminates it. In a number of cases the correction of Mark's popular language in the description of ailments is made in terms that could not have been used except by one thoroughly versed in the Greek medical terminology of the times. As a matter of fact, there seems to be no doubt now that Luke had been, before he became an Evangelist, a practising physician in Malta of considerable experience. His testimony, then, to the miracles is particularly valuable as almost a medical eye-witness.

In medical science, St. Luke's time was by no means barren of knowledge. The Alexandrian school of medicine had done some fine work in its time. It was the first university medical school in the world's history, and there dissection was first practised regularly and publicly for the sake of anatomy, and even the vivisection of criminals who were supplied by the Ptolemei for human physiology, was a part of the school curriculum. A number of important discoveries in brain anatomy are attributed to Herophilus, after whom the torcular herophili within the skull is named, and who invented the term calamus scriptorius for certain appearances in the fourth ventricle. His colleague, Erasistratus, the co-founder of this school at Alexandria, did work in pathological anatomy, and laid the foundation for serious study there. For three centuries there is some good worker, at or in connection with Alexandria, whose name is preserved for us in the history of medicine. Other Greek schools of medicine in the East, as, for instance, that of Pergamos, also did excellent work. Galen is the great representative of this school, and he came in the century after St. Luke. A physician educated in Greek medicine at that time, then, would be in an excellent position to judge critically of the miracles of healing of the Christ, and it would seem to have been providential that Luke was called for this purpose.

The evidence for his membership of our profession will doubtless be interesting to all physicians. Some of the distinctive passages in which Luke's familiarity with medical terms to such an extent that to express his meaning he found himself compelled to use them, will appeal at once to these, for whom such terms are part of everyday speech. The use of the word hydropikos, which is not to be met with anywhere else in the New Testament, nor in the non-medical Greek literature of that time, though the word is of frequent occurrence as a designation for a person suffering from dropsy (and always, as in Luke, the adjective for the substantive), in Hippocrates, Dioscorides, and Galen is a typical example.

Where such vague terms as paralyzed occur Luke does not use the familiar word, but the medical term that meant stricken with paralysis, indicating not any inability to use the limbs, but such a one as was due to a stroke of apoplexy. We who, as physicians, have heard of so many cures of paralysis from our friends, the Eddyites, are prone to ask, as the first question, what sort of a paralysis it was. Luke made inquiries from men who were eye-witnesses, and then has described the scene with such details as convinced him as a physician of the reality of the miracle, and his description was meant to carry conviction to the minds of others.

Occasionally St. Luke uses words which only a physician would be likely to know at all. That is to say, even a man reasonably familiar with medical terminology and medical literature would not be likely to know them unless he had been technically trained. One of these is the word sphudron, a word which is only medical, and is not to be found even in such large Greek lexicons of ordinary words as that of Passow. Sphudron is the anatomical term of the Graeco-Alexandrian school for the condyles of the femur. Galen and other medical authors use it, and Luke, in giving the details of the story of the lame man cured, in the third chapter of the Acts, seventh verse, selects it because it exactly expresses the meaning he wished to convey. In this story there are a number of added medical details. These are all evidently arranged so as to give the full medical significance to the miracle. For instance, the man had been lame from birth, literally from the womb of his mother. At this time he was forty years of age, an age at which the spontaneous cure of such an ailment or, indeed, any cure of it, could scarcely be expected, if, during the preceding time, there had been no improvement.

In the story of the cure of Saul's blindness Luke says in the Acts that his blindness fell from him like scales. The figure is a typically medical one. The word for fall that is used is, as was pointed out by Hobart ("Medical Language of St. Luke," Dublin, 1882), exactly the term that is used for the falling of scales from the body. The term for scales is the specific designation of the particles that fall from the body during certain skin diseases or after certain of the infectious fevers, as in scarlet fever. Hippocrates and Galen have used it in many places. It is distinctively a medical word. In the story of the vision of St. Peter, told also in the Acts, the word ecstasis, from which we derive our word ecstasy, is used. This is the only word St. Luke uses for vision and he alone uses it. This term is of constant employment in a technical sense in the medical writers of St. Luke's time and before it. When the other evangelists talk of lame people they use the popular term. This might mean anything or nothing for a physician. Luke uses one of the terms that is employed by physicians when they wish to indicate that for some definite reason there is inability to walk.

In the story of the Good Samaritan there are some interesting details that indicate medical interest on the part of the writer. It is Luke's characteristic story and a typical medical instance. He employs certain words in it that are used only by medical writers. The use of oil and wine in the treatment of the wounds of the stranger traveller was at one time said to indicate that it could not have been a physician who wrote the story, since the ancients used oil for external applications in such cases but not wine. More careful search of the old masters of medicine, however, has shown that they used oil and wine not only internally but externally. Hippocrates, for instance, has a number of recommendations of this combination for wounds. It is rather interesting to realize this, and especially the wine in addition to the oil, because wine contains enough alcohol to be rather satisfactorily antiseptic. There seems no doubt that wounds that had been bathed in wine and then had oil poured over them would be likely to do better than those which were treated in other ways. The wine would cleanse and at least inhibit bacterial growth. The subsequent covering with oil would serve to protect the wound to some degree from external contamination.

Sometimes there is an application of medical terms to something extraneous from medicine that makes the phrase employed quite amusing. For instance, when Luke wants to explain how they strengthened the vessel in which they were to sail he describes the process by the term which was used in medical Greek to mean the splinting of a part or at least the binding of it up in such a way as to enable it to be used. The word was quite a puzzle to the commentators until it was pointed out that it was the familiar medical term, and then it was easy to understand. Occasionally this use of a medical term gives a strikingly accurate significance to Luke's diction. For instance, where other evangelists talk of the Lord looking at a patient or turning to them, Luke uses the expression that was technically employed for a physician's examination of his patient, as if the Lord carefully looked over the ailing people to see their physical needs, and then proceeded to cure them. Manifestly in Luke's mind the most interesting phase of the Lord's life was His exhibition of curative powers, and the Saviour was for him the divine healer, the God physician of bodies as well as of souls.

There are many little incidents which he relates that emphasize this. For instance, where St. Mark talks about the healing of the man with a withered hand, St. Luke adds the characteristic medical note that it was the right hand. When he tells of the cutting off of the ear of the servant of the high priest in the Garden of Olives St. Luke takes the story from St. Mark, but adds the information that would appeal to a physician that it was the right ear. Moreover, though all four evangelists record the cutting off of the ear, only St. Luke adds the information that the Lord healed it again. It is as if he were defending the kindly feelings of the Divine Physician and as if it would have been inexcusable had He not exerted His miraculous powers of healing on this occasion. It is St. Luke, too, who has constantly distinguished between natural illnesses and cases of possession. This careful distinction alone would point to the author of the third gospel and the Acts as surely a physician. As it is it confirms beyond all doubt the claim that the writer of these portions of the New Testament was a physician thoroughly familiar with all the medical writings of the time and probably a physician who had practised for a long time.

Certain miracles of healing are related only by St. Luke as if he realized better than any of the other evangelists the evidential value that such instances would have for future generations as to the divinity of the personage who worked them. The beautiful story of the raising from death of the son of the widow of Nain is probably one of the oftenest quoted passages from St. Luke. It is a charming bit of literature. While it suggests the writer physician it makes one almost sure that the other tradition according to which St. Luke was also a painter must be true. The scene is as picturesque as it can be. The Lord and His Apostles and the multitudes coming to the gate of the little city just as in the evening sun the funeral cortege with the widow burying her only son came out of it. The approach of the Lord to the weeping mother, His command to the dead son to arise, and the simple words, "and he gave him back to his mother," constitute as charming a scene as a painter ever tried to visualize. Besides this, Luke alone has the story of the man suffering with dropsy and the woman suffering from weakness. The intensely picturesque quality of many of these scenes that he describes so vividly would indeed seem to place beyond all doubt the old tradition that he was an artist as well as a physician.

It is interesting to realize that it is to Luke alone that we owe the account of the well-known message sent by Christ Himself to John the Baptist when John sent his disciples to inquire as to His mission. After describing His ministry He said: "Go and relate to John what you have heard and seen: the blind see, the lame walk, the deaf hear, the lepers are made clean, the dead rise again, to the poor the Gospel is preached." To no one more than to a physician would that description of His mission appeal as surely divine.

To those who care to follow the subject still further, and above all, to read opinions given before the reversal of the verdict of the higher criticism on the Lucan writings, indeed before ever that trial was brought, there is much in "Horae Lucanae—A Biography of St. Luke," by Henry Samuel Baynes (Longmans, 1870), that will surely be of interest. He has some interesting quotations which show how thoroughly previous centuries realized all the force of modern arguments. For instance, the following paragraph from Dr. Nathaniel Robinson, a Scotch physician of the eighteenth century, will illustrate this. Dr. Robinson said:

It is manifest from his Gospel, that Luke was both an acute observer, and had even given professional attention to all our Saviour's miracles of healing. Originally, among the Egyptians, divinity and physic were united in the same order of men, so that the priest had the care of souls, and was also the physician. It was much the same under the Jewish economy. But after physic came to be studied by the Greeks, they separated the two professions. That a physician should write the history of our Saviour's life was appropriate, as there were divers mysterious things to be noticed, concerning which his education enabled him to form a becoming judgment.

It is even interesting to realize that St. Luke's tendency to use medical terms has been of definite value in determining the question whether both the third gospel and the Acts of the Apostles are by the same man. They have been attributed to St. Luke traditionally, but in the higher criticism some doubt has been thrown on this and an elaborate hypothesis of dual authorship set up. It has been asserted that it is very improbable on extrinsic grounds that they were both written by one hand and certain intrinsic evidence, changes in the mode of narration, especially the use of the first personal pronoun in the plural in certain passages, has been pointed to as making against single authorship. This tendency to deny old-time traditions of authorship with regard to many classical writings was a marked characteristic of the early part of the nineteenth century, but the close of the century saw practically all of these denials discredited. The nineteenth century ushered in studies of Homer, with the separatist school perfectly confident in their assertion that the Iliad and the Odyssey were not by the same person, and even that the Iliad itself was the work of several hands.

At the beginning of the twentieth century we are quite as sure that both the Iliad and Odyssey were written by the same person and that the separatists were hurried into a contrary decision not a little by the feeling of the sensation that such a contradiction of previously accepted ideas would create. This is a determining factor in many a supposed novel discovery, that it is hard always to discount sufficiently. A thing may be right even though it is old, and most new discoveries, it must not be forgotten, that is, most of those announced with a great blare of trumpets, do not maintain themselves. The simple argument that the separatists would have to find another poet equal to Homer to write the other poem has done more than anything else to bring their opinion into disrepute. It is much easier to explain certain discrepancies, differences of style, and of treatment of subjects, as well as other minor variants, than to supply another great poet. Most of the works of our older literatures have gone through a similar trial during the over-hasty superficially critical nineteenth century. The Nibelungenlied has been attributed to two or three writers instead of one. The Cid, the national epic of Spain, and the Arthur Legends, the first British epic, have been at least supposed to be amenable to the same sort of criticism. In every case, scholars have gone back to the older traditional view of a single author. The phases of literary and historic criticism with regard to Luke's writings are, then, only a repetition of what all our great national classics have gone through from supercilious scholarship during the past hundred years.

It is not surprising, then, that there should be dual or even triple ascriptions of authorship for various portions of the Scriptures, and Luke's writings have on this score suffered as much or more even than others, with the possible exception of Moses. It is now definitely settled, however, that the similarities of style between the Acts and the third gospel are too great for them to have come from two different minds. This is especially true, as pointed out by Harnack, in all that regards the use of medical terms. The writer of the Acts and the writer of the third gospel knew Greek from the standpoint of the physician of that time. Each used terms that we find nowhere else in Greek literature except among medical writers. What is thus true for one critical attack on Luke's reputation is also true in another phase of recent higher criticism. It has been said that certain portions of the Acts which are called the "we" portions because the narration changes in them from the third to the first person were to be attributed to another writer than the one who wrote the narrative portions. Here, once more, the test of the medical words employed has decided the case for Luke's sole authorship. It is evidently an excellent thing to be able to use medical terms properly if one wants to be recognized with certainty later on in history for just what one's business was. It has certainly saved the situation for St. Luke, though there may be some doubt as to the real force of objections thus easily overthrown.

It is rather interesting to realize that many scholars of the present generation had allowed themselves to be led away by the German higher criticism from the old tradition with regard to Luke as a physician and now will doubtless be led back to former views by the leader of German biblical critics. It shows how much more distant things may influence certain people than those nearer home—how the hills are green far away. Harnack confesses that the best book ever written on the subject of Luke as a physician, the one that has proved of most value to him, and that he still recommends everyone to read, was originally written in English. It is Hobart's "Medical Language of St. Luke,"[34] written more than a quarter of a century before Harnack. The Germans generally had rather despised what the English were doing in the matter of biblical criticism, and above all in philology. Yet now the acknowledged coryphaeus of them all, Harnack, not only admits the superiority of an old-time English book, but confesses that it is the best statement of the subject up to the present time, including his own. He constantly quotes from it, and it is evident that it has been the foundation of all of his arguments. It is not the first time that men have fetched from afar what they might have got just as well or better at home.

Previous Part     1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse