p-books.com
Notable Events of the Nineteenth Century - Great Deeds of Men and Nations and the Progress of the World
Author: Various
Previous Part     1  2  3  4  5     Next Part
Home - Random Browse

Still another character to be commemorated is the English astronomer Professor James Challis, Plumian Professor and Director of the Observatory at Cambridge, England. This contributor to the great event was born in 1803, and died at Cambridge on the third of December, 1882. Still another, not to be disregarded, is Dr. T.J. Hussey, of Hayes, England, whose mind seems to have been one of the first to anticipate the existence of an ultra-Uranian planet. And still again, the English astronomer royal, Sir G.B. Airy must be mentioned as a contributor to the final result; but he is to be regarded rather as a contributor by negation. The great actors in the thing done were Leverrier, Adams and Galle. English authors contend strongly for placing the names in this order: Adams, Leverrier and Galle.

Suffice it to say that when Uranus was discovered by the elder Herschel in 1781, that world was supposed to be the outside planet of our system. Hitherto the splendid Saturn had marked the uttermost excursion of astronomical knowledge as it respected our solar group. For about a quarter of a century after Herschel's discovery the world rested upon it as a finality. The orbit of Uranus was thought to circumscribe the whole. But in the meantime, observations of this orbit led to the knowledge that it did not conform in all respects to astronomical and mathematical conditions. The orbit showed irregularities, disturbances, perturbations, that could not be accounted for when all of the known mathematical calculations were applied thereto. Uranus was seen to get out of his path. At times he would lag a little, and then at other times appear to be accelerated. Each year, when the earth would swing around on the Uranian side of the sun, the observations were renewed, but always with the result that the planet did not seem to conform perfectly to the conditions of his orbit. What could be the cause of this seeming disregard of mathematical laws?

Astronomers could not accept the supposition that there was any actual violation of the known conditions of gravitation. Certainly Uranus was following his orbit under the centripetal and centrifugal laws in the same manner as the other planets. There must, therefore, be some undiscovered disturbing cause. It had already been noted that in the case of the infra-Uranian planets they were swayed somewhat from their paths by the mutual influence of one upon the other. This was noticeable in particular in the movements of Jupiter, Saturn and Uranus. When Saturn, for instance, would be on the same side of the sun with Jupiter, it might be noted that the latter was drawn outward and the former inward from their prescribed curves. The perturbation was greatest when the planets were nearest, together. In like manner Uranus did obeisance to both his huge neighbors on the sun's side of his orbit. He, too, veered toward them as he passed, and they in turn recognized the courtesy by going out of their orbits as they passed. What, therefore, should be said of the outswinging movement of Uranus from his orbit in that part of his course where no disturbing influence was known to exist? Certainly something must be in that quarter of space to occasion the perturbation. What was it?

It would appear that the elder Bouvart, the French astronomer referred to above, was the first to suggest that the disturbances in the orbit of Uranus, throwing that planet from his pathway outward, might be and probably were to be explained by the presence in outer space of an unknown ultra-Uranian planet. Bouvart prepared tables to show the perturbations in question, and declared his opinion that they were caused by an unknown planet beyond. No observer, however, undertook to verify this suggestion or to disprove it. Nor did Bouvart go so far as to indicate the particular part of the heavens which should be explored in order to find the undiscovered world. His tables, however, do show from the perturbations of the orbits of Jupiter, Saturn and Uranus that the same are caused by the mutual influence of the planets upon one another.

It seems to have remained for Dr. T.J. Hussey, of Hayes, England, to suggest the actual discovery of the unknown planet by following the clew of the disturbance produced by its presence in a certain field of space. Dr. Hussey, in 1834, wrote to Sir George Biddell Airy, astronomer royal at Greenwich, suggesting that the perturbation of the orbit of Uranus might be used as the clew for the discovery of the planet beyond. But Sir George was one of those safe, conservative scholars who scorn to follow the suggestions of genius, preferring rather to explore only what is known already. He said in answer that he doubted if the irregularity in the Uranian orbit was in such a state of demonstration as to give any hope of the discovery of the disturbing cause. He doubted even that there was such irregularity in the Uranian orbit. He was of opinion that the observers had been mistaken in the alleged detection of perturbations. So the Greenwich observatory was not used on the line of exploration suggested by Hussey.

Three years afterward, and again in 1842, Sir George received letters from the younger Bouvart, again suggesting the possibility and probability of discovering the ultra-Uranian planet. These hints were strengthened by a letter from Bessel, of Koenigsberg. But Sir George B. Airy refused to be led in the direction of so great a possibility.

It was in 1844 that Professor James Challis, of the Cambridge observatory, appealed to Sir George for the privilege of using or examining the recorded observations made at Greenwich of the movements of Uranus, saying that he wished these tables for a young friend of his, Mr. John C. Adams, of Cambridge, who had but recently taken his degree in mathematics. Adams was at that date only twenty-five years of age. The royal astronomer granted the request, and for about a year Adams was engaged in making his calculations. These were completed, and in September of 1845, Challis informed Sir George Airy that according to the calculations of Adams the perturbations of Uranus were due to the influence of an unknown planet beyond.

The young mathematician indicated in his conclusions at what point in the heavens the ultra-Uranian world was then traveling, and where it might be found. But even these mathematical demonstrations did not suffice to influence Sir George in his opinions. He was an Englishman! He refused or neglected to take the necessary steps either to verify or to disprove the conclusions of Adams. He held in hand the mathematical computations of that genius from October of 1845 to June of the following year, when the astronomer Leverrier, of Paris, published to the world his own tables of computation, proving that the disturbances in the orbit of Uranus were due to the influence of a planet beyond, and indicating the place where it might be found. There was a close agreement between the point indicated by him and that already designated by Adams.

It seems that this French publication at last aroused Sir George Airy, who now admitted that the calculations of Adams might be correct in form and deduction. He accordingly sent word to Professor Challis to begin a search for the unknown orb. The latter did begin the work of exploration, and presently saw the planet. But he failed to recognize it! There it was; but the observer passed it over as a fixed star. As for Leverrier, he sent his calculations to Dr. Galle, of Berlin; and that great observer began his search. On the night of the twenty-third of September, 1846, he not only saw but caught the far-off world. There it was, disc and all; and a few additional observations confirmed the discovery.

Hereupon Sir George Airy broke out with a claim that the discovery belonged to Adams. He was able to show that Adams had anticipated Leverrier by a few months in his calculations; but the French scholars were able to carry the day by showing that Adams' work had been void of results. The world went with the French claim. Adams was left to enjoy the fame of merit among the learned classes, but the great public fixed upon Leverrier as the genius who did the work, and Dr. Galle as his eye.

Several remarkable things followed in the train. It was soon discovered that both Leverrier and Adams had been favored by chance in indicating the field of space where Uranus was found. They had both proceeded upon the principle expressed in Bode's Law. This law indicated the place of Neptune as 38.8 times the distance of the earth from the sun. A verification of the result showed that the new-found planet was actually only thirty times as far as the earth from the sun. In the case of all the other planets, their distances had been remarkably co-incident with the results reached by Bode's Law; but Uranus seemed to break that law, or at least to bend it to the point of breaking—a result which has never to this day been explained.

It chanced, however, that at the time when the predictions of Leverrier and Adams were sent, the one sent to Galle and the other to Challis, Uranus and the earth and the sun were in such relations that the departure of the orbit of Uranus from the place indicated by Bode's Law did not seriously displace the planet from the position which it should theoretically occupy. Thus, after a little searching, Challis found the new world, and knew it not; Galle found it and knew it, and tethered it to the planetary system, making it fast in the recorded knowledge of mankind.

While Daniel O'Connell, the greatest Irishman of the present century, despairing of the cause of his country, lay dying in Genoa, and while Zachary Taylor, at the head of a handful of American soldiers was cooping up the Mexican army in the old town of Monterey, a new world, 37,000 miles in diameter and seventeen times as great in mass as the little world on which we dwell, was found slowly and sublimely making its way around the well nigh inconceivable periphery of the solar system!

EVOLUTION OF THE TELESCOPE.

The development of telescopic power within the present century is one of the most striking examples of intellectual progress and mastery in the history of mankind. The first day of the century found us, not, indeed, where we were left by Galileo and Copernicus in the knowledge of the skies and in our ability to penetrate their depths, but it did find us advanced by only moderate stages from the sky-lore of the past.

The after half of the eighteenth century presents a history of astronomical investigation and deduction which confirmed and amplified the preceding knowledge; but that period did not greatly widen the field of observation. If the sphere of space which had been explored on the first day of January, 1801, could be compared with that which is now known and explored by our astronomers, the one sphere would be to the other even as an apple to the earth.

It is difficult to apprehend the tremendous strides which we have made in the production of telescopes and the consequent increase in our sweep of the heavens. It was only in 1774 that the elder Herschel began his work in the construction of reflecting telescopes. These he gradually increased in size, until near the close of the century, when he produced an instrument which magnified two hundred and twenty-seven diameters. In the course of his career he built two hundred telescopes, having a seven-foot focus; 150 of ten feet and about eighty of twenty feet each.

With these instruments the astronomical work in the last quarter of the eighteenth century was mostly performed. The study of the heavens at this epoch began to reach out from the planetary system to the fixed stars. In this work Herschel led the way. The planet Uranus at first bore the name of Herschel, from its discoverer. Sir John Herschel, son of Sir William, was born in 1792. All of his astronomical work was accomplished in our century. Following the line of his father, he used the reflecting telescope, and it was an instrument of this kind that he took to his observatory at the Cape of Good Hope. Lord Rosse was born in the year 1800. Under his auspices the reflecting telescope reached its maximum of power and usefulness. His great reflector, built in his own grounds at Birr Castle, Ireland, was finished in 1844. This instrument was the marvel of that epoch. It had a focal distance of fifty-three feet, and an aperture of six feet. With this great telescope its master reached out into the region of the nebulae, and began the real work of exploring the sidereal heavens.

In the reflecting telescope, however, there are necessary limitations. Before the middle of this century, it was known that the future of astronomy depended upon the refracting lens, and not on the speculum. The latter, in the hands of the two Herschels and Rosse, had reached its utmost limits—as is shown by the fact that to this day the Rosse telescope is the largest of its kind in the world.

Meanwhile the production of refracting telescopes made but slow progress. As late as 1836 the largest instrument of this kind in the world was the eleven-inch telescope of the observatory at Munich. The next in importance was a nine and a half-inch instrument at Dorpat, in Russia. This was the telescope through which the astronomer Struve made his earlier studies and discoveries. His field of observation was for the most part the fixed and double stars. At this time the largest instrument in the United States was the five-inch refractor of Yale College. Soon afterward, namely, in 1840, the observatory at Philadelphia was supplied with a six-inch refracting telescope from Munich.

German makers were now in the lead, and it was not long until a Munich instrument having a lens of eleven inches diameter was imported for the Mitchell Observatory on Mount Adams, overlooking Cincinnati. About the same time a similar instrument of nine and a half inches aperture was imported for the National Observatory at Washington. To this period also belongs the construction of the Cambridge Observatory, with its fifteen-inch refracting telescope. Another of the same size was produced for the Royal Observatory at Pulkova, Russia. This was in 1839; and that instrument and the telescope at Cambridge were then the largest of their kind in the world.

The history of the telescope-making in America properly begins with Alvan Clark, Sr., of Cambridgeport, Massachusetts. It was in 1846 that he produced his first telescope. Of this he made the lens, and such was the excellence of his work that he soon became famous, to the degree that the importation of foreign telescopes virtually ceased in the United States. Nor was it long until foreign orders began to arrive for the refracting lenses of Alvan Clark & Sons. The fame of this firm went out through all the world, and by the beginning of the last quarter of the century the Clark instruments were regarded as the finest ever produced.

We cannot here refer to more than a few of the principal products of Clark & Sons. Gradually they extended the width of their lenses, gaining with each increase of diameter a rapidly increasing power of penetration. At last they produced for the Royal Observatory of Pulkova a twenty-seven-inch objective, which was, down to the early eighties, the master work of its kind in the world. It was in the grinding and polishing of their lenses that the Clarks surpassed all men. In the production of the glass castings for the lenses, the French have remained the masters. At the glass foundry of Mantois, of Paris, the finest and largest discs ever produced in the world are cast. But after the castings are made they are sent to America, to be made into those wonderful objectives which constitute the glory of the apparatus upon which the New Astronomy relies for its achievements.

It was in the year 1887 that the Lick Observatory on Mount Hamilton, of the Coast Range in Southern California, was completed. The lens of this instrument is thirty-six inches in diameter. Nor will the reader without reflection readily realize the enormous stride which was made in telescopy when the makers advanced from the twenty-seven-inch to the thirty-six-inch objective. Lenses are to each other in their power of collecting light and penetrating apace as the squares of their diameters, and in the extent of space explored as the cubes of their diameters.

The objective of the Pulkova instrument is to that of the Lick Observatory as 3 is to 4. The squares are as 9 is to 16, and the cubes are as 27 is to 64. This signifies that the depth of space penetrated by the Lick instrument is to that of its predecessor as 16 is to 9, and that the astronomical sphere resolved by the former is to the sphere resolved by the latter as 64 is to 27—that is, the Lick instrument at one bound revealed a universe more than twice as great as all that was known before! The human mind at this one bound found opportunity to explore and to know a sidereal sphere more than twice as extensive as had ever been previously penetrated by the gaze of man.

Nor is this all. The ambition of American astronomers and American philanthropists has not been content with even the prodigious achievement of the Lick telescope. In recent years an observatory has been projected in connection with the University of Chicago, which has come almost to completion, and which will bear by far the largest telescopic instrument in the world. The site selected for the observatory is seventy-five miles from the city, on the northern shore of Lake Geneva. There is a high ground here, rising sufficiently into a clear atmosphere, nearly two hundred feet above the level of the lake.

The observatory and the great telescope which constitutes its central fact are to bear the name of the donor, Mr. Yerkes, of Chicago, who has contributed the means for rearing this magnificent adjunct of the University. The enterprise contemplated from the first the construction of the most powerful telescope ever known. The manufacture of the objective, upon which everything depends, was assigned to Mr. Alvan G. Clark, of Cambridgeport, Massachusetts, who is the only living representative of the old firm of Alvan Clark & Sons.

Alvan G. Clark has inherited much of the genius of his father, though it is said that in making the lens of the Lick Observatory the father had to be called from his retirement to superintend personally some of the more delicate parts of the finishing before which task his sons had quailed. But the younger Clark readily agreed to make the Geneva lens, under the order of Yerkes, and to produce a perfect objective forty inches in diameter! This important work, so critical—almost impossible—has been successfully accomplished.

The making and the mounting of the Yerkes telescope have been assigned to Warner & Swasey, of Cleveland, Ohio, who are recognized as the best telescope builders in America. The great observatory is approaching completion. The instrument itself has been finished, examined, accepted by a committee of experts, and declared to fulfill all of the conditions of the agreement between the founder and the makers. Thus, just north of the boundary line between Illinois and Wisconsin, the greatest telescope of the world has been lifted to its dome and pointed to the heavens.

The formal opening of the observatory is promised for the summer months of 1896. The human mind by this agency has made another stride into the depths of infinite space. Another universe is presently to be penetrated and revealed. A hollow sphere of space outside of the sphere already known is to be added to the already unthinkable universe which we inhabit. Every part of the immense observatory and of the telescope is of American production, with the single important exception of the cast glass disc from which the two principal lenses, the one double convex and the other plano-concave, are produced. These were cast by Mantois, of Paris, whose superiority to the American manufacturers of optical glass is recognized.

It is estimated that the Yerkes telescope will gather three times as much light as the twenty-three-inch instrument of the Princeton Observatory. It surpasses in the same respect the twenty-six-inch telescope at the National Observatory in the ratio of two and three-eighths to one. It is in the same particular one and four-fifth times as powerful as the instrument of the Royal Russian Observatory at Pulkova; and it surpasses the great Lick instrument by twenty-three per cent.

What the practical results of the study of the skies through this monster instrument will be none may predict. Theoretically it is capable of bringing the moon to an apparent distance of sixty miles. Under favorable circumstances the observer will be able to note the characteristics of the lunar landscape with more distinctness than a good natural eye can discern the outlines and character of the summit of Pike's Peak from Denver. The instrument has sufficient power to reveal on the lunar disc any object five hundred feet square. Such a thing as a village or even a great single building would be plainly discernible.

Professor C.A. Young has recently pointed out the fact that the Yerkes telescope, if it meets expectation, will show on the moon's surface with much distinctness any such object as the Capitol at Washington. It is complained that in America wealth is selfish and self-centred; that the millionaire cares only for himself and the increase of his already exorbitant estate. The ambition of such men as Lick of San Jose and Yerkes of Chicago, seems to ameliorate the severe judgment of mankind respecting the holders of the wealth of the world, and even to transform them from their popular character of enemies and misers into philanthropists and benefactors.

THE NEW ASTRONOMY.

This century has been conspicuous above all centuries for new things. Man has grown into new relations with both nature and thought. He has interpreted nearly everything into new phraseology and new forms of belief. The scientific world has been revolutionized. Nothing remains in its old expression. Chemistry has been phrased anew. The laws of heat, light and electricity have been either revised or discovered wholly out of the unknown. The concept of universal nature has been so translated and reborn that a philosopher coming again out of the eighteenth century would fail to understand the thought and speech of even the common man.

In no other particular has the change been more marked than with respect to the general theory of the planetary and stellar worlds. A New Astronomy has come and taken the place of the old. The very rudiments of the science have to be learned as it were in a new language, and under the laws and theories of a new philosophy. Nature is considered from other points of view, and the general course of nature is conceived in a manner wholly different from the beliefs of the past.

In a preceding study we have explained the general notion of planetary formation according to the views of the last century. The New Astronomy presents another theory. Beginning with virtually the same notion of the original condition of our world and sun cluster, the new view departs widely as to the processes by which the planets were formed, and extends much further with respect to the first condition and ultimate destiny of our earth. The New Astronomy, like the old, begins with a nebular hypothesis. It imagines the matter now composing the solar group to have been originally dispersed through the space occupied by our system, and to have been in a state of attenuation under the influence of high heat. Out of this condition of diffusion the solar system has been evolved. The idea is a creation by the process of evolution; it is evolution applied to the planets. More particularly, the hypothesis is that the worlds of our planetary system grew into their present state through a series of stages and slow developments extending over aeons of time.

This is the notion of world-growth substituted for that of world-production en masse by the action of centrifugal force and discharge from the solar equator. The New Astronomy proposes in this respect two points of remarkable difference from the view formerly entertained. The first relates to the fixing of the planetary orbits, and the other to the process by which the planets have reached their present mass and character. The old theory would place a given world in its pathway around the sun by a spiral flinging off from the central body, and would allow that the aggregate mass of the globe so produced was fixed once for all at the beginning. The new theory supposes that a given planetary orbit, as for instance that of the earth, was marked in the nebula of our system before the system existed—that is, that our orbit had its place in the beginning just as it has now; that the orbit was not determined by solar revolution and centrifugal action, but that it was mathematically existent in the nebular sheet out of which the solar system was produced.

Other lines existed in the same sheet of matter. One of these lines or pathways was destined for the orbit of Mercury; another for the orbit of Venus. One was for the pathway of Mars; another for the belt of the asteroids; another for Jupiter; another for Saturn, and still two others, far off on the rim, for Uranus and Neptune. The theory continues that such are the laws of matter that these orbital lines must exist in a disc of fire mist such as that out of which our solar universe has been produced. The New Astronomy holds firmly to the notion that the orbits of the planets are as much a part of the system as the planets themselves, and that both orbit and planet exist in virtue of the deep-down mathematical formulae on which the whole material universe is constructed.

Secondly, the New Astronomy differs from the old by a whole horizon in the notion of world-production. About the middle of the century the theory began to be advanced that the worlds grew by accretion of matter; that they grew in the very paths which they now occupy; that they began to be with a small aggregation of matter rushing together in the line or orbit which the coming planet was to pursue. The planetary matter was already revolving in this orbit and in the surrounding spaces. It was already floating along in a nebulous superheated form capable of condensation by the loss of heat, but in particular capable of growth and development by the fall of surrounding matter upon the forming globe. We must remember that in the primordial state the elements of a planet, as for instance our earth, were mixed together and held in a state of tenuity ranging all the way from solid to highly vaporized forms, and that these elements subsequently and by slow adjustment got themselves into something approximating their present state.

The New Astronomy contemplates a period when each of the planets was a germinal nucleus of matter around which other matter was precipitated, thus producing a kind of world-growth or accretion. Thus, for instance, our earth may be considered at a time when its entire mass would not, according to our measurement, have weighed a hundred pounds! It consisted of a nucleus around which extended, through a great space, a mass of attenuated planetary matter. The nucleus once formed the matter adjacent would precipitate itself by gravitation upon the surface of the incipient world. The precipitation would proceed as heat was given off into space. It was virtually a process of condensation; but the result appeared like growth.

To the senses a planet would seem to be forming itself by accretion; and so, indeed, in one sense it was; for the mass constantly increased. As the nucleus sped on in the prescribed pathway, it drew to itself the surrounding matter, leaving behind it an open channel. The orbit was thus cleared of the matter, which was at first merely nebular, and afterward both nebular and fragmentary. The growth at the first was rapid. With each revolution a larger band of space was swept clear of its material. With each passage of the forming globe the matter from the adjacent spaces would rush down upon its surface, and as the mass of the planet increased the process would be stimulated; for gravitation is proportional to the mass. At length a great tubular space would be formed, having the orbit of the earth for its centre, and in this space the matter was all swept up. The tube enlarged with each revolution, until an open way was cut through the nebular disc, and then from the one side toward Venus and from the other side toward Mars the space widened and widened, until the globe took approximately by growth its present mass of matter. The nebulous material was drawn out of the inter-planetary space where it was floating, and the shower of star dust on the surface of the earth became thinner and less frequent. In some parts of the orbit bands or patches of this material existed, and the earth in passing through such hands drew down upon itself the flying fragments of such matter as it continues to do to the present day. What are meteoric displays but the residue of the primordial showers by which the world was formed?

All this work, according to the New Astronomy, took place while our globe was still in a superheated condition. The mass of it had not yet settled into permanent form. The water had not yet become water; it was steam. The metals had not yet become metals; they were rather the vapor of metals. At length they were the liquids of metals, and at last the solids. So, also, the rocks were transformed from the vaporous through the liquid into the solid form—all this while the globe was in process of condensation. It grew smaller in mathematical measurements at the same time that it grew heavier by the accretion of matter. At last the surface was formed, and in time that surface was sufficiently cooled to allow the vapors around it to condense into seas and oceans and rivers. There were ages of superficial softness—vast epochs of mud—in which the living beings that had now appeared wallowed and sprawled.

We cannot trace the world-growth through all its stages but can only indicate them as it were in a sketch. The more important thing to be noted is the relation of our planet in process of formation to the great fact called life. Here the New Astronomy comes in again to indicate, theoretically at least, the philosophy of planetary evolution. Each planet seems to pass through a vast almost inconceivable period in which its condition renders life on its surface or in its structure impossible. Heat is at once the favoring and the prohibitory condition of life. Without heat life cannot exist; with too great heat life cannot exist. With an intermediate and moderate degree of heat many forms of animate and inanimate existence may be promoted.

These facts tend to show that every world has in its career an intermediate period which may be called the epoch of life. Before the epoch of life begins there is in the given world no such form of existence. There is matter only. Then at a certain stage the epoch of life begins. The epoch of life continues for a vast indeterminate period. No doubt in some of the worlds an epoch of life has been provided ten times as great, possibly a thousand times as great, as in other planets. After the epoch of life begins only certain forms of existence are for a while possible. Then other and higher forms succeed them, and then still higher. Thus the process continues until the highest—that is, the conscious and moral form of existence becomes possible, and that highest, that conscious, that moral form of being is ourselves.

This is not all. The epoch of life seems to be terminable at the further extreme by a planetary condition in which life is no longer possible. The New Astronomy indicates the coming of a condition in all the worlds when life must disappear therefrom and be succeeded by a lifeless state of worldhood. This may be called the epoch of death—that is, of world-death. It seems to be almost established by investigation and right reason that worlds die. They reach a stage in which they are lifeless. They cool down until the waters and gases that are on the surface and above the surface recede more and more into the surface and then into the interior, until they wholly disappear. Cold takes the throne of nature. Universal aridity supervenes, and all forms of vegetable and animate existence go away to return no more. They dwindle and expire. The conditions that have come are virtually conditions of death.

Whether the universe contains within itself, under the Almighty supervision, certain arrangements and laws by which the dead world can be again cast into the crucible and regenerated by liberation through the action of heat into its primordial state once more and go the same tremendous round of planet life, we know not. The conception of such a process, even the dream or vague possibility of it, is sufficiently sublime and fills the mind with a great delight in contemplating the possible cycles through which the material universe is passing.

At any rate, we may contemplate the three great stages of world-life with which we are already acquainted—that is, the birth stage, the epoch of life and the epoch of death. There is a birth, as also a life and a death of planets. Richard A. Proctor, of great fame, on one of his last tours of instructive lecturing among our people, had for his subject the "Birth and Death of Worlds." The theme was not dissimilar to that which has been here presented in outline. The birth, the life and the death of worlds! Such is a summary of that almost infinite history through which our earth is passing—the history which the globe is making on its way from its nebulous to its final state.

Such, if we mistake not, is the story epitomized—the life history in brief—of all the worlds of space. They have each in its order and kind, an epoch of the beginning, then an epoch of growth and evolution, then an epoch of life—toward which all the preceding planet history seems to tend—and finally an epoch of death which must, in the course of infinite time, swallow from sight each planet in its turn, or at least reduce each from that condition in which it is an arena of animated existence into that state where it is a frozen and desert clod, still following its wonted path through space, still shining with a cold but cheerful face, like our moon, upon the silent abysses of the universe.

WHAT THE WORLDS ARE MADE OF.

The present century was already well advanced before there was any solid ground for the belief that the worlds of space are made of analogous or identical materials. It was only with the invention of the spectroscope and the analysis of light that the material identity of universal nature was proved by methods which could not be doubted. The proof came by the spectroscope.

This little instrument, though not famed as is its lordly kinsman the telescope, or even regarded with the popular favor of the microscope, has nevertheless carried us as far, and, we were about to say, taught us as much, as either of the others. It is one thing to see the worlds afar, to note them visibly, to describe their outlines, to measure their mass and determine their motions. It is another thing to know their constitution, the substances of which they are composed, the material condition in which they exist and the state of their progress in worldhood. The latter work is the task of the spectroscope; and right well has it accomplished its mission.

The solar spectrum has been known from the earliest ages. When the sun-bow was set on the background of cloud over the diluvial floods, the living beings of that age saw a spectrum—the glorious spectrum of rain and shine. Wherever the rays of light have been diffracted under given conditions by the agency of water drops, prism of glass or other such transparent medium, and the ray has fallen on a suitable screen, lo! there has been the beautiful spectrum of light.

The artificial, intentional production of this phenomenon of light has long been known, and both novice and scientist have tested and improved the methods of getting given results. The child's soap-bubble shows it in miniature splendor. The pressure of one wet pane of glass against another reveals it. The breakage of nearly all crystalline substances brings something of the colored effects of light; but the triangular prism of glass, suitably prepared, best of all displays the analysis of the sun-beam into the colors of which it is composed.

The spectroscope is the improved instrument by which the diffracting prism is best employed in producing the spectrum. The reader no doubt has seen a spectroscope, and has observed its beautiful work. In this place we pass, however, from the instrument of production to the spectrum, or analyzed result, as the same is shown on a screen. There the pencil of white light falling from the sun is spread out in the manner of a fan, presenting on the screen the following arrangement of colors: red, orange, yellow, green, blue, indigo and violet.

This order of colors, beginning with red, starts from that side of the spectrum which is least bent from the right line in which the white ray was traveling. The violet rays are most bent. The red rays are thus said to be at the lower edge of the prism, and the violet rays at the upper edge. Below the red rays there are now known to be certain invisible rays, as of heat and electricity. Above the violet rays are other invisible rays, such as the actinic influence. In fact, the spectrum, beginning invisibly, passes by way of the visible rays to the invisible again. Nor can any scientist in the world say at the present time how much is really included in the spread-out fan of analyzed sunlight.

Thus much scientists have known for some time. Certain other facts, however, in connection with the solar spectrum are of greater importance than are its more sensible phenomena. It was in the year 1802 that the English physicist, William Hyde Wollaston, discovered that the solar spectrum is crossed with a large number of dark lines. He it was who first mapped these lines and showed their relative position. He it was also who discovered the existence of invisible rays above the violet. Twelve years afterward Joseph von Fraunhofer, of Munich, a German optician of remarkable talents, took up the examination of the Wollaston lines, and by his success in the investigation succeeded in attracting the attention of the world.

This second stage in scientific discovery is generally that which receives the plaudits of mankind. It was so in the case of Fraunhofer. His name was given to the dark lines in the solar spectrum, and the nomenclature is retained to the present time. They are called the "Fraunhofer lines." It was soon discovered that the lines in question as produced in the spectrum are due to the presence of gases in the producing flame or source of light. It was also discovered that each substance in, the process of combustion yields its own line or set of lines. These appear at regular intervals in the spectrum. When several substances are consumed at the same time; the lines of each appear in the spectrum. The result is a system of lines, becoming more and more complex as the number of elements in the consuming materials is increased.

The lines in a narrow spectrum fall so closely together that they cannot be critically examined; but when more than one prism is used and the spectrum by this means spread out widely, the dark lines are made to stand apart. They are then found to number many thousands. We speak now of the analysis of sunlight. Experimentation was naturally turned, however, to terrestrial gases and solids on fire, and it was found that these also produce like series of dark lines in the spectrum. Or when the substances are consumed as solids, then the spectral effects are reversed, and the lines that would be dark lines in the luminous colored spectrum become themselves luminous lines on the screen; but these lines hold the same relation in mathematical measurement, etc., as do the dark lines in the colored spectrum.

Skillful spectroscopists succeeded in detecting and delineating the lines that were peculiar to each substance. By burning such substances in flame, they were able to produce the lines, and thus verify results. By such experimentation the various lines present in the solar spectrum were separated from the complex result, and the conclusion was reached that in the burning surface of the sun certain substances well known on earth are present; for the lines of those substances are shown in the spectrum.

No other known substances would produce the given lines. The conclusion is overwhelming that the substances in question are present in a gaseous condition in the burning flames of the sun. Down to the present time the examination of the sun's atmosphere has shown the existence therein of thirty-six known elements. These include sodium, potassium, calcium, magnesium, iron, copper, cobalt, silver, lead, tin, zinc, titanium, aluminium, chromium, silicon, carbon, hydrogen and several others.

It was thus established that in the constitution of the sun many of the well-known elements of the earth are present. There could be no mistake about it. An identity of lines in such a case proved beyond dispute the identity of the substance from which such lines are derived. The existence of common materials in the central sphere of our system and in one of his attendant orbs—our own—could not be doubted. The discovery of such a fact led by immediate inference to the expectation and belief that the other planets were of like constitution, or in a word, that the whole solar system was essentially composed of identical materials.

As the inquiry proceeded, it was found, however, that the agreement in the lines of different spectra was not perfect. Lines would be found in the spectrum derived from one source that were not present in a spectrum derived from another source. Materials were therefore suggested as present in one body that were not present in another. Still further inquiry confirmed the belief that while there is a general uniformity in the materials of our solar system, the identity is not complete in all. An element is found in one part that may not be found in another. Hydrogen shows its line in the spectrum derived from every heavenly body that has been investigated; but not so aluminium or cobalt. Sodium, that is, the salt-producing base, is discovered everywhere, but not nickel or arsenium. The result, in a word, shows a certain variability in the distribution of solar and planetary matter, but a general identity of most.

The question next presented itself as to the character of the luminous bodies beyond the solar system. Of what kind of matter are the comets? Of what kind are the fixed stars? Of what kind are the nebulae? Could the spectroscope be used in determining also the character of the materials in those orbs that we see shining in the depths of space? The instrument was turned in answer to these questions to the sidereal heavens. No other branch of science has been prosecuted in the after half of this century with more zeal and success than has the spectroscopic analysis of the fixed stars. These are known by the telescope to have the character of suns. The most general fact of the visible heavens is the plentiful distribution of suns. They sparkle everywhere as the so-called fixed stars. To them the telescope has been virtually turned in vain. We say in vain because no single fixed star has, we believe, ever been made by aid of the telescope to show a disc.

On turning the telescope to a fixed star, its brightness, its brilliancy, increases according to the power of the instrument. Coming into the field of one of these great suns of space, the telescope shows a miraculous dawn spreading and blazing into a glorious sunrise, and a sun itself flaming like infinite majesty on the sight; but there is no disc—nothing but a blaze of glory. Thus in a sense the telescope has worked in vain on the visible heavens. But not so the spectroscope. The latter has done its glorious work. Turning to a given fixed star, it shows that the tremendous combustion going on therein is virtually the same as that in our own sun. There, too, is flaming hydrogen, and there is carbon and oxygen and iron and sodium and potassium and many other of the leading elements of what we thus know to be universal nature. The suns are all akin; they are cousins-german. They are of the same family—they and their progeny. They were born of the same universal fact. They are of the same Father! They are builded on the same plan, and they have a common destiny. Aye, more, the nebulae that float far off, swanlike, in the infinitudes, are of the same family. The nebulae may be regarded as the mothers of universes. It is out of their bosoms that the life and substance of all suns and worlds are drawn! And these, too, are composed of the common matter of universal nature. It is the same matter that we eat and drink. It is the same that we breathe. It is the same that we see aflame in our lamps and grates. It is the same that is borne to us in the fragrance of flowers planted on the graves of our dead. It is the common hydrogen and carbon and oxygen and nitrogen of our earth and its envelope. It is the soda of our bread; the potassa of our ashes; the phosphorus of our bones and brain! Indeed, the universe throughout is of one form and one substance, and there is one Father over all. Sooner or later the concepts of science and of religion will come together; and the small agitations and conflicts of human thought and hope will pass away in a sublime unity of human faith.



Progress in Discovery and Invention.

THE FIRST STEAMBOAT AND ITS MAKER.

On the night of the second of July, 1798, a man at a little old tavern in Bardstown, Kentucky, committed suicide. If ever there was a justifiable case of self-destruction, it was this. No human being is permitted to take his own life, but there are instances in which the burden of existence becomes well-nigh intolerable. In the case just mentioned, the man went to his room and took poison. He was a little more than fifty-five years of age, but was prematurely old from the hardships to which he had been subjected. He had not a penny. His clothes were worn out. A dirty shirt, made of coarse materials, was seen through the rags of his coat. His face was haggard, wrinkled, written all over with despair, the lines of which not even the goodness of death was able to dispel.

The man had seen the Old World and the New, but had never seen happiness. He had followed his forlorn destiny from his native town of South Windsor, Connecticut, where he was born on the twenty-first of January, 1743. His body was buried in the graveyard of Bardstown, then a frontier village. No one contributed a stone to mark the grave. Nor has that duty ever been performed. The spot became undistinguishable as time went by, and we believe that there is not a man in the world who can point out the place where the body of John Fitch was buried. The grave of the inventor of the steamboat, hidden away, more obscurely than that of Jean Valjean in the cemetery of Pere-Lachaise, will keep the heroic bones to the last day, when all sepulchres of earth shall set free their occupants and the great sea's wash cast up its dead!

The life of John Fitch is, we are confident, the saddest chapter in human biography. The soul of the man seems from the first to have gone forth darkly voyaging, like Poe's raven,

—"Whom unmerciful disaster Followed fast and followed faster, till his song one burden bore, Till the dirges of his hope the melancholy burden bore,— Of 'Nevermore—nevermore!'"

Certainly it was nevermore with him. His early years were made miserable by ill-treatment and abuse. His father, a close-fisted farmer and an elder brother of the same character, converted the boyhood life of John Fitch into a long day of grief and humiliation and a long night of gloomy dreams. Then at length came an ill-advised and ill-starred marriage, which broke under him and left him to wander forth in desolation.

He went first from Connecticut to Trenton, N.J., and there in his twenty-sixth year began to ply the humble trade of watch-maker. Then he became a gunsmith, making arms for the patriots of Seventy-six, until what time the British destroyed his shop. Then he was a soldier. He suffered the horrors of Valley Forge; and before the conclusion of the peace he went abroad in the country as a tinker of clocks and watches. His peculiarity of manner and his mendicant character made him the butt of neighborhoods. In 1780 he was sent as a deputy-surveyor from Virginia into Kentucky, and after nearly two years spent in the country between the Kentucky and Green rivers, he went back to Philadelphia. On a second journey to the West his party was assailed by the Indians at the mouth of the Muskingum, and most were killed. But he was taken captive, and remained with the red men for nearly a year. But he escaped at last, and got back to a Pennsylvania settlement.

Fitch next lived for a year or two in and did approve of the invention, he withheld any public endorsement of it.

Month after month went by, and no helping hand was extended. Fitch got the reputation of being a crazy man. To save himself from starvation, he made a map of the territory Northwest of the river Ohio, doing the work of the engraving with his own hand, and printing the impressions on a cider-press! Early in 1787 he succeeded in the formation of a small company; and this company supplied, or agreed to supply, the means requisite for the building of a steamboat sixty tons' burden. The inventor also secured patents from New Jersey, New York, Pennsylvania, Delaware and Virginia, granting to him the exclusive right to use the waters of those States for fourteen years for purposes of steam navigation.

Hereupon a boat was built and launched in the Delaware. It was forty-five feet in length and twelve feet beam. There were six oars, or paddles on each side. The engine had a twelve-inch cylinder, and the route of service contemplated was between Philadelphia and Burlington. The inventor agreed that his boat should make a rate of eight miles an hour, and the charge for passage should be a shilling.

He who might have been in Philadelphia on the twenty-second of August, 1787, and did approve of the invention, he withheld any public endorsement of it.

Month after month went by, and no helping hand was extended. Fitch got the reputation of being a crazy man. To save himself from starvation, he made a map of the territory Northwest of the river Ohio, doing the work of the engraving with his own hand, and printing the impressions on a cider-press! Early in 1787 he succeeded in the formation of a small company; and this company supplied, or agreed to supply, the means requisite for the building of a steamboat sixty tons' burden. The inventor also secured patents from New Jersey, New York, Pennsylvania, Delaware and Virginia, granting to him the exclusive right to use the waters of those States for fourteen years for purposes of steam navigation.

Hereupon a boat was built and launched in the Delaware. It was forty-five feet in length and twelve feet beam. There were six oars, or paddles on each side. The engine had a twelve-inch cylinder, and the route of service contemplated was between Philadelphia and Burlington. The inventor agreed that his boat should make a rate of eight miles an hour, and the charge for passage should be a shilling.

He who might have been in Philadelphia on the twenty-second of August, 1787, would have witnessed a memorable thing. The Convention for the framing of a Constitution for the United States of America was in session. For some time the body had been wearing itself into exhaustion over this question and that question which seemed impossible of solution. On the day referred to, the convention, on invitation, adjourned, and the members, including the Father of his country, who was President, went down to the water's edge to see a sight. There Fitch's steamboat was to make its trial trip, and there the trial trip was made, with entire success.

They who were building the ship of state could but applaud the performance of the little steamer that sped away toward Burlington. But the applause was of that kind which the wise and conservative folk always give to the astonishing thing done by genius. The wise and conservative folk look on and smile and praise, but do not commit themselves. Most dangerous it is for a politician to commit himself to a beneficial enterprise; for the people might oppose it!

The facts here referred to are fully attested in indisputable records. There are files of Philadelphia newspapers which contain accounts of Fitch's boat. A line of travel and traffic was established between Philadelphia and Burlington. There was also a steam ferryboat on the Delaware. A second boat, called the "Perseverance," was designed for the waters of the Mississippi; but this craft was wrecked by a storm, and then the patent under which the Ohio river and its confluent waters were granted, expired, and the enterprise had to be abandoned. On the fourth of September, 1790, the following advertisement of the "Pennsylvania Packet" appeared in a Philadelphia paper:

"The Steamboat will set out this morning, at eleven o'clock, for Messrs. Gray's Garden, at a quarter of a dollar for each passenger thither. It will afterwards ply between Gray's and middle ferry, at 11d each passenger. To-morrow morning, Sunday, it will set off for Burlington at eight o'clock, to return in the afternoon."

This Pennsylvania Packet continued to ply the Delaware for about three years. The mechanical construction of the boat was not perfect; and shortly after the date to which the above advertisement refers the little steamer was ruined by an accident. The story is told by Thomas P. Cope, in the seventh volume of Hazard's Register. He says: "I often witnessed the performance of the boat in 1788-89-90. It was propelled by paddles in the stern, and was constantly getting out of order. I saw it when it was returning from a trip to Burlington, from whence it was said to have arrived in little more than two hours. When coming to off Kensington, some part of the machinery broke, and I never saw it in motion afterward. I believe it was his [Fitch's] last effort. He had, up to that period, been patronized by a few stout-hearted individuals, who had subscribed a small capital, in shares, I think, of six pounds Pennsylvania currency; but this last disaster so staggered their faith and unstrung their nerves, that they never again had the hardihood to make other contributions. Indeed, they already rendered themselves the subjects of ridicule and derision for their temerity and presumption in giving countenance to this wild projector and visionary madman. The company thereupon gave up the ghost, the boat went to pieces, and Fitch became bankrupt and brokenhearted. Often have I seen him stalking about like a troubled spectre, with downcast eye and lowering countenance, his coarse, soiled linen peeping through the elbows of a tattered garment."

With the breakdown of his enterprise, John Fitch went forth penniless into the world. The patent which he received from the United States in 1791, was of small use. How little can a pauper avail himself of a privilege! Presently his patent was burned up, and a year afterward, namely in 1793, he went to France. There he would—according to his dream—find patronage and fame; but on his arrival in the French capital he found the Reign of Terror just beginning its work. It was not likely that the Revolutionary Tribunal would give heed to an American dreamer and his proposition to propel by steam a boat on the Seine. However, Fitch went to L'Orient and deposited the plans and specifications of his invention with the American consul. Then he departed for London.

In the following year a man by the name of Robert Fulton took up his residence with the family of Joel Barlow, in Paris. There he devoted himself to his art, which was that of a painter. Whoever had passed by the corner of Second and Walnut streets, in Philadelphia while Fitch was constructing his first steamboat, might have seen a little sign carrying these words: "Robert Fulton, Miniature Painter." But now, after nearly ten years, he was painting a panorama in France. While thus engaged, the American consul at L'Orient showed to Fulton Fitch's drawings and specifications for a steamboat. More than this, he loaned them to him, and he kept them for several months.

A thrifty man was Robert Fulton; discerning, prudent and capable! Meanwhile, poor Fitch, in 1794, returned to America. On the ship he worked his way as one of the hands. Getting again to New York he determined to make his way into that region of country where he had been a surveyor in 1780. He accordingly set out from New York for Kentucky, but not till he had invented, or rather constructed, a steamboat, which was driven by a screw propeller! This, in 1796, he launched on the Collect Pond, in what is now Lower New York. The boat was successful as an experiment; but the people who saw it looked upon its operation and upon the thing itself as the product of a crazy man's brain.

He who now passes along the streets of the metropolis will come upon a vendor of toys, who will drop upon the pavement an artificial miniature tortoise, rabbit, rat, or what not, well wound up; and the creature will begin to crawl, or dance, or jump, or run, according to its nature. The busy, conservative man smiles a superior smile, and passes on. It was in such mood that the old New Yorker of 1796 witnessed the going of Fitch's little screw propeller on the Pond. It was a toy of the water.

After this the poor spectre left for the West. The spring of 1798 found him at Bardstown, with the model of a little three-foot steamboat, which he launched on a neighboring stream. There he still told his neighbors that the time would come when all rivers and seas would be thus navigated. But they heeded not. The spectre became more spectral. At last, about the beginning of July, in the year just named, he gave up the battle, crept into his room at the little old tavern, took his poison, and fell into the final sleep.

We shall conclude this sketch of him and his work with one of his own sorrowful prophecies: "The day will come," said he in a letter, "when some more powerful man will get fame and riches from my invention; but nobody will believe that poor John Fitch can do anything worthy of attention." Than this there is, we think, hardly a more pathetic passage in the history of the sons of men!

TELEGRAPHING BEFORE MORSE.

There is a great fallacy in the judgment of mankind about the method of the coming of new things. People imagine that new things come all at once, but they do not. Nothing comes all at once; that is, no thing. In the facts of the natural world, that is, among visible phenomena of the landscape, the judgment of people is soon corrected. There it is seen that everything grows. The growth is sometimes slow and sometimes rapid; but everything comes gradually out of its antecedents. No tree or shrub or flower ever came immediately. No living creature on the face of the earth begins by instantaneous apparition. The chick gets out of its shell presently, but even that takes time. Every living thing comes on by degrees from a germ, and the germ is generally microscopic! Nature is, indeed, a marvel!

The facts of human life, whether tangible or intangible, have this same method. For example, there has not been an invention known to mankind that has not come on in the manner of growth. The antecedents of it work on and on in a tentative way, producing first this trial result and then that, always approaching the true thing; and even the true thing when it comes is not perfect. It is made perfect afterward. There was never an instantaneous invention, and there was never a complete one! It is doubtful whether there is at the present time a single complete, that is perfect or perfected, invention in the world. They are all of partial development. They show in their history their origin, their growth, their gradual approximation to the perfect form.

All of the marvelous contrivances which, fill the arena of our civilization, making it first vital and then vocal, have come by the evolutionary process. Every one of them has a history which is more and more obscure as we follow it backward to its source. In every case, however, there comes a time when a given discovery, manifesting itself in a given invention, takes a sort of spectacular character, and it is then rather suddenly revealed to the consciousness of mankind.

Of this general law the telegraph affords a conspicuous example. The whole world knows the story of the telegraph of Morse. It was in 1844 that the work of this great inventor was publicly demonstrated to the world. Then it was that the electro-magnetic telegraph in its first rude estate began to be used in the transmission of messages and other written information.

It has come to pass that "telegraph" means virtually electric telegraph. The people of to-day seem to have forgotten that the telegraph is not necessarily dependent on the electrical current. They have forgotten that back of the Morse invention other means had been employed of transmitting information at a distance. They have forgotten that it was by the most gradual and tedious process that the old telegraphic methods were evolved into the new. Note with wonder how this great invention began, and through what stages it passed to completion.

There is a natural telegraphy. Whoever stands in an open place and calls aloud to his fellow mortal at a distance telegraphs to him. At least he telephones to him; that is, sounds to him at a distance. The air is the medium, the vocal cords in vibration the source of the utterance, and the ear of the one at a distance the audiphonic receiver. This sort of telegraphy is original and natural with human beings, and it is common to them and the lower animals. All the creatures that have vocality use this method. It were hard to say how humble is the creeping thing that does not rasp out some kind of a message to its fellow insect. Some, like the fireflies, do their telegraphing with a lantern which they carry. The very crickets are expert in telegraphy, or telephony, which is ultimately the same thing.

After transmitted sound the next thing is the visible signal, and this has been employed by human beings from the earliest ages in transmitting information to a distance. It is a method which will perhaps never be wholly abandoned. Observe the surveyors running a trial line. Far off is the chain bearer and here is the theodolite. The man with the standard watches for the signal of the man with the instrument. The language is seen and the message understood, though no word is spoken. Here the sunlight is the wire, and the visible motion of the hands and arms the letters and words of the message.

The ancients were great users of this method. They employed it in both peace and war. They occupied heights and showed signals at great distances. The better vision of those days made it possible to catch a signal, though far off, and to transmit it to some other station, likewise far away. In this manner bright objects were waved by day and torches by night. In times of invasion such a method of spreading information has been used down to the present age. Nor may we fail to note the improved apparatus for this kind of signaling now employed in military operations. The soldiers on our frontiers in Arizona, New Mexico, and through the mountainous regions further north, are able to signal with a true telegraphic language to stations nearly a hundred miles away.

Considerable progress was made in telegraphy in the after part of the eighteenth century. This progress related to the transmission of visible messages through the air. In the time of the French Revolution such contrivance occupied the attention of military commanders and of governing powers. A certain noted engineer named Chappe invented at this epoch a telegraph that might be properly called successful. Chappe was the son of the distinguished French astronomer, Jean Chappe d'Auteroche, who died at San Lucar, California, in 1769. This elder Chappe had previously made a journey into Siberia, and had seen from that station the transit of Venus in 1761. Hoping to observe the recurring transit, eight years afterward, he went to the coast of our then almost unknown California, but died there as stated above.

The younger Chappe, being anxious to serve the Revolution, invented his telegraph; but in doing so he subjected himself to the suspicions of the more ignorant, and on one notable occasion was brought into a strait place—both he and his invention. The story of this affair is given by Carlyle in the second volume of his "French Revolution." One knows not whether to smile or weep over the graphic account which the crabbed philosopher gives of Chappe and his work in the following extract:

"What, for example," says he, "is this that Engineer Chappe is doing in the Park of Vincennes? In the Park of Vincennes; and onward, they say, in the Park of Lepelletier Saint-Fargeau, the assassinated deputy; and still onward to the Heights of Ecouen and farther, he has scaffolding set up, has posts driven in; wooden arms with elbow-joints are jerking and fugling in the air, in the most rapid mysterious manner! Citoyens ran up, suspicious. Yes, O Citoyens, we are signaling; it is a device, this, worthy of the Republic; a thing for what we will call far-writing without the aid of postbags; in Greek it shall be named Telegraph. 'Telegraphe sacre,' answers Citoyenism. For writing to Traitors, to Austria?—and tears it down, Chappe had to escape and get a new legislative Decree. Nevertheless he has accomplished it, the indefatigable Chappe; this his Far-writer, with its wooden arms and elbow-joints, can intelligibly signal; and lines of them are set up, to the North Frontiers and elsewhither. On an Autumn evening of the Year Two, Far-writer having just written that Conde Town has surrendered to us, we send from the Tuileries Convention-Hall this response in the shape of a Decree: 'The name of Conde is changed to Nord-Libre (North Free). The Army of the North ceases not to merit well of the country.' To the admiration of men! For lo! in some half-hour, while the Convention yet debates, there arrives this new answer: 'I inform thee (Je t'annonce), Citizen President, that the Decree of Convention, ordering change of the name Conde into North Free; and the other, declaring that the Army of the North ceases not to merit well of the country, are transmitted and acknowledged by Telegraph. I have instructed my Officer at Lille to forward them to North Free by express.' Signed, Chappe."

This successful telegraph of Engineer Chappe was not an electric telegraph, but a sunlight telegraph. Is it in reality any more wonderful to use the electrical wave in the transmission of intelligible symbols than to use a wave of light? Such seems to have been the opinion of mankind; and the coming of the electric telegraph was long postponed. The invention was made by slow approaches. In our country the notion has prevailed that Morse did all—that others did nothing; but this notion is very erroneous.

We are not to suppose that the Chappe method of telegraphing became extinct after its first successful work. Other references to what we suppose to be the same instrument are found in the literature of the age. The wonder is that more was not written and more accomplished by the agency of Chappe's invention. In the fall of the year 1800, General Bonaparte, who had been in Egypt and the East, returned to Europe and landed at Frejus on his way to Paris, with the dream of universal dominion in his head. In the first volume of the Memoirs of Napoleon Bonaparte, his secretary M. de Bourrienne, writing of the return to France says:

"We arrived in Paris on the 24th Vendemiaire (the sixteenth of October). As yet he (Napoleon) knew nothing of what was going on; for he had seen neither his wife nor his brothers, who were looking for him on the Burgundy Road. The news of our landing at Frejus had reached Paris by a telegraphic despatch. Madame Bonaparte, who was dining with M. Gohier when that despatch was communicated to him, as President of the Directory, immediately set off to meet her husband," etc. We should be glad to know in what particular form that "telegraphic despatch" was delivered! But such are Bourrienne's words!

To the American reader the name of Karl Friedrich Gauss may have an unfamiliar sound. Gauss was already a youth of fourteen when Morse was born, though the latter outlived the German mathematician by seventeen years. Gauss was a professor of Mathematics at Goettingen, where he passed nearly the whole of his life. In the early part of the century he distinguished himself in astronomy and in other branches of physical science. He then became interested in magnetic and electrical phenomena, and in 1833, with the assistance of Wilhelm Eduard Weber, one of his fellow-professors, who died in 1891, he erected at Goettingen a magnetic observatory. There he began to experiment with the subtle agent which was soon to be placed at the service of mankind.

The observatory was constructed without the use of iron, in order that the magnetic phenomena might be studied under favorable conditions. Humboldt and Arago had previously constructed laboratories without using iron—for iron is the great disturber—and from them Gauss obtained his hint. Weber was also expert in the management of magneto-electrical currents. Gauss, with the aid of his co-worker, constructed a line of telegraph, and sent signals by the agency of the magnetic current to a neighboring town. This was nearly ten years before Morse had fully succeeded in like experimentation.

It appears that the German scientists regarded their telegraph as simply the tangible expression or apparatus to illustrate scientific facts and principles. It was for this reason, we presume, that no further headway was made at Goettingen in the development of telegraphy. It was also for the additional reason that men rarely or never accept what is really the first demonstration and exemplification of a new departure in scientific knowledge. Such is the timidity of the human mind—such its conservative attachment to the known thing and to the old method as against the new—that it prefers to stay in the tumble-down ruin of bygone opinions and practices, rather than go up and inhabit the splendid but unfamiliar temple of the future.

Gauss and Weber were left with their scientific discovery; and, indeed, Morse in the New World of practicality and quick adaptations, was about to be rejected and cast out. The sorrows through which he passed need not here be recounted. They are sufficiently sad and sufficiently humiliating. His unavailing appeals to the American Congress are happily hidden in the rubbish of history, and are somewhat dimmed by the intervention of more than half a century. But his humiliation was extreme. Smart Congressmen, partisans, the ignorant flotsam of conventions and intrigues, heard the philosopher with contempt. A few heard him with sympathy; and the opinion in his favor grew, as if by the pressure of shame, until he was finally supported, and in a midnight hour of an expiring session of Congress, or rather in the early morning of the fourth of March, 1843, the munificent appropriation of $30,000 was placed at his disposal for the construction of an experimental line between Washington and Baltimore.

The one thing was done. A new era of instantaneous communication between men and communities at a distance the one from the other was opened—an era which has proved to be an era of light and knowledge. Nor may we conclude this sketch without noting the fact that, not a few of the members of the House of Representatives who voted the pittance for the construction of the first line of actual working telegraph in the world, went home to their constituents and were ignominiously beaten for re-election—this this for the slight service which they had rendered to their country and the human race!

When in New York City, turn thou to the west out of Fifth avenue into Twenty-second street, to the distance of, perhaps, ten rods, and there on a little marble slab set in the wall of a house on the north side of the street, read this curious epitaph:

"In this house lived Professor S.F.B, Morse for thirty years and died!"

THE NEW LIGHT OF MEN.

By the law of nature our existence is divided between daylight and darkness. There is evermore the alternate baptism into dawn and night. The division of life is not perfect between sunshine and shadow; for the sunshine bends around the world on both horizons, and lengthens the hemisphere of day by a considerable rim of twilight. To this reduction of the darkness we must add moonshine and starlight. But we must also subtract the influence of the clouds and other incidental conditions of obscuration. After these corrections are made, there is for mankind a great band of deep night, wherein no man can work. Whoever goes forth at some noon of night, when the sky is wrapped with clouds, must realize the utter dependence of our kind upon the light. How great is the blessing of that sublime and beautiful fact which the blind Milton apostrophizes in the beginning of the Third Book of Paradise Lost:

"Hail, holy Light! offspring of heaven first-born! Or of Eternal coeternal beam, May I express thee unblamed? since God is light, And never but in unapproached light Dwelt from eternity, dwelt then in thee, Bright effluence of bright essence increate! Or hear'st thou rather, pure ethereal stream, Whose fountain who shall tell? Before the sun, Before the heavens thou wert, and at the voice Of God, as with a mantle, didst invest The rising world of waters dark and deep, Won from the void and formless infinite."

How then shall man overcome the darkness? It is one of the problems of his existence. He is obliged with each recurring sunset of his life to enter the tunnel of inky darkness and make his way through as best he may to the morning. What kind of lantern shall he carry as he gropes?

The evolution of artificial light and of the means of producing it constitutes one of the most interesting chapters in the history of our race. Primeval man knew fire. He learned in some way how to kindle fire. The lowest barbarian may be defined as a fire-producing animal. The cave men of ancient Europe kindled fires in their dark caverns. The lake dwellers had fires, both on shore and in their huts over the water. Wherever there was a fire there was artificial light. The primitive barbarian walked around the embers of his fire and saw his shadow stretching out into the gloom of the surrounding night.

With the slow oncoming of a better estate, the early philosophers of mankind invented lamps. Very rude indeed were the first products in this kind of art. Note the character of the lamps that have survived to us from the age of stone. Still they are capable of holding oil and retaining a wick. Further on we have lamps from the age of bronze, and at last from the age of iron. Polite antiquity had its silver lamps, its copper lamps, and in a few instances its lamps of gold. The palaces of kings were sometimes lighted from golden reservoirs of oil. Such may be seen among the relics preserved to us from the civilizations of Western Asia. The palace of Priam, if we mistake not, had lamps of gold.

The Great Greeks were the makers of beautiful lamps. In the age of the Grecian ascendancy the streets of Athens and of some other Hellenic cities were lighted by night. The material of such illumination was oil derived either from animals or from vegetable products, such as the olive. In the forms of Greek lamps we have an example of artistic beauty not surpassed or equaled in modern time; but the mechanical contrivance for producing the light was poor and clumsy.

Rome lighted herself artificially. She had her lamps and her torches and her chandeliers, as we see in the relics of Herculaneum and Pompeii. A Roman procession by night was not wanting in brilliancy and picturesqueness. The quality of the light, however was poor, and there was always a cloud of smoke as well as of dust hovering about Roman processions and triumphs.

The earlier Middle Ages improved not at all; but with the Renaissance there was an added elegance in the apparatus of illumination. Chandeliers were made in Italy, notably in Venice, that might rival in their elegance anything of the present age. The art of such products was superior; but the old barbaric clumsiness was perpetuated in the mechanical part. With the rise of scientific investigation under the influence of inductive philosophy, all kinds of contrivances for the production of artificial light were improved. The ingenuity of man was now turned to the mechanical part, and one invention followed another with a constant development in the power of illumination.

We can but remember, however, that until the present age many of the old forms of illuminating apparatus have been retained. In the ruder communities such things may still be seen. Civilization in its progress from east to west across our continent followed a tallow candle. The light of it was seen by night through the window of the pioneer's cabin. The old forms of hanging lamps have hardly yet disappeared from the advance posts of the marching column. But meanwhile, other agencies have been discovered, and other forms of apparatus invented, until the branch of knowledge relating to illumination has become both a science and an art.

Within the memories of men still living, a great transformation has occurred. Animal oils have virtually ceased to be employed as the sources of light. The vegetable world is hardly any longer drawn upon for its products. Already before the discovery of petroleum and its multifarious uses the invention by chemical methods of illuminating materials had begun. Many kinds of burning fluid had been introduced. The reign of these was short-lived; coal oil came in at the door and they flew out at the window. Great was the advantage which seemed to come to mankind from the use of kerosene lamps. Those very forms of illumination which are now regarded as crude in character and odious in use were only a generation ago hailed with delight because of their superiority to the former agents of illumination. Thus much may suffice for all that precedes the coming of the New Light of men. The new light flashes from the electrical glow. The application of electricity to purposes of illumination marks an era in human progress. The electrical light is, we think, high up among the most valuable and striking stages of civilized life in the nineteenth century. It is best calculated to affect favorably the welfare of the people, especially in great cities. The illumination of a city by night, making its streets to be lighted as if by day, is a more interesting and important fact in human history than any political conflict or mere change of rulers.

About the beginning of the eighth decade of this century the project of introducing the electric light for general purposes of illumination began to be agitated. It was at once perceived that the advantages of such lighting were as many as they were obvious. The light is so powerful as to render practicable the performance of many mechanical operations as easily by night as by day. Again, the danger of fire from illuminating sources is almost wholly obviated by the new system. The ease and expedition of all kinds of night employment are greatly enhanced. A given amount of illumination can be produced much more cheaply by electricity than by any means of gas lighting or ordinary combustion. Among the first to demonstrate the feasibility of electric lighting was the philosopher Gramme, of Paris. In the early part of 1875 he successfully lighted his laboratory by means of electricity. Soon afterward the foundry of Ducommun & Co., of Mulhouse, was similarly lighted. In the course of the following year the apparatus for lighting, by means of carbon candles was introduced into many of the principal factories of France and other leading countries of Europe. It may prove of interest in this connection to sketch briefly the principal features of the electric light system, and to trace the development of that system in our own and other countries.

Lighting by electricity is accomplished in several ways. In general, however, the principle by which the result is accomplished is one, and depends upon the resistance which the electrical current meets in its transmission through various substances. There are no perfect conductors of electricity. In proportion as the non-conductive quality is prevalent in a substance, especially in a metal, the resistance to the passage of electricity is pronounced, and the consequent disturbance among the molecular particles of the substance is great. Whenever such resistance is encounted in a circuit, the electricity is converted into heat, and when the resistance is great, the heat is, in turn, converted into light, or rather the heat becomes phenomenal in light; that is, the substance which offers the resistance glows with the transformed energy of the impeded current. Upon this simple principle all the apparatus for the production of electric light is produced.

Among the metallic substances, the one best adapted by its low conductivity to such resistance and transformation of force, is platinum. The high degree of heat necessary to fuse this metal adds to its usefulness and availability for the purpose indicated. When an electrical current is forced along a platinum wire too small to transmit the entire volume, it becomes at once heated—first to a red, and then to a white glow—and is thus made to send forth a radiance like that of the sun. Of the non-metallic elements which offer similar resistance, the best is carbon. The infusibility of this substance renders it greatly superior to platinum for purposes of the electric light.

Near the beginning of the present century it was discovered by Sir Humphry Davy that carbon points may be rendered incandescent by means of a powerful electrical current. The discovery was fully developed in the year 1809, while the philosopher just referred to was experimenting with the great battery of the Royal Institution of London. He observed—rather by accident than by design or previous anticipation—that a strong volume of electricity passing between two bits of wood charcoal produces tremendous heat, and a light like that of the sun. It appears, however, that Davy at first regarded the phenomenon rather in the nature of an interesting display of force than as a suggestion of the possibility of turning night into day.

For nearly three-quarters of a century the discovery made by Sir Humphrey lay dormant among the great mass of scientific facts revealed in the laboratory. In the course of time, however, the nature of the new fact began to be apprehended. The electric lamp in many forms was proposed and tried. The scientists, Niardet, Wilde, Brush, Fuller, and many others of less note, busied themselves with the work of invention. Especially did Gramme and Siemens devote their scientific genius to the work of turning to good account the knowledge now fully possessed of the transformability of the electric current into light.

The experiments of the last named two distinguished inventors brought us to the dawn of the new era in artificial lighting. The Russian philosopher, Jablokhkoff, carried the work still further by the practical introduction of the carbon candle. Other scientists—Carre, Foucault, Serrin, Rapieff, and Werdermann—had, at an earlier or later day, thrown much additional information into the common stock of knowledge relative to the illuminating possibilities of electricity. Finally, the accumulated materials of science fell into the hands of that untutored but remarkably radical inventor, Thomas A. Edison, who gave himself with the utmost zeal to the work of removing the remaining difficulties in the problem.

Edison began his investigations in this line of invention in September of 1878, and in December of the following year gave to the public his first formal statement of results. After many experiments with platinum, he abandoned that material in favor of the carbon-arc in vacuo. The latter is, indeed, the essential feature of the Edison light. A small semicircle, or horseshoe, of some substance, such as a filament of bamboo reduced to the form of pure carbon, the two ends being attached to the poles of the generating-machine, or dynamo, as the engine is popularly called, is enclosed in a glass bulb, from which the air has been carefully drawn, and is rendered incandescent by the passage of an electric current. The other important features of Edison's discovery relate to the divisibility of the current, and its control and regulation in volume by the operator. These matters were fully mastered in the Edison invention, and the apparatus rendered as completely subject to management as are the other varieties of illuminating agencies.

Previous Part     1  2  3  4  5     Next Part
Home - Random Browse